EP0126462A1 - Verdrängerlader für die Verdichtung von Luft durch die Abgase eines Verbrennungsmotors - Google Patents

Verdrängerlader für die Verdichtung von Luft durch die Abgase eines Verbrennungsmotors Download PDF

Info

Publication number
EP0126462A1
EP0126462A1 EP84105706A EP84105706A EP0126462A1 EP 0126462 A1 EP0126462 A1 EP 0126462A1 EP 84105706 A EP84105706 A EP 84105706A EP 84105706 A EP84105706 A EP 84105706A EP 0126462 A1 EP0126462 A1 EP 0126462A1
Authority
EP
European Patent Office
Prior art keywords
movement
exhaust gas
partition
exhaust
positive displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP84105706A
Other languages
English (en)
French (fr)
Inventor
Oskar Dr.-Ing. Schatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0126462A1 publication Critical patent/EP0126462A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0481Intake air cooling by means others than heat exchangers, e.g. by rotating drum regenerators, cooling by expansion or by electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/42Engines with pumps other than of reciprocating-piston type with driven apparatus for immediate conversion of combustion gas pressure into pressure of fresh charge, e.g. with cell-type pressure exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/06Engines with prolonged expansion in compound cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J3/00Diaphragms; Bellows; Bellows pistons
    • F16J3/02Diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/32Miller cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/0848Means for varying tension of belts, ropes, or chains with means for impeding reverse motion
    • F16H2007/0859Check valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a positive - displacement supercharger for the compression of air by the exhaust gases of an internal combustion engine, in particular a piston engine, with at least one exhaust gas chamber and air chamber, each of which has a volume that can be changed by a movable partition that delimits it, and has an inlet and an outlet.
  • Displacer chargers driven by exhaust gas are theoretically known. However, the use of the exhaust gas energy which periodically emerges from the respective engine cylinder encounters difficulties in many cases.
  • the exhaust gas waves of the individual engine cylinders interfere with one another, so that less and less usable energy gradient is available for the movement of the partition through the natural exhaust gas waves with an increasing number of cylinders. A similar effect occurs with increased engine speed.
  • the invention is based on the object of designing a positive-displacement supercharger of the type mentioned at the outset in such a way that it can be used in a variety of ways and in particular also in engines with a high number of cylinders or a high rated speed for the implementation of energy-saving new methods and devices.
  • the loader has partitions connected to move together. So there is the possibility of the loader to be provided with two exhaust gas chambers to be charged with exhaust gas in the opposite direction, the engine cylinders used to operate the charger with exhaust gas being assigned to the two exhaust gas chambers in two groups. As a result, the frequency of the pressure pulses effective in an exhaust gas chamber is halved and the usable energy gradient is improved accordingly, in particular with regard to the use of the high-energy natural exhaust gas pulses from internal combustion engines.
  • the charger has two exhaust gas chambers, which are arranged on both sides of a partition. This enables a very effective separation of the exhaust gas area from the air area.
  • a further advantageous embodiment consists in that the partitions are provided with a guide rod which leads out of the chambers and is guided outside the chambers in the direction of movement of the partitions, the guide play and guide length being dimensioned such that a partition formed as a piston is contact-free in it associated chamber is movable.
  • the partitions connected to one another for movement can be firmly connected to one another or their movement can be coordinated with one another via a synchronization device.
  • partition end face for the charge air chamber and the exhaust gas chamber is of different sizes. If the end face facing the exhaust gas is larger, a high boost pressure can be achieved; if the end face facing the charge air is larger, a large air delivery volume can be obtained.
  • An advantageous embodiment also consists in that two partitions connected to one another for movement together are connected to one another by means of a device which is suitable for transmitting the movement of the one partition in opposite directions to the other partition, thereby balancing the mass forces.
  • the device for transmitting motion can be actuated mechanically or hydraulically.
  • a particularly advantageous embodiment consists in the charger having two exhaust gas chambers and two charge air chambers, the outlet of the first charge air chamber being connected via a cooler to the inlet of the second charge air chamber and the outlet thereof being connected to the inlet of the engine cylinder to be charged.
  • a throttle possibly also a throttle that can be set with regard to pressure and / or duration of the throttling, can be assigned to each exhaust gas outlet in order to optimize the exhaust gas pulses.
  • the exhaust gas inlet and / or outlet can also be provided with a controllable valve.
  • an exhaust manifold is connected upstream of the exhaust gas inlet and the exhaust side of the charger is provided with a clock control.
  • This clock control can be based on a controller that takes into account, for example, the operating parameters and data of the overall system.
  • the timing control of the exhaust side of the charger can also be triggered by the natural exhaust gas impulses of the engine or by a connection to the engine.
  • a four-cylinder engine 11 is shown as a clock for a positive displacement 10, the four cylinders 1, 2, 3 and 4 are each provided with exhaust valves 12, 14, 16 and 18. If they ended in a common exhaust line, the mutual influence of the pressure waves generated by opening the cylinder exhaust valves 12-18 could possibly be too great to leave enough energy left for the operation of the charger 10 sen.
  • Two exhaust gas chambers 22 and 24 are therefore provided on the loader 10 and are separated from one another by a movable partition wall 26. Each exhaust chamber 22 and 24 has an exhaust gas inlet 28 and 30 and an exhaust gas outlet 32 and 34, respectively.
  • the exhaust valves 12 - 18 are assigned in pairs to the two exhaust chambers 22 and 24, namely the exhaust valves 12 and 18 of the exhaust chamber 22 and the exhaust valves 14 and 16 of the exhaust chamber 24.
  • the partition 26 is connected via a piston rod 36 to a second partition 38 according to Art a double piston combined to move in the same direction.
  • the piston rod 36 is guided axially movably at 46 outside the exhaust gas chamber and a charger section 44 having at least one charge air chamber 40.
  • the second partition 38 is arranged in the charger section 44 and separates two charge air chambers 40 and 42 in the example shown.
  • Each charge air chamber is provided with a charge air inlet 48 and 50 and a charge air outlet 52 and 54, respectively.
  • the charge air outlets like the exhaust gas inlets 28 and 38, are distributed over the four engine cylinders in such a way that the conditions of the charger operation correspond to two two-cylinder engines, which consist of cylinders 1 and 4 or 2 and 3 combined in pairs.
  • four-cylinder four-stroke in-line engines are designed so that the pistons of the two outer cylinders 1 and 4 are arranged with the same crank angle on the crankshaft of the engine for reasons of mass balance and to achieve uniform firing distances of the individual cylinders, while the two inside cylinders 2 and 3 are offset by 180 °.
  • the outer pistons thus move in the same direction, while the inner pistons move in exactly the opposite direction.
  • the ignition distance between the two inner cylinders 2 and 3 and the _ two outer cylinders 1 and 4 is 360 ° crank angle. This results in a uniform firing order of the four engine cylinders with a crank angle of 180 °. Going through z.
  • the air displaced from the charge air chamber 42 by the exhaust gas shock from the cylinders 1 or 4 is again fed to the cylinders 4 and 1 via the inlet valve 62 or 56, while the exhaust gas from the Cylinders 2 or 3 air displaced from the charge air chamber 40 passes into the cylinders 3 and 2 via the inlet valves 60 and 58.
  • the cylinder whose exhaust valve is open will convey the air through the exhaust gas shock into the cylinder whose intake valve is open at the same time without the need for a special clock.
  • This enables the energy-saving direct charging of the engine cylinders from the loader.
  • H the compression of the charge air as it flows into the engine, preferably towards the end of the suction stroke.
  • supercharging and so-called post-charging the compressed air is first pushed out into a store and flows from there into the engine.
  • FIG. 2 shows the double piston loader 10 somewhat more clearly, at the same time showing the possibility of achieving special effects according to the respective conditions by means of differently effective surfaces of the two partition walls 26a and 38a.
  • the partition wall 26a on the exhaust side of the supercharger 10 is larger than the partition wall 38a on the charge air side. The result of this is that a particularly high boost pressure can be achieved.
  • the sizes Reverse ratio that is, make the partition 38a larger than the partition 26a, you could get a particularly large air flow.
  • the spring 35 acting on the guide rod 42 can, for example, be subjected to tension and pressure and has the tendency here to hold the partitions 26a, 38a, which are connected to a common movement, in their central position between the two end positions for the lifting movement.
  • the characteristic of the spring 35 is adapted to the respective task.
  • the two partition walls approach their end position they can be designed to be strongly progressive in the sense of a buffer in order to adapt the stroke of the loader and thus the delivery rate to the intensity of the exhaust gas pulses, which in turn correspond to the load on the engine.
  • the check valves 38 and 70 of the two charge air outlets 52 and 54 can optionally also be omitted.
  • FIG. 3 shows a variant in which the two partition walls 72 and 74 are not rigidly connected to one another for a common movement.
  • the partitions 72 and 74 are rather by a total of 76 designated device for motion transmission connected to an opposite movement, whereby mass balance is achieved.
  • the piston rod 78 of the partition wall 72 is provided on two opposite sides with rack teeth 80 and 82.
  • a fixed pinion 84 or 86 is in engagement with each of the toothings 80 and 82.
  • the piston rod 88 of the partition 74 has a fork-shaped end 90, the two mutually facing fork flanks each having toothed rack teeth 92 and 94, which are in engagement with the pinion 84 and the pinion 86, respectively.
  • the partition wall 72 is acted upon by exhaust gas via the exhaust gas inlet 96 of the exhaust gas chamber 98 and moved downward in FIG. 3, the partition wall 74 in the charge air chamber 100 is simultaneously moved upward and displaces the charge air through the charge air outlet 102.
  • the exhaust gas pulse then moves through the exhaust gas inlet 104 the partition 72 upwards and the partition 74 downwards, whereby the charge air is displaced through the charge air outlet 106.
  • the mechanical device 76 is only shown for example. B. can also be replaced by a hydraulic device for transmitting motion.
  • the movement of the joint movement connected partition walls can be influenced by spring elements 35 in Fig. 2 and / or damping elements which, for. B. act on the connecting rod 42 or 36.
  • z. B a preferred rest position in the two end positions of the partition walls and / or a movement damping when the partition walls approach these end positions.
  • the spring element or elements can also be designed such that they bring about an automatic adaptation of the loader stroke or the air delivery quantity to the load on the engine indicated by the intensity of the exhaust gas pulses.

Abstract

Ein Verdrängerlader für die Verdichtung von Luft durch die Abgase eines Verbrennungsmotors, insbesondere eines Kolbenmotors, besitzt mindestens eine Abgaskammer mit einem Ein- und einem Auslass und mindestens eine Luftkammer, die durch eine sie begrenzende, bewegliche Trennwand in ihrem Volumen veränderbar sind, wobei zwei Trennwände zu gemeinsamer Bewegung miteinander verbunden sind.

Description

  • Die Erfindung betrifft einen Verdrängerlader für die Verdichtung von Luft durch die Abgase eines Verbren- nungsmotors, insbesondere eines Kolbenmotors, mit mindestens je einer in ihrem Volumen durch eine sie begrenzende, bewegliche Trennwand veränderbaren, jeweils einen Ein- und einen Auslaß aufweisenden Abgaskammer und Luftkammer.
  • Durch Abgas antreibbare Verdrängerlader sind theoretisch bekannt. Die Nutzung der periodisch aus dem jeweiligen Motorzylinder austretenden Abgasenergie stößt jedoch in vielen Fällen auf Schwierigkeiten.
  • Insbesondere in Vielzylindermotoren behindern sich die Abgaswellen der einzelnen Motorzylinder gegenseitig, so daß für die Bewegung der Trennwand durch die natürlichen Abgaswellen mit zunehmender Zylinderzahl immer weniger nutzbares Energiegefälle zur Verfügung steht. Ein ähnlicher Effekt tritt bei erhöhter Motordrehzahl auf.
  • Für verschiedene, insbesondere neu entwickelte Verfahren zur energiesparenden Ladung von Verbrennungsmotoren ist es vorteilhaft oder sogar unumgänglich, Verdrängerlader einzusetzen. Es besteht deshalb ein Bedarf an vielseitig einsetzbaren Verdrängerladern, welche auch bei Motoren mit hoher Zylinderzahl bzw. hoher Nenndrehzahl wirkungsvoll eingesetzt werden können.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Verdrängerlader der eingangs genannten Art so auszugestalten, daß er vielseitig einsetzbar und insbesondere auch bei Motoren mit hoher Zylinderzahl oder hoher Nenndrehzahl für die Realisierung energiesparender neuer Verfahren und Vorrichtungen einsetzbar ist.
  • Die Lösung dieser Aufgabe besteht darin, daß der Lader zu gemeinsamer Bewegung verbundene Trennwände aufweist. Damit besteht die Möglichkeit, den Lader mit zwei in jeweils entgegengesetzter Richtung mit Abgas zu beaufschlagenden Abgaskammern zu versehen, wobei man die zum Betrieb des Laders mit Abgas eingesetzten Motorzylinder in zwei Gruppen beiden Abgaskammern zuordnet. Dadurch wird die Frequenz der in einer Abgaskammer wirksamen Druckimpulse halbiert und das nutzbare Energiegefälle entsprechend verbessert, insbesondere hinsichtlich der Nutzung der energiereichen natürlichen Abgasimpulse von Verbrennungsmotoren. Eine besonders vorteilhafte Ausgestaltung besteht darin, daß der Lader zwei Abgaskammern aufweist, die zu beiden Seiten einer Trennwand angeordnet sind. Dadurch kann eine sehr wirksame Trennung des Abgasbereichs vom Luftbereich erzielt werden.
  • Eine weitere vorteilhafte Ausführungsform besteht darin, daß die Trennwände mit einer aus den Kammern herausgeführten Führungsstange versehen sind, die außerhalb der Kammern in der Bewegungsrichtung der Trennwände geführt ist, wobei Führungsspiel und Führungslänge so bemessen sind, daß eine als Kolben ausgebildete Trennwand berührungsfrei in der ihr zugeordneten Kammer bewegbar ist. Damit können die Reibungsverluste auf ein Minimum reduziert werden, zumal durch die Trennung der Abgaskammern von der oder den Luftkammern auch dann eine Vermischung von Abgas und Ladeluft nicht zu befürchten ist, wenn die Abdichtung der zu beiden Seiten des Kolbens befindlichen Kammern allein durch die geringe Spaltbreite zwischen dem Kolben und der benachbarten Kammerwandung erfolgt.
  • Die zu gemeinsamer Bewegung miteinander verbundenen Trennwände können fest miteinander verbunden sein oder ihre Bewegung kann über eine Synchronisationseinrichtung aufeinander abgestimmt sein.
  • Eine andere vorteilhafte Ausbildung besteht darin, daß die Trennwandstirnfläche für Ladeluftammer und Abgaskammer unterschiedlich groß ausgebildet ist. Ist die dem Abgas zugewandte Stirnfläche größer, kann man einen hohen Ladedruck erreichen; ist die der Ladeluft zugewandte Stirnfläche größer, kann man ein großes Luftfördervolumen erhalten.
  • Eine vorteilhafte Ausgestaltung besteht auch darin, daß zwei zu gemeinsamer Bewegung miteinander verbundene Trennwände über eine Vorrichtung miteinander verbunden sind, die geeignet ist, die Bewegung der einen Trennwand jeweils gegenläufig auf die andere Trennwand zu übertragen, wodurch ein Ausgleich der Massenkräfte stattfindet. Die Vorrichtung zur Bewegungsübertragung kann mechanisch oder hydraulisch betätigbar sein.
  • Eine besonders vorteilhafte Ausgestaltung besteht darin, daß der Lader zwei Abgaskammern und zwei Ladeluftkammern aufweist, wobei der Auslaß der ersten Ladeluftkammer über einen Kühler mit dem Einlaß der zweiten Ladeluftkammer und deren Auslaß mit dem Einlaß des zu ladenden Motozylinders verbunden ist. Damit kann die zunächst verdichtete Luft Entspannungsarbeit an den Lader abgeben und zugleich durch die durch Kühlung und Entspannung abgekühlte Ladeluft die Motorleistung verbessert werden.
  • Falls die Anordnung von zwei Abgaskammern noch nicht für einen wirkungsvollen Laderbetrieb ausreicht, kann man jedem Abgasauslaß eine Drossel, gegebenenfalls auch eine hinsichtlich Druck und/oder Dauer der Drosselung einstellbare Drossel zuordnen, um die Abgasimpulse zu optimieren. Man kann hierzu auch den Abgaseinlaß und/oder -auslaß mit einem steuerbaren Ventil versehen.
  • Eine weitere Variante besteht darin, daß dem Abgaseinlaß ein Abgassammler vorgeschaltet und die Abgasseite des Laders mit einer Taktsteuerung versehen ist. Diese Taktsteuerung kann von einem Regler ausgehen, der beispielsweise die Betriebskennwerte und -daten des Gesamtsystems berücksichtigt. Die Taktsteuerung der Abgasseite des Laders kann aber auch durch die natürlichen Abgasimpulse des Motors oder durch eine Verbindung mit dem Motor ausgelöst werden.
  • Weitere vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen in Verbindung mit der nun folgenden Beschreibung.
  • Anhand der Beschreibung der in der Zeichnung dargestellten Ausführungsbeispiele der Erfindung wird diese näher erläutert.
  • Es zeigt:
    • Fig. 1 in schematischer Darstellung einen erfindungsgemäßen Verdrängerlader in Verbindung mit einem Vierzylinder-Verbrennungskolbenmotor,
    • Fig. 2 die schematische Darstellung eines Doppelkolbenladers mit unterschiedlich großen Kolbenflächen für Abgas und Luft und
    • Fig. 3 eine Ausführungsform des Verdrängerladers mit einer Vorrichtung zum Massenausgleich.
  • In Fig. 1 ist als Taktgeber für einen Verdrängerlader 10 ein Vierzylindermotor 11 dargestellt, dessen vier Zylinder 1, 2, 3 und 4 jeweils mit Auslaßventilen 12, 14, 16 und 18 versehen sind. Falls sie in einen gemeinsamen Auspuffstrang münden würden, könnte die gegenseitige Beeinflussung der erzeugten Druckwellen durch das Öffnen der Zylinderauslaßventile 12 - 18 gegebenenfalls zu groß werden, um noch genügend Energie für den Betrieb des Laders 10 übrig zu lassen. Es sind deshalb am Lader 10 zwei Abgaskammern 22 und 24 vorgesehen, die durch eine bewegliche Trennwand 26 voneinander getrennt sind. Jede Abgaskammer 22 und 24 weist je einen Abgaseinlaß 28 bzw. 30 und einen Abgasauslaß 32 bzw. 34 auf. Die Auslaßventile 12 - 18 sind paarweise den beiden Abgaskammern 22 und 24 zugeordnet, und zwar die Auslaßventile 12 und 18 der Abgaskammer 22 und die Auslaßventile 14 und 16 der Abgaskammer 24. Die Trennwand 26 ist über eine Kolbenstange 36 mit einer zweiten Trennwand 38 nach Art eines Doppelkolbens zu gemeinsamer, gleichsinniger Bewegung verbunden. Die Kolbenstange 36 ist außerhalb der Abgaskammer und eines mindestens eine Ladeluftkammer 40 aufweisenden Laderabschnitts 44 bei 46 axial beweglich geführt.
  • Im Laderabschnitt 44 ist die zweite Trennwand 38 angeordnet und trennt dort beim gezeigten Beispiel zwei Ladeluftkammern 40 und 42. Jede Ladeluftkammer ist mit einem Ladelufteinlaß 48 bzw. 50 und einem Ladeluftauslaß 52 bzw. 54 versehen. Die Ladeluftauslässe sind wie die Abgaseinlässe 28 und 38 auf die vier Motorzylinder so verteilt, daß die Verhältnisse des Laderbetriebs zwei Zweizylindermotoren entsprechen, die aus den jeweils paarweise zusammengefaßten Zylindern 1 und 4 bzw. 2 und 3 bestehen.
  • Gemäß dem Stand der Technik werden Vierzylinder-Viertakt-Reihenmotoren aus Gründen des Massenausgleichs und zur Erzielung gleichmäßiger Zündabstände der einzelnen Zylinder so ausgeführt, daß die Kolben der beiden außenliegenden Zylinder 1 und 4 mit gleichem Kurbelwinkel an der Kurbelwelle des Motors angeordnet sind, während die beiden innenliegenden Zylinder 2 und 3 um 180° versetzt sind. Somit bewegen sich die außenliegenden Kolben jeweils in derselben Richtung, während sich die innenliegenden Kolben genau entgegengesetzt bewegen. Der Zündabstand zwischen den beiden innenliegenden Zylindern 2 und 3 bzw. den _ beiden außenliegenden Zylindern 1 und 4 beträgt jeweils 360° Kurbelwinkel. Dadurch ergibt sich insgesamt eine gleichmäßige Zündfolge der vier Motorzylinder von 180° Kurbelwinkel. Durchlaufen z. B. die beiden außenliegenden Kolben gerade den unteren Totpunkt, dann durchlaufe zum gleichen Zeitpunkt die innenliegenden Kolben den oberen Totpunkt. Zu diesem Zeitpunkt ist wegen der sog. Ventilüberschneidung das Einlaßventil des einen außenliegenden Zylinders noch offen, während das Auslaßventil des anderen außenliegenden Zylinders gerade geöffnet ist.
  • Die durch den Abgasstoß aus den Zylindern 1 oder 4 aus der Ladeluftkammer 42 verdrängte Luft wird wieder den Zylindern 4 und 1 über die Einlaßventie 62 bzw. 56 zugeführt während die durch den Abgasstoß aus den Zylindern 2 oder 3 aus der Ladeluftkammer 40 verdrängte Luft über die Einlaßventile 60 und 58 in die Zylinder 3 und 2 gelangt.
  • Entsprechend den oben geschilderten Verhältnissen beim Vierzylinder-Motor wird der Zylinder, dessen Auslaßventil geöffnet ist, die Luft durch den Abgasstoß jeweils in den Zylinder befördern, dessen Einlaßventil zum gleichen Zeitpunkt geöffnet ist, ohne daß hierzu ein besonderer Taktgeber erforderlich ist. Hierdurch wird die energiesparende direkte Ladung der Motorzylinder aus dem Lader möglich, d. h. die Verdichtung der Ladeluft während des Einströmens in den Motor vorzugsweise gegen Ende des Saughubs. Bei den bekannten Verfahren der sog. Aufladung und der sog. Nachladung wird die verdichtete Luft zuerst in einen Speicher ausgeschoben und strömt von dort in den Motor.
  • Die Fig. 2 zeigt den Doppelkolbenlader 10 etwas deutlicher, wobei zugleich die Möglichkeit gezeigt wird, durch unterschiedlich große wirksame Flächen der beiden Trennwände 26a bzw. 38a besondere Wirkungen nach den jeweiligen Verhältnissen zu erzielen. In Fig. 2 ist die Trennwand 26a der Abgasseite des Laders 10 größer als die Trennwand 38a der Ladeluftseite. Dies hat zur Folge, daß ein besonders hoher Ladedruck erreicht werden kann. Würde man das Größenverhältnis umkehren, also die Trennwand 38a größer ausbilden als die Trennwand 26a, so könnte man ein besonders großes Luftfördervolumen erhalten.
  • In Fig. 2 sind außerdem die an den Ladelufteinlässen 48 und 50 und -auslässen 52 und 54 vorgesehenen Rückschlagklappen 64, 66 bzw. 68 und 70 dargestellt. Die auf die Führungsstange 42 wirkende Feder 35 ist beispielhaft auf Zug und Druck beanspruchbar und hat hier die Tendenz, die zu gemeinsamer Bewegung verbundenen Trennwände 26a, 38a in ihrer Mittelage zwischen den beiden Endpositionen für die Hubbewegung zu halten. Die Charakteristik der Feder 35 ist der jeweiligen Aufgabenstellung angepaßt. Sie kann insbesondere bei Annäherung der beiden Trennwände an ihre Endposition stark progressiv im Sinne eines Puffers ausgebildet sein, um den Hub des Laders und damit die Fördermenge an die Intensität der Abgasimpulse anzupassen, die wiederum der Belastung des Motors entsprechen. Die Rückschlagklappen 38 und 70 der beiden Ladeluftauslässe 52 und 54 können gegebenenfalls auch entfallen.
  • Die Fig. 3 zeigt eine Variante, bei der die beiden Trennwände 72 und 74 nicht starr zu einer gemeinsamen Bewegung miteinander verbunden sind. Die Trennwände 72 und 74 sind vielmehr durch eine insgesamt mit 76 bezeichneten Vorrichtung zur Bewegungsübertragung zu einer gegenläufigen Bewegung verbunden, wodurch Massenausgleich erreicht wird. Die Kolbenstange 78 der Trennwand 72 ist an zwei einander gegenüberliegenden Seiten mit einer Zahnstangenverzahnung 80 und 82 versehen. Mit jeder der Verzahnungen 80 und 82 steht ein ortsfestes Ritzel 84 bzw. 86 in Eingriff. Die Kolbenstange 88 der Trennwand 74 besitzt ein gabelförmiges Ende 90, wobei die beiden einander zugewandten Gabelflanken jeweils eine Zahnstangenverzahnung 92 bzw. 94 aufweisen, die mit dem Ritzel 84 bzw. dem Ritzel 86 in Eingriff stehen.
  • Wird die Trennwand 72 über den Abgaseinlaß 96 der Abgaskammer 98 mit Abgas beaufschlagt und in Fig. 3 abwärts bewegt, wird zugleich die Trennwand 74 in der Ladeluftkammer 100 aufwärts bewegt und verdrängt die Ladeluft durch den Ladeluftauslaß 102. Anschließend bewegt der Abgasimpuls durch den Abgaseinlaß 104 die Trennwand 72 aufwärts und die Trennwand 74 abwärts, wodurch die Ladeluft durch den Ladeluftauslaß 106 verdrängt wird..
  • Die mechanische Vorrichtung 76 ist lediglich beispielsweise dargestellt, sie kann z. B. auch durch eine hydraulische Vorrichtung zur Bewegungsübertragung ersetzt werden.
  • Die Bewegung der gemeinsamer Bewegung verbundenen Trennwände kann durch Federelemente 35 in Fig. 2 und/oder Dämpfungselemente beeinflußt werden, die z. B. auf die Verbindungsstange 42 oder 36 wirken.
  • Hierdurch kann z. B. eine bevorzugte Ruhestellung in den beiden Endlagen der Trennwände bewirkt werden und/oder eine Bewegungsdämpfung bei Annäherung der Trennwände an diese Endlagen. Das oder die Federelemente können auch so ausgebildet sein, daß sie eine automatische Anpassung des Laderhubs bzw. der Luftfördermenge an die durch die Intensität der Abgasimgulse angezeigte Belastung des Motors bewirken.

Claims (17)

1. Verdrängerlader für die Verdichtung von Luft durch die Abgase eines Verbrennungsmotors, insbesondere eines Kolbenmotors, mit mindestens je einer in ihrem Volumen durch eine sie begrenzende, bewegliche Trennwand veränderbaren, jeweils einen Ein- und einen Auslaß aufweisende Abgaskammer und Luftkammer, dadurch gekennzeichnet, daß er zwei zu gemeinsamer Bewegung verbundene Trennwände (26, 38, 26a, 38a, 72, 74) aufweist.
2. Verdrängerlader nach Anspruch 1, dadurch gekennzeichnet, daß der Lader zwei Abgaskammern (22, 24) aufweist, die zu beiden Seiten einer Trennwand (22) angeordnet sind.
3. Verdrängerlader nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Trennwände (26, 38, 26a, 38a, 72, 74) mit einer aus den Kammern (22, 24, 40, 42) herausgeführten Führungsstange (36) versehen sind, die außerhalb der Kammern (22, 24, 40, 42) in der Bewegungsrichtung der Trennwände (26, 28, 26a, 38a, 72, 74) geführt ist, wobei Führungsspiel und Führungslänge so bemessen sind, daß eine als Kolben ausgebildete Trennwand (26, 38, 26a, 38a, 72, 74) berührungsfrei in der ihr zugeordneten Kammer (22, 24, 40, 42) bewegbar ist.
4. Verdrängerlader nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß jede Trennwand (120) mindestens je einen jeder Stirnfläche zugewandten Dichtungsabschnitt aufweist und der Bereich (122) zwischen den der einen und der anderen Stirnwand zugewandten Dichtungsabschnitten nach der Atmosphäre hin geöffnet ist.
5. Verdrängerlader nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zu gemeinsamer Bewegung miteinander verbundenen Trennwände (26, 38, 26a, 38a) fest miteinander verbunden sind.
6. Verdrängerlader nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die zu gemeinsamer Bewegung miteinander verbundenen Trennwände (72, 74) durch eine Synchronisationseinrichtung (76, 78) in ihrer Bewegung aufeinander abgestimmt sind.
7. Verdrängerlader nach Anspruch 6, dadurch gekennzeichnet, daß zwei zu gemeinsamer Bewegung miteinander verbundene Trennwände (72, 74) über eine Vorrichtung (76) miteinander verbunden sind, die geeignet ist, die Bewegung der einen Trennwand (72, 74) jeweils gegenläufig auf die andere Trennwand (74, 72) zu übertragen.
8. Verdrängerlader nach Anspruch 7, dadurch gekennzeichnet, daß die Vorrichtung (76) zur Bewegungsübertragung mechanisch ausgebildet ist.
9. Verdrängerlader nach Anspruch 6, dadurch gekennzeichnet, daß die Vorrichtung zur Bewegungsübertragung für hydraulische Betätigung ausgebildet ist.
10. Verdrängerlader nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Lader zwei Abgaskammern und zwei Ladeluftkammern aufweist, wobei der Auslaß der ersten Ladeluftkammer über einen Kühler mit dem Einlaß der zweiten Ladeluftkammer und deren Auslaß mit dem Einlaß des zu ladenden Motorzylinders verbunden ist.
11. Verdrängerlader nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß jedem Abgasauslaß (32, 34) des Laders (10) eine Drossel zugeordnet ist.
12. Verdrängerlader nach Anspruch 11, dadurch gekennzeichnet, daß die Drossel hinsichtlich Druck und/oder Dauer der Drosselung einstellbar ist.
13. Verdrängerlader nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß jedem Abgasaus-(32, 34) oder Einlaß (28, 30) des Laders (10) ein steuerbares Ventil zugeordnet ist.
14. Verdrängerlader nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß dem Lader (10) abgasseitig ein Abgassammler und seinen Abgaseinlässen (28, 30) eine Taktsteuerung zugeordnet ist.
15. Verdrängerlader nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, daß die zu gemeinsamer Bewegung verbundenen Trennwände durch Feder- und/oder Dämpfungselemente bevorzugt in mindestens eine charakteristische Lage bewegt und/oder ihre Bewegung bei Annäherung an diese charakteristische Lage(n) gedämpft wird.
16. Verdrängerlader nach Anspruch 15, dadurch gekennzeichnet, daß die charakteristische Lagen die beiden Endpositionen für die Hubbewegung der Trennwände sind.
17. Verdrängerlader nach Anspruch 15 dadurch gekennzeichnet, daß die charakteristische Lage die Mitte zwischen den beiden Endpositionen für die Hubbewegung der Trennwände ist.
EP84105706A 1983-05-18 1984-05-18 Verdrängerlader für die Verdichtung von Luft durch die Abgase eines Verbrennungsmotors Withdrawn EP0126462A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3318136 1983-05-18
DE19833318136 DE3318136A1 (de) 1983-05-18 1983-05-18 Ladevorrichtung zum aufladen von verbrennungsmotoren

Publications (1)

Publication Number Publication Date
EP0126462A1 true EP0126462A1 (de) 1984-11-28

Family

ID=6199325

Family Applications (3)

Application Number Title Priority Date Filing Date
EP84105711A Withdrawn EP0126466A1 (de) 1983-05-18 1984-05-18 Abgaslader zur Ladung von Verbrennungsmotoren
EP84105706A Withdrawn EP0126462A1 (de) 1983-05-18 1984-05-18 Verdrängerlader für die Verdichtung von Luft durch die Abgase eines Verbrennungsmotors
EP84105710A Expired EP0128398B1 (de) 1983-05-18 1984-05-18 Verdrängerlader zum Laden von Verbrennungsmotoren

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP84105711A Withdrawn EP0126466A1 (de) 1983-05-18 1984-05-18 Abgaslader zur Ladung von Verbrennungsmotoren

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP84105710A Expired EP0128398B1 (de) 1983-05-18 1984-05-18 Verdrängerlader zum Laden von Verbrennungsmotoren

Country Status (6)

Country Link
US (3) US4633671A (de)
EP (3) EP0126466A1 (de)
JP (3) JPS6035122A (de)
BR (3) BR8402348A (de)
DE (2) DE3318136A1 (de)
ES (3) ES8502763A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791787A (en) * 1985-12-05 1988-12-20 Paul Marius A Regenerative thermal engine
DE3625050C2 (de) * 1986-07-24 1996-07-18 Schatz Oskar Verfahren zur Betätigung eines steuerbaren Ventils am Abgasauslaß eines durch Abgasenergie aus einer Brennkraftmaschine antreibbaren Kolbenladers und Ventilanordnung zur Durchführung des Verfahrens
US4809646A (en) * 1987-03-18 1989-03-07 Paul Marius A High pressure reciprocator components
US4843821A (en) * 1987-12-14 1989-07-04 Paul Marius A Multicylinder compound engine
US4964275A (en) * 1987-12-14 1990-10-23 Paul Marius A Multicylinder compound engine
JPH07114721B2 (ja) * 1991-02-28 1995-12-13 株式会社アシックス 靴底及びその製法
GB2256282A (en) * 1991-04-02 1992-12-02 Elmwood Sensors Electrochromic device.
RU2075613C1 (ru) * 1994-03-28 1997-03-20 Евгений Александрович Стародетко Способ осуществления цикла поршневого двигателя внутреннего сгорания и поршневой двигатель внутреннего сгорания
JP2003517526A (ja) * 1998-08-13 2003-05-27 ユナイテッド ステイツ エンバイロメンタル プロテクション エージェンシー デュアル−シリンダ・エキスパンダ・エンジンおよび1サイクル2膨張行程を有する燃焼方法
US8069655B2 (en) * 2007-08-13 2011-12-06 Cummins Filtration Ip, Inc. Apparatus, system, and method for using a fraction of engine exhaust to deliver a dosant
US8893672B2 (en) * 2008-11-16 2014-11-25 Dana R. Allen Internal-combustion engine with reduced pollutants
US8051830B2 (en) * 2009-08-04 2011-11-08 Taylor Jack R Two-stroke uniflow turbo-compound internal combustion engine
US8561581B2 (en) 2009-08-04 2013-10-22 Jack R. Taylor Two-stroke uniflow turbo-compound internal combustion engine
CN103348110A (zh) 2010-12-14 2013-10-09 杰克.R.泰勒 充分膨胀内燃发动机
US8973539B2 (en) 2010-12-14 2015-03-10 Jack R. Taylor Full expansion internal combustion engine
DE102012210705B4 (de) 2012-06-25 2022-01-20 Robert Bosch Gmbh Comprexauflader
EP2846019A1 (de) 2013-09-10 2015-03-11 Arno Hofmann Verfahren zum Betreiben eines Verbrennungsmotors und Verbrennungsmotor zur Durchführung des Verfahrens
DE102015217340A1 (de) 2015-09-10 2017-03-16 Robert Bosch Gmbh Lader einer Brennkraftmaschine
EP3282109A1 (de) * 2016-08-12 2018-02-14 Arno Hofmann Abgasstrang eines verbrennungsmotors und verwendung des abgasstrangs
IT201600103652A1 (it) * 2016-10-14 2018-04-14 Daniele Ponteggia Motore a combustione interna
JP2020041481A (ja) * 2018-09-11 2020-03-19 川崎重工業株式会社 発電システム及びそれを備える推進装置
RU2712327C1 (ru) * 2019-04-18 2020-01-28 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Система наддува для двухтактных двигателей внутреннего сгорания

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB638923A (en) * 1947-07-28 1950-06-21 Crossley Brothers Ltd Improvements relating to the exhaust systems of two-stroke cycle internal combustionengines
GB815494A (en) * 1956-06-01 1959-06-24 Crossley Brothers Ltd Improvements in two stroke cycle internal combustion engines
FR1221170A (fr) * 1958-03-14 1960-05-31 Sulzer Ag Compresseur à garniture à labyrinthe et son procédé de fonctionnement
DE1403763A1 (de) * 1961-03-02 1969-01-30 Endres Dr Ing Johann Dichtringloser Kolben mit zentrischer Fuehrung
FR2423637A1 (fr) * 1978-04-21 1979-11-16 Braun Anton Moteur a pistons libres et cylindres opposes

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE570407C (de) * 1933-02-15 Bungartz Paul Membran aus hochelastischem Material fuer grossen Federweg
US1350570A (en) * 1920-08-24 Erling sarjent
US1489349A (en) * 1920-02-21 1924-04-08 Leon N Hampton Diaphragm
US1516630A (en) * 1922-09-06 1924-11-25 California Compressed Gas Corp Laminated diaphragm
US1466243A (en) * 1923-03-12 1923-08-28 Automatic Straight Air Brake C Diaphragm structure
DE414711C (de) * 1924-08-20 1925-06-09 Paul Stumpf Stuetzrollenanordnung fuer Gleiskettenfahrzeuge
US1843068A (en) * 1927-10-08 1932-01-26 Detroit Lubricator Co Valve
GB397824A (en) * 1930-11-21 1933-08-31 Selco Motor Company Aktiebolag Improvements in and relating to internal combustion engines
US1895591A (en) * 1931-02-16 1933-01-31 Gen Plate Co Snap acting device
GB414711A (en) * 1932-11-04 1934-08-07 Paul Bechert Improvements in and relating to metallic diaphragms
FR781987A (fr) * 1934-11-28 1935-05-25 Procédé et dispositif pour la suralimentation des moteurs à explosions et moteurs munis de ce dispositif
FR990698A (fr) * 1944-03-29 1951-09-25 Perfectionnements aux pompes à diaphragme
DE838397C (de) * 1944-04-09 1952-05-15 Chemische Werke Huels Ges Mit Hochdruckmembranpumpe
GB770771A (en) * 1953-05-18 1957-03-27 California Research Corp Copolymeric dispersants and lubricant compositions containing them
US2751758A (en) * 1953-06-15 1956-06-26 William C Parrish Vehicle air conditioner
US2878990A (en) * 1953-10-30 1959-03-24 Sulzer Ag Upright piston compressor
DE1052169B (de) * 1954-04-20 1959-03-05 Sigismond Wilman Ansauggeraeuschdaempfer
DE1003503B (de) * 1954-10-14 1957-02-28 Gustav Sandvoss Einrichtung zur Leistungserhoehung von Brennkraftmaschinen
US3462073A (en) * 1966-12-15 1969-08-19 Peters & Russell Inc Air compressor
FR1586140A (de) * 1968-07-23 1970-02-13
JPS4614168Y1 (de) * 1969-02-10 1971-05-19
US3668978A (en) * 1970-06-03 1972-06-13 Duriron Co Diaphragms for high pressure compressors and pumps
US3661060A (en) * 1970-08-05 1972-05-09 Duriron Co Diaphragms for high pressure compressors and pumps
DE2139932A1 (de) * 1971-08-10 1973-02-22 Karl Schmieder Durch auspuffgase betriebene foerderpumpe
JPS4943054A (de) * 1972-08-29 1974-04-23
US4022114A (en) * 1974-07-05 1977-05-10 Refrigerating Specialties Company Flexible diaphragm construction
FR2285514A1 (fr) * 1974-09-23 1976-04-16 Belet Jean Yves Regulateur de pression d'echappement pour turbocompresseurs
JPS5413859Y2 (de) * 1974-10-15 1979-06-11
JPS5331015A (en) * 1976-09-04 1978-03-23 Mitsubishi Heavy Ind Ltd Diesel engine with exhaust turbo-supercharger
US4111613A (en) * 1977-02-22 1978-09-05 Sealed Air Corporation Bladder actuated pumping system
JPS54141229U (de) * 1978-03-27 1979-10-01
US4211082A (en) * 1978-10-11 1980-07-08 Bristol Robert D Internal combustion engine with free floating auxiliary piston
FR2444819A1 (en) * 1978-12-20 1980-07-18 Dorme Claude Inflator powered by car exhaust gas - in which two pistons are separated by exhaust in cylinder and returned by flexible attachment
JPS561929U (de) * 1979-06-18 1981-01-09
FR2465076A1 (fr) * 1979-09-13 1981-03-20 Tijoux Pierre Dispositif de compresseur pour l'alimentation des moteurs a combustion interne et autres
DE3002101C2 (de) * 1980-01-22 1985-07-11 Robert Bosch Gmbh, 7000 Stuttgart Schaltmembran
JPS578317A (en) * 1980-06-19 1982-01-16 Suzuki Motor Co Ltd Exhaust turbocharger of engine
DE3122957A1 (de) * 1981-06-10 1983-01-13 Fichtel & Sachs Ag, 8720 Schweinfurt Membranpumpe
US4502847A (en) * 1982-09-29 1985-03-05 General Motors Corporation Exhaust gas operated vacuum pump assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB638923A (en) * 1947-07-28 1950-06-21 Crossley Brothers Ltd Improvements relating to the exhaust systems of two-stroke cycle internal combustionengines
GB815494A (en) * 1956-06-01 1959-06-24 Crossley Brothers Ltd Improvements in two stroke cycle internal combustion engines
FR1221170A (fr) * 1958-03-14 1960-05-31 Sulzer Ag Compresseur à garniture à labyrinthe et son procédé de fonctionnement
DE1403763A1 (de) * 1961-03-02 1969-01-30 Endres Dr Ing Johann Dichtringloser Kolben mit zentrischer Fuehrung
FR2423637A1 (fr) * 1978-04-21 1979-11-16 Braun Anton Moteur a pistons libres et cylindres opposes

Also Published As

Publication number Publication date
BR8402354A (pt) 1984-12-26
EP0126466A1 (de) 1984-11-28
EP0128398A1 (de) 1984-12-19
ES532558A0 (es) 1985-01-16
US4797070A (en) 1989-01-10
JPS6035122A (ja) 1985-02-22
JPS6035121A (ja) 1985-02-22
BR8402347A (pt) 1984-12-26
EP0128398B1 (de) 1988-12-07
ES8502761A1 (es) 1985-01-16
ES532559A0 (es) 1985-01-16
ES532557A0 (es) 1985-01-16
DE3475547D1 (en) 1989-01-12
JPS6035123A (ja) 1985-02-22
US4761956A (en) 1988-08-09
ES8502762A1 (es) 1985-01-16
ES8502763A1 (es) 1985-01-16
US4633671A (en) 1987-01-06
BR8402348A (pt) 1984-12-26
DE3318136A1 (de) 1984-11-22

Similar Documents

Publication Publication Date Title
EP0126462A1 (de) Verdrängerlader für die Verdichtung von Luft durch die Abgase eines Verbrennungsmotors
DE2911889C2 (de)
DE2914489C2 (de) Zweitakt-Otto-Brennkraftmaschine
EP0126463A1 (de) Verfahren zum Einbringen der Ladeluft in den Zylinder eines Verbrennungsmotors und Motor zur Durchführung des Verfahrens
DE4447040C1 (de) Verbrennungsmotor mit Laderzylinder
DE3337518C2 (de)
EP0126464B1 (de) Verfahren zur Zufuhr von Brennluft in den Brennraum von Verbrennungskraftmaschinen
DE2402682A1 (de) Verbrennungskraftmaschine
DE10112931B4 (de) Viertaktverbrennungsmotor
DE19545153C1 (de) Verbrennungsmotor mit einem Ventilsystem zum Betrieb im Zweitakt- oder Viertaktmodus
DE3347859A1 (de) Zweitakt-kolben-brennkraftmaschine
DE3137471C2 (de)
DE2942033A1 (de) Brennkraftmaschine
DE3240130A1 (de) Doppelkolbenverbrennungsmotor mit 2 fest verbundenen kolben und beidseitigem antrieb der kolben
DE3921581A1 (de) Verbrennungsmotor
DE1046941B (de) Brennkraftmaschine
EP0126467B1 (de) Verbrennungsmotor mit einem von der Motorkurbelwelle aus mechanisch angetriebenen Verdrängerlader
DE3435356C2 (de) Brennkraftmaschine
DE102007063147A1 (de) Verbrennungsmotor mit drei verbundenen Zylindern
EP0182826A1 (de) Viertakt-verbrennungsmotor mit einer einrichtung zum zurückführen von gasen aus einer abgasleitung in den verbrennungsraum
DE2816172C2 (de)
DE1079888B (de) Schlitzgesteuerte Zweitakt-Einspritzbrennkraftmaschine mit in V-Form angeordneten Zylinderreihen
DE459789C (de) Viertaktvergasermotor mit vier oder mehr an beiden Seiten geschlossenen und an einer Seite als Kompressoren arbeitenden Arbeitszylindern
DE3237858A1 (de) Hubkolbenmaschine
EP0126465A1 (de) Verfahren zum Einbringen der Ladeluft in den Zylinder eines Verbrennungsmotors und Motor zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19850523

17Q First examination report despatched

Effective date: 19860117

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19860527