EP0119280A1 - Integrierte Schaltung zur Decodierung von Verkehrsfunk-Bereichskennsignalen - Google Patents

Integrierte Schaltung zur Decodierung von Verkehrsfunk-Bereichskennsignalen Download PDF

Info

Publication number
EP0119280A1
EP0119280A1 EP83102412A EP83102412A EP0119280A1 EP 0119280 A1 EP0119280 A1 EP 0119280A1 EP 83102412 A EP83102412 A EP 83102412A EP 83102412 A EP83102412 A EP 83102412A EP 0119280 A1 EP0119280 A1 EP 0119280A1
Authority
EP
European Patent Office
Prior art keywords
output
input
comparator
frequency
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83102412A
Other languages
English (en)
French (fr)
Other versions
EP0119280B1 (de
Inventor
Heinrich Dipl.-Ing. Pfeifer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
ITT Inc
Original Assignee
Deutsche ITT Industries GmbH
ITT Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche ITT Industries GmbH, ITT Industries Inc filed Critical Deutsche ITT Industries GmbH
Priority to EP83102412A priority Critical patent/EP0119280B1/de
Priority to DE8383102412T priority patent/DE3364612D1/de
Priority to JP59045725A priority patent/JPS59175221A/ja
Publication of EP0119280A1 publication Critical patent/EP0119280A1/de
Application granted granted Critical
Publication of EP0119280B1 publication Critical patent/EP0119280B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/091Traffic information broadcasting
    • G08G1/094Hardware aspects; Signal processing or signal properties, e.g. frequency bands

Definitions

  • the invention relates to an integrated circuit for decoding traffic radio area identification signals, the frequency, the area frequency, of which is information about the area, the area identification signals being contained in the form of a carrier signal amplitude-modulated therewith in a received radio signal already demodulated in a conventional radio receiver, cf. . the preamble of claim 1.
  • the traffic radio signal contains area identification signals.
  • area identification signals the frequency of which is the information about the area as the area frequency, are quite low-frequency signals and are modulated onto the carrier signal by means of amplitude modulation, which has a frequency of 57 kHz in the known system, and are otherwise by ? possible frequency division derived from the carrier signal.
  • the block diagram of an integrated circuit for decoding traffic information signals according to the invention is shown in FIG. 1.
  • the demodulated radio signal ds which is obtained by means of a conventional radio receiver, is fed to the mixer stage ms, whose mixed signal frequency fm is greater than the largest range frequency fb.
  • 5 Hz fm 2 23:
  • the mixing stage ms the area identification signals modulated onto the carrier signal are converted to the mixed signal frequency fm.
  • the output of the mixer stage ms is via the analog low-pass filter af at the input of the analog / digital converter aw.
  • the output of the analog-digital converter aw is also at the first input of the multiplier m, the second input of which is at the output of the digital clamping circuit kl, which is downstream of the digital bandpass filter bp in terms of signal flow. It clamps positive or negative input signals to the positive or negative maximum value specified by their number of digits.
  • the analog-digital converter aw which must then be a delta-sigma converter, can directly follow the mixing stage ms, whereby then, however, the digital low-pass filter df must be arranged between the input of the digital bandpass filter bp and the output of the analog-digital converter aw.
  • the mixed signal is recovered by means of the digital bandpass, and by means of the digital clamping circuit kl amplitude normalized.
  • the area identification signals are then demodulated by means of the multiplier m.
  • each signal path in the signal flow direction consists of the digital resonance filter ra, rb, rf for the respective range frequency fb, the digital absolute value generator ba, bb, bf and the digital low-pass filter pa, pb, pf, the upper limit frequency of which is less than twice the smallest range frequency.
  • this lowest range frequency which is assigned to range A there, has a value of 23.75 Hz.
  • the three subcircuits arranged in signal path a, b, f have the function of a selective level measurement.
  • One of each of the outputs of the low-pass filters pa, pb, pf is connected to an input of the multiple comparator vk, at the first maximum output mx1 of which a signal occurs via the signal path which carries the largest signal, i.e. a digital word for the number of the signal path with the largest signal value appears at the first maximum output mx1.
  • a signal appears at the second maximum output mx2 about the number of the signal path that carries the second largest signal.
  • D T r first or second maximum output mx1, mx2 is located at the control input of the first or second electronic multiple switch s1, s2, the inputs of which are each connected to an output of the low-pass filters pa, pb, pf.
  • the two multiple switches s1, s2 thus have as many inputs as there are signal paths, and from the output signals to the maximum outputs mxl, mx2, they are switched to the signal path that carries the largest or the second largest signal value.
  • the output of the first multiple switch s1 is on the one hand via the first constant multiplier m1 at the minuend input of the first comparator k1, to the subtrahend input of which the output of the multiple adder ad is connected. Its inputs are located at the output of one of the low passes pa, pb, pf.
  • the output of the first multiple changeover switch s1 is also via the second constant multiplier m2 at the minuend input of the second comparator k2, to the subtrahend input of which the output of the second multiple changeover switch s2 is connected.
  • the second comparator k2 and the second comparator m2 determine whether the amplitude of the first maximum signal multiplied by a constant factor is greater than the second maximum signal. By means of these constants provided in the second constant multiplier m2 as the one multiplication factor, the external channel spacing can be determined.
  • the level of the first maximum signal is compared in a comparable manner with the sum of the signal values of the other signal paths, which is a signal-to-noise ratio measurement.
  • the delay element vg is located at the first maximum output mx1 of the multiple comparator k and at the output thereof the minuend input of the third comparator k3, the subtrahend input of which is connected to the first maximum output mx1.
  • the minute-equal-subtrahend output of the third comparator k3 is via the inverter it Reset input er of the counter z, the counter input of which is supplied with the clock signal t and the counter outputs of which are connected to the minuend input of the fourth comparator k4, the subtrahend input of which is supplied the constant k serving as threshold value.
  • the output of the digital bandpass bp is followed by the further absolute value generator bw, which is followed by the further digital low-pass filter pw, the upper limit frequency of which is equal to that of the low-pass filters pa, pb, pf and the output of which via the third or fourth constant multiplier m3, m4 is at the subtrahend input of the fifth or the sixth comparator k5, k6, whose respective minuend input is connected to the output of the first multiple switch s1.
  • the minuend-larger-subtrahend output of the fifth comparator k5 and the minuend-smaller-subtrahend output of the sixth comparator k6 are each connected to one of the two inputs of the first AND gate u1.
  • the degree of modulation of the area identification signals is monitored by means of the last-mentioned subcircuits bw, pw, m3, m4, k5, k6, u1, because noise manifests itself as an increased degree of modulation and, on the other hand, an unmodulated carrier likewise frequently occurs as a disturbance.
  • the first maximum signal is compared with the amplitude of the mixed signal with respect to an upper and a lower threshold, which are predetermined by the constants of the third and fourth constant multipliers m3, m4.
  • the second AND gate u2 Of the four inputs of the second AND gate u2, one is located at the respective minuend-greater-subtrahend output of the first comparator k1, the second comparator k2 and the fourth comparator k4 and at the output of the first AND gate u1.
  • the first maximum output mx1 of the multiple comparator vk is located at the parallel input of the multiple AND gate vu, the output of which is the area signal output ba of the integrated circuit, and the output of the second AND gate u2 is located at all points of the second parallel input of the multiple AND -Gatters vu.
  • the mixer stage ms which consists of the unit amplifier v1 and the electronic switch s, the control signal of which is the mixed signal fm.
  • the unit amplifier v1 has the gain 1 and outputs at its output like a conventional analog amplifier an output signal rotated by 180 ° with respect to its input signal.
  • the radio signal ds which is also located at the input of the unit amplifier v1 is switched through directly to the output of the switch s, once and once in its form rotated by 180 °, that is to say inverted.
  • the mixed signal fm is a square wave signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

Die Schaltung ist im wesentlichen als Digitalschaltung konzipiert. Das auf übliche Art demodulierte Rundfunksignal (ds) wird zunächst auf eine sehr niedrige Zwischenfrequenz umgesetzt und dann analog-digital-gewandelt. Zur sicheren digitalen Ermittlung des Bereichskennsignals werden vier Qualitätskriterien vorgegeben und erst bei deren gemeinsamem Vorliegen das decodierte Signal freigegeben. Diese vier Kriterien sind: Fremdkanalabstand, Summenkanalabstand, Modulationsgradüberwachung und vorgebbare Zeitschwelle. Insgesamt ergibt sich dadurch eine Reduzierung der Ansprechzeit der Gesamtschaltung, ohne die Decodiersicherheit zu verringern. Außerdem ergibt sich eine praktisch vollständige Stör- und Rauschsicherheit der Schaltung. Die vier Kriterien werden u. a. mittels Komparatoren und UND-Gattern ermittelt.

Description

  • Die Erfindung betrifft eine integrierte Schaltung zur Decodierung von Verkehrsfunk -Bereichskennsignalen, deren Frequenz, die Bereichsfrequenz, die Information über den Bereich ist, wobei die Bereichskennsignale in Form eines damit amplitudenmodulierten Trägersignals in einem empfangenen und in einem üblichen Rundfunkempfänger bereits demodulierten Rundfunksignal enthalten sind, vgl. den Oberbegriff des Anspruchs 1.
  • In der Zeitschrift "Funkschau", 1974, Seiten 535 bis 538 ist das derzeit in Deutschland und weiteren europäischen Ländern verwendete System zur übermittlung von Verkehrsdurchsagen an Rundfunkhörer beschrieben, wobei unter anderem vorgesehen ist, das Gebiet eines Staates in mehrere Verkehrsfunk-Sendebereich3 dadurch aufzuteilen, daß das Verkehrsfunksignal Bereichskennsignale enthält. Diese Bereichskennsignale, deren Frequenz als Bereichsfrequenz die Information über den Bereich ist, sind recht niederfrequente Signale und mittels Amplitudenmodulation dem Trägersignal, das beim bekannten System eine Frequenz von 57 kHz hat, aufmoduliert und werden im übrigen durch ganz- ?ahlige Frequenzteilung aus dem Trägersignal abgeleitet.
  • Wie der Zeitschrift Rundfunktechnische Mitteilungen" 1974, Seiten 193 bis 202, worin dieses Verkehrsfunk-System ebenfalls ausführlich beschrieben ist, entnommen werden kann, wurden die Systemparameter seinerzeit so gewählt, daß die für den Verkehrsfunk erforderlichen empfängerseitigen Decoderschaltungen mit den üblichen, analoge Signale verarbeitenden Empfängerschaltungen kompatibel sind und insbesondere keine gegenseitige Störung auftritt. Die bisher üblichen Decoderschaltungen sind daher ebenfalls Analogschaltungen.
  • Demgegenüber ist es Aufgabe der in den Ansprüchen gekennzeichneten Erfindung, eine integrierte Schaltung zur Decodierung von Verkehrsfunk-Bereichskennsignalen anzugeben, die nach den Prinzipien der Digitaltechnik arbeitet und somit weitgehend aus digitalen Teilschaltungen aufgebaut ist. Dabei soll die Ansprechzeit der Schaltung kleiner als eine Sekunde sein:und die Bereichserkennung soll unempfindlich gegenüber Rauschen sein. *z.B. 300 ms betragen,
  • Die Erfindung und ihre Vorteile werden nun anhand der Figuren der Zeichnung näher erläutert.
    • Fig. 1 zeigt in Form eines Blockschaltbilds den Aufbau eines Ausführungsbeispiels der Erfindung,
    • Fig. 2 zeigt den geringfügig modifizierten Eingangsteil der Anordnung nach Fig. 1 und
    • Fig. 3 zeigt schematisch den Aufbau einer bei der Erfindung vorteilhaft verwendbaren Mischstufe.
  • Als Ausführungsbeispiel ist in Fig. 1 das Blockschaltbild einer integrierten Schaltung zur Decodierung von Verkehrsfunk-Bereichskennsignalen nach der Erfindung gezeigt. Das demodulierte Rundfunksignal ds, das mittels eines üblichen Rundfunkempfängers gewonnen wird, ist der Mischstufe ms zugeführt, deren Mischsignal-Frequenz fm größer als die größte Bereichsfrequenz fb ist. Bezogen auf das in den eingangs genannten beiden Zeitschriften bekannte System bedeutet dies, daß die Mischsignalfrequenz fm größer als die dem Bereich F zugeordnete Bereichsfrequenz 53,98 Hz ist. In einer realisierten Schaltung gilt für die Mischsignalfrequenz: fm = 223,5 Hz. Mittels der Mischstufe ms werden die dem Trägersignal aufmodulierten Bereichskennsignale auf die Mischsignalfrequenz fm umgesetzt.
  • Der Ausgang der Mischstufe ms liegt über das analoge Tiefpaßfilter af am Eingang des Analog/Digital-Wandlers aw. Dabei ist die obere Grenzfrequenz des Tiefpaßfilters af höchstens gleich der halben Abtastfrequenz des Analog/ Digital-Wandlers aw. Sein Ausgang liegt am Eingang des digitalen Bandpasses bp, dessen Mittenfrequenz fc gleich der Differenz von Trägersignalfrequenz ft und Mischsignalfrequenz fm ist; es gilt also fc = ft - fm.
  • Dor Ausgang des Analog Digital-Wandlers aw liegt ferner am ersten Eingang des Multiplizierers m, dessen zweiter Eingang am Ausgang der Digitalklemmschaltung kl liegt, die dem digitalen Bandpaß bp signalflußmäßig nachgeordnet ist. Sie klemmt positive bzw. negative Eingangssignale auf den durch ihre Stellenzahl vorgegebenen positiven bzw. negativen Maximalwert.
  • An dieser Stelle sei bereits erwähnt, daß nach der in Fig. 2 ausschnittweise gezeigten Abwandlung der Anordnung nach Fig. 1 der Analog Digital-Wandlers aw,der dann ein Delta-Sigma-Wandler sein muß, direkt auf die Mischstufe ms folgen kann, wobei dann allerdings zwischen dem Eingang des digitalen Bandpasses bp und dem Ausgang des Analog-Digitalwandlers aw das digitale Tiefpaßfilter df anzuordnen ist.
  • Mittels des digitalen Bandpasses wird das Mischsignal zurückgewonnen, und mittels der Digitalklemmschaltung kl wird es amplitudennormiert. Mittels des Multiplizierers m werden dann die Bereichskennsignale demoduliert.
  • Am Ausgang des Multiplizierers m liegt für jede Bereichsfrequenz ein eigener Signalweg, wovon in Fig. 1 die Signalwege a, b, f gezeigt sind. Jeder Signalweg besteht in Signalflußrichtung aus dem digitalen Resonanzfilter ra, rb, rf für die jeweilige Bereichsfrequenz fb, dem digitalen Betragsbildner ba, bb, bf und dem digitalen Tiefpaß pa, pb, pf, dessen obere Grenzfrequenz kleiner als die doppelte kleinste Bereichsfrequenz ist. Bei dem eingangs geschilderten bekannten System hat diese niedrigste Bereichsfrequenz, die dort dem Bereich A zugeordnet ist, einen Wert von 23,75 Hz. Die in dem Signalweg a, b, f angeordneten drei Teilschaltungen haben die Funktion einer selektiven Pegelmessung.
  • Von den Ausgängen der Tiefpässe pa, pb, pf liegt jeweils einer an jeweils einem Eingang des Vielfachkomparators vk, an dessen erstem Maximum-Ausgang mx1 ein Signal über denjenigen Signalweg auftritt, der-das grösste Signal führt, d.h. also am ersten Maximum-Ausgang mx1 erscheint ein Digitalwort für die Nummer des Signalwegs mit dem grössten Signalwert. In gleicher Weise erscheint am zweiten Maximum-Ausgang mx2 ein Signal über die Nummer desjenigen Signalwegs, der das zweitgrösste Signal führt.
  • DTr erste bzw. der zweite Maximum-Ausgang mx1, mx2 liegt am Steuereingang des ersten bzw. des zweiten elektronischen Vielfachumschalters s1, s2, von deren Eingängen jeweils einer an je einem Ausgang der Tiefpässe pa, pb, pf angeschlossen ist. Die beiden Vielfachumschalter s1, s2 haben also so viele Eingänge, wie Signalwege vorhanden sind, und von den Ausgangssignalen an den Maximum-Ausgängen mxl, mx2 werden sie auf denjenigen Signalweg geschaltet, der den grössten bzw. den zweitgrössten Signalwert führt.
  • Der Ausgang des ersten Vielfachumschalters s1 liegt einerseits über den ersten Konstanten-Multiplizierer m1 am Minuend-Eingang des ersten Komparators k1, an dessen Subtrahend-Eingang der Ausgang des Vielfachaddierers ad angeschlossen ist. Dessen Eingänge liegen jeweils am Ausgang eines der Tiefpässe pa, pb, pf. Der Ausgang des ersten Vielfachumschalters s1 liegt ferner über den zweiten onstanten-Multiplizierer m2 am Minuend-Eingang des zweiten Komparators k2, an dessen Subtrahend-Eingang der Ausgang des zweiten Vielfachumschalters s2 angeschlossen ist.
  • Mittels des zweiten Komparators k2 und des zweiten Kons ant-Miltiplizierers m2 wird festgestellt, ob die mit einem konstanten Faktor multiplizierte Amplitude des ersten Maximumsignals größer ist als das zweite Maximumsignal. Mittels dieser im zweiten Konstanten-Multiplizierer m2 als der eine Multiplikationsfaktor vorgesehenen Konstanten läßt sich also der Fremdkanalabstand festlegen.
  • Mittels des ersten Konstanten-Multiplizierers m1 und des ersten Komparators k1 wird in vergleichbarer Weise der Pegel des ersten Maximumsignals mit der Summe der Signalwerte der übrigen Signalwege verglichen, was eine Störabstandmessung ist.
  • Am ersten Maximum-Ausgang mx1 des Vielfachkomparators k liegt das Verzögerungsglied vg und an dessen Ausgang der Minuend-Eingang des dritten Komparators k3, dessen Subtrahend-Eingang mit dem ersten Maximum-Ausgang mx1 verbunden ist. Der Minuend-gleich-Subtrahend-Ausganj des dritten Komparators k3 liegt über den Inverter it am Rücksetzeingang er des Zählers z, dessen Zähleingang das Taktsignal t zugeführt ist und dessen Zählerstandausgänge mit dem Minuend-Eingang des vierten Komparators k4 verbunden sind, dessen Subtrahend-Eingang die als Schwellwert dienende Konstante k zugeführt ist. Mit den eben erläuterten Teilschaltungen vg, k3, it, z, k4 wird am Minuend-größer-Subtrahend-Ausgang des vierten Komparators k4 ein Signal erzeugt, das nur dann auftritt, wenn das erste Maximumsignal für die durch die Frequenz des Taktsignals t und die Konstante k vorgegebene Zeit konstant war. Mittels dieser Teilschaltungen ist somit eine Zeitschwelle realisiert.
  • Dem Ausgang des digitalen Bandpasses bp ist der weitere Betragsbildner bw nachgeschaltet, dem der weitere digitale Tiefpaß pw folgt, dessen obere Grenzfrequenz gleich der der Tiefpässe pa, pb, pf ist und dessen Ausgang über den dritten bzw. den vierten Konstanten-Multiplizierer m3, m4 am Subtrahend-Eingang des fünften bzw. des sechsten Komparators k5, k6 liegt, deren jeweiliger Minuend-Eingang am Ausgang des ersten Vielfachumschalters s1 angeschlossen ist. Der Minuend-größer-Subtrahend-Ausgang des fünften Komparators k5 und der Minuend-kleiner-Subtrahend-Ausgang des sechsten Komparators k6 sind mit jeweils einem der beiden Eingänge des ersten UND-Gatters u1 verbunden. Mittels der zuletzt genannten Teilschaltungen bw, pw, m3, m4, k5, k6, u1 wird der Modulationsgrad der Bereichskennsignale überwacht, denn Rauschen äußert sich als vergrößerter Modulationsgrad, und andererseits tritt ein unmodulierter Träger ebenfalls häufig als Störung auf. Dabei wird das erste Maximalsignal mit der Amplitude des Mischsignals bezüglich einer oberen und einer unteren Schwelle, die durch die Konstanten des dritten bzw. vierten Konstanten-Multiplizierers m3, m4 vorgegeben sind, verglichen.
  • Von den vier Eingängen des zweiten UND-Gatters u2 liegt jeweils einer am jeweiligen Minuend-größer-Subtrahend-Ausgang des ersten Komparators k1, des zweiten Komparators k2 und des vierten Komparators k4 sowie am Ausgang des ersten UND-Gatters u1. Der erste Maximum-Ausgang mx1 des Vielfachkomparators vk liegt am Paralleleingang des Vielfach-UND-Gatters vu, dessen Ausgang der Bereichssignalausgang ba der integrierten Schaltung ist, und der Ausgang des zweiten UND-Gatters u2 liegt an allen Stellen des zweiten Paralleleingangs des Vielfach-UND-Gatters vu. Somit werden mittels des zweiten UND-Gatters u2 die vier Uberwachungskriterien auf ihr gleichzeitiges Auftreten geprüft, und nur wenn diese Forderung erfüllt ist,wird die Nummer des zugeordneten Bereichs an den Bereichssignalausgang sa durchgeschaltet.
  • Zur sicheren Ermittlung des Bereichskennsignals werden also bei der Erfindung vier Qualitätskriterien vorgegeben und erst bei deren gemeinsamem Vorliegen das decodierte Signal freigegeben. Diese vier Kriterien sind nochmals kurz zusammengefaßt die folgenden: Fremdkanalabstand, Summenkanalabstand, Modulationsgradüberwachung und vorgebbare Zeitschwelle. Obwohl diese vier überwachungskriterien einen gewissen Schaltungsaufwand bedingen, ergibt sich doch, und das ist einer der Vorteile der Erfindung, insgesamt eine Reduzierung der Ansprechzeit der Gesamtschaltung, ohne die Decodiersicherheit zu verringern. Außerdem ergibt sich eine praktisch vollständige Stör- und Rauschsicherheit der Schaltung.
  • Die Fig. 3 zeigt eine besonders vorteilhafte Ausgestaltung für die Mischstufe ms, die aus dem Einheitsverstärker v1 und dem elektronischen Umschalter s, dessen Steuersignal das Mischsignal fm ist, besteht. Der Einheitsverstärker v1 hat die Verstärkung 1 und gibt an seinem Ausgang wie ein üblicher Analogverstärker ein um 180° gegenüber seinem Eingangssignal gedrehtes Ausgangssignal ab. Mittels des Umschalters s wird das auch am Eingang des Einheitsverstärkers v1 liegende Rundfunksignal ds einmal direkt und einmal in seiner um 180° gedrehten, also invertierten, Form zum Ausgang des Umschalters s durchgeschaltet. In diesem Fall ist das Mischsignal fm ein Rechtecksignal.

Claims (3)

1. Integrierte Schaltung zur Decodierung von Verkehrsfunk-Bereichskennsignalen, deren Frequenz, die Bereichsfrequenz, die Information über den Bereich ist, wobei die Bereichskennsignale in Form eines damit amplitudenmodulierten Trägersignals in einem empfangenen und mit einem üblichen Rundfunkempfänger bereits demodulierten Rundfunksignal(ds) enthalten sind, gekennzeichnet durch folgende Merkmale:
- das demodulierte Rundfunksignal (ds) ist einer Mischstufe (ms) zugeführt, deren Mischsignal-Frequenz (fm) - größer als die größte Bereichsfrequenz ist,
- der Ausgang der Mischstufe (ms) liegt über ein analoges Tiefpaßfilter (af) am Eingang eines Analog/Digital-Wandlers (aw), wobei die obere Grenzfrequenz des analogen Tiefpaßfilters (af) höchstens gleich der halben Abtastfrequenz (fa) des Analog/Digital-Wandlers (aw) ist,
- der Ausgang des Analog/Digital-Wandlers (aw) liegt am Eingang eines digitalen Bandpasses (bp), dessen Mittenfrequenz (fc) gleich der Differenz von Trägersignalfrequenz (ft) und Mischsignalfrequenz (fm) ist, und ferner am ersten Eingang eines Multiplizierers (m), dessen zweiter Eingang am Ausgang einer Digital-Klemmschaltung (kl) liegt, deren Eingang mit dem Ausgang des digitalen Bandpasses (bp) verbunden ist und die positive bzw. negative Eingangssignale auf den durch ihre Stellenzahl vorgegebenen positiven bzw. negativen Maximalwert klemmt,
- am Ausgang des Multiplizierers (m) liegt für jede Bereichsfrequenz ein eigener Signalweg (a, b, f), der in Signalflußrichtung aus einem digitalen Resonanzfilter (ra, rb, rf) für die jeweilige Bereichsfrequenz, einem digitalen Betragsbildner (ba, bb, bf) und einem digitalen Tiefpaß (pa, pb, pf) besteht, dessen obere Grenzfrequenz kleiner als die doppelte kleinste Bereichsfrequenz ist,
- von den Ausgängen der Tiefpässe (ph, pb, pf) liegt jeweils einer an jeweils einem Eingang eines Vielfachkomparators (vk); dessen erster Maximum-Ausgang (mx1) am Steuereingang eines ersten elektronischen Vielfachumschalters (s1) und dessen zweiter Maximum-Ausgang (mx2) am Steuereingang eines zweiten elektronischen Vielfachumschalters (f2) liegt,
- von den Eingängen des ersten und des zweiten elektronischen Vielfachumschalters (s1, s2) liegt jeweils einer an je einem Ausgang der Tiefpässe (pa, pb, pf),
- der erste bzw. der zweite Vielfachumschalter (s1, s2) wird vom ersten bzw. vom zweiten Maximum-Ausgang mx1, mx2) auf den Eingang mit dem ersten bzw. zweiten Maximalwert geschaltet,
- der Ausgang des ersten Vielfachumschalters (s1) liegt einerseits über einen ersten Konstanten-Multiplizierer (m1) am Minuend-Eingang eines ersten Komparators (k1), an dessen Subtrahend-Eingang der Ausgang eines Vielfach-Addierers(ad) angeschlossen ist,von dessen Eingängen jeweils einer mit dem Ausgang eines der Tiefpässe (pa, pb, pf) verbunden ist, und andererseits über einen zweiten Konstanten-Multiplizierer (m2) am Minuend-Eingang eines zweiten Komparators (k2), an dessen Subtrahend-Eingang der Ausgang des zweiten Vielfach-Umschalters (s2) angeschlossen ist,
- am ersten Maximum-Ausgang (mx1) des Vielfachkomparators (vk) liegt ein Verzögerungsglied (vg) und an dessen Ausgang der Minuend-Eingang eines dritten Komparators (k3), dessen Subtrahend-Eingang mit dem ersten Maximum-Ausgang (mx1) verbunden ist,
- der Minuend-gleich-Subtrahehd-Ausgang des dritten Komparators (k3) liegt über einen Inverter (it) am Rücksetzeingang (er) eines Zählers (z),dessen Zähleingang ein Taktsignal (t) zugeführt ist und dessen Zählerstandausgänge mit dem Minuend-Eingang eines vierten Komparatorst(k4) verbunden sind, dessen Subtrahend-Eingang eine als Schwellwert dienende Konstante (k) zugeführt ist,
- dem Ausgang des digitalen Bandpasses (bp) ist ein weiterer Betragsbildner (bw) nachgeschaltet, auf den ein weiterer digitaler Tiefpaß (pw) folgt, dessen - obere Grenzfrequenz gleich der der Tiefpässe (pa, pw, pf) ist und dessen Ausgang über einen dritten bzw. über einen vierten Konstanten-Multiplizierer (m3, m4) am Subtrahend-Eingang eines fünften bzw. eines sechsten Komparators (k5, k6) liegt, deren jeweiliger Minuend-Eingang am Ausgang des ersten Vielfach-Umschalters (s1) angeschlossen ist,
- der Minuend-größer-Subtrahend-Ausgang des fünften Komparators (k5) und der Minuend-kleiner-Subtrahend-Ausgang des sechsten Komparators (k6) sind mit jeweils einem der beiden Eingänge eines ersten UND-Gatters (u1) verbunden,
- von den vier Eingängen eines-zweiten UND-Gatters (u2) liegt jeweils einer am jeweiligen Minuend-größer-Subtrahend-Ausgang des ersten Komparators (k1), des zweiten Komparators (k2) und des vierten Komparators (k4) bzw. am Ausgang des ersten UND-Gatters (u1), und
- der erste Maximum-Ausgang (mx1) des Vielfachkomparators (vk) liegt am ersten Paralleleingang eines Vielfach-UND-Gatters (vu), dessen Ausgang der Bereichssignalausgang (sa) der integrierten Schaltung ist, und der Ausgang des zweiten UND-Gatters (u2) liegt an allen Stellen des zweiten Paralleleingangs des Vielfach-UND-Gatters (vu).
2. Decodierschaltung nach Anspruch 1, dadurch gekennzeichnet, daß das analoge Tiefpaßfilter (af) durch ein digitales Tiefpaßfilter (df) derart ersetzt ist, daß der Eingang des Analog-Digital-Wandlers (aw), der ein Sigma-Delta-Wandler ist, direkt am Ausgang der Mischstufe (ms) und der Eingang des digitalen Bandpasses (bp) direkt am Ausgang des digitalen Tiefpaßfilters (df) liegt.
3. Decodierschaltung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Mischstufe (ms) aus einem elektronischen Umschalters (s) und einem invertierenden Einheits-Verstärker (v1) besteht, dessen Ausgang mit dem einen Eingang des Umschalters (s) verbunden ist und dessen Eingang zusammen mit dem Eingang des;Einheits-Verstärkers (v1) das demodulierte Rundfunksignal (ds) zugeführt ist und dessen Steuereingang vom Mischsignal (fn), das ein Rechtecksignal ist, gespeist ist.
EP83102412A 1983-03-11 1983-03-11 Integrierte Schaltung zur Decodierung von Verkehrsfunk-Bereichskennsignalen Expired EP0119280B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP83102412A EP0119280B1 (de) 1983-03-11 1983-03-11 Integrierte Schaltung zur Decodierung von Verkehrsfunk-Bereichskennsignalen
DE8383102412T DE3364612D1 (en) 1983-03-11 1983-03-11 Integrated circuit for decoding radio broadcast traffic area identification signals
JP59045725A JPS59175221A (ja) 1983-03-11 1984-03-12 交通情報の地域ト−ン信号用デコ−ダ回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP83102412A EP0119280B1 (de) 1983-03-11 1983-03-11 Integrierte Schaltung zur Decodierung von Verkehrsfunk-Bereichskennsignalen

Publications (2)

Publication Number Publication Date
EP0119280A1 true EP0119280A1 (de) 1984-09-26
EP0119280B1 EP0119280B1 (de) 1986-07-23

Family

ID=8190338

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83102412A Expired EP0119280B1 (de) 1983-03-11 1983-03-11 Integrierte Schaltung zur Decodierung von Verkehrsfunk-Bereichskennsignalen

Country Status (3)

Country Link
EP (1) EP0119280B1 (de)
JP (1) JPS59175221A (de)
DE (1) DE3364612D1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969209A (en) * 1987-07-27 1990-11-06 Prs Corporation Broadcast receiver capable of selecting stations based upon geographical location and program format

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2719618A1 (de) * 1977-05-03 1978-11-09 Koerting Radio Werke Gmbh Schaltungsanordnung an einem integrierten pll-decoder
DE2916171A1 (de) * 1979-04-21 1980-10-30 Licentia Gmbh Ueberlagerungsempfaenger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2719618A1 (de) * 1977-05-03 1978-11-09 Koerting Radio Werke Gmbh Schaltungsanordnung an einem integrierten pll-decoder
DE2916171A1 (de) * 1979-04-21 1980-10-30 Licentia Gmbh Ueberlagerungsempfaenger

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GRUNDIG TECHNISCHE INFORMATIONEN, Heft 4/5, 1980, Seiten 255-259, Regensburg, DE. *
RADIOMENTOR ELECTRONIC, Band 44, Nr. 12, Dezember 1978, Seiten 480-481, München, DE. *

Also Published As

Publication number Publication date
EP0119280B1 (de) 1986-07-23
DE3364612D1 (en) 1986-08-28
JPS59175221A (ja) 1984-10-04

Similar Documents

Publication Publication Date Title
DE3213298C2 (de) Schaltungsanordnung zum Mischen zweier Farbvideosignale durch Farbstanzen
DE2408947B2 (de) Schaltungsanordnung zur Frequenzerkennung auf dem Gebiet des Verkehrsfunkempfangs
EP0936744B1 (de) Trägererzeugungseinrichtung für einen digitalen Demodulator von MPX-Signalen
EP0308520A1 (de) Digitaler Demodulator
EP0617519A2 (de) Schaltungsanordnung zur Ableitung mindestens eines von der Qualität eines empfangenen Signals abhängigen Qualitätssignals
EP0204849B1 (de) Schaltungsanordung zur Filterung und Demodulation eines mit mindestens einem Tonsignal frequenzmodulierten Signals
EP0162943B1 (de) Integrierte Schaltung zur Decodierung von Verkehrsfunk-Durchsagekennsignalen
EP0119280B1 (de) Integrierte Schaltung zur Decodierung von Verkehrsfunk-Bereichskennsignalen
DE1227525B (de) UEberwachungseinrichtung fuer PCM-Zeitmultiplexsysteme
EP0653850B1 (de) Schaltungsanordnung zur Erkennung von Nachbarkanalstörungen
EP0691048B1 (de) Digitales filter
DE3131892C2 (de) Frequenztrennvorrichtung
DE2366604C2 (de)
EP0793361A1 (de) Schaltung zur Dekodierung einer Zusatzinformation in einer Rundfunkübertragung
DE3938946C2 (de)
DE2407502C3 (de) Fernsehempfangsgerät
EP0691049B1 (de) Verfahren zur ableitung eines von der qualität eines empfangenen multiplexsignals abhängigen qualitätssignals
DE4239759C2 (de) Verfahren zum Umschalten auf eine empfangswürdige Alternativfrequenz eines RDS-Empfängers
DE2533946C3 (de) Zusatzschaltung zum Erkennen eines Pilotsignals
DE3925629A1 (de) Verfahren zum erfassen von mehrwegeverzerrungen beim fm-rundfunkempfang und schaltungsanordnung zur durchfuehrung des verfahrens
DE2748099A1 (de) Schaltungsanordnung zur stoersignalunterdrueckung in einer funkanlage
DE4311933A1 (de) Schaltungsanordnung zur Erzeugung eines Stopp-Signals für einen Sendersuchlauf
EP0670643B1 (de) Verfahren und Schaltungsanordnung zur digitalen Rahmensynchronisation
DE2907611C2 (de) Empfängerauswahlautomatik für Funkzentralen
DE3702898A1 (de) Ton-zf-verstaerker fuer einen mehrnormen-fernsehempfaenger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840130

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ITT INDUSTRIES INC.

Owner name: DEUTSCHE ITT INDUSTRIES GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: DOTT. ANTONIO SERGI

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3364612

Country of ref document: DE

Date of ref document: 19860828

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881122

GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920317

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930329

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930331

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST