EP0137469B1 - Régulation du ralenti d'un moteur à allumage commandé - Google Patents

Régulation du ralenti d'un moteur à allumage commandé Download PDF

Info

Publication number
EP0137469B1
EP0137469B1 EP84111961A EP84111961A EP0137469B1 EP 0137469 B1 EP0137469 B1 EP 0137469B1 EP 84111961 A EP84111961 A EP 84111961A EP 84111961 A EP84111961 A EP 84111961A EP 0137469 B1 EP0137469 B1 EP 0137469B1
Authority
EP
European Patent Office
Prior art keywords
signal
valve
circuit
speed
idling control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84111961A
Other languages
German (de)
English (en)
Other versions
EP0137469A1 (fr
Inventor
Burkhard Brandner
Bernhard Klein
Albert Stübs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Engineering GmbH
Original Assignee
AFT Atlas Fahrzeugtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AFT Atlas Fahrzeugtechnik GmbH filed Critical AFT Atlas Fahrzeugtechnik GmbH
Publication of EP0137469A1 publication Critical patent/EP0137469A1/fr
Application granted granted Critical
Publication of EP0137469B1 publication Critical patent/EP0137469B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M3/00Idling devices for carburettors
    • F02M3/06Increasing idling speed
    • F02M3/07Increasing idling speed by positioning the throttle flap stop, or by changing the fuel flow cross-sectional area, by electrical, electromechanical or electropneumatic means, according to engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Definitions

  • the invention relates to an idle control for a gasoline engine, an actuating arm of a throttle valve arranged in an intake manifold being coupled to a piston rod of a pneumatic cylinder unit, the cylinder chamber of which, via a valve chamber and inlet channels of a three-way flow control valve, on the one hand on the downstream side of the throttle valve with the intake manifold and on the other hand with the atmosphere is connectable.
  • a comparatively rich fuel-air mixture is supplied to a gasoline engine so that a gasoline engine can absorb load fluctuations when idling and does not stop. This requires an increased generation of pollutants and thus environmental pollution.
  • the idle speed itself must be chosen to be comparatively high. Nevertheless, difficulties arise when the motor vehicle contains a power steering or an air conditioning system and when this causes fluctuations in load when idling.
  • DE-OS 33 16 660 describes an idle control of the type mentioned at the outset.
  • the throttle valve can be adjusted from a stop position which corresponds to the idle set speed in order to keep the idle actual speed when the set value drops. If the idling speed is too high, it is not possible to influence the speed of the gasoline engine.
  • the throttle valve is adjusted by periodically supplying a switching voltage to the three-way flow control valve, so that the cylinder unit is increasingly subjected to negative pressure. This obviously does not guarantee a stable setting, so that periodic fluctuations in the idle speed occur.
  • DE-OS 29 48 151 describes an idle control which is intended to rule out a drop in the engine speed below the idle target speed.
  • the control takes place with the help of a solenoid valve, which allows the intake manifold vacuum to take effect in a control valve.
  • a stable setting is hardly possible here either.
  • the object of the invention is to control the idle speed while compensating for changes in load.
  • target speed and actual speed always mean target idling speed and idling actual speed.
  • the three-way flow control valve has a diaphragm-like, freely movable, ferromagnetic valve plate which interacts with valve seats of the inlet channels and is arranged between two opposing coils in that the two coils are connected to push-pull outputs of an impulse generator with an adjustable duty cycle are connected that a differential circuit compares a target speed signal with an actual speed signal of the gasoline engine and emits a change signal for the pulse duty factor to the pulse generator and that the target speed signal can be changed as a function of operating parameters.
  • the invention differs in an obvious manner from the prior art, when the throttle valve setting is regulated in idle mode, so that speed deviations above and below the target speed can be compensated for. As a result, the cheapest amount of mixture can always be seen. The pollutant production is reduced.
  • the invention provides for the control of the setting of the throttle valve, the application of the intake manifold vacuum via a three-way flow control valve.
  • This three-way flow control valve is precisely controlled by a pulse generator with an adjustable duty cycle from pulse duration to pulse pause. The three-way flow control valve thus allows a very precise control of the flow and thus the signal pressure in the cylinder unit for adjusting the throttle valve.
  • the pulse duty factor can be continuously adjusted between 0% and 100%.
  • the valve plate is moved back and forth between the opposing valve seats by each pulse, the duration of the installation on the valve seats being determined by the test ratio. This means that each valve seat is closed or opened during a period of time corresponding to the duty cycle. This allows the flow to be precisely controlled, unaffected by the characteristics of the flow control valve.
  • the idle speed is also controlled as a function of parameters, so that the idle speed can be adapted to different operating states of the engine.
  • the invention is applicable to all gasoline engines that have an intake manifold with a throttle valve. Otherwise, these gasoline engines can be equipped with a carburetor or with an injection. Since the idle control only affects the throttle valve setting, the other components for mixture preparation are optional
  • the pulse generator's pulse duty factor can be precisely controlled.
  • a keying control circuit is provided for changing the duty cycle of the pulse generator.
  • the pneumatic cylinder unit is designed as a diaphragm valve with a return spring.
  • the negative pressure thus acts against the force of the return spring, the effective portion of the negative pressure being set by the duty cycle is set.
  • the idle speed has a higher value when the engine is cold
  • a signal from a temperature sensor is present on the modification circuit, which increases the modified target speed.
  • the signal from the temperature sensor adjusts to the basic value, so that the modified target speed is reduced accordingly to the target speed for idling.
  • the idle control according to the invention is also effective as an automatic start, so that no special automatic start is necessary.
  • the invention provides that in the event of a sudden reduction in the speed of the gasoline engine, a change signal in the sense of an increase in the desired speed is output to the modification circuit.
  • This modification signal can best be derived directly from the actual speed signal by applying the actual speed signal to a differentiating circuit for generating this modification signal, which outputs an output signal when there is a strong reduction in speed.
  • the differentiating circuit is followed by a timing element with a delayed decay of the output signal. This allows the engine speed to be gradually returned to the idle setpoint when the accelerator pedal is suddenly released
  • FIG. 1 shows an intake manifold 1 of a gasoline engine which receives a throttle valve 3 which can be pivoted on a shaft 2 against the action of a return spring 56 by means of an actuating arm 33.
  • a stop 58 is provided for the closed position of the throttle valve 3.
  • the throttle valve 3 is normally actuated by a pulling element 57 which is coupled to an accelerator pedal which is not shown.
  • a linkage 32 acts on the actuating arm 33, which, however, is only in the idle position of the pulling element 57 is effective and otherwise does not hinder the tension element 57.
  • a carburetor or an injection can be assigned to the intake manifold 1.
  • the direction of flow 4 of the intake air or the fuel-air mixture is indicated in FIG. 1.
  • the full negative pressure of the intake manifold 1 is present at a nozzle 5 and can be tapped there via a line 40.
  • the invention provides a three-way flow control valve 6.
  • the same has, within a valve chamber 7, two mutually opposing inlet connections 8 and 9 with valve seats 10 and 11, which are assigned to inlet channels 12 and 13.
  • Within the valve chamber 7 there is a freely movable, membrane-like, ferromagnetic valve plate 14 which interacts with the valve seats 10 and 11.
  • the valve plate 14 is opposed to coils 15, 16, which are each wound on a pot magnet 17, 18.
  • the respective core of each pot magnet 17, 18 also receives one of the inlet connections 8, 9.
  • An outlet channel 19 leads into the valve chamber 7 and leads to a pneumatic cylinder unit 20.
  • the coils 15, 16 are connected to push-pull outputs 21, 22 of a pulse generator 23 with an adjustable pulse duty factor.
  • the pulse generator 23 operates with a pulse frequency up to 1 kHz.
  • the pulse duty factor between pulse duration and pulse pause of the pulse generator 23 can be controlled between 0 and 100% by means of a key control circuit 24.
  • the key control circuit 24 is acted upon by the output signal of a differential circuit 25.
  • a modified nominal speed signal for the idling speed is present at an input 26, which is modified for certain operating states compared to the nominal speed signal, which will be explained in more detail.
  • At the other input 27 there is an actual speed signal that indicates the actual speed of the crankshaft of the gasoline engine.
  • the respective difference signal is used to control the pulse duty factor via the key control circuit 24, which will be explained in more detail.
  • the cylinder unit 20 contains a diaphragm 28 which closes off a cylinder chamber 34, a piston 29 with a piston rod 37 and a compression spring 30.
  • the piston rod 37 is coupled to the linkage 32 via a pivotably mounted adjusting lever 31.
  • the three-way flow control valve 6 is connected in detail as follows.
  • the cylinder chamber 34 is connected to the outlet channel 19.
  • the line 40 leads to the inlet duct 13 with the throttle point 36.
  • the inlet duct 12 opens into the atmosphere and contains one Throttle point 35.
  • the flow cross sections of the throttle points 35 and 36 are smaller than the flow cross section of the flow control valve 6, so that changes in the flow cross section of the flow control valve, in particular wear of the valve seats 10 and 11, have no adverse effect on the control behavior.
  • the input 26 of the differential circuit 25 is coupled to a modification circuit 53, into which a desired speed signal 54 is entered on the one hand.
  • a modification circuit 53 into which a desired speed signal 54 is entered on the one hand.
  • modification signals via lines 60 and 61 which modify desired speed signal 54, so that a modified desired speed signal 54 is present at input 26.
  • the line 60 comes from a temperature sensor 55, which is installed in a cooling water line 59 of the gasoline engine and measures the cooling water temperature. Any other measurement of the engine temperature is also possible.
  • the actual speed signal on line 27 is differentiated in a differentiating circuit 51.
  • the differentiating circuit 51 then emits an output signal when the engine speed drops suddenly. This is the case when the accelerator pedal is suddenly released.
  • the output signal of the differentiating circuit 51 is applied to a timing element 52 which, after responding to the output signal of the differentiating circuit 51, outputs a voltage signal on line 61, which gradually drops to the basic value, to the modification circuit 53.
  • This causes an increase in the modified target speed signal at input 26, so that the speed corresponding to the modified target speed signal only gradually adjusts to the idling target speed. This avoids sudden delays in the engine speed.
  • the pollutant emission is reduced.
  • the control behavior of the idle control is first explained for the case of the engine at operating temperature.
  • the not modified target speed signal is present.
  • the target speed has a basic value of 500 revolutions per minute. Other settings are also possible.
  • An actual speed signal is present on line 27, which indicates the actual speed of the crankshaft.
  • a differential signal is formed as a change signal. As long as the actual speed is greater than the target speed, a change signal of a polarity is emitted to the key control circuit 24 at the output of the differential circuit 25, which results in a reduction in the pulse duty factor of the pulse generator 23, in the case of the illustration in FIG. 2 approximately 00/0.
  • the upper curve indicates the short pulses with a long pulse pause at the output 21 for the coil 15.
  • the push-pull output 22 and thus the coil 16 carry a pulse shape according to the lower half of FIG. 2, that is to say a short pulse pause and a long pulse duration.
  • This pulse shape causes the valve plate 14 to be in almost constant contact with the valve seat 11.
  • the inlet channel 17 is shut off, so that there is essentially atmospheric pressure in the cylinder chamber 34.
  • the piston 29 of the cylinder unit 20 is consequently moved to the right, based on FIG. 1, so that the throttle valve reduces the intake manifold cross section.
  • the engine speed is reduced until the target speed is reached.
  • the change signal disappears so that the output signal of the key control circuit 24 no longer changes. As a result, there is no further change in speed.
  • Fig. 3 shows in the upper half the pulse curve for a duty cycle of almost 100% at the output 21 and in the lower half at the push-pull output 22.
  • the coil control with these pulses means that the valve plate 14 is almost constantly applied to the valve seat 10 and consequently the Intake manifold vacuum in the cylinder chamber 34 is effective.
  • the piston 9 is moved to the left in relation to FIG. 1 by the intake manifold vacuum.
  • Characterized the actuating arm 33 is pivoted with the throttle valve 3 in the clockwise direction, so that the throttle valve 3 is opened.
  • the engine can therefore draw in a larger amount of mixture, so that the speed increases accordingly. This influence continues until the actual speed has again reached the target speed value.
  • the duty cycle can be continuously controlled between 0% and 100% and set to any value. Each position corresponds to a stable setting of the throttle cap.
  • the throttling points 35 and 36 in the inlet channels 12 and 13 are used to switch off brief control vibrations. These throttling points limit the speed of change of the speed.
  • the setpoint speed signal can be modified via the modification circuit 53, as was explained above. An increased idling speed is then obtained during the warm-up phase or during a deceleration phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Claims (8)

1. Réglage du ralenti d'un moteur à allumage par étincelle, dans lequel un bras de réglage (33) d'un clapet d'étranglement (3) agencé dans un tuyau d'aspiration est accouplé à une tige de piston (37) d'une unité de cylindre pneumatique (20), dont la chambre de cylindre (34) est, par l'intermédiaire d'une chambre de soupape (7) et de canaux d'entrée (12, 13) d'une soupape de commande de passage à trois voies (6), en communication d'une part avec le tuyau d'aspiration (1) du côté aval du clapet d'étranglement (3) et d'autre part avec l'atmosphère, caractérisé en ce que la soupape de commande de passage à trois voies (6) présente une plaque de soupape ferromagnétique (14) de type membrane, librement mobile, qui coopère avec des sièges de soupape (10, 11) des canaux d'entrée (12, 13) et qui est agencée entre deux bobines mutuellement opposées (15, 16), en ce que les deux bobines (15, 16) sont raccordées aux sorties symétriques (21, 22) d'un générateur d'impulsions (23) à efficacité impulsionnelle ajustable, en ce qu'un circuit différentiel (25) compare un signal de nombre de tours prescrit avec un signal de nombre de tours réel du moteur à allumage par étincelle et fournit un signal de modification de l'efficacité impulsionnelle au générateur d'impulsions (23) et en ce que le signal de nombre de tours prescrit (54) peut être modifié en fonction de paramètres de fonctionnement.
2. Réglage du ralenti suivant la revendication 1, caractérisé en ce qu'un circuit de commande (24) est prévu pour modifier l'efficacité impulsionnelle du générateur d'impulsions (23).
3. Réglage du ralenti suivant l'une des revendidations 1 et 2, caractérisé en ce que l'unité de cylindre pneumatique (20) est réalisée sous la forme d'une soupape à membrane pourvue d'un ressort de rappel (30).
4. Réglage du ralenti suivant l'une des revendications 1 à 3, caractérisée en ce qu'est prevu un circuit de modification (53) auquel est appliqué le signal de nombre de tours prescrit (54) et à la sortie duquel est émis un signal de nombre de tours prescrit modifié en fonction de paramètres de fonctionnement.
5. Réglage du ralenti suivant la revendication 4, caractérisé en ce que, lorsque la température du moteur à allumage par étincelle est basse, un signal d'un détecteur de température (55), qui élève le nombre de tours prescrit modifié, est appliqué au circuit de modification (53).
6. Réglage du ralenti suivant la revendication 4, caractérisé en ce que, lors d'une diminution brusque du nombre de tours du moteur à allumage par étincelle, un signal de modification dans le sens d'une augmentation du nombre de tours prescrit est fourni au circuit de modification (53).
7. Réglage du ralenti suivant la revendication 6, caractérisé en ce que, pour la production de ce signal de modification, le signal d,e nombre de tours réel est appliqué à un circuit différenciateur (51) qui, lors d'une forte diminution du nombre de tours, émet un signal de sortie.
8. Réglage du ralenti suivant la revendication 7, caractérisé en ce qu'un organe temporisateur (52) à amortissement ralenti du signal de sortie est monté en aval du circuit différenciateur (51).
EP84111961A 1983-10-13 1984-10-05 Régulation du ralenti d'un moteur à allumage commandé Expired EP0137469B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833337260 DE3337260A1 (de) 1983-10-13 1983-10-13 Leerlaufregelung fuer einen ottomotor
DE3337260 1983-10-13

Publications (2)

Publication Number Publication Date
EP0137469A1 EP0137469A1 (fr) 1985-04-17
EP0137469B1 true EP0137469B1 (fr) 1987-02-25

Family

ID=6211743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84111961A Expired EP0137469B1 (fr) 1983-10-13 1984-10-05 Régulation du ralenti d'un moteur à allumage commandé

Country Status (5)

Country Link
US (1) US4738237A (fr)
EP (1) EP0137469B1 (fr)
JP (1) JPS60101258A (fr)
CA (1) CA1232500A (fr)
DE (2) DE3337260A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275739A (ja) * 1988-09-08 1990-03-15 Mitsubishi Electric Corp 機関のアイドル調整方法
JPH02108840A (ja) * 1988-10-19 1990-04-20 Fuji Heavy Ind Ltd 気化器のアイドリング回転数制御装置
US4989564A (en) * 1990-01-10 1991-02-05 Siemens-Bendix Automotive Electronics Limited Idle air bypass
DE102008031317A1 (de) * 2008-07-02 2010-01-07 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Kompressorsystem mit beschränktem Ansaugladedruck

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2983278A (en) * 1956-12-26 1961-05-09 Pneumo Dynamics Corp Magnetically operated hydraulic servo valve
US3289905A (en) * 1964-09-23 1966-12-06 Sperry Rand Corp Pneumatic capstan having a high speed electro-magnetic valve
GB1156018A (en) * 1965-12-08 1969-06-25 Teddington Aircraft Controls L Improvements in or relating to Solenoid Valves.
US3460573A (en) * 1966-11-21 1969-08-12 Gen Motors Corp Fluid control mechanism
US3722614A (en) * 1969-08-06 1973-03-27 Aisin Seiki Method and apparatus for causing constant tra veling speed of automotive vehicles
CH512701A (de) * 1969-08-28 1971-09-15 Arnold Stucki Elektronikapp Ba Heizwassersteuerungsorgan und Verfahren zum Betrieb desselben
US3682148A (en) * 1971-03-04 1972-08-08 Ford Motor Co Carburetor throttle valve positioner
CA978042A (en) * 1972-06-23 1975-11-18 Ford Motor Company Of Canada Carburetor throttle valve positioner
US4154198A (en) * 1973-02-09 1979-05-15 Hitachi, Ltd. Fuel feed control device for internal combustion engine
JPS5749747B2 (fr) * 1975-03-20 1982-10-23
US4005733A (en) * 1975-11-17 1977-02-01 General Motors Corporation Pressure control valve
IT1073067B (it) * 1976-10-15 1985-04-13 Alfa Romeo Spa Dispositivo di comando della farfalla di parzializzazione di un motore a scoppio
DE2749369C2 (de) * 1977-11-04 1985-06-13 Robert Bosch Gmbh, 7000 Stuttgart Regelsystem für ein Stellglied im zusatzluftzuführenden Umgehungskanal einer Drosselklappe bei Brennkraftmaschinen
CA1106713A (fr) * 1978-05-10 1981-08-11 John E. Cook Regulateur d'uniformisation du ralenti
JPS5575547A (en) * 1978-11-30 1980-06-06 Nissan Motor Co Ltd Stole preventing device for engine
JPS5677534A (en) * 1979-11-30 1981-06-25 Toyota Motor Corp Altitude compensating device for internal combustion engine
JPH0114500Y2 (fr) * 1980-03-28 1989-04-27
US4401075A (en) * 1980-10-27 1983-08-30 The Bendix Corporation Automatic speed control for heavy vehicles
DE3122120A1 (de) * 1981-06-04 1983-01-05 Pierburg Gmbh & Co Kg, 4040 Neuss Wegsteller
JPS5862333A (ja) * 1981-10-09 1983-04-13 Mazda Motor Corp エンジンのアイドル回転制御装置
DE3142409A1 (de) * 1981-10-26 1983-05-05 Bosch und Pierburg System oHG, 4040 Neuss Verfahren und vorrichtung zur regelung der drehzahl einer brennkraftmaschine im leerlauf
DE3209851A1 (de) * 1982-03-18 1983-09-29 Vdo Adolf Schindling Ag, 6000 Frankfurt Sollwertgeber zur elektrischen verstellung eines das kraftstoff-luftgemisch eines kraftfahrzeug-verbrennungsmotors beeinflussenden organs
JPS58217744A (ja) * 1982-05-07 1983-12-17 Honda Motor Co Ltd 絞り弁開度計測系故障時のアイドル回転数制御方法
DE3226283A1 (de) * 1982-07-14 1984-01-19 Vdo Adolf Schindling Ag, 6000 Frankfurt Leerlaufregler, insbesondere fuer kraftfahrzeuge

Also Published As

Publication number Publication date
CA1232500A (fr) 1988-02-09
DE3462412D1 (en) 1987-04-02
EP0137469A1 (fr) 1985-04-17
US4738237A (en) 1988-04-19
JPS60101258A (ja) 1985-06-05
DE3337260A1 (de) 1985-04-25

Similar Documents

Publication Publication Date Title
DE3020131C2 (fr)
DE3020493C3 (de) Verfahren zum steuern des ansaugluftdurchsatzes bei einem brennkraftmotor
DE2949151C2 (de) Vorrichtung zum Regeln der Leerlaufdrehzahl für einen Verbrennungsmotor in Abhängigkeit von den Betriebsparametern
DE3103183A1 (de) Elektronisch gesteuertes brennstoffeinspritzsystem fuer einen verbrennungsmotor mit zuendkerzenzuendung
DE3302563C2 (fr)
DE2749369A1 (de) Steuereinrichtung fuer ein magnetventil im umgehungskanal einer drosselklappe bei brennkraftmaschinen
DE3400313C2 (de) Vorrichtung zur Rezirkulationsregelung der Auspuffgase eines Dieselmotors
DE2551340A1 (de) Luftventil fuer eine kraftstoffeinspritzanlage
DE2837820A1 (de) Einrichtung zum bestimmen der einer brennkraftmaschine zuzufuehrenden kraftstoffmenge
EP0137469B1 (fr) Régulation du ralenti d'un moteur à allumage commandé
DE4417802B4 (de) Vorrichtung zur Regelung der Motorleistung oder der Fahrgeschwindigkeit eines Fahrzeugs
DE3011039C2 (de) Vergaser für Brennkraftmaschinen
DE2939805C2 (de) Steuersystem für die Abgasrückführung bei Dieselmotoren
DE3202222C2 (fr)
EP0128523B1 (fr) Procédé d'utilisation de machine à combustion
DE2152586C3 (de) Unterdruckbegrenzer für eine elektrisch gesteuerte Benzineinspritzeinrichtung
DE2260531C3 (fr)
DE3340060A1 (de) Vorrichtung zur regelung des leerlaufs einer gemischverdichtenden brennkraftmaschine
DE2458413A1 (de) Brennstoffsparsystem
DE2721774C2 (de) Vergaser
DE3322214A1 (de) Einspritzpumpe fuer brennkraftmaschinen
EP0138070A2 (fr) Carburateur à grande vitesse pour un moteur à allumage par étincelle
DE2063240B2 (de) Kraftstoffeinspritzsystem
DE3129484C2 (de) Vorrichtung zur Regelung der Drehzahl einer Brennkraftmaschine im Leerlauf
DE2625141A1 (de) Unterdruckbegrenzer fuer eine kraftstoffeinspritzanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

RTI1 Title (correction)
17P Request for examination filed

Effective date: 19850828

17Q First examination report despatched

Effective date: 19860801

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3462412

Country of ref document: DE

Date of ref document: 19870402

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890915

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890930

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19891006

Year of fee payment: 6

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901005

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910702

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST