EP0116188A1 - Procédé pour la fabrication d'une electrode pour lampe à décharge dans un gaz sous pression élévée - Google Patents

Procédé pour la fabrication d'une electrode pour lampe à décharge dans un gaz sous pression élévée Download PDF

Info

Publication number
EP0116188A1
EP0116188A1 EP83201857A EP83201857A EP0116188A1 EP 0116188 A1 EP0116188 A1 EP 0116188A1 EP 83201857 A EP83201857 A EP 83201857A EP 83201857 A EP83201857 A EP 83201857A EP 0116188 A1 EP0116188 A1 EP 0116188A1
Authority
EP
European Patent Office
Prior art keywords
thickening
carrier
electrode
laser
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83201857A
Other languages
German (de)
English (en)
Other versions
EP0116188B1 (fr
Inventor
Horst Dr. Hübner
Hans Dr. Lydtin
Ludwig Dr. Rehder
Thomas Dr. Zaengel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0116188A1 publication Critical patent/EP0116188A1/fr
Application granted granted Critical
Publication of EP0116188B1 publication Critical patent/EP0116188B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0732Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode

Definitions

  • the invention relates to a method for producing an electrode for a high-pressure gas discharge lamp, in which a thickening made of a high-melting metal, which optionally contains emitter material, is attached to a carrier made of a high-melting metal.
  • the invention further relates to an electrode for such a lamp.
  • High-pressure gas discharge lamps consist of a gas-filled glass bulb in which two metal pins, the electrode pins, are arranged coaxially.
  • the actual light source is an arc that burns between the ends of the pins, the electrode tips. The electrodes are heated by the arc plasma.
  • Effective radiation cooling of the electrode tip is achieved by enlarging the radiating surface, i.e. by thickening the electrode tip.
  • the volume and thus the heat capacity of the electrode tip is simultaneously increased, as a result of which the temperature of the electrode tip is stabilized over alternating voltage periods.
  • the thickening of the electrode tip enables curved but smooth electrode surfaces to be produced, as a result of which defined conditions can be created for the arc attachment points.
  • the electrodes usually consist of a lead-through pin or a foil / pin combination with a thickening of heavy metal, usually tungsten, adapted to the lamp structure at the tip of the electrode.
  • a method of the type mentioned is known from DE-OS 25 24 768.
  • the thickening there called “electrode head”
  • the thickening is produced by compression molding and sintering tungsten powder, a metal carbide powder and a binder, is attached to a tungsten pencil as a carrier during sintering by shrinking, and after sintering is heated until it melts and at least partially takes the desired shape.
  • the electrode produced in this way has the shape of a lobe, that is to say an elongated object with a thicker end.
  • An electrode with a drop-shaped thickening or with a cap or tip thickening towards the end of the electrode is shown in FIG. 5 of DE-OS 25 24 768.
  • the object of the invention is to mass-produce the electrode structures mentioned, both different material transitions and combinations as well as optimal shapes being achieved.
  • this object is achieved in that the thickening is applied by reactive deposition from the gas phase, that is to say by using a CVD process.
  • the carrier e.g. a metal pin or lead wire, preferably consists of one of the metals niobium, molybdenum or tungsten and the applied thickening, e.g. a cap or crest, preferably made of tungsten.
  • the carrier e.g. a metal pin or lead wire
  • the thickening e.g. a cap or crest
  • a protective layer against corrosion preferably made of tantalum
  • mitter thickening material by simultaneous deposition with an E to dope especially thorium.
  • the thickening on a rotationally symmetrical carrier e.g. attached to a round pin.
  • a flat support e.g. attached to a film.
  • the thickening is preferably applied to one end of the carrier.
  • the CVD process is controlled in such a way that a rotationally symmetrical, e.g. a spherical, hemispherical or teardrop-shaped thickening occurs.
  • a rotationally symmetrical e.g. a spherical, hemispherical or teardrop-shaped thickening occurs.
  • an electrode structure for high-pressure gas discharge lamps is e.g. manufactured in that a cap or dome made of refractory metal that thickens towards the end of the electrode is applied to a fine lead wire by controlled deposition from the gas phase (CVD process).
  • CVD process gas phase
  • the layers produced with such processes have an extraordinarily high adhesion to the base substrate, are highly pure and almost reach the theoretical density of the corresponding elements.
  • CVD - processes starting from a metastable reactive gas mixture of only reacts at the accommodated to a higher temperature surface to be coated substrate so that the desired material is deposited. In the case of well-studied tungsten deposition, this process can be done through the gross reaction to be discribed.
  • the structure and the homogeneity of the deposited layers depend crucially on the parameters pressure, temperature and substrate surface. If a substrate with deep indentations or pores is to be coated uniformly over the entire surface, the pressure and temperature must be chosen so low that there is also a uniform deposition in the pores or bulges.
  • the separation is preferably carried out at the entrance of the pores, but hardly at the bottom of the pores (vd Brekel, Philips Res. R epts. Part I, 32 (1977) 118-133, Part II, 32 (1977) 134-146).
  • the coating can be controlled by the choice of pressure and temperature so that preferably the pen tips are coated.
  • a further advantage that / contributes at the required layer thicknesses of 50 to 500 to the morphology of the electrode pins, that a preferred deposition occurs at the edges and tips of the front pin end.
  • the method according to the invention allows the simultaneous production of large quantities of identical electrodes in a relatively simple manner (pin matrices with 50.50 pins can even be coated with little effort in the laboratory). Furthermore, different materials can be deposited in succession or simultaneously in the same apparatus (emitter materials, protective layers).
  • the method is particularly suitable for the production of electrodes for miniaturized lamps, because relatively small pins can be provided with layer structures of sufficient thickness quickly and precisely. It is a particular advantage of the CVD coating that the pins can be of almost any shape, that is, they do not have to be rotationally symmetrical with respect to their longitudinal axis.
  • lead-through pins of electrodes are coated on the tip in a thermally heated CV D reactor.
  • the thickening is applied by laser-assisted deposition from the gas phase, not only in the case mentioned above, but also in a very particularly preferred embodiment of the method according to the invention.
  • the pen is preferably heated with a powerful laser, in particular a CO 2 laser or an Nd-YAG laser.
  • the electrode tips protrude from a holder into a gas mixture which contains the components to be deposited in the form of a compound (for example W in the compound WF 6 ).
  • the electrode tip and the gas directly surrounding it are then heated by focusing a laser beam on the tip.
  • a preferred coating of the front tip is achieved without further measures because of the temperature drop occurring from the tip to the base in the holder.
  • This process variant is characterized in that both a high yield and a high separation speed are achieved.
  • a carrier wire which is passed through a reactor is heated at discrete locations along its longitudinal axis by lateral laser radiation.
  • lateral laser radiation By focusing the laser radiation on the wire surface, only partial lengths of the wire are coated.
  • a uniform coating on the circumference is achieved either by rotating the wire or by laser irradiation from several directions. With the help of this coating method, thickening is applied to an endless wire at pre-selected intervals. The actual electrodes are then obtained by cutting them into corresponding sections.
  • the electrodes for gas discharge lamps manufactured using the CVD process have the following advantages:
  • the lamp electrodes have the structure outlined in FIG. 1. Because of the high temperatures, the thickening or electrode tip 1 usually consists of tungsten with or without doping which promotes electron emission. The thickening is attached to an electrode pin 2, which then merges into the lead-through part 3. 3 can be a pen, a foil, or a combination of both. While the pin 2 is usually made of tungsten or the like Metals exists, the material of the lead-through part must be selected so that a gas-tight lead-through through the glass bulb 4 is possible.
  • FIG. 2 shows an example of an electrode structure with a rotationally symmetrical thickening or electrode tip 1 in section.
  • Fig. 3 the coating process is shown schematically.
  • Pins 2 made of heavy metal with diameters d from 0.05 to 1 mm are spaced a from 0.5 to 10 mm in the matrix-shaped holes 5 from 0.2 to 1.5 mm in diameter of a temperature-resistant substrate holder 6.
  • This holder 6 is heated together with the pins in a (not shown) CVD reactor isothermally to temperatures between 600 ° C and 1100 ° C.
  • the direction indicated by an arrow gaseous starting materials such.
  • WF 6 and H 2 are fed into the reactor at flow rates between 10 and 200 sccm and 30 and 2000 sccm, where sccm means cubic centimeters per minute under normal conditions.
  • the pump output is regulated so that gas pressures of 1 to 50 mbar are established.
  • FIG. 4 schematically shows a device for a laser-assisted electrode coating.
  • a arranged in a reactor 7 pin 2 with a diameter of 0.05 to 1 mm protrudes 1 to 5 mm from a holder 6 and is flowed from the side with a gas mixture of WF 6 and H 2 , which through a gas inlet 8 in the Reactor is introduced.
  • the heating takes place with a laser beam 10 focused by a concave mirror 9, which is coupled into the reactor space through a window 11 that is transparent to the laser beam.
  • Another type of focusing can of course also be used.
  • the laser power is regulated so that the part of the radiation absorbed in the pen heats it up to temperatures between 600 and 1500 ° C.
  • the pen temperature is measured pyrometrically through additional windows (not shown).
  • FIG. 5 shows a further exemplary embodiment for the laser-heated electrode coating.
  • several electrode pins 2 are arranged in a holder 6 similar to a revolver drum.
  • the holder can be rotated so that the electrodes are successively rotated and coated in the laser beam 10.
  • Holders 6 with attached pins 2 are brought one after the other to the reactor 7 and flanged with springs 12 in a vacuum-tight manner. After the pen has been coated, the holder is lifted off and the finished electrode is removed. Then the next holder can be flanged.
  • long cooling times do not have to be observed before opening the reactor, because the electrode cools down very quickly after the laser has been switched off due to the small heat capacity.
  • FIG. 7 An exemplary embodiment for the lateral laser irradiation is shown in FIG. 7.
  • a support wire 13 is passed through gas-tight D urch Equipmentshülsen 14 gradually drawn into a reactor 7 and is heated therein by a focused laser beam 10 through a window 11 from the side.
  • a subzone of the Wire After completion of this partial coating, the wire is transported in the direction indicated by an arrow by the desired electrode pin length and the next thickening 15 is applied.
  • the carrier wire provided with thickenings is led out of the reactor, for example, via a lock (not shown). A quasi-continuous electrode production is thus possible.
  • the electrode pins are obtained from the carrier wire 13 by separating the wire on one side of each thickening 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)
  • Discharge Lamp (AREA)
EP83201857A 1983-01-08 1983-12-29 Procédé pour la fabrication d'une electrode pour lampe à décharge dans un gaz sous pression élévée Expired EP0116188B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833300449 DE3300449A1 (de) 1983-01-08 1983-01-08 Verfahren zur herstellung einer elektrode fuer eine hochdruckgasentladungslampe
DE3300449 1983-01-08

Publications (2)

Publication Number Publication Date
EP0116188A1 true EP0116188A1 (fr) 1984-08-22
EP0116188B1 EP0116188B1 (fr) 1988-03-09

Family

ID=6187897

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83201857A Expired EP0116188B1 (fr) 1983-01-08 1983-12-29 Procédé pour la fabrication d'une electrode pour lampe à décharge dans un gaz sous pression élévée

Country Status (4)

Country Link
US (1) US4525379A (fr)
EP (1) EP0116188B1 (fr)
JP (1) JPS59134547A (fr)
DE (2) DE3300449A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2212819A (en) * 1987-11-30 1989-08-02 Gen Electric Laser chemical vapor deposition
RU2467429C1 (ru) * 2011-04-12 2012-11-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Импульсная ускорительная трубка

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818562A (en) * 1987-03-04 1989-04-04 Westinghouse Electric Corp. Casting shapes
JPH01145335U (fr) * 1988-09-14 1989-10-05
JP2683292B2 (ja) * 1990-06-15 1997-11-26 株式会社小糸製作所 放電灯用電極及び電極の加工方法
JP2003051282A (ja) * 2001-08-06 2003-02-21 Nec Lighting Ltd 高圧放電ランプとその製造方法
DE102005013760A1 (de) * 2005-03-22 2006-09-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Verfahren zur Herstellung einer Elektrode und Entladungslampe mit einer derartigen Elektrode
JP5632924B2 (ja) * 2009-11-03 2014-11-26 ザ セクレタリー,デパートメント オブ アトミック エナジー,ガヴァメント,オブ インディア レーザ溶接によって結合されたニオブ部品を備えるニオブベース超伝導無線周波(scrf)キャビティおよびその製造方法並びに製造装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US575002A (en) * 1897-01-12 Illuminant for incandescent lamps
DE2355531A1 (de) * 1972-11-07 1974-05-09 Commissariat Energie Atomique Verfahren zur herstellung von schichten reiner metalle, metalloide oder legierungen aus einem dampffoermigen fluorid derselben
DE2524768A1 (de) * 1974-06-12 1976-01-02 Philips Nv Elektrode fuer eine entladungslampe
DE2835904A1 (de) * 1977-08-15 1979-02-22 Gen Electric Baueinheit aus elektrode und zuleitung fuer miniatur-entladungslampen
GB2030180A (en) * 1978-01-26 1980-04-02 Secr Defence Vapour deposition of metal in plasma discharge
EP0038212A1 (fr) * 1980-04-14 1981-10-21 Exxon Research And Engineering Company Inhibition de l'accumulation de carbone sur surfaces métalliques
EP0040092A1 (fr) * 1980-05-14 1981-11-18 Permelec Electrode Ltd Procédé de dépôt d'un revêtement anticorrosif sur un substrat métallique
EP0081270B1 (fr) * 1981-12-08 1986-12-03 Philips Patentverwaltung GmbH Procédé de fabrication d'une cathode thermoionique et cathode thermoionique fabriqué selon ce procédé

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3132279A (en) * 1961-08-11 1964-05-05 Engelhard Hanovia Inc Electrical discharge device
DE1182743B (de) * 1961-11-10 1964-12-03 Patra Patent Treuhand Anode fuer eine Hochdruckentladungslampe, insbesondere fuer eine Edelgas-Hochdruckentladungslampe
JPS4910573A (fr) * 1972-05-29 1974-01-30
NL165134B (nl) * 1974-04-24 1980-10-15 Nippon Telegraph & Telephone Werkwijze voor de vervaardiging van een staaf als tussenprodukt voor de vervaardiging van een optische vezel en werkwijze voor de vervaardiging van een optische vezel uit zulk een tussenprodukt.
JPS50143371A (fr) * 1974-05-08 1975-11-18
JPS5221229A (en) * 1975-08-13 1977-02-17 Kogyo Gijutsuin Partial plating method by gaseous phase plating method
JPS5241253U (fr) * 1975-09-18 1977-03-24
DD135013A1 (de) * 1978-03-09 1979-04-04 Hasso Meinert Verfahren zur herstellung von wolframdraehten fuer gluehlampen
BR7806939A (pt) * 1978-10-20 1980-04-22 Gordon Roy Gerald Processo para a deposicao de filmes transparentes de oxido estanico sobre um substrato aquecido,artigo e aparelho para deposicao de vapor quimico
JPS55155457A (en) * 1979-05-24 1980-12-03 Mitsubishi Electric Corp Discharge lamp
US4340617A (en) * 1980-05-19 1982-07-20 Massachusetts Institute Of Technology Method and apparatus for depositing a material on a surface
US4451503A (en) * 1982-06-30 1984-05-29 International Business Machines Corporation Photo deposition of metals with far UV radiation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US575002A (en) * 1897-01-12 Illuminant for incandescent lamps
DE2355531A1 (de) * 1972-11-07 1974-05-09 Commissariat Energie Atomique Verfahren zur herstellung von schichten reiner metalle, metalloide oder legierungen aus einem dampffoermigen fluorid derselben
DE2524768A1 (de) * 1974-06-12 1976-01-02 Philips Nv Elektrode fuer eine entladungslampe
DE2835904A1 (de) * 1977-08-15 1979-02-22 Gen Electric Baueinheit aus elektrode und zuleitung fuer miniatur-entladungslampen
GB2030180A (en) * 1978-01-26 1980-04-02 Secr Defence Vapour deposition of metal in plasma discharge
EP0038212A1 (fr) * 1980-04-14 1981-10-21 Exxon Research And Engineering Company Inhibition de l'accumulation de carbone sur surfaces métalliques
EP0040092A1 (fr) * 1980-05-14 1981-11-18 Permelec Electrode Ltd Procédé de dépôt d'un revêtement anticorrosif sur un substrat métallique
EP0081270B1 (fr) * 1981-12-08 1986-12-03 Philips Patentverwaltung GmbH Procédé de fabrication d'une cathode thermoionique et cathode thermoionique fabriqué selon ce procédé

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS LETTERS, Vol. 38, No. 7, 1. April 1981, American Institute of Physics, Knoxvilles, Tenn. R. SOLANKI "Laser photodeposition of refractory metals" Seiten 572-574 *
PATENT ABSTRACTOS OF JAPAN, unexamined applications, Sektion M, Vol. 1, No. 51, 18. Mai 1977 THE PATENT OFFICE JAPANESE GOVERNMENT Seite 332 M 77 * JP - A - 52-4 994 (SHINKU) * *
PATENT ABSTRACTS OF JAPAN, unexamined applications, Sektion E, Vol. 5, No. 94, 19. Juni 1981 THE PATENT OFFICE JAPANESE GOVERNMENT Seite 153 C 59 * JP - A - 56-38 469 (NIPPON) * *
SOVIET INVENTIONS ILLUSTRATED, Sektion CH. Woche 80/01, 13. Februar 1980 DERWENT PUBLICATIONS LTD., LONDON, L 03 * SU-657 085 (BABAD) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2212819A (en) * 1987-11-30 1989-08-02 Gen Electric Laser chemical vapor deposition
RU2467429C1 (ru) * 2011-04-12 2012-11-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Импульсная ускорительная трубка

Also Published As

Publication number Publication date
DE3300449A1 (de) 1984-07-12
JPS59134547A (ja) 1984-08-02
DE3375958D1 (en) 1988-04-14
US4525379A (en) 1985-06-25
EP0116188B1 (fr) 1988-03-09

Similar Documents

Publication Publication Date Title
DE10291427B4 (de) Halogen-Metalldampflampe für einen Kraftfahrzeugscheinwerfer
DE2340859A1 (de) Verfahren zur herstellung elektrischer vorrichtungen mit abgeschmolzenen kolben
DE2835904C2 (de) Verwendung einer Baueinheit aus Elektrode und Zuleitung
DE10209426A1 (de) Kurzbogen-Hochdruckentladungslampe
EP0116188B1 (fr) Procédé pour la fabrication d'une electrode pour lampe à décharge dans un gaz sous pression élévée
DE19961551A1 (de) Einschmelzfolie und zugehörige Lampe mit dieser Folie
DE69920373T2 (de) Stromzuführungskörper für birne und verfahren zu seiner herstellung
DD245081A5 (de) Kompakte quecksilber-niederdruckdampfentladungslampe und ein verfahren zu ihrer herstellung
EP0907960B1 (fr) Electrode froide pour decharges gazeuses
EP1481417A1 (fr) Lampe au mercure a arc court dotee d'une cathode contenant de l'oxyde de lanthane
DE2721198C3 (de) Verfahren und Vorrichtung zum Herstellen eines Vorformlings für das Ziehen von Lichtleitfasern
DE2362870C3 (de) Zirkoniumhältige Lötverbindung, Verfahren zu ihrer Herstellung und Verwendung derselben
DE2253915C2 (de) Verfahren zur Herstellung vakuumdichter Verbindungen zwischen einem Keramikteil und einem Aluminiumteil und nach diesem Verfahren erhaltene Vakuumkolben
EP1776713A2 (fr) Source de lumiere et procede de stabilisation mecanique du filament ou de l'electrode d'une source de lumiere
DE2529004C2 (de) Verfahren und Vorrichtung zur Herstellung einer Glasdurchführung mit einem Glasteil, in den ein Metallteil eingeschmolzen ist
CH621889A5 (fr)
EP0591777A2 (fr) Méthode de fabrication d'une lampe à décharge à haute pression de faible puissance à pincement unique et lampes à décharge à haute pression
DE3713259A1 (de) Einkristall mit widerstandsheizung
DE10392422T5 (de) Kurzbogenlampe mit zweifachen konkaven Reflektoren und einer durchsichtigen Bogenkammer
DE1696622B2 (de) Verfahren zur herstellung von fiberverstaerkten gegenstaenden und vorrichtung zum aufbringen eines siliciumkarbidueberzuges auf bordraht
DE102005030112A1 (de) Lötzusatzwerkstoff
DE2513332A1 (de) Leuchtstoffroehre mit amalgam bildendem material
EP0592915A1 (fr) Lampe à décharge à basse pression et procédé de production d'un lampe à décharge à basse pression
DE604107C (de) Luftdichte Einquetschung der Stromeinfuehrung fuer elektrische Gluehlampen und andere Gefaesse aus Quarzglas
DE1558202A1 (de) Verfahren und Vorrichtung zur Formgebung reaktionsfaehigem Materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB NL

17P Request for examination filed

Effective date: 19841012

17Q First examination report despatched

Effective date: 19860805

17Q First examination report despatched

Effective date: 19861021

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS PATENTVERWALTUNG GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

REF Corresponds to:

Ref document number: 3375958

Country of ref document: DE

Date of ref document: 19880414

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19891231

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911202

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911209

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911218

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920427

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19921231

BERE Be: lapsed

Owner name: PHILIPS' GLOEILAMPENFABRIEKEN N.V.

Effective date: 19921231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST