EP0089414B1 - Joint rotatif pour guide d'ondes - Google Patents

Joint rotatif pour guide d'ondes Download PDF

Info

Publication number
EP0089414B1
EP0089414B1 EP82111644A EP82111644A EP0089414B1 EP 0089414 B1 EP0089414 B1 EP 0089414B1 EP 82111644 A EP82111644 A EP 82111644A EP 82111644 A EP82111644 A EP 82111644A EP 0089414 B1 EP0089414 B1 EP 0089414B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
partial
waveguides
rotary
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82111644A
Other languages
German (de)
English (en)
Other versions
EP0089414A1 (fr
Inventor
Günter Dr. Mörz
Werner Speldrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Telecom GmbH
Original Assignee
ANT Nachrichtentechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANT Nachrichtentechnik GmbH filed Critical ANT Nachrichtentechnik GmbH
Priority to AT82111644T priority Critical patent/ATE29342T1/de
Publication of EP0089414A1 publication Critical patent/EP0089414A1/fr
Application granted granted Critical
Publication of EP0089414B1 publication Critical patent/EP0089414B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/06Movable joints, e.g. rotating joints
    • H01P1/062Movable joints, e.g. rotating joints the relative movement being a rotation
    • H01P1/066Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation
    • H01P1/068Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation the energy being transmitted in at least one ring-shaped transmission line located around the axis of rotation, e.g. "around the mast" rotary joint

Definitions

  • the present invention relates to a waveguide rotary coupling, the coupling members of which are rotatably connected to one another and consist of partial waveguides which have been created by dividing an annular waveguide in a longitudinal sectional plane, each partial waveguide having at least one waveguide input or output and in; the partial waveguides at the waveguide inputs or outputs are arranged deflection elements which give the waves fed in a certain direction of rotation in the annular waveguide or waves one; lead out of this particular direction of rotation, the deflecting elements being hook-shaped parts which are provided with a shaft locking structure.
  • a rotationally symmetrical field is generated in J of the rotary plane because its propagation properties are not influenced by the rotation.
  • either coaxial conductors or J round hollow conductors are used as coupling members that can be rotated relative to one another.
  • Such rotary couplings go z. B. from DE-PS 26 24 428 and DE-PS 21 34 077. Especially with rectangular waveguides as input or output waveguides of the rotary coupling. quite complicated transitions to the rotationally symmetrical coupling links required. This applies, as DE-PS 21 34 077 shows, especially when the rotary coupling is multi-channel.
  • a waveguide rotary coupling according to the introductory remarks is known from US-A-3 604 009.
  • the hook-shaped curved deflection elements used here in the partial waveguides all end in the parting plane between the two partial waveguides.
  • a waveguide section operated shortly below its cutoff frequency (cutoff) which represents a high volume resistance for the waves propagating in the waveguide i within a certain frequency band.
  • the top of the deflection elements is provided with a groove running transversely to the direction of wave propagation, a one-dimensional wave barrier structure.
  • FR-A-1 407 755 and US-A-3 852 762 also show waveguide rotary couplings which consist of two partial waveguides which can be rotated relative to one another.
  • Deflection elements are arranged in the partial waveguides of the rotary coupling according to US-A-3 852 762, which are provided with an input and a plurality of outputs, and have cut-off properties just as in the case of the aforementioned US-A-3 604 009.
  • waveguide arms are coupled via coupling openings in the side walls of the partial waveguide, which feed the waves into or out of the partial waveguide.
  • This type of shaft coupling or coupling leads to a very large-scale design of the waveguide rotary coupling, especially if it is to be designed with multiple channels.
  • the invention is based on the object of specifying a waveguide, rotary coupling of the type mentioned at the outset, which can be operated without interference in a wider frequency band compared to the prior art.
  • each shaped part arranged in a partial waveguide protrudes into the other partial waveguide without contact, and in that the surfaces not contacted with the waveguide walls, apart from the curved surface of the shaped parts deflecting the waveguide shaft, have two-dimensional wave blocking structures in the form of vertically and horizontally extending, in the surfaces are cut grooves.
  • the coupling members which can be rotated relative to one another consist of an annular waveguide which is separated in a longitudinal section plane.
  • Fig. 1 shows a section of a rectangular waveguide in the H plane is bent in a ring and its section is also in the H-plane.
  • the partial waveguides 1 and 2 created by the separation of the waveguide are arranged coaxially rotatable relative to one another.
  • the waveguide inputs or outputs 3, 4 are located in the side walls of the partial waveguide.
  • a rectangular waveguide bent in a ring shape in the E plane, which is divided into two partial waveguides 5 and 6 by a cut in the E plane, can be seen from FIG. 2.
  • the waveguide entrance 7 is visible in the side wall of the partial waveguide 5.
  • the longitudinal plane (E, H plane), in which the cross currents are minimal, is expediently chosen as the parting plane of the annular waveguide. Because cross currents occurring in the parting plane would excite interference waves in the gap between the partial waveguides, especially if both are not electrically contacted.
  • the contact-free coupling the so-called choke coupling, is of particular importance because it eliminates the need for fault-prone loop contacts. In the following description, therefore, the contact-free rotary coupling is used exclusively.
  • the following exemplary embodiments are based on the coupling principle shown in FIG. 2, in which the partial waveguides are bent in a ring shape in the E plane and are arranged axially one behind the other. These statements can be transferred in an equivalent manner to the principle shown in FIG. 1, in which partial waveguides bent in the E plane are arranged coaxially one above the other.
  • FIG. 3a shows a cross section through a two-part rotary coupling.
  • a top view of the inside of the two partial waveguides 5 and 6 can be seen in FIGS. 3b and 3c.
  • 7 and 8 denote the inlets and outlets embedded in the side walls of the partial waveguide.
  • a z. B. through the input 7 shaft is guided by a deflection element 9, which is fixedly arranged in front of the input 7 in the partial waveguide 5, in a very specific direction of rotation of the waveguide.
  • a deflection element 10, which is arranged in front of the outlet 8 in the partial waveguide 6, guides the shaft out of the waveguide again.
  • each deflecting element 9 and 10 While each deflecting element 9 and 10, as already mentioned, has its lower regions firmly contacted with a partial waveguide, its upper region projects into the respective opposite partial waveguide without contact (cf. FIG. 3a).
  • the contact-free guidance entails, interference waves are forcibly excited.
  • the interference waves generated during the deflection propagate in the separating gap 11, which is present because of the contact-free guidance, between the two partial waveguides, both in the tangential and in the radial direction.
  • only the parting plane of the partial waveguide 5 has a barrier structure.
  • 3b shows a plan view of the parting plane of the partial waveguide 5.
  • barrier structure that is derived from the well-known waffle iron filter (see Microwave Filters, Impecance-Matching Networks, and Coupling Structures, McGraw-Hill, 1964).
  • This special two-dimensional barrier structure arises from the fact that grooves 12 and 13 which run circularly and parallel to the waveguide axis are milled into the parting plane.
  • the grooves and the remaining webs 14 are dimensioned such that the cut-off frequency of the blocking structure is far below the lowest frequency of the transmission frequency band.
  • the non-contacted upper area of the deflection elements which in the exemplary embodiment shown in FIGS. 3a to 3e consist of massive molded parts bent in a hook shape, is provided with a blocking structure designed on the model of the waffle iron filter.
  • a blocking structure designed on the model of the waffle iron filter.
  • the entire surface of the deflecting elements is provided with vertical and horizontal grooves 15, 16 and webs 17.
  • FIG. 4a shows such a waveguide piece 18 from the underside, where the entrance 19 can be seen, which is set in the partial waveguide 5 or 6 via the entrance 7 or exit 8.
  • the curvature of the waveguide piece 18 can be seen in the E plane.
  • the curvature in the H plane illustrates the side view (see FIG. 4b). This view shows the exit 20 of the waveguide piece, which points in one of the two directions of rotation of the annular, divided waveguide.
  • This deflection element is also fastened together with its lower area in a partial waveguide and slides with its upper area without contact through the other partial waveguide.
  • FIG. 5 is a schematic of a two-channel rotary coupling shown.
  • the signal fed into the input 21 of the upper partial waveguide is fed into the ring-shaped waveguide in the direction of the arrow and is brought out again in the partial waveguide underneath by the output 21 ′ shown in broken lines.
  • the output 22 ' is assigned to the input 22.
  • the deflection elements arranged at the inputs and outputs determine the assignment between the inputs and outputs through their orientation and ensure that there is no superimposition of the signal channels in the annular waveguide.
  • a practical version of the rotary coupling described above with an average ring diameter of 110 mm and connecting waveguides with a rectangular cross section of 9.53 x 19.05 has a very low reflection factor of ⁇ 03 and a large bandwidth of 32%. The bandwidth can be increased even further by using an annular ridge waveguide.
  • the range of rotation angle depends on the dimensioning of the deflection elements. So z. B. a single-channel version has a maximum angle of rotation of 270 ° and a two-channel still a maximum angle of rotation of 110 °.
  • the electrically effective path length inside the rotary coupling also changes with the angle of rotation.
  • 6 now shows a cross section through an extended rotary coupling in which the electrical path length is kept constant. It consists of a first partial waveguide 24, a second partial waveguide 25 rotatably connected thereto, a third partial waveguide 26 which is fastened to the second back and a fourth partial waveguide 27 which in turn is rotatably connected to the third.
  • the first partial waveguide 24 is provided with a waveguide input 23 and the fourth partial waveguide 27 with a waveguide output 28.
  • the partition between the second and third partial waveguides has a through opening 29.
  • the dash-dotted line 30 in FIG. 6 indicates the wave guidance.
  • the electrical path length in the rotary coupling remains constant as a result of a specific relative movement of the two middle partial waveguides 25 and 26, which are firmly connected to one another, with respect to the outer partial waveguides 24 and 27 which are rotating relative to one another. Because a path extension, caused by a rotation z. B. the first partial waveguide 24 compared to the second partial waveguide 25, is compensated for by a shortening due to a rotation of the fourth partial waveguide 27 compared to the third partial waveguide 26.
  • a slight change to the rotary coupling just described can also be used to implement a waveguide with a variable length, as is often required for measuring purposes, or a phase shifter.
  • the deflection elements on the through opening 29 are oriented such that the wave guided from the partial waveguide 25 through the opening 29 into the partial waveguide 26 undergoes a reversal of the direction of rotation (see dashed line 31).
  • a desired electrical path length or phase can only be set by rotating the two middle partial waveguides 25 and 26 relative to the two outer fixed partial waveguides 24 and 27.
  • the single-channel rotary coupling shown in FIG. 6 can also be expanded into a multi-channel without great effort.
  • FIG. 7 shows such an endless rotary coupling. It consists of a first partial waveguide 32, a second partial waveguide 33 rotatably connected thereto, to the rear wall of which an undivided, also annularly curved waveguide 34 is connected, and a third partial waveguide 35 arranged on the rear side thereof, which in turn is rotatably connected to a fourth partial waveguide 36.
  • the last two partial waveguides 35 and 36 can also be replaced by an undivided waveguide, since a plane of rotation which is already present between the partial waveguides 32 and 33 is generally sufficient.
  • the waveguide input 37 or output 38 is located in the first 32 or in the last partial waveguide 36.
  • the walls between the undivided waveguide 34 and the adjacent partial waveguides 33 and 35 each have a 0 dB coupling structure, which is shown in FIG Form of breakthroughs 39.40 is indicated. It is also possible to move the rotary plane of this endless rotary coupling into the undivided waveguide 34.

Landscapes

  • Waveguide Connection Structure (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Threshing Machine Elements (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Cable Accessories (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Claims (7)

1. Joint rotatif pour guide d'ondes dont les élements de joint, reliés l'un à l'autre avec possibilité de rotation, sont constitués de guides d'ondes partiels qui sont obtenus par division d'un guide d'ondes de forme annulaire selon un plan de coupe longitudinal, étant précisé que chaque guide d'ondes partiel possède au moins une entrée de guide d'ondes ou une sortie de guide d'ondes et etant précisé que dans les guides d'ondes partiels, aux entrées de guide d'ondes ou aux sorties de guide d'ondes sont disposés les éléments de changement de direction qui donnent aux ondes que l'on fait entrer une direction périphérique déterminée dans le guide d'ondes annulaire ou bien font sortir de ce guide d'ondes des ondes d'une direction périphérique déterminée, étant précisé que les éments de changement de direction sont des pièces de forme cintrées en forme de crochet et munies d'une structure d'arrêt des ondes, caractérisé en ce que chaque pièce de forme (9, 10) disposée dans un guide d'ondes partiel (1, 2, 3, 4, 5, 6) pénètre sans contact dans l'autre guide d'ondes partiel, et en ce que les surfaces des pièces de forme (9, 10) qui ne sont pas en contact avec les parois des guides d'ondes, à l'exception de la surface courbe qui assure le changement de direction de l'onde dans le guide d'ondes, sont munies de structures bidimensionnelles (15, 16, 17) d'arrêt des ondes, sous forme de rainures (15,16) courant verticalement et horizontalement, fraisées dans les surfaces.
2. Joint rotatif pour guide d'ondes selon la revendication 1, caractérisé en ce que dans la fente de division des deux guides d'ondes partiels (1, 2, 3, 4, 5, 6) existe une structure bidimensionnelle orientée d'arrêt des ondes, sous forme de rainures (12, 13) courant perpendiculairement et parallèlement à l'axe longitudinal du guide d'ondes de forme circulaire, fraisées dans la surface de division d'un guide d'ondes partiel.
3. Joint rotatif pour guide d'ondes selon la revendication 1, caractérisé en ce que, dans le cas des guides d'ondes partiels comportant deux entrées de guide d'ondes (21, 22) ou deux sorties de guide d'ondes (21', 22'), l'élément de changement de direction disposé à une entrée de guide d'ondes et l'élêment de changement de direction disposé à la sortie correspondante de guide d'ondes sont respectivement orientés dans des directions opposées l'une à l'autre.
4. Joint rotatif pour guide d'ondes selon la revendication 1, caractérisé en ce que quatre guides d'ondes partiels (24, 25, 26, 27) sont couplés l'un avec l'autre de façon telle qu'un premier guide d'ondes partiel (24), comportant au moins une entrée (23) de guide d'ondes est relié, avec possibilité de rotation, à un second guide d'ondes partiels (25), de façon telle qu'un troisième guide d'ondes partiel (26) vient également, par sa paroi extérieure, contre la paroi extérieure du second guide d'ondes partiel, ces deux guides d'ondes partiels étant fermement réunis l'un à l'autre et au moins une ouverture de couplage (29) existant entre eux, et de façon telle que le troisième guide d'ondes partiel (26) est relié, avec possibilité de rotation, à un quatrième guide d'ondes partiel (27) qui présente au moins une sortie de guide d'ondes (28).
5. Joint rotatif pour guide d'ondes selon la revendication 4, caractérisé en ce que, en laissant fixes les guides d'ondes partiels extérieurs (24, 27) et en faisant tourner les deux guides d'ondes partiels médians (25, 26), les ondes qui sont entrées dans le troisième guide d'ondes partiel (16) subissant un changement de direction périphérique en sens opposé à la direction périphérique existant dans le second guide d'ondes partiel (26), on peut réaliser un guide d'ondes de longueur électrique variable ou un dispositif de décalage de phase.
6. Joint rotatif pour guide d'ondes selon la revendication 4, caractérisé en ce que, par un mouvement relatif des guides d'ondes partiels médians (25, 26) par rapport aux deux guides d'ondes partiels extérieurs (24, 27), si la direction périphérique des ondes dans le second guide d'ondes partiel (25) est conservé par le troisième guide d'ondes partiel (26), on peut réaliser un joint rotatif de longueur électrique constant.
7. Joint rotatif pour guide d'ondes selon la revendication 1, caractérisé en ce qu'un guide d'ondes partiel (32) comportant une entrée (37) de guide d'ondes est relié, avec possibilité de rotation, à un second guide d'ondes partiel (33); en ce qu'un guide d'ondes de forme annulaire non divisé (24) s'y raccorde, ainsi qu'ensuite un troisième guide d'ondes partiel (35), les transitions entre le guide d'ondes non divisé et les guides d'ondes partiels voisins étant réalisées au moyens de structures de couplage à 0 dB (39, 40); et en ce qu'au troisième guide d'ondes partiel (35) est relié, fixe ou avec possibilité de rotation, un quatrième guide d'ondes partiel (36) qui presente une sortie de guide d'ondes.
EP82111644A 1982-03-18 1982-12-15 Joint rotatif pour guide d'ondes Expired EP0089414B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82111644T ATE29342T1 (de) 1982-03-18 1982-12-15 Hohlleiter-drehkupplung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823209906 DE3209906A1 (de) 1982-03-18 1982-03-18 Hohlleiter-drehkupplung
DE3209906 1982-03-18

Publications (2)

Publication Number Publication Date
EP0089414A1 EP0089414A1 (fr) 1983-09-28
EP0089414B1 true EP0089414B1 (fr) 1987-09-02

Family

ID=6158623

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82111644A Expired EP0089414B1 (fr) 1982-03-18 1982-12-15 Joint rotatif pour guide d'ondes

Country Status (6)

Country Link
US (1) US4533887A (fr)
EP (1) EP0089414B1 (fr)
AT (1) ATE29342T1 (fr)
BR (1) BR8301338A (fr)
CA (1) CA1194947A (fr)
DE (2) DE3209906A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021124509A1 (de) 2021-09-22 2023-03-23 Spinner Gmbh Koaxialleiterstruktur sowie deren Verwendung als breitbandiger Modenreflektor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3538035A1 (de) * 1985-10-25 1987-04-30 Siemens Ag Rotierende datenuebertragungsvorrichtung
US5242701A (en) * 1988-10-24 1993-09-07 Fbi Brands Ltd. Method for shelf stable packaging of liquid food in hermetically sealed easy-to-open gable top cartons
US5208569A (en) * 1992-06-03 1993-05-04 The United States Of America As Represented By The United States Department Of Energy Simplified flangeless unisex waveguide coupler assembly
DE102005021353A1 (de) * 2005-05-04 2006-11-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Drehkupplung zur berührungslosen Übertragung von elektrischen Signalen
US20110043423A1 (en) * 2008-06-16 2011-02-24 Hideki Kirino High frequency waveguide, antenna device, and electronic apparatus with antenna device
JP5514731B2 (ja) * 2008-10-29 2014-06-04 パナソニック株式会社 高周波導波路およびそれを用いた移相器、放射器、この移相器および放射器を用いた電子機器、アンテナ装置およびこれを備えた電子機器
GB0821257D0 (en) 2008-11-21 2008-12-31 Rolls Royce Plc A rotary machine such as a gas turbine engine
FR2984612B1 (fr) * 2011-12-20 2014-08-22 Thales Sa Joint tournant hyperfrequence
GB201317637D0 (en) 2013-10-04 2013-11-20 Johnson Matthey Plc Data Transfer Apparatus
US9413049B2 (en) * 2014-03-24 2016-08-09 Raytheon Company Rotary joint including first and second annular parts defining annular waveguides configured to rotate about an axis of rotation
FR3071363B1 (fr) * 2017-09-19 2019-09-06 Thales Joint tournant pour une antenne rotative et antenne rotative comportant un tel joint
US10790562B2 (en) * 2019-01-02 2020-09-29 Thinkom Solutions, Inc. Compact concentric split ring waveguide rotary joint

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2736867A (en) * 1945-12-10 1956-02-28 Dorothy D Montgomery Crossed wave guide variable impedance
FR58182E (fr) * 1947-12-31 1953-09-29 Thomson Houston Comp Francaise Guides d'onde étanches
US2595186A (en) * 1950-02-06 1952-04-29 Louis D Breetz Jogged wave guide ring type radio-frequency rotary joint
US2772402A (en) * 1950-11-22 1956-11-27 Sperry Rand Corp Serrated choke system for electromagnetic waveguide
US2737633A (en) * 1951-01-25 1956-03-06 Sperry Rand Corp Wave guide rotary joint system
FR1033991A (fr) * 1951-03-15 1953-07-17 Joint tournant à évidement axial pour radars centimétriques
US2945193A (en) * 1954-02-02 1960-07-12 Texas Instruments Inc Rotary waveguide joint and switching structure
US2850706A (en) * 1955-05-31 1958-09-02 William F Gabriel Machined waveguide pin choke
US2973493A (en) * 1959-11-30 1961-02-28 Jr Frank E Hasseld Waveguide rotary joint
US3189855A (en) * 1962-05-17 1965-06-15 Kane Engineering Lab Waveguide rotary joint utilizing annular resonant waveguide
FR1407755A (fr) * 1964-06-23 1965-08-06 Comp Generale Electricite Joint tournant pour ondes ultra-courtes
US3604009A (en) * 1968-12-09 1971-09-07 Hughes Aircraft Co Millimeter wave-scanning lens antenna
FR2092709B1 (fr) * 1970-06-10 1973-10-19 Comp Generale Electricite
US3633130A (en) * 1970-07-15 1972-01-04 Hughes Aircraft Co Multichannel rotary joint supportive of energy in at least three mutually orthogonal circularly symmetric waveguide modes simultaneously
US3852762A (en) * 1973-11-14 1974-12-03 Singer Co Scanning lens antenna
FR2314597A1 (fr) * 1975-06-10 1977-01-07 Radiall Sa Raccord electrique coaxial tournant
US4233580A (en) * 1976-11-23 1980-11-11 Spinner Gmbh Rotating coupler for transmitting high frequency energy
US4117426A (en) * 1976-12-30 1978-09-26 Hughes Aircraft Company Multiple channel rotary joint
US4255751A (en) * 1979-11-20 1981-03-10 Georgia Tech Research Institute Feed mechanism for a geodesic lens
US4358746A (en) * 1980-12-22 1982-11-09 Westinghouse Electric Corp. Rotary coupling joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021124509A1 (de) 2021-09-22 2023-03-23 Spinner Gmbh Koaxialleiterstruktur sowie deren Verwendung als breitbandiger Modenreflektor

Also Published As

Publication number Publication date
BR8301338A (pt) 1983-11-29
DE3209906A1 (de) 1984-02-02
EP0089414A1 (fr) 1983-09-28
CA1194947A (fr) 1985-10-08
ATE29342T1 (de) 1987-09-15
US4533887A (en) 1985-08-06
DE3277160D1 (en) 1987-10-08

Similar Documents

Publication Publication Date Title
DE2632606C2 (de) Wellentypkoppler
DE2019105C3 (de) Bandpaßfilter für optische Wellen
EP0089414B1 (fr) Joint rotatif pour guide d'ondes
DE2943502A1 (de) Unterstuetzte mikrostreifenleitungsanordnung zur fortpflanzung eines ungeraden wellenmodus
DE2711494C2 (de) Wanderfeldverstärkerröhre
DE2134996B2 (de) Wanderfeldverstaerkerroehre
DE3634772C2 (fr)
DE3620555A1 (de) Wellenleiterfilter zur verwendung in einem mikrowellenofen
DE3824150C2 (fr)
DE19615854C1 (de) Verfahren zur Herstellung einer Kupplung für das Verbinden zweier elektromagnetischer Hohlleiter
DE4034683C2 (fr)
DE2842576C2 (de) Polarisationsweiche
DE19716290A1 (de) Richtkoppler
DE2708271C2 (de) Polarisationsweiche
DE2304131C3 (de) Reflexionsfilter für Mikrowellen
DE2161895B2 (de) Hohlleiterfibergang
DE2616121B2 (de) Wanderfeldröhre
WO2023222592A1 (fr) Dispositif pour combiner ou diviser les micro-ondes
DE1916102C3 (de) Koaxialer Zweiwegeschalter
DE2603348C3 (de) Übergangsleitungsstück und damit aufgebaute Anordnung zur Kopplung zwischen Koaxialleitungen und einer konzentrischen Mehrfachleitung sowie deren Verwendung
DE2225576C3 (de) Richtungsleitung für Mikrowellen
DE3802578A1 (de) Hohlleiter-bandpassfilter
DE2102554B2 (de) Richtungskoppler
EP0419892A2 (fr) Filtre de polarisation aux micro-ondes
DE10304524A1 (de) Topologie für Bandpassfilter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANT NACHRICHTENTECHNIK GMBH

17P Request for examination filed

Effective date: 19831025

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 29342

Country of ref document: AT

Date of ref document: 19870915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3277160

Country of ref document: DE

Date of ref document: 19871008

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931206

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19931221

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931228

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931231

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: DL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941215

Ref country code: AT

Effective date: 19941215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941216

EAL Se: european patent in force in sweden

Ref document number: 82111644.9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941215

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

EUG Se: european patent has lapsed

Ref document number: 82111644.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951220

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961231

Ref country code: CH

Effective date: 19961231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971218

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980227

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001