EP0137911B1 - Procédé de fabrication d'une couche dépassivante et couche dépassivante sur une électrode de cellule électrochimique - Google Patents

Procédé de fabrication d'une couche dépassivante et couche dépassivante sur une électrode de cellule électrochimique Download PDF

Info

Publication number
EP0137911B1
EP0137911B1 EP84107073A EP84107073A EP0137911B1 EP 0137911 B1 EP0137911 B1 EP 0137911B1 EP 84107073 A EP84107073 A EP 84107073A EP 84107073 A EP84107073 A EP 84107073A EP 0137911 B1 EP0137911 B1 EP 0137911B1
Authority
EP
European Patent Office
Prior art keywords
noble metal
layer
substrate
metal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84107073A
Other languages
German (de)
English (en)
Other versions
EP0137911A1 (fr
Inventor
Eric Killer
Günther Georg Anton Dr. Dipl.-Chem. Scherer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0137911A1 publication Critical patent/EP0137911A1/fr
Application granted granted Critical
Publication of EP0137911B1 publication Critical patent/EP0137911B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide

Definitions

  • the invention is based on a method for producing a depassivation layer according to the preamble of claim 1.
  • Electrodes The requirements placed on the electrodes of electrochemical cells are diverse and in some cases divergent, so that these electrodes usually have to be constructed from composite materials in order to be able to meet all conditions to some extent. This applies in particular to electrodes (anodes) that have to work under oxidizing conditions. Normally, a corrosion-resistant carrier material serving as a substrate is used for such electrodes, which in turn is provided with one or more additional layers of other components. If solid electrolytes are used for the construction of the electrochemical cell, the substrate is built up from porous, liquid and gas permeable material.
  • titanium is particularly suitable as a substrate for anodes in technical electrolysis processes.
  • the titanium substrate is coated with a specific electrocatalyst.
  • the electrocatalyst / titanium substrate interface is particularly critical for the functioning of the electrode.
  • the titanium substrate must be completely covered, since otherwise a non-conductive cover layer of essentially TiO 2 is formed under anodic conditions.
  • an intermediate layer is often applied, which consists of a stable and conductive material in the anodic potential range. Precious metals, especially platinum, are used for this.
  • This intermediate layer must be continuous, its thickness can be 0.1-1 ⁇ m.
  • Such electrodes, provided with intermediate layers and electrocatalysts, are known (A.
  • Nidola “Technological Impact of Metallic Oxides as Anodes •, in“ Electrodes of Conductive Metallic Oxides ”, Part B, page 627, editor: S. Trasatti, ELSEVIER, Amsterdam, 1981; PCS Hayfield, WR Jacob, "Platinum / Iridium-coated titanium anodes in brine electrolysis •, in” Modern Chlor-Alkali Technology •, page 103, Editor: MO Coulter, Ellis Horwood Ltd., Chichester 1980, Th. Comninellis, E. Plattner, Journal of Applied Electrochemistry, 12, 399/1982).
  • the protection of the carrier material is now of particular importance if the electrocatalyst is not applied as a microscopically coherent layer, but in the form of a porous powder-binder mixture which does not completely cover the substrate due to the porous structure.
  • the non-passivating intermediate layer becomes more important if the titanium substrate is not a solid workpiece, but a porous substrate, e.g. B. is a sintered titanium foil as used in solid electrolyte cells.
  • porous titanium substrates are of great importance insofar as methods such as those used for planar and solid electrodes are out of the question in this case. This problem is exacerbated because, for economic reasons, only small amounts of noble metal 0.1 mg / cm 2 should be applied, but this is difficult with a relatively undefined surface, such as that of a porous substrate.
  • the invention is based on the object of specifying a method by means of which the surface of a porous body can be deliberately provided with a depassivation layer which has improved properties and a high stability and long service life with a minimal noble metal content.
  • Fig. 1 is the sheet-like substrate, for example in the form of a porous plate or foil made of titanium (longitudinal section).
  • 2 shows an elastic roll, which can advantageously consist of Teflon @ (polytetrafluoroethylene).
  • 3 is a sheet-like, flexible solution carrier which is said to be porous and absorbent in order to be able to absorb the metal salt solution. It is connected in the form of a felt or paper between the substrate 1 and the roll 2. In the rolling process indicated by arrows, 3 releases a thin layer of the metal salt solution onto the surface of 1.
  • the porous substrate 1 which is composed of individual grains with cavities in between.
  • 4 is the at least partially connected depassivation layer in film form, which is a submicroscopically fine, homogeneous mixture of electronically conductive suboxides and oxides of the substrate and that from the applied metal salt solution contains precious metals or metals in metallic and / or oxidic form.
  • a porous sintered titanium plate as the substrate (1) was provided with a depassivation layer. (4), which contained platinum.
  • a depassivation layer. (4) which contained platinum.
  • an aqueous 5. 10 -2 NH 2 PtC1 6 solution was carried out.
  • the coating was carried out by means of an elastic roll (2) made of Teflon and a solution carrier (3) in the form of a chromatography paper. Coating was carried out a total of 5 times, the amount applied being determined gravimetrically in each case.
  • the coated titanium plate was then dried and subjected to a chemo-thermal treatment in the form of an annealing in air at 450 ° C. for 30 minutes.
  • the amount of platinum applied was determined to be 0.1 mg / cm 2 .
  • a porous sintered titanium foil as substrate (1) was coated in an analogous manner as in Example I.
  • the metal salt solution consisted of a 5-10 -2 N solution of the formula H 2 M c Cl 6 , where M e was a mixture of Pt and Ir in an atomic weight ratio of 70:30.
  • the amount of noble metal was determined to be 0.05 mg / cm 2 .
  • the substrates coated according to Examples 1 and II were tested as current collectors on the anode side of solid electrolyte cells and, despite the fact that the noble metal content was ten times lower, gave the same cell voltages as electrodes produced by conventional methods (electroplating. Vapor deposition).
  • Depassivation layers of various types and compositions can be created using the new method.
  • All precious metals can generally be applied using a metal salt solution, both individually and in mixtures.
  • other metals that are not precious metals can be added.
  • noble metal oxides in particular the platinum metal groups
  • the finished depassivation layer can also contain gold and another component in the form of a metal or its oxide, in particular SnO 2 .
  • An essential part of the depassivation layer consists of an electrically conductive sub-oxide or oxide of the substrate, or mixtures thereof, generated on the surface during the chemo-thermal treatment.
  • All of the components listed form a submicroscopically fine, homogeneous mixture, whereby the individual components can have a dimension that goes down to close to the atomic range. This ensures an at least partially coherent film of the depassivation layer, which has optimal chemical and physical properties. In this way, the noble metal content of the depassivation layer can be kept to a minimum without accepting disadvantages, which has a favorable effect on the economy of the system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Claims (5)

1. Procédé de fabrication d'une couche de dépassivation sur une électrode d'une cellule électrochimique, au moins un métal noble ou au moins un métal noble et un métal supplémentaire, étant appliqués à un substrat à deux dimensions fait d'au moins d'un des éléments titane, zirconium, tantalum et niobium, et étant transformé en une forme et/ou oxidique par un traitement chimi- que/thermique, la surface du substrat (1) étant au moins partiellement oxydé simultanément en un sous-oxyde et/ou oxyde correspondant conducteur d'électricité, et une couche de dépassivation (15) qui est constitué d'un mélange homogène fin à l'échelle sous-microscopique, étant formé sous forme d'un film au moins partiellement cohérent, caractérisé en ce qu'une solution de sel métallique contenant le métal ou les métaux à appliquer, est appliqué en couche mince au substrat (1), au moyen d'un cylindre et élastique (2) et d'un porteur de solution absorbant poreux (3) inséré entre le substrat (1) et le cylindre (2) en faisant passer le cylindre sur le substrat une ou plusieurs fois.
2. Procédé selon la revendication 1, caractérisé en ce que le métal noble et/ou l'oxyde de métal noble est ou contient au moins un métal platine ou de l'or.
3. Procédé selon la revendication 2, caractérisé en ce que le métal noble est au moins un des métaux platine, iridium, et ruthénium.
4. Procédé selon la revendication 4, caractérisé en ce que l'oxyde de métal noble est au moins un oxyde ou sous-oxyde d'au moins un des éléments platine, iridium et ruthénium.
5. Procédé selon la revendication 2, caractérisé en ce que le métal noble est l'or.
EP84107073A 1983-06-28 1984-06-20 Procédé de fabrication d'une couche dépassivante et couche dépassivante sur une électrode de cellule électrochimique Expired EP0137911B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH353183 1983-06-28
CH3531/83 1983-06-28

Publications (2)

Publication Number Publication Date
EP0137911A1 EP0137911A1 (fr) 1985-04-24
EP0137911B1 true EP0137911B1 (fr) 1988-07-27

Family

ID=4258004

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84107073A Expired EP0137911B1 (fr) 1983-06-28 1984-06-20 Procédé de fabrication d'une couche dépassivante et couche dépassivante sur une électrode de cellule électrochimique

Country Status (4)

Country Link
US (1) US4597846A (fr)
EP (1) EP0137911B1 (fr)
JP (1) JPS6024389A (fr)
DE (1) DE3472979D1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726219B2 (ja) * 1986-08-14 1995-03-22 三井金属鉱業株式会社 電解用電極

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443055A (en) * 1966-01-14 1969-05-06 Ross M Gwynn Laminated metal electrodes and method for producing the same
US3933616A (en) * 1967-02-10 1976-01-20 Chemnor Corporation Coating of protected electrocatalytic material on an electrode
US3926773A (en) * 1970-07-16 1975-12-16 Conradty Fa C Metal anode for electrochemical processes and method of making same
DE2846576A1 (de) * 1978-10-26 1980-06-04 Basf Ag Verfahren zum beschichten von materialbahnen
DE2928910A1 (de) * 1979-06-29 1981-01-29 Bbc Brown Boveri & Cie Elektrode fuer die wasserelektrolyse
DE3004080C2 (de) * 1980-02-05 1986-03-20 Sigri GmbH, 8901 Meitingen Verfahren zum Beschichten einer porösen Elektrode
DE3106587C2 (de) * 1981-02-21 1987-01-02 Heraeus Elektroden GmbH, 6450 Hanau Elektrode und deren Verwendung
JPS6022074B2 (ja) * 1982-08-26 1985-05-30 ペルメレツク電極株式会社 耐久性を有する電解用電極及びその製造方法

Also Published As

Publication number Publication date
JPS6024389A (ja) 1985-02-07
DE3472979D1 (en) 1988-09-01
US4597846A (en) 1986-07-01
EP0137911A1 (fr) 1985-04-24

Similar Documents

Publication Publication Date Title
DE69218075T2 (de) Elektrode für Elektrolyse
DE2636447C2 (de) Mangandioxidelektroden
DE69305668T2 (de) Sauerstoff-Entwicklungselektrode
DE3715444C2 (fr)
DE1671422B2 (de) Elektrode zur verwendung in elektrolytischen prozessen und verfahren zu deren herstellung
DE69122910T2 (de) Verfahren zur Kupfer-Elektroplattierung
DE3717972C2 (fr)
DD243718A5 (de) Elektrode fuer elektrochemiesche prozesse, verfahren zur herstellung derselben
DE69611476T2 (de) Aktivierte Kathode und deren Herstellungsverfahren
DE4438275B4 (de) Elektrolysezelle und Verfahren zur Elektrolyse einer wässrigen Kochsalzlösung
DE1105854B (de) Bleidioxyd-Elektrode fuer elektrolytische Verfahren
DD298437A5 (de) Formstabile anoden und verfahren zur herstellung von alkalidichromaten und chromsaeure unter deren verwendung
DE2338549B2 (fr)
DE2852136C2 (fr)
DE3447733A1 (de) Verfahren zur elektrolytischen behandlung von metall durch energiezufuhr mittels fluessigkeit
DE3004080C2 (de) Verfahren zum Beschichten einer porösen Elektrode
DE2818829A1 (de) Verfahren zur herstellung einer unloeslichen elektrode
DE69109029T2 (de) Anode für Chrom-Elektroplattierung, Verfahren zur Herstellung und Verwendung dieser Anode.
EP0137911B1 (fr) Procédé de fabrication d'une couche dépassivante et couche dépassivante sur une électrode de cellule électrochimique
DE2645414A1 (de) Verfahren zur herstellung von metallanoden fuer die elektrolytische gewinnung von mangandioxid
DE2844558A1 (de) Elektrode fuer die verwendung in einem elektrolytischen verfahren
DE2836353C2 (de) Verfahren zum Gewinnen von Wasserstoff und Schwefelsäure durch elektrochemisches Zerlegen eines Elektrolyten sowie Elektrode zur Durchführung der elektrochemischen Zerlegung
DE1256504B (de) Verfahren zur galvanischen Herstellung unloeslicher Anoden fuer elektrochemische Prozesse
DE3330961C2 (de) Aktivierte Elektroden auf der Basis von Ni, Co, Fe mit aktiver Beschichtung und Verfahren zur Herstellung derselben
DE3613997A1 (de) Anode fuer elektrolytische prozesse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19850304

17Q First examination report despatched

Effective date: 19860312

D17Q First examination report despatched (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBC BROWN BOVERI AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3472979

Country of ref document: DE

Date of ref document: 19880901

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930512

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930519

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930819

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930917

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940630

Ref country code: CH

Effective date: 19940630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST