EP0123054B1 - Acier au chrome, résistant à la corrosion et procédé pour sa fabrication - Google Patents

Acier au chrome, résistant à la corrosion et procédé pour sa fabrication Download PDF

Info

Publication number
EP0123054B1
EP0123054B1 EP84101992A EP84101992A EP0123054B1 EP 0123054 B1 EP0123054 B1 EP 0123054B1 EP 84101992 A EP84101992 A EP 84101992A EP 84101992 A EP84101992 A EP 84101992A EP 0123054 B1 EP0123054 B1 EP 0123054B1
Authority
EP
European Patent Office
Prior art keywords
chromium
steel
nitrogen
corrosion
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84101992A
Other languages
German (de)
English (en)
Other versions
EP0123054A1 (fr
Inventor
Jürgen Dr. Hartwig
Paul Pant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fried Krupp AG
Original Assignee
Fried Krupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fried Krupp AG filed Critical Fried Krupp AG
Priority to AT84101992T priority Critical patent/ATE27005T1/de
Publication of EP0123054A1 publication Critical patent/EP0123054A1/fr
Application granted granted Critical
Publication of EP0123054B1 publication Critical patent/EP0123054B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N

Definitions

  • the invention relates to a corrosion-resistant chromium steel which consists of 3 to 45% chromium, 0.001 to 0.5% carbon, 0 to 10% nickel, 0 to 10% manganese, 0 to 10% molybdenum, 0 to 5% vanadium, 0 up to 2% silicon, 0 to 2% titanium, niobium and / or tantalum, 0 to 1% cerium, 0 to 0.3% aluminum and the rest iron and the structure of which contains at least 50% ferromagnetic structure components.
  • the invention further relates to a method for producing this steel.
  • AT-PS 277 301 discloses a nitrogen-containing steel with a high yield strength and good toughness properties, which contains up to 0.6% carbon, 5 to 40% chromium, up to 30% manganese, up to 5% molybdenum, up to 20% Contains nickel, 1.5 to 5% nitrogen and the rest iron and has an austenitic structure.
  • the nitrogen content is introduced into the steel by first adding nitrogen-containing iron-chromium or iron-manganese alloys to the melt and then introducing gaseous nitrogen into the melt or into the slag.
  • AT-PS 277 301 is based on the long-known knowledge that austenitic chromium-nickel and chromium-manganese alloys increase austenite stability by nitrogen and that in semi-ferritic and ferritic chromium steels with more than 18% chromium nitrogen occur of austenite or 4ur increases the part of the structure that can be converted, whereby 0.1% nitrogen can replace 2% nickel for austenite stabilization (see E. Houdremont, Handbuch der Sonderstahlischen constitution, 1956, pages 1327 to 1331).
  • the chromium steels with a ferromagnetic structure are characterized by higher strength properties and very good resistance to stress corrosion cracking. Even in the temperature range up to 400 ° C, the strength properties of ferritic chromium steels, which have a ferromagnetic structure, are far above the values of austenitic chromium-nickel steels, while the deformation parameters are clearly below the values of austenitic steels. However, the heat resistance of the ferritic chrome steels drops considerably by 450 ° C as a result of the embrittlement phenomena that begin in this temperature range. The use of these steels for continuous operation is therefore restricted to temperatures below 300 ° C (see Materials Science of Common Steels, Part 2, Verlag Stahleisen mbH, Düsseldorf, 1977, page 165).
  • the corrosion-resistant chromium steels with a ferromagnetic structure have 12 to 18% chromium, 0.5 to 1% manganese, 0.05 to 1.2% carbon, 0 to 1% silicon, 0 to 2.5% nickel, 0 up to 1.3% molybdenum, 0 to 2% vanadium, 0 to 0.3% aluminum and the rest iron, in the annealed or tempered state the following material properties:
  • the ferromagnetic structure of these corrosion-resistant steels consists of ferrite or of ferrite and pearlite in the annealed state and of ferrite and transformation structure or transformation structure or martensite in the tempered state.
  • DD-PS 115 508 discloses a corrosion and heat-resistant chrome-nickel steel which contains 0.005 to 0.065% carbon, 0.1 to 1.0% silicon, 0.5 to 4.0% manganese, 22 , 5 to 28.0% chromium, 3.5 to 8.0% nickel, 0.08 to 0.40% nitrogen and the rest iron, which at a ferrite content of 30 to 70% by primary deformation at temperatures above 1 155 ° C and a further deformation at temperatures below 1,000 to 800 ° C to a 0.2% proof stress of at least 75 kp / mm 2 with good notch toughness and for the manufacture of objects in the chemical industry, especially in fermentation technology as well as food and paper industry is used.
  • the invention is therefore based on the object of providing a corrosion-resistant chromium steel which, even at temperatures above 400 ° C., has the favorable strength properties Chromium steels with ferromagnetic structure has, without the appearance of embrittlement. Furthermore, the invention is intended to provide a method for producing this steel.
  • the chromium steel of the type mentioned at the outset has a nitrogen content which is between 0.2 and 5% and is at least 10% greater than the nitrogen solubility limit at 1 bar and 20 ° C., which is at 400 ° C has a yield strength R p0.2 > 400 N / mm 2 and at 600 ° C a yield strength R p0.2 > 250 N / mm 2 and which can be magnetized.
  • a corrosion-resistant chrome steel with predominantly ferromagnetic microstructure components would have a high heat resistance at temperatures of more than 400 ° C.
  • the corrosion-resistant chrome steel according to the invention also has a high heat resistance at temperatures above 400 ° C.
  • the components made from the steel according to the invention can be dimensioned smaller because of the favorable relationship between tribochemical resistance and high heat resistance.
  • the good heat resistance of the chrome steel according to the invention is attributed to the high nitrogen content, which must be considerably greater than the nitrogen solubility limit at 1 bar and 20 ° C. Since the nitrogen content of the steels known from the two DD patents 115 508 and 142 894 is far below the nitrogen solubility limit at 1 bar and 20 ° C., the person skilled in the art was not encouraged by this prior art to exceed the nitrogen solubility limit and he was able to also do not expect this measure to result in a significant improvement in properties.
  • the object is also achieved by the creation of a method for producing a corrosion-resistant chromium steel, in which a master alloy consisting of 3 to 45% chromium, 0.001 to 0.5% carbon, 0 to 10% nickel, 0 to 10% manganese, 0 to 10% molybdenum, 0 to 5% vanadium, 0 to 2% silicon, 0 to 2% titanium, niobium and / or tantalum, 0 to 1% cerium, 0 to 0.3% aluminum and the rest iron and a structure with at least 50% ferromagnetic microstructure, nitrogen is introduced by nitrogen pressure, which is between 0.2 and 5% and must be at least 10% greater than the nitrogen solubility limit of the master alloy at 1 bar and 20 ° C, at which the embroidered Alloy is thermoformed, in which the embroidered thermoformed alloy is annealed at 800 to 1 250 ° C and then cooled to room temperature.
  • a master alloy consisting of 3 to 45% chromium, 0.001 to 0.5% carbon,
  • the master alloy is embroidered under pressure and can be carried out, in particular, by electroslag remelting.
  • the glow time can be, for example, 0.5 to 10 hours.
  • a corrosion-resistant chromium steel with predominantly ferromagnetic structure components is produced, which can also be used at temperatures above 400 ° C, since it contains no brittle phases.
  • the steel after it has been cooled at 450 to 750 ° C., is subjected to a tempering treatment and then cooled to room temperature.
  • the duration of the tempering treatment is, for example, 1 to 10 hours.
  • the tempering treatment advantageously achieves an additional improvement in the strength properties, in particular the deformation parameters.
  • the corrosion-resistant chrome steel is used for the production of parts for steam and gas turbines, since particularly high demands must be made on these parts with regard to their heat resistance.
  • the ferritic chromium steel 1.400 2 which consists of 0.06% carbon, 0.5% silicon, 1% manganese, 13 % chromium, 0.01% nitrogen, 0.1% aluminum, the rest iron and has a ferromagnetic structure after annealing at 800 ° C the following mechanical properties:
  • the structure of the chrome steel consists of ferrite. At a test temperature of 400 ° C, the yield strength of the steel is approximately 200 N / mm 2.
  • the steel After annealing at 950 to 1,000 ° C and cooling in oil or air and after tempering at 700 to 750 ° C and cooling in air, the steel has the following mechanical characteristics:
  • a nitrogen content of 0.51% was introduced into a master alloy with a composition that corresponds to the composition of the material 1,400 2 by means of electroslag remelting under pressure.
  • the embroidered master alloy was hot worked by forging at 1,180 ° C and then subjected to various heat treatments. It was found that three significantly different strength levels can be set by slightly changing the heat treatment, especially at room temperature. It was also found that at a test temperature of over 400 ° C there is no sudden drop in the heat resistance properties. The results of these tests are summarized in Table 1.
  • the materials characterized in Table 1 have an extremely fine-grained structure.
  • Annealing at temperatures above 800 ° C with subsequent cooling in air without tempering treatment cause the formation of a nitrogen-induced martensitic structure, which, in contrast to carbon martensite, has a higher ductility with significantly higher strength properties.
  • Tempering treatments following the annealing in turn cause a regression to a ferritic structure with simultaneous formation of the finest precipitates, primarily chromium nitride.
  • the composition of the material 1.4002 was changed by adding 2.9% nickel and 3.5 % molybdenum and by reducing the carbon content to 0.03%.
  • the structure of this starting alloy was largely ferritic.
  • a nitrogen content of 0.51% was introduced into this predominantly ferritic master alloy by electroslag remelting under pressure.
  • the embroidered alloy was hot worked by forging at 1 180 ° C and then subjected to different heat treatments.
  • Table 2 shows that the materials characterized there have strength properties that are far above those of conventional corrosion-resistant ferritic chromium steels.
  • the different heat treatments result, among other things, in a change in the R p0.2 / R m ratio.
  • the strength level of the steels according to the invention characterized in Table 2 is far above the strength level that the austenitic chromium-nickel steels have.
  • Metallographic investigations have shown that the materials characterized in Table 2 are mainly composed of ferrite, transformation structure and chromium nitride precipitates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Claims (4)

1. Acier au chrome résistant à la corrosion, qui est constitué par 3 à 45 % de chrome, 0,001 à 0,5 % de carbone, 0 à 10 % de nickel, 0 à 10 % de manganèse, 0 à 10 % de molybdène, 0 à 5 % de vanadium, 0 à 2 % de silicium, 0 à 2 % de titane, de niobium et/ou de tantale, 0 à 1 % de cérium, 0 à 0,3 % d'aluminium, une quantité assez élevée d'azote, et le reste en fer, et dont la structure contient au moins 50 % de constituants de structure ferromagnétiques, caractérisé en ce que la teneur en azote est comprise entre 0,2 et 5 %, et dépasse de 10 % au moins la limite de solubilité de l'azote à 1 bar et 20 °C, en ce que l'acier présente, à 400 °C, une limite élastique apparente Rpo.2 > 400 N/mm2, et, à 600 °C, une limite élastique apparente Rp0.2 > 250 N/mm2, et en ce qu'il peut être aimanté.
2. Procédé pour l'élaboration de l'acier au chrome résistant à la corrosion selon la revendication 1. caractérisé en ce qu'à un alliage de départ qui est constitué par 3 à 45 % de chrome, 0,001 à 0,5 % de carbone. 0 à 10 % de nickel, 0 à 10 % de manganèse, 0 à 10 % de molybdène, 0 à 5 % de vanadium, 0 à 2 % de silicium, 0 à 2 % de titane, de niobium et/ou de tantale, 0 à 1 % de cérium, 0 à 3 % d'aluminium, et le reste en fer, et qui présente une structure comportant au moins 50 % de constituants de structure ferromagnétiques, on incorpore, par azotation sous pression, une teneur en azote qui se situe entre 0.2 et 5 %. et doit être supérieure de 10 % au moins à la limite de solubilité de l'azote de l'alliage initial à 1 bar et 20 °C, en ce que l'alliage enrichi en azote est formé à chaud, en ce que l'alliage enrichi d'azote formé à chaud est recuit à une température comprise entre 800 et 1 250 °C, puis refroidi à la température ambiante.
3. Procédé selon la revendication 2, caractérisé en ce qu'après son refroidissement jusqu'à une température de 450 à 750 °C, l'acier est soumis à un traitement de revenu, puis refroidi à la température ambiante.
4. Utilisation de l'acier au chrome résistant à la corrosion selon la revendication 1 pour la fabrication de pièces de turbines à vapeur et à gaz.
EP84101992A 1983-03-24 1984-02-25 Acier au chrome, résistant à la corrosion et procédé pour sa fabrication Expired EP0123054B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84101992T ATE27005T1 (de) 1983-03-24 1984-02-25 Korrosionsbestaendiger chromstahl und verfahren zu seiner herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833310693 DE3310693A1 (de) 1983-03-24 1983-03-24 Korrosionsbestaendiger chromstahl und verfahren zu seiner herstellung
DE3310693 1983-03-24

Publications (2)

Publication Number Publication Date
EP0123054A1 EP0123054A1 (fr) 1984-10-31
EP0123054B1 true EP0123054B1 (fr) 1987-05-06

Family

ID=6194503

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84101992A Expired EP0123054B1 (fr) 1983-03-24 1984-02-25 Acier au chrome, résistant à la corrosion et procédé pour sa fabrication

Country Status (5)

Country Link
US (1) US4610734A (fr)
EP (1) EP0123054B1 (fr)
JP (1) JPS59179757A (fr)
AT (1) ATE27005T1 (fr)
DE (1) DE3310693A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61564A (ja) * 1984-06-13 1986-01-06 Nippon Kokan Kk <Nkk> 衝撃特性の優れた2相ステンレス鋼
DE3736965A1 (de) * 1987-10-31 1989-05-11 Krupp Gmbh Hochfeste stickstoffhaltige vollaustenitische cobalstaehle mit 0,2-dehngrenzen oberhalb 600 n/mm(pfeil hoch)2(pfeil hoch)
JP2639849B2 (ja) * 1990-02-19 1997-08-13 新日本製鐵株式会社 高窒素フェライト系耐熱鋼の製造方法
CH683640A5 (fr) * 1990-07-13 1994-04-15 Vibro Meter Ag Dispositif de mesure sans contact de déplacement et/ou de la position d'une pièce mobile et procédé de fabrication de ce dispositif.
DE19628350B4 (de) * 1996-07-13 2004-04-15 Schmidt & Clemens Gmbh & Co Verwendung einer rostfreien ferritisch-austenitischen Stahllegierung
AUPP042597A0 (en) * 1997-11-17 1997-12-11 Ceramic Fuel Cells Limited A heat resistant steel
RU2158319C1 (ru) * 2000-04-25 2000-10-27 Институт металлургии и материаловедения им. А.А. Байкова РАН Высокопрочная коррозионно- и износостойкая аустенитная сталь
FR2808807B1 (fr) * 2000-05-10 2002-07-19 Metallurg Avancee Soc Ind De Composition d'acier, procede de fabrication et pieces formees dans ces compositions, en particulier soupapes
DE102008005803A1 (de) * 2008-01-17 2009-07-23 Technische Universität Bergakademie Freiberg Bauteil aus höher kohlnstoffhaltigem austenitischem Stahlformguss, Verfahren zu deren Herstellung und deren Verwendung
US20090286107A1 (en) * 2008-05-13 2009-11-19 Ut-Battelle, Llc Ferritic Alloy Compositions
DE102010045221B4 (de) * 2010-09-13 2017-10-05 Daimler Ag Stahlkolben für Verbrennungsmotoren
CN102330036B (zh) * 2011-09-02 2013-04-24 华南理工大学 一种耐热耐磨耐腐蚀大型机械往复炉炉排的制造方法
DE102016102770A1 (de) * 2016-02-17 2017-08-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Herstellung eines Bauteils, insbesondere eines Fahrwerksbauteils, eines Kraftfahrzeugs
RU2638873C1 (ru) * 2016-12-26 2017-12-18 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Высокопрочная низколегированная азотосодержащая мартенситная сталь
DE102018202351A1 (de) * 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Wärmebehandlung für einen NiCrMoV-Stahl und martensitischer Stahl
RU2704703C1 (ru) * 2018-11-28 2019-10-30 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Высокопрочная дисперсионно-твердеющая азотосодержащая коррозионно-стойкая аустенитная сталь
DE102020128884A1 (de) 2020-11-03 2022-05-05 BMTS Technology GmbH & Co. KG Austenitische Stahllegierung und Turbinengehäuse oder Turbinengehäusebauteil für einen Abgasturbolader
CN113549742B (zh) * 2021-07-23 2023-06-16 攀钢集团江油长城特殊钢有限公司 一种3Cr17NiMo电渣锭的退火方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD40683A (fr) *
US2865736A (en) * 1956-02-08 1958-12-23 Carpenter Steel Co Method of alloying gaseous materials with metals
AT277301B (de) * 1963-05-24 1969-12-29 Boehler & Co Ag Geb Stickstoffhältiger, austenitischer Stahl
AT266899B (de) * 1963-05-24 1968-12-10 Boehler & Co Ag Geb Austenitische Stahllegierung
GB1158614A (en) * 1967-03-16 1969-07-16 Langley Alloys Ltd Improvement in Stainless Steels
SU293872A1 (ru) * 1969-05-27 1971-01-26 Нержавеющая сталь
SU451786A1 (ru) * 1973-01-18 1974-11-30 Центральный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Черной Металлургии Им.И.П.Бардина Коррозионностойка сталь
US3836406A (en) * 1973-01-22 1974-09-17 Director Of Nat Res Inst For M PERMANENT MAGNETIC Fe-Mn-Cr ALLOY CONTAINING NITROGEN
BG18721A1 (fr) * 1973-04-11 1975-03-20
AT333819B (de) * 1973-12-10 1976-12-10 Ver Edelstahlwerke Ag Austenitisch-ferritischer chrom-nickel-stickstoff-stahl
US3943010A (en) * 1974-06-12 1976-03-09 Allegheny Ludlum Industries, Inc. Process for producing austenitic ferrous alloys
DE2528588C2 (de) * 1974-06-27 1990-05-10 Inteco Internationale Technische Beratung GmbH, Bruck an der Mur Verfahren zur großtechnischen Herstellung von austenitischen Stählen oder Legierungen mit über der maximalen Löslichkeit bei Atmosphärendruck liegenden Stickstoffgehalten
US4047981A (en) * 1976-06-30 1977-09-13 Armco Steel Corporation Internally nitrided ferritic stainless steel strip, sheet and fabricated products and method therefor
DE2815439C3 (de) * 1978-04-10 1980-10-09 Vereinigte Edelstahlwerke Ag (Vew), Wien Niederlassung Vereinigte Edelstahlwerke Ag (Vew) Verkaufsniederlassung Buederich, 4005 Meerbusch Verwendung eines ferritisch-austenitischen Chrom-Nickel-Stahles

Also Published As

Publication number Publication date
ATE27005T1 (de) 1987-05-15
DE3310693A1 (de) 1984-10-04
EP0123054A1 (fr) 1984-10-31
JPS59179757A (ja) 1984-10-12
US4610734A (en) 1986-09-09
DE3310693C2 (fr) 1990-03-08

Similar Documents

Publication Publication Date Title
EP0123054B1 (fr) Acier au chrome, résistant à la corrosion et procédé pour sa fabrication
DE2211229C3 (de) Verfahren zur Verbesserung der Zeitstandfestigkeit bei Temperaturen über 750 Grad C eines austenitisehen Chrom-Nickel-Stahlhalbzeuges
DE3628862C2 (fr)
DE3634635A1 (de) Nickelaluminide und nickel-eisenaluminide zur verwendung in oxidierenden umgebungen
DE60020263T2 (de) Verwendung eines ausscheidungsgehärteten martensitischen edelstahls
DE1458330C3 (de) Verwendung einer zähen, ausscheidungshärtbaren, rostfreien, chrom-, nickel- und aluminiumhaltigen Stahllegierung
DE1558668C3 (de) Verwendung von kriechfesten, nichtrostenden austenitischen Stählen zur Herstellung von Blechen
DE3041565C2 (fr)
DE2447137A1 (de) Gegen gruebchenkorrosion bestaendige stahllegierung
DE2429023A1 (de) Stahllegierung und die daraus hergestellten formkoerper
DE1553841A1 (de) Messerklingen aus korrosionsbestaendigen austenitischen Edelstahl-Legierungen
DE10124393B4 (de) Hitzebeständiger Stahl, Verfahren zur thermischen Behandlung von hitzebeständigem Stahl, und Kompenten aus hitzebeständigem Stahl
DE1232759B (de) Martensitaushaertbarer Chrom-Nickel-Stahl
DE1558676C3 (fr)
DE2313832C3 (de) Verfahren zur Herstellung einer schmiedbaren Kobaltlegierung
DE2420072C2 (de) Verschleißfeste rostfreie Stahllegierung, Verfahren zum Wärmebehandeln derselben und deren Verwendung
DE3136722A1 (de) &#34;verfahren zur herstellung von fertigteilen aus hochlegierten ferritischen werkstoffen&#34;
DE1408520B2 (de) Verwendung einer legierung zur herstellung von federmaterial
DE3736965C2 (fr)
DE1458325A1 (de) Waermehaertbarer,rostfreier,legierter Chrom-Nickel-Molybdaen-Stahl
DE2703644A1 (de) Korrosionshemmende eisenlegierung
DE1483515A1 (de) Verfahren zur Herstellung von Rasierklingen
DE2039910A1 (de) Tieftemperaturzaeher Stahl und Waermebehandlungsverfahren zu dessen Herstellung
AT235588B (de) Nickel-Chromlegierungen
DE2322102A1 (de) Stahl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE FR GB IT LU SE

17P Request for examination filed

Effective date: 19850402

17Q First examination report despatched

Effective date: 19860117

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE FR GB IT LU SE

REF Corresponds to:

Ref document number: 27005

Country of ref document: AT

Date of ref document: 19870515

Kind code of ref document: T

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

BECH Be: change of holder

Free format text: 940303 *VEREINIGTE SCHMIEDDEWERKE G.M.B.H.

BECN Be: change of holder's name

Effective date: 19940303

EAL Se: european patent in force in sweden

Ref document number: 84101992.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000201

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20000202

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000223

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010205

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010207

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010225

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

BERE Be: lapsed

Owner name: VEREINIGTE SCHMIEDDEWERKE G.M.B.H.

Effective date: 20010228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020226

EUG Se: european patent has lapsed

Ref document number: 84101992.0

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030227

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040225