EP0089018B1 - Verfahren zur kontinuierlichen Herstellung von faserverstärkten Bahnen - Google Patents

Verfahren zur kontinuierlichen Herstellung von faserverstärkten Bahnen Download PDF

Info

Publication number
EP0089018B1
EP0089018B1 EP83102367A EP83102367A EP0089018B1 EP 0089018 B1 EP0089018 B1 EP 0089018B1 EP 83102367 A EP83102367 A EP 83102367A EP 83102367 A EP83102367 A EP 83102367A EP 0089018 B1 EP0089018 B1 EP 0089018B1
Authority
EP
European Patent Office
Prior art keywords
process according
needled
web
particles
needling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83102367A
Other languages
English (en)
French (fr)
Other versions
EP0089018A1 (de
Inventor
Günter TESCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TESCH, GUENTER HORST
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT83102367T priority Critical patent/ATE20254T1/de
Publication of EP0089018A1 publication Critical patent/EP0089018A1/de
Application granted granted Critical
Publication of EP0089018B1 publication Critical patent/EP0089018B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/485Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation in combination with weld-bonding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/488Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation in combination with bonding agents
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics

Definitions

  • the invention relates to a method for the continuous production of fiber-reinforced webs according to the preamble of claim 1.
  • Fiber-reinforced webs are made from a wide variety of elastic materials, whereby in addition to the use of raw materials, waste material is increasingly used.
  • DE-B 1 038 266 discloses a process for the production of porous material consisting of textile fibers, in particular textile waste and binders, in which the textile fibers aggregate into small units in the dry state and these fiber bales are circulated in a drum with a liquid, are sprayed into droplet-shaped binder so that it adheres to the surface of the fiber bales in a punctiform manner, whereupon a further hardening of the resulting mass sprays a hardening agent and then the mass is shaped, dried and hardened.
  • FR-A 1 455313 (British Nylon Spinners Ltd.) (cf. AT-A 298392 and US-A 3 506 529) a method is known in which a three-layer web is formed by the fact that a flexible foam layer between two nonwoven fabrics placed and the structure created in this way is needled.
  • a foam layer can e.g. be a polyester-polyurethane foam sheet.
  • Such a layer has its own inner cohesion even before it is inserted between and needling with the two fiber layers.
  • a generic method is known from DE-A 2 855 059. There, a process for the continuous production of fiber-reinforced webs is described, in which a core layer of particles is placed between an underlay layer and a cover layer as outer layers, at least one of the two outer layers consisting of actively needled fibers. These three layers are needled together.
  • Fine-grained or fibrous solid active substance particles are used as the material for the core layer, which may include comminuted leather, peat, tree bark or synthetic foam particles. All of these particles can be easily pierced by the needling needles when needling the three layers, some of these particles break apart when needling, i.e. larger particles are divided into two or more smaller particles. As a result, however, the particle size in the needled core layer cannot be predetermined.
  • the invention has for its object to provide a generic method by which granules of an elastic, non-foamed material, in particular waste material, can be processed to a fiber-reinforced covering material web with its own internal cohesion.
  • needling single fibers or tufts of fibers are pierced from a layer containing fibers on another layer by means of barbed needles, into which the other layer gets stuck when the needles are withdrawn, thereby connecting the layer containing fibers to the other layer.
  • a prerequisite for performing the needling technique is therefore the presence of a layer of "actively needled substances", i.e. a layer that consists of fibrous structures that can be used to carry out the needle process or contains such structures.
  • the other layer, into which the actively needlable fibers are introduced must at least be passively needlable, i.e. it must be able to hold the fibers inserted into it.
  • passively needle-punched layer can itself be actively needle-punchable, but passively needle-punchable layers can also be known to be formed by woven fabrics, knitted fabrics, spunbonds, foils made of plastic or paper or the like.
  • both the top layer and the underlayer can also be constructed in multiple layers.
  • the underlayer can consist of a plastic film and a non-woven fabric, e.g. the film faces the core layer.
  • elastic, non-foamed granulate material e.g. from vulcanized rubber, whether from waste rubber waste or whether it is specially produced for this purpose, synthetically produced, non-foamed elastomers or granules provided with or without binders and obtained from needle felt floor coverings as a core layer between two outer layers can be needled between them.
  • the fiber-reinforced, elastic web formed in this way has its own internal cohesion and can now also be handled without a support and / or support surface - floating.
  • Such a sheet can be used as an elastic floor for sports and playgrounds, this non-set or non-vulcanized sheet being applied to the floor to be covered, which previously was e.g. has been provided with an adhesive layer to give the web adhesion to the surface.
  • This web adhering to the ground is e.g. then with a liquid binder, e.g. impregnated with a two-component adhesive such as polyurethane, whereupon the actual setting takes place when the web is installed.
  • the needling of the three layers means that the particles which are not connected to one another or the mass of the core layer are not only held between the two outer layers, but are also prevented from moving substantially in the plane of the web.
  • the solid particles evenly distributed during the factory production and introduced with a constant layer thickness thus remain in their defined position even without setting or vulcanization. This also applies if openings, such as punched-out areas, slots or the like, are introduced into the non-set or non-vulcanized web transversely to its plane of extent.
  • the grain size of the granulate particles is selected depending on the desired final thickness of the web. According to a preferred embodiment, the grain size is at most 5 mm. However, it is also possible to needle larger granules; then the stitch density, i.e. the number of needle punctures per unit area should be chosen smaller and needling needles of a larger diameter should be used.
  • the granules are made from vulcanized rubber, that is, granulated. It can be processed rubber waste that is obtained from old car tires or the like, for example. On the other hand, a rubber mixture specially produced for the intended use can be vulcanized and granulated. It is possible to add certain desired additives to the masticated rubber mixture. A mixture of waste rubber with properties determined therefrom and separately produced rubber with desired properties can also be used as the core layer. The waste rubber used can also contain reinforcing fibers, such as cord inserts or the like.
  • fillers such as sand particles or the like can also be added to such a core layer, a needled web offering such a mixture a cohesion which, in the case of a known web, is only obtained by solidification, for example by vulcanization.
  • the core layer consists of rubber granulate and / or fillers and foamable elastomers, the foaming of the elastomers also being able to be carried out much later.
  • foamable elastomers can be in granular or spherical form and e.g. rubber or plastic provided with blowing agents.
  • the rubber particles and, if appropriate, the filler particles have been provided with a coating before being introduced between the two outer layers, this coating consisting, according to one embodiment, of a binder which can be activated under heat and / or pressure and which is only after needling the web is activated.
  • this coating consists of one component of a two-component binder, the second component of this binder being introduced into the web in liquid or powder form at the earliest after needling the web, preferably only at the point of use of the web.
  • a web provided with one component of the binder can be rolled out on sports fields, whereupon the second component of the binder is then sprayed or sprinkled on.
  • the coating of the particles consists of a lubricant, so that when the needling needles are inserted, they can slide along the particles more easily and these particles can evade the needles by moving them slightly to the side.
  • this lubricant can evaporate or evaporate, in particular with the addition of heat, but such a lubricant can also cause crosslinking between the individual rubber particles or can slowly penetrate into the granulate without significantly changing its properties.
  • a lubricant can e.g. Being water.
  • the elastic, non-foamed granulate particles can also be coated with a swelling agent, as a result of which the surface of the granulate particles swells more or less deeply.
  • This swelling makes it easier for the needling needles to penetrate the core layer, since the surface of the granulate has not only become softer, but particles that are stuck to the barbs of the needling needles are torn out of the granulate without the latter itself changing its position significantly.
  • This swelling agent is preferably removed again after needling, this e.g. can be carried out under subsequent hot calendering.
  • a granulate that is obtained by granulating needle felt floor coverings can also be regarded as an elastic, non-foamed material that forms the core layer.
  • the so-called edge strips in which there are irregularities due to their edge position, are usually cut off as the last step.
  • areas of the floor covering that fall below a certain quality value of the floor covering and are therefore to be regarded as waste.
  • the elasticity of such a needle felt floor covering which was previously regarded as non-reusable waste, can now be exploited in that these waste strips or surfaces form a granulate with a grain size of e.g.
  • Granulated 2 to 5 mm which is used as a core layer in the inventive method.
  • These granules are preferably in the form of fiber lumps, which are preferably at least partially bonded with a rubber latex binder. If a top layer with coarse, actively needled fibers, e.g. with a fiber titer of 100 dtex, and these coarse fibers with a low basis weight are deposited on the core layer, whereupon these fibers are actively needled, the granules of the core layer between these fibers remain visible. This gives a web which can in turn be used as a carpet, with an optically appealing walking side being obtained, in particular if the granules have different colors.
  • the elastic properties of this sheet essentially correspond to those of the sheets of rubber granules described above.
  • the needled webs containing rubber or carpet granules and optionally fillers can be impregnated or acted upon with a binder, be it at the factory or at the later place of use, this binder being latex, liquid rubber, bitumen, modified polyurethane, a thermoset or even building cement .
  • a binder being latex, liquid rubber, bitumen, modified polyurethane, a thermoset or even building cement .
  • such a web can also be impregnated or acted on with a solvent, with crosslinking being produced between the individual rubber components.
  • the needled web is pressed or calendered, in particular compression-molded or embossed calendered, this being carried out before vulcanizing or at the same time for vulcanizing the web.
  • Vulcanization can be carried out in a known manner, e.g. be carried out under heat and / or pressure.
  • At least the holding fibers connecting the two outer layers are fully integrated into the vulcanizing rubber compound during the vulcanization process.
  • liquid rubber has been applied to a needled web and if this web is vulcanized under pressure, at least the outer layer on the feed side of the liquid rubber is incorporated into the rubber mass, so that this e.g.
  • Fibers or a layer containing tissue is no longer visible on the vulcanized web.
  • the outer layer comprising fibers or e.g. to form the fabric with such a thickness that only these fibers or the fabric are visible there even after the vulcanization process, and the web thus has a textile character.
  • An interesting structure can be achieved if the fiber layer is selected so that after the vulcanization process the fibers remain visible on the outside, the middle layer containing rubber remains recognizable between the fibers.
  • the same also applies to the web into which the textile waste has been incorporated, with an interesting color effect being achieved, in particular, if textile waste of different colors is used and this still shows through after needling.
  • the needled web can also be shaped, in particular wound, after which the web is then vulcanized or set in this form.
  • shrinkable fibers are used as the actively needable fibers under the action of heat and a shrinking process is carried out after the needling of the web, whereby the core layer is further compressed.
  • the webs described above can be used as a carpet. Compared to conventional carpets, mostly from the underlayer with latex or the like. are applied, whereby the fibers are additionally bound for needling, there is now a carpet web in which the additional binding is not applied from the outside, but is introduced as a core layer before the needling.
  • the core layer comprising the elastic material seems more or less through this cover layer.
  • the cover layer can also be made so tight that the core layer containing the elastic material, such as rubber granules or the like, is not visible at all, so that a web according to the invention thus gives the impression of a conventional needle felt floor covering, which, however, can be more elastic than known floor coverings.
  • the e.g. Fibers of the top layer, which is the walking side, lying on the rubber granules represent a sliding surface for the web, which essentially consists of rubber, while the rubber core layer prevents water and dirt particles from penetrating into the web or penetrating the web.
  • a base layer 2 is placed on a conveyor device, here a conveyor belt 1, to which the core layer 4 is applied, metered here by a discharge device 3.
  • a discharge device 3 On this core layer 4 actively needled fibers, here in the form of a fiber fleece 5, are placed, after which this three-layer system is fed to a needle machine 6.
  • Such needle machines 6 are known from textile needle felting technology (see, for example, Krcma, Textile Composites, pages 139 to 141).
  • the system to be needled here the three-layer system
  • the system to be needled is guided over a base plate 7 provided with holes.
  • a needle board 9 carrying the needling needles 8, which continuously moves up and down so far (double arrow 10) that the needle tips 11 in their lowest position have usually completely penetrated the object to be needled while they are in their have no contact with the uppermost position on the object to be needled.
  • the object to be needled in this case the three-layer system, can be shifted clockwise in the feed direction (arrow 12), while it has to stand still during the actual needling.
  • the needling needles 8 have at least one - here two - barbs 13 on their shank, with which they grip individual fibers or tufts of fibers and pull them into the object to be needled, or pull them through it.
  • the needles 8 move back, the entrained fibers loosen or tufts of fibers from the barbs 13 and remain in the passively needled layer, here the base layer 2 and the core layer 4.
  • the needle boards 9 While now in needling in the textile industry, in the production of needle felt carpets, which have a final thickness of e.g. 4-6 mm, the needle boards 9 have a plurality of needles arranged close together and this needle board e.g. can be moved at a speed of 700 strokes per minute, the needling 8 in the needle board now has to be done when needling elastic, non-foamed materials, such as rubber granules, foamable elastomers, masticated rubber skins or carpet granules, to which fillers such as sand particles may have been added 9 enlarged and the number of strokes can be greatly reduced.
  • needling elastic, non-foamed materials such as rubber granules, foamable elastomers, masticated rubber skins or carpet granules, to which fillers such as sand particles may have been added 9 enlarged and the number of strokes can be greatly reduced.
  • a layer containing the aforementioned materials can also be fed to a needle process, the needles sliding along the rubber or filler particles and possibly shifting them slightly sideways. This sliding along and lateral displacement is facilitated if the particles are provided with a coating which facilitates sliding.
  • the needling of the three-layer system reduces the thickness thereof, since on the one hand the layer 5 containing fibers is compressed by the needling, on the other hand this fiber layer 5 and, depending on the design, also the underlay layer 2 in the edge areas of the Core layer due to the elasticity of its material is pulled in or pressed in.
  • the elastic material of the core layer itself is compressed somewhat and remains under a certain tension. Due to the elasticity of these particles, the contact areas between individual particles are enlarged, since the surfaces of the same can yield. Due to this compression, the subsequent vulcanization of the web consisting of individual granules is facilitated even if liquid binders such as latex or liquid rubber are not additionally added.
  • the needled, elastic web is passed between two calender rolls 14 and 15, with which the vulcanization can be carried out, in particular if they are heated.
  • the two calender rolls 14 and 15, pressing the web between them and exerting a pressure of 2-5 bar / cm 2 on them, are pressed towards one another.
  • the elastic web 16 emerging from the calender rolls has a thickness which is not significantly less than the thickness of the web 16 before the calender rolls, since the elastic material expands again after calendering.
  • FIG. 2 now shows a needled web 16 having rubber particles 17 and filler particles 18 in an enlarged and schematic representation, it being evident that the underlayer 2 with the cover layer 5 is needled over the holding fibers 19 which extend through the core layer 4 .
  • an actively needled fiber fleece is used as the underlayer 2 and as the cover layer 5.
  • the web 16 is needled here from both outer sides, which can be seen from the “fiber funnels” 20 that form at the piercing points of the needling needles 8. In these fiber funnels 20, fiber ends and fiber parts of fibers that are not gripped by barbs 13 are also partially drawn.
  • the holding fibers 19 penetrating the web 16 are distributed unevenly over the surface of the web, which is why in practice only very few holding fibers 19 can be seen when cutting through such a web.
  • FIG. 3 now shows a needled, elastic web in which foamable elastomers 21 and filler particles 18 have been needled, whereupon the elastomers have been foamed by activating the blowing agent.
  • the foamed elastomers 21 not only completely fill the spaces between the filler particles 18, but also result in the fibers located in the outer layers 2 and 5 being pressed outwards, which leads to a small surface structure of the web having small curvatures.
  • the foaming process can also be carried out in a double belt press, so that the foaming of the elastomers 21 is opposed by a further, then external resistance.
  • the foamed elastomers 21 are hatched in FIG. 3. Although this looks there, the holding fibers 19 are not passed through the elastomers 21, but they have only been completely enveloped by them during foaming.
  • This molding press e.g. a double belt press, had a flat, closed surface on one press side, as a result of which the lower side of the web in FIG. 4 was given a smooth surface, while the other press side had a flat surface in which a multiplicity of openings were provided at a distance from one another , so that the web was pressed less strongly in the area of these openings than in the adjacent areas.
  • the vulcanized web thereby receives the knobs 22 shown in FIG. 4, which protrude beyond the surface of the web 16. In the area of these knobs 22, the web 16 is somewhat more elastic than in the adjacent areas.
  • such a web 16 has a character that may be textile on both sides. If such a sheet is placed on a particularly smooth and slippery surface, there is a risk that it will slip relative to one. This can now be remedied by cutting off the upper part of a knob 22, as shown in FIG. 4 with the help of the knob on the right, as a result of which the vulcanized rubber layer emerges outwards in this region. If such a web 16 with its cut-off knobs 22 is now placed on a smooth floor in such a way that the protruding knobs come to rest on this floor, i.e. exactly the opposite, as shown in the drawing, the cut-off knobs serve as anti-slip devices.
  • FIG. 5 now shows a needled, elastic web 16 onto which a needle felt web 23 has been needled. Holding fibers 24 removed from the needle felt web 23 were needled into the elastic web 16, as a result of which the two webs are mechanically connected to one another. This needling of the two webs 16 and 23 can be carried out both before vulcanizing the elastic web 16 and after vulcanizing the same.
  • a masticated rubber sheet provided with vulcanizing agents is introduced between the underlay layer and the cover layer, whereupon these three layers are needled together.
  • a path can now be clear, i.e. can be handled without a base or backing layer, without the risk that the rubber skin changes in thickness, tears or tears.
  • the feed then takes place, e.g. in the form of a belt conveyor or from a roll.
  • a further embodiment which can be produced with a plant according to FIG. 1, consists in introducing and needling granules of a grain size of 2-3 mm between the two layers 2 and 5 as the core layer, which is granulated from needle felt floor covering. Such granules are in the form of fiber lumps and some still contain rubber latex.
  • the cover layer 5 is covered by coarse fibers, e.g. Dorix fibers are formed, which are not laid down to cover the core layer.
  • the core layer consisting of needle felt floor covering granules shines through the cover layer.
  • different colored granules e.g. A pattern is obtained from different batches of carpet production.
  • deposits can also be introduced before the Vernadein. It is thus possible not to apply the core layer by means of a discharge device 4, but to provide several of them and to insert cord threads made of synthetic material or also steel threads between these discharge devices of the core layer. These threads can be needled as described above for the fillers.
  • metal platelets can also be introduced as an insert, in which case care must be taken when needling that no needles are pierced in the area of these metal platelets.
  • the threads or the metal plates are previously processed accordingly, so that there is an adhesive effect between the rubber masses and the inserts during vulcanization.
  • Rubber granulate with a grain size of 1 mm and a weight per unit area of 3.7 kg / m 2 was placed on one of the non-woven fabrics as an underlayer, covered with the other non-woven fabric and needled with a stitch density of 24 punctures / cm 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Molding Of Porous Articles (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur kontinuierlichen Herstellung von faserverstärkten Bahnen gemäss Oberbegriff des Anspruches 1.
  • Faserverstärkte Bahnen werden aus den verschiedensten, elastischen Materialien hergestellt, wobei neben der Verwendung von Rohmaterialien verstärkt auch Altmaterial zur Anwendung gelangt.
  • Aus der DE-A 2 162 233 ist es bekannt, granulierte, irreversibel vernetzte Elastomere mit einem thermoplastischen Bindemittel zu vermischen, auf eine Temperatur oberhalb des Schmelzpunktes des Bindemittels, aber unterhalb der Zersetzungstemperatur des Elastomeren zu erhitzen, als Film aus einer Breitschlitzdüse zu extrudieren und zwischen gekühlten Bändern einer Doppelbandpresse auf eine unterhalb des Schmelzpunktes des Bindemittels liegende Temperatur abzukühlen.
  • Aus der DE-B 1 089 954 ist ein Verfahren zur Erzeugung von Platten und anderen geformten Erzeugnissen bekannt, die aus Gummiabfall und aus Textilfasern aus diesem Gummiabfall, wie Autoreifen od. dgl., hergestellt werden. Dabei werden aus Cordeinlagen gebrauchter Fahrzeugluftreifen durch Zerschneiden, Brechen und Mahlen dieser Reifen gewonnene, imprägnierte Textilfäden mit einer kleinen Menge von kleinstückigem Gummi unter Zusatz von Bindemitteln, wie Natur- oder Kunstharzen oder Klebstoff vermischt und das Gemisch wird dann heiss gepresst.
  • Aus der DE-B 1 038 266 ist ein Verfahren zur Herstellung von aus Textilfasern, insbesondere Textilabfällen und Bindemittel bestehendem, porösem Werkstoff bekannt, bei dem die Textilfasern in trockenem Zustand zu kleinen Einheiten zusammengeballt und diese Faserballen unter Umwälzung in einer Trommel mit einem flüssigen, tropfenförmig zerteiltem Bindemittel besprüht werden, sodass dieses punktförmig auf der Oberfläche der Fasergutballen haftet, worauf unter weiterer Umwälzung der entstehenden Masse ein Härtemittel aufgesprüht und sodann die Masse geformt, getrocknet und gehärtet wird.
  • Aus der Kautschukherstellung ist es bekannt, elastische Bahnen dadurch herzustellen, dass eine mastizierte, mit Vulkanisiermitteln versehene Bahn z.B. unter Dampfeinwirkung ausvulkanisiert wird.
  • All diesen bekannten Verfahren ist gemeinsam, dass die noch nicht verfestigte bzw. noch nicht vulkanisierte Bahn keinen Zusammenhalt über ihre gesamte Fläche aufweist. Aus diesem Grunde muss die elastische Bahn bis zum Aushärten bzw. Ausvulkanisieren durch einen Träger gestützt werden. Werden mehrere solcher noch nicht ausgehärteter bzw. noch nicht ausvulkanisierter Bahnen übereinander zwischengelagert, so müssen die einzelnen Bahnlagen zwischen sich Trennschichten, wie z.B. Silikonpapier, aufweisen. Ein freies, nicht unterstütztes Bewegen solcher Bahnen, auch wenn es sich dabei z.B. um ein mastiziertes Kautschukfell handelt, ist nicht möglich.
  • Aus der FR-A 1 455313 (British Nylon Spinners Ltd.) (vgl. AT-A 298392 und US-A 3 506 529) ist ein Verfahren bekannt, bei dem eine dreischichtige Bahn dadurch gebildet wird, dass eine biegsame Schaumstoffschicht zwischen zwei Faservliese gelegt und das auf diese Weise entstandene Gebilde vernadelt wird. Eine solche Schaumstoffschicht kann z.B. eine Polyester-Polyurethanschaumbahn sein. Eine solche hat schon vor dem Einbringen zwischen und dem Vernadeln mit den beiden Faserschichten einen eigenen inneren Zusammenhalt.
  • Aus der US-A 2 429 486 (Reinhardt) ist ein Verfahren zur Herstellung eines Nadelvliesbodenbelages bekannt, bei dem ein etwa 5 mm dicker Film aus einer unter Hitze aufschwellenden und vulkanisierbaren Schaumgummimischung von unten zwischen zwei Kalanderwalzen auf und in ein Gewebe gebracht wird. Daraufhin wird von oben auf das Gewebe ein Faservlies abgelegt und die dreischichtige Bahn von der Faservlies-Seite her so vernadelt, dass einzelne Fasern als Haltefasern sich aus dem Faservlies durch das Gewebe und durch die Schaumstoffschicht hindurch erstrecken. Die vernadelte Bahn wird daraufhin einer Heizeinrichtung zugeführt, in der die Schaumstoffschicht nicht nur aufgeschäumt, sondern auch vulkanisiert wird. Auch hier wird eine geschlossene Bahn aus elastischem Material benutzt, welches darüberhinaus als Aussenschicht vorliegt.
  • Aus der DE-A 2 855 059 ist ein gattungsgemässes Verfahren bekannt. Dort wird ein Verfahren zur kontinuierlichen Herstellung von faserverstärkten Bahnen beschrieben, bei dem eine Kernschicht aus Partikeln zwischen eine Unterlagsschicht und eine Deckschicht als Aussenschichten gebracht wird, wobei mindestens eine der beiden Aussenschichten aus aktiv nadelfähigen Fasern besteht. Diese drei Schichten werden miteinander vernadelt.
  • Als Material für die Kernschicht werden dort feinkörnige oder faserige feste Wirkstoffpartikel verwendet, wobei es sich unter anderem um zerkleinerte Leder-, Torf-, Baumrinden- oder Kunstschaumstoffpartikel handeln kann. All diese Partikel können von den Vernadelungsnadeln beim Vernadeln der drei Schichten sehr leicht durchstochen werden, teilweise brechen diese Partikel beim Vernadeln auseinander, d.h., grössere Partikel werden in zwei oder mehrere kleinere Partikel aufgeteilt. Dadurch ist aber die Partikelgrösse in der vernadelten Kernschicht nicht vorbestimmbar.
  • Der Erfindung liegt die Aufgabe zugrunde, ein gattungsgemässes Verfahren zu schaffen, durch das auch Granulat aus einem elastischen, unausgeschäumten Material, insbesondere Altmaterial, zu einer faserverstärkten Belagsmaterialbahn mit einem eigenen inneren Zusammenhalt verarbeitet werden kann.
  • Diese Aufgabe wird durch den Gegenstand des Anspruches 1 gelöst. Zur Lösung dieser Aufgabe wird das aus der Textiltechnik und der gattungsbildenden DE-A 2 855 059 bekannte Verfahren des Vernadelns herangezogen werden.
  • Während bei den beiden Verfahren gemäss FR-A 1 455 313 und US-A 2 429 486 die aus einem elastischen Material bestehende Einzelbahn von den Vernadelungsnadeln durchstochen wurde und bei dem Verfahren gemäss der DE-A 2 855 059 die einzelnen Partikel durchstechbar sind und gegebenenfalls durchstochen werden und zerbrechen, wird nun die Kernschicht aus elastischen, unausgeschäumten, von den Vernadelungsnadeln nicht durchstechbaren Granulatpartikeln gebildet, wobei die Haltefasern zwischen den Granulatpartikeln eingebracht werden.
  • Aufgrund der Elastizität des Granulats und des beim Nadeln hervorgerufenen Innendruckes - beim Vernadeln werden die Schichten zusammengedrückt, wobei diese Verdichtung durch die Haltefasern aufrechterhalten wird - werden die Kontaktflächen zwischen den Granulatpartikeln vergrössert, sodass, da die Granulatpartikel eine mindestens rauhe Oberfläche aufweisen, die Granulatpartikel auch untereinander an einem Verrutschen gehindert werden.
  • Beim sogenannten Vernadeln werden aus einer auf eine andere Schicht aufgelegten, faserhaltigen Schicht mittels mit Widerhaken versehener Nadeln Einzelfasern oder Faserbüschel in die andere Schicht hineingestochen, in der sie beim Zurückziehen der Nadeln steckenbleiben und dadurch die Verbindung der faserhaltigen Schicht mit der anderen Schicht herbeiführen. Voraussetzung zur Durchführung der Technik des Vernadelns ist somit das Vorhandensein einer Schicht aus «aktiv nadelfähigen Stoffen», d.h., einer Schicht, welche aus zur Durchführung des Nadelprozesses heranziehbaren, faserförmigen Gebilden besteht oder derartige Gebilde enthält. Die andere Schicht, in die die aktiv nadelbaren Fasern eingebracht werden, muss mindestens passiv nadelbar sein, d.h., sie muss die in sie eingestochenen Fasern halten können.
  • Eine solche passiv nadelbare Schicht kann selbst aktiv nadelfähig sein, passiv nadelbare Schichten können aber auch bekannterweise durch Gewebe, Gewirke, Spunbonds, Folien aus Kunststoff oder Papier oder dergleichen gebildet sein.
  • Sowohl die Deckschicht, als auch die Unterlagsschicht können auch mehrlagig aufgebaut sein. So kann die Unterlagsschicht aus einer Kunststoffolie und aus einem Faservlies bestehen, wobei z.B. die Folie der Kernschicht zugewandt ist.
  • Es hat sich nun überraschenderweise gezeigt, dass auch elastisches, unausgeschäumtes Granulat-Material z.B. aus vulkanisiertem Gummi, sei es aus Altgummiabfällen oder sei es extra hierfür hergestellt, synthetisch hergestellte, unausgeschäumte Elastomere oder mit oder ohne Bindemittel versehene, aus Nadelfilzbodenbelägen gewonnene Granulate als zwischen zwei aussen liegenden Schichten befindliche Kernschicht zwischen diesen eingenadelt werden kann.
  • Durch das Vernadeln der aus den einzelnen Schichten bestehenden, noch nicht abgebundenen bzw. noch nicht vulkanisierten Bahnen können sehr schnell eine Vielzahl von Haltefasern in relativ grosser Dichte in diese Bahnen eingebracht werden, wodurch die drei Schichten untereinander gehalten werden und die in der Kernschicht vorhandenen, elastischen Materialien, sowie diesen gegebenenfalls beigemischten Füllstoffe, wie Sandpartikel oder dergleichen, am Eintreten in die bzw. am Durchdringen der Aussenschichten gehindert werden.
  • Die so gebildete faserverstärkte, elastische Bahn hat einen eigenen inneren Zusammenhalt und kann nun auch ohne Trag- und/oder Stützfläche - freischwebend - gehandhabt werden.
  • Eine solche Bahn kann als elastischer Boden für Sport- und Spielplätze verwendet werden, wobei diese nicht abgebundene bzw. nicht ausvulkanisierte Bahn auf den abzudeckenden Boden aufgebracht wird, der zuvor z.B. mit einer Klebeschicht versehen wurde, um der Bahn eine Haftung gegenüber dem Untergrund zu vermitteln. Diese an dem Boden haftende Bahn wird z.B. daraufhin mit einem flüssigen Bindemittel, z.B. einem Zweikomponentenkleber wie Polyurethan, getränkt, worauf das eigentliche Abbinden im eingebauten Zustand der Bahn erfolgt.
  • Als aktiv nadelfähige Fasern können herkömmliche Synthesefasern aus Polyester, Polyamid, Polypropylen oder dergleichen oder natürliche Fasern, wie Baumwolle oder dergleichen verwendet werden, die Auswahl ist hier auch in Bezug auf die zu vernadelnde Kernschicht und auf die später erwünschten Eigenschaften der Bahn zu wählen. Die zweite Aussenschicht, die, wie oben dargelegt, mindestens passiv vernadelbar sein muss, kann aus denselben Fasern bestehen, es können aber auch die obengenannten Bahnen verwendet werden.
  • Die Vernadelung der drei Schichten bringt es mit sich, dass die nicht miteinander verbundenen Teilchen bzw. die Masse der Kernschicht nicht nur zwischen den beiden Aussenschichten gehalten werden, sondern auch an einem wesentlichen Verschieben in der Erstreckungsebene der Bahn gehindert werden. Die bei der fabrikseitigen Herstellung gleichmässig verteilten und mit einer konstanten Schichtdicke eingebrachten Festteilchen verbleiben somit auch ohne Abbindung bzw. Vulkanisation in ihrer einmal festgelegten Lage. Dies auch dann, wenn in die nicht abgebundene bzw. nicht vulkanisierte Bahn quer zu ihrer Erstreckungsebene Öffnungen, wie Ausstanzungen, Schlitze oder dergleichen eingebracht werden.
  • Die Korngrösse der Granulatpartikel wird je nach gewünschter Enddicke der Bahn gewählt. Gemäss einer bevorzugten Ausführungsform beträgt die Korngrösse maximal 5 mm. Es ist aber auch möglich, grösseres Granulat zu vernadeln; dann sollte die Stichdichte, d.h., die Anzahl der Nadeleinstiche pro Flächeneinheit kleiner gewählt werden und es sollten Vernadelungsnadeln eines grösseren Durchmessers zur Anwendung gelangen.
  • Gemäss einer Ausführungsform wird das Granulat aus ausvulkanisiertem Gummi hergestellt, d.h., granuliert. Es kann sich dabei um aufgearbeitete Gummiabfälle handeln, die z.B. aus alten Autoreifen od. dgl. gewonnen werden. Andererseits kann auch eine speziell für den vorgesehenen Verwendungszweck hergestellte Gummimischung ausvulkanisiert und granuliert werden. Dabei ist es möglich, der mastizierten Kautschukmischung bestimmte, gewünschte Zusatzstoffe beizumischen. Es kann auch eine Mischung aus Abfall-Gummi mit daraus festgelegten Eigenschaften und gesondert hergestelltem Gummi mit gewünschten Eigenschaften als Kernschicht verwendet werden. Das verwendete Abfall-Gummi kann noch Verstärkungsfasern, wie Cordeinlagen od. dgl., enthalten. Vor dem Vernadeln können einer solchen Kernschicht noch Füllstoffe, wie Sandpartikel od. dgl., beigemischt werden, wobei eine vernadelte Bahn einem solchen Gemisch einen Zusammenhalt bietet, der bei einer bekannten Bahn erst durch das Verfestigen, z.B. durch Vulkanisieren, erhalten wird.
  • Gleiches gilt für den Fall, dass die Kernschicht aus Gummigranulat und/oder Füllstoffen und ausschäumbaren Elastomeren besteht, wobei das Aufschäumen der Elastomere auch noch viel später vorgenommen werden kann. Solche aufschäumbare Elastomere können in Granulat- oder Kugelform vorliegen und z.B. mit Treibmitteln versehener Kautschuk oder Kunststoff sein.
  • Gemäss einer bevorzugten Ausführungsform sind die Gummipartikel und gegebenenfalls die Füllstoffpartikel vor dem Einbringen zwischen die beiden äusseren Schichten mit einem Überzug versehen worden, wobei dieser Überzug gemäss einer Ausführungsform aus einem unter Hitze und/oder Druck aktivierbarem Bindemittel besteht, welches erst nach dem Vernadeln der Bahn aktiviert wird.
  • Gemäss einer anderen Ausführungsform besteht dieser Überzug aus einer Komponente eines Zwei-Komponenten-Bindemittels, wobei die zweite Komponente dieses Bindemittels frühestens nach dem Vernadeln der Bahn, bevorzugt erst am Verwendungsort der Bahn in flüssiger oder pulverförmiger Form in die Bahn eingebracht wird. So kann eine solche mit der einen Komponente des Bindemittels versehene Bahn auf Sportplätzen ausgerollt werden, worauf dann die zweite Komponente des Bindemittels aufgesprüht oder aufgestreut wird.
  • Gemäss einer weiteren Ausführungsform besteht der Überzug der Partikel aus einem Gleitmittel, wodurch beim Einstechen der Vernadelungsnadeln diese an den Partikeln leichter entlanggleiten können und diese Partikel den Nadeln durch geringfügiges seitliches Verschieben ausweichen können. Nach dem Vernadeln kann dieses Gleitmittel, insbesondere unter Wärmezufuhr, verdunsten oder verdampfen, ein solches Gleitmittel kann aber auch eine Vernetzung zwischen den einzelnen Gummipartikeln bewirken oder auch langsam in das Granulat einziehen, ohne dessen Eigenschaften wesentlich zu verändern. Ein solches Gleitmittel kann z.B. Wassersein.
  • Die elastischen, nicht ausgeschäumten Granulatpartikel können auch mit einem Quellmittel überzogen werden, wodurch die Oberfläche der Granulatpartikel mehr oder weniger tief aufquillt. Dieses Aufquellen erleichtert den Vernadelungsnadeln das Durchdringen der Kernschicht, da die Oberfläche des Granulates nicht nur weicher geworden ist, sondern gegebenenfalls an den Widerhaken der Vernadelungsnadeln hängengebliebene Teilchen aus dem Granulat herausgerissen werden, ohne dass dieses selbst wesentlich seine Lage verändert. Bevorzugt wird dieses Quellmittel nach dem Vernadeln wieder entfernt, wobei dies z.B. unter nachfolgendem Heisskalandern durchführbar ist.
  • Als elastisches, ungeschäumtes, die Kernschicht bildendes Material ist auch ein Granulat anzusehen, das durch Granulieren von Nadelfilzbodenbelägen gewonnen wird. Bei der Herstellung von Nadelfilzbodenbelägen werden in der Regel als letzter Arbeitsschritt die sogenannten Randstreifen, in denen aufgrund ihrer Randlage Unregelmässigkeiten vorliegen, abgeschnitten. Auch am Anfang und am Ende einer Charge sind bei dem Bodenbelag Flächen vorhanden, die einen bestimmten Qualitätswert des Bodenbelages unterschreiten und deshalb als Abfall anzusehen sind. Die Elastizität eines solchen Nadelfilzbodenbelages, der bisher als nicht wiederverwendbarer Abfall betrachtet wurde, kann nun dadurch ausgenutzt werden, dass diese Abfallstreifen oder -flächen zu einem Granulat mit einer Korngrösse von z.B. 2 bis 5 mm granuliert werden, das als Kernschicht bei dem erfindungsgemässen Verfahren eingesetzt wird. Dieses Granulat liegt dabei bevorzugt in Form von Faserklümpchen vor, die vorzugsweise mindestens zum Teil mit einem Bindemittel aus Gummilatex verbunden sind. Wird nun eine nicht voll deckende Deckschicht mit groben, aktiv nadelfähigen Fasern, z.B. mit einem Fasertiter von 100 dtex, verwendet, und diese groben Fasern mit einem geringen Flächengewicht auf die Kernschicht abgelegt, worauf diese Fasern aktiv vernadelt werden, so bleiben die Granulate der Kernschicht zwischen diesen Fasern sichtbar. Man erhält dadurch eine Bahn, die wiederum als Teppich verwendet werden kann, wobei, insbesondere wenn die Granulate verschiedene Farben aufweisen, eine optisch ansprechende Gehseite erhalten wird. Die elastischen Eigenschaften dieser Bahn entsprechen im wesentlichen denen der zuvor beschriebenen aus Gummigranulaten bestehenden Bahnen.
  • Insbesondere die vernadelten, Gummi- oder Teppichbodengranulate und gegebenenfalls Füllstoffe enthaltenden Bahnen können, sei es fabrikseitig oder am späteren Verwendungsort, mit einem Bindemittel getränkt oder beaufschlagt werden, wobei dieses Bindemittel Latex, Flüssiggummi, Bitumen, modifiziertes Polyurethan, ein Duroplast oder auch Bauzement sein kann. Eine solche Bahn kann aber auch mit einem Lösungsmittel getränkt oder beaufschlagt werden, wobei zwischen den einzelnen Kautschukbestandteilen eine Vernetzung hervorgerufen wird.
  • Gemäss einer Ausführungsform wird die vernadelte Bahn gepresst oder kalandert, insbesondere formgepresst bzw. prägekalandert, wobei dies vor dem Vulkanisieren oder gleichzeitig zum Vulkanisieren der Bahn durchgeführt wird. Das Vulkanisieren kann in bekannter Art und Weise, z.B. unter Hitze und/oder Druck durchgeführt werden. Mindestens die die beiden Aussenschichten verbindenden Haltefasern werden beim Vulkanisationsprozess in die vulkanisierende Kautschukmasse voll eingebunden. Ist z.B. auf eine vernadelte Bahn Flüssiggummi aufgegeben worden und wird diese Bahn unter Druck vulkanisiert, so wird mindestens die auf der Aufgabeseite des Flüssiggummis liegende äussere Schicht mit in die Gummimasse eingebunden, sodass diese z.B. Fasern oder ein Gewebe enthaltende Schicht bei der ausvulkanisierten Bahn nicht mehr sichtbar ist. Andererseits ist es auch möglich, die Fasern aufweisende äussere Schicht oder z.B. das Gewebe mit einer solchen Stärke auszubilden, dass dort auch nach dem Vulkanisationsprozess nur diese Fasern bzw. das Gewebe sichtbar sind, die Bahn somit einen textilen Charakter aufweist. Eine interessante Struktur lässt sich erzielen, wenn die Faserschicht so gewählt wird, dass nach dem Vulkanisationsprozess zwar die Fasern aussen sichtbar bleiben, die mittlere, Gummi enthaltende Schicht aber zwischen den Fasern erkennbar bleibt. Analoges gilt auch für die Bahn, in die die Textilabfälle eingearbeitet wurden, wobei man insbesondere dann, wenn man verschiedenfarbige Textilabfälle benutzt und diese nach dem Vernadeln noch durchscheinen, eine interessante farbliche Wirkung erreicht.
  • Neben dem obenangeführten Pressen oder Kalandern kann die vernadelte Bahn auch geformt, insbesondere gewickelt werden, worauf die Bahn dann in dieser Form vulkanisiert wird bzw. abbindet.
  • Gemäss einer besonderen Ausführungsform werden als aktiv nadelbare Fasern unter Hitzeeinwirkung schrumpfbare Fasern verwendet und nach dem Vernadeln der Bahn ein Schrumpfprozess durchgeführt, wodurch die Kernschicht weiter verdichtet wird.
  • Die zuvor beschriebenen Bahnen können als Teppich verwendet werden. Gegenüber herkömmlichen Teppichen, die meist von der Unterlagsschicht her mit Latex od.dgl. beaufschlagt werden, wodurch die Fasern zusätzlich zum Vernadeln gebunden werden, liegt nun hier eine Teppichbahn vor, bei der die zusätzliche Bindung nicht von aussen aufgebracht wird, sondern als Kernschicht schon vor dem Vernadeln eingebracht ist.
  • Je nachdem, wie dicht die Deckschicht, die in der Regel die aktiv nadelbaren Fasern enthält, aufgelegt wurde, scheint die das elastische Material aufweisende Kernschicht mehr oder weniger durch diese Deckschicht hindurch. Die Deckschicht kann allerdings auch so dicht gemacht werden, dass die das elastische Material, wie Gummigranulat od. dgl. enthaltende Kernschicht überhaupt nicht sichtbar ist, eine erfindungsgemässe Bahn somit den Eindruck eines herkömmlichen Nadelfilzbodenbelages bietet, der jedoch gegenüber bekannten Bodenbelägen elastischer sein kann.
  • Die z.B. auf den Gummigranulaten liegenden Fasern der Deckschicht, die die Gehseite darstellt, stellen eine Gleitfläche für die im wesentlichen aus Gummi bestehende Bahn dar, während die Gummikernschicht verhindert, dass Wasser und Schmutzpartikel in die Bahn eindringen bzw. die Bahn durchdringen können.
  • Weitere Ausführungsformen und Vorteile der Erfindung werden im folgenden anhand von Ausführungsbeispielen beschrieben.
  • Es zeigt:
    • Fig. 1 eine schematische Darstellung einer Anlage zur Durchführung des Verfahrens;
    • Fig. 2 eine schematische Darstellung des Schnittes durch eine vernadelte, Gummipartikel und Füllstoffe aufweisende Bahn vor der Vulkanisierung;
    • Fig. 3 eine schematische Darstellung eines Schnittes durch eine vernadelte, elastische Bahn, in der aufschäumbare Elastomere aufgeschäumt wurden;
    • Fig. 4 eine schematische Darstellung eines Schnittes durch eine vernadelte und unter Formen vulkanisierte Bahn, und
    • Fig. 5 eine vernadelte, elastische Bahn, die mit einer Nadelfilzbahn vernadelt wurde.
  • Gemäss Fig. 1 wird auf eine Fördereinrichtung, hier ein Förderband 1, eine Unterlagsschicht 2 abgelegt, auf die, hier von einer Austragsvorrichtung 3 dosiert, die Kernschicht 4 aufgetragen wird. Auf diese Kernschicht 4 werden aktiv nadelfähige Fasern, hier in Form eines Faservlieses 5 aufgelegt, worauf dieses Dreischichtensystem einer Nadelmaschine 6 zugeführt wird.
  • Solche Nadelmaschinen 6 sind aus der textilen Nadelfilztechnik bekannt (vgl. z.B. Krcma, Textilverbundstoffe, Seite 139 bis 141) Bei einer solchen Nadelmaschine 6 wird das zu vernadelnde System, hier das Dreischichtensystem, über eine mit Bohrungen versehene Grundplatte 7 geführt. Oberhalb des zu vernadelnden Gegenstandes ist ein die Vernadelungsnadeln 8 tragendes Nadelbrett 9 angeordnet, welches sich fortwährend so weit auf und ab bewegt (Doppelpfeil 10), dass die Nadelspitzen 11 in ihrer untersten Stellung den zu vernadelnden Gegenstand gewöhnlich ganz durchdrungen haben, während sie in ihrer obersten Stellung mit dem noch zu vernadelnden Gegenstand keine Berührung aufweisen. In dieser obersten Stellung kann der zu vernadelnde Gegenstand, hier das Dreischichtensystem, in Vorschubrichtung (Pfeil 12) taktweise verschoben werden, während es beim eigentlichen Vernadeln stillstehen muss. Die Vernadelungsnadeln 8 tragen an ihrem Schaft mindestens einen - hier zwei - Widerhaken 13, mit denen sie einzelne Fasern oder Faserbüschel ergreifen und in den zu vernadelnden Gegenstand hineinziehen, bzw. durch diesen hindurchziehen. Beim Zurückfahren der Nadeln 8 lösen sich die mitgenommenen Fasern oder Faserbüschel von den Widerhaken 13 und verbleiben in der passiv vernadelten Schicht, hier der Unterlagsschicht 2 und der Kernschicht 4.
  • Während nun beim Vernadeln in der Textilindustrie, bei der Herstellung von Nadelfilzteppichen, die eine Enddicke von z.B. 4-6 mm aufweisen, die Nadelbretter 9 eine Vielzahl von dicht beieinander angeordneten Nadeln besitzen und dieses Nadelbrett z.B. mit einer Geschwindigkeit von 700 Hüben pro Minute bewegt werden kann, muss nun beim Vernadeln von elastischen, unausgeschäumten Materialien, wie Gummigranulat, aufschäumbare Elastomere, mastizierten Kautschukfellen oder Teppichbodengranulaten, denen gegebenenfalls noch Füllstoffe wie Sandpartikel beigegeben wurden, die Dichte der Nadeln 8 in dem Nadelbrett 9 vergrössert und die Hubzahl stark verringert werden.
  • Sind diese Kriterien erfüllt, so kann auch eine Schicht, die die vorgenannten Materialien enthält, einem Nadelprozess zugeführt werden, wobei die Nadeln an den Gummi- bzw. Füllstoffpartikeln entlang gleiten und diese gegebenenfalls geringfügig seitlich verschieben. Dieses Entlanggleiten und seitliche Verschieben wird erleichtert, wenn die Partikel mit einem ein Gleiten erleichternden Überzug versehen sind.
  • Wie aus Fig. 1 ersichtlich, verringert sich beim Vernadeln des Dreischichtensystems die Dicke desselben, da zum einen die Fasern enthaltende Schicht 5 durch das Vernadeln verdichtet wird, zum anderen diese Faserschicht 5 und, je nach Ausbildung, auch die Unterlagsschicht 2 in die Randbereiche der Kernschicht aufgrund der Elastizität deren Materials hineingezogen bzw. hineingedrückt werden. Darüberhinaus wird auch das elastische Material der Kernschicht selbst etwas zusammengepresst und verbleibt unter einer gewissen Spannung. Aufgrund der Elastizität dieser Partikel werden die Kontaktflächen zwischen einzelnen Partikeln vergrössert, da die Oberflächen derselben nachgeben können. Aufgrund dieses Zusammenpressens wird die spätere Vulkanisation der aus einzelnen Körnchen bestehenden Bahn auch dann erleichtert, wenn nicht noch zusätzlich flüssige Bindemittel wie Latex oder Flüssiggummi zugegeben werden.
  • Gemäss der in Fig. 1 dargestellten Ausführungsform der Anlage zum Durchführen des erfindungsgemässen Verfahrens wird die vernadelte, elastische Bahn zwischen zwei Kalanderwalzen 14 und 15 hindurchgeführt, mit denen, insbesondere wenn sie beheizt sind, die Vulkanisation vorgenommen werden kann. Die beiden Kalanderwalzen 14 und 15 werden, zwischen sich die Bahn führend und auf diese einen Druck von 2-5 bar/cm2 ausübend, aufeinander zugedrückt.
  • Die aus den Kalanderwalzen austretende elastische Bahn 16 weist eine Dicke auf, die nicht wesentlich kleiner ist, als die Dicke der Bahn 16 vor den Kalanderwalzen, da das elastische Material sich nach dem Kalandern wieder ausdehnt.
  • Fig. 2 zeigt nun eine vernadelte, Gummipartikel 17 und Füllstoffpartikel 18 aufweisende Bahn 16 in vergrösserter und schematisierter Darstellung, wobei ersichtlich ist, dass die Unterlagsschicht 2 mit der Deckschicht 5 über die Haltefasern 19, die sich durch die Kernschicht 4 hindurch erstrecken, vernadelt ist. In der Ausführungsform gemäss Fig. 2 wird als Unterlagsschicht 2 und als Deckschicht 5 ein aktiv vernadelbares Faservlies verwendet. Die Bahn 16 ist hier von beiden Aussenseiten her vernadelt, was durch die «Fasertrichter» 20 ersichtlich ist, die sich an den Einstichstellen der Vernadelungsnadeln 8 ausbilden. In diese Fasertrichter 20 werden auch Faserenden und Faserteile von Fasern, die nicht durch die Widerhaken 13 ergriffen werden, teilweise hineingezogen. Die die Bahn 16 durchdringenden Haltefasern 19 sind über die Fläche der Bahn ungleichmässig verteilt, weshalb bei einem Schnitt durch eine solche Bahn in der Praxis nur sehr wenig Haltefasern 19 zu sehen sind.
  • Fig. 3 zeigt nun eine vernadelte, elastische Bahn, in der aufschäumbare Elastomere 21 und Füllstoffpartikel 18 vernadelt wurden, worauf die Elastomere durch Aktivieren des Treibmittels aufgeschäumt wurden. Die aufgeschäumten Elastomere 21 füllen nicht nur die Zwischenräume zwischen den Füllstoffpartikeln 18 voll aus, sondern führen auch dazu, dass die in den aussen liegenden beiden Schichten 2 und 5 befindlichen Fasern nach aussen gedrückt werden, was zu einer kleine Wölbungen aufweisenden Oberflächenstruktur der Bahn führt. Um ein Auseinanderplatzen der Bahn 16 zu verhindern, empfiehlt es sich insbesondere hier die Bahn von beiden Seiten her zu vernadeln, um eine ausreichende mechanische Verbindung zwischen den beiden Aussenschichten aufrecht zu erhalten. Der Schäumvorgang kann allerdings auch in einer Doppelbandpresse vorgenommen werden, so dass dem Schäumen der Elastomere 21 ein weiterer, dann äusserer Widerstand entgegengesetzt wird. In der Fig. 3 sind die aufgeschäumten Elastomere 21 schraffiert gekennzeichnet. Wenngleich dies dort so aussieht, sind die Haltefasern 19 nicht durch die Elastomere 21 hindurchgeführt, sondern sie sind lediglich von diesen beim Aufschäumen vollständig umhüllt worden.
  • Für die Herstellung der in Fig. 4 gezeigten Bahn 16 wurden Gummigranulatteilchen und Füllstoffpartikel 18, z.B. Sandkügelchen, zwischen zwei vorvernadelte Faservliesbahnen gebracht, von beiden Seiten her vernadelt und dann in einer Formpresse vulkanisiert. Diese Formpresse z.B. eine Doppelbandpresse, wies auf der einen Pressenseite eine ebene, geschlossene Oberfläche auf, wodurch die in der Fig. 4 untere Seite der Bahn eine glatte Oberfläche erhielt, während die andere Pressenseite eine ebene Oberfläche besass, in der voneinander beabstandet eine Vielzahl von Öffnungen vorgesehen waren, so dass die Bahn im Bereich dieser Öffnungen weniger stark zusammengepresst wurde, als in den daneben liegenden Bereichen. Die ausvulkanisierte Bahn erhält dadurch die in Fig. 4 ersichtlichen Noppen 22, die über die Fläche der Bahn 16 hervorstehen. Im Bereich dieser Noppen 22 ist die Bahn 16 etwas elastischer als in den benachbarten Bereichen.
  • Durch die Verwendung von dickeren, vorvernadelten Faservliesbahnen als Deckschicht 5 und/ oder als Unterlagsschicht 2 weist eine solche Bahn 16 einen gegebenenfalls beidseitig textilen Charakter auf. Wird eine solche Bahn auf eine besonders glatte und rutschige Unterlage gelegt, so besteht die Gefahr, dass sie gegenüber einer solchen verrutscht. Hier kann nun dadurch Abhilfe geschaffen werden, dass man den oberen Teil einer Noppe 22, wie in Fig. 4 anhand der rechten Noppe dargestellt ist, abschneidet, wodurch in diesem Bereich die vulkanisierte Gummischicht nach aussen hervortritt. Wird nun eine solche Bahn 16 mit ihren abgeschnittenen Noppen 22 so auf einen glatten Boden gelegt, dass die hervorstehenden Noppen auf diesem Boden zu liegen kommen, d.h., genau umgekehrt, wie in der Zeichnung dargestellt, so dienen die abgeschnittenen Noppen als Rutschsicherung.
  • Fig. 5 zeigt nun eine vernadelte, elastische Bahn 16, auf die eine Nadelfilzbahn 23 aufgenadelt wurde. Der Nadelfilzbahn 23 entnommene Haltefasern 24 wurden in die elastische Bahn 16 hineingenadelt, wodurch die beiden Bahnen mechanisch miteinander verbunden sind. Dieses Vernadeln der beiden Bahnen 16 und 23 kann sowohl vor dem Vulkanisieren der elastischen Bahn 16, als auch nach dem Vulkanisieren derselben vorgenommen werden.
  • Nach einem nicht dargestellten Ausführungsbeispiel wird ein mastifiziertes, mit Vulkanisiermitteln versehenes Kautschukfell zwischen die Unterlagsschicht und die Deckschicht eingebracht, worauf diese drei Schichten miteinander vernadelt werden. Eine solche Bahn kann nun frei, d.h. ohne Trag- oder Trägerschicht gehandhabt werden, ohne dass die Gefahr besteht, dass das Kautschukfell sich in seiner Dicke ändert, einreisst oder zerreisst. Anstelle der in Fig. 1 dargestellten Austragsvorrichtung 3 tritt dann die Zuführung, z.B. in Form eines Bandförderers oder von einer Rolle.
  • Eine weitere, nicht gesondert dargestellte, jedoch mit einer Anlage nach Fig. 1 herstellbare Ausführungsform besteht darin, als Kernschicht ein aus Nadelfilzbodenbelag granuliertes Granulat einer Korngrösse von 2-3 mm zwischen die beiden Schichten 2 und 5 einzubringen und zu vernadeln. Solches Granulat liegt in Form von Faserklümpchen vor und enthält zum Teil noch Gummilatex. Die Deckschicht 5 wird durch grobe Fasern, z.B. Dorixfasern, gebildet, die nicht dekkend auf die Kernschicht abgelegt werden. Nach dem Vernadeln scheint die aus Nadelfilzbodenbelag-Granulat bestehende Kernschicht durch die Deckschicht hindurch. Durch Verwenden von verschieden farbigem Granulat, z.B. aus verschiedenen Chargen der Teppichherstellung, wird eine Musterung erzielt. Auch hier ist es möglich, eine solche vernadelte Bahn 16 mit Flüssiggummi zu beaufschlagen, um eine weitere Verfestigung der Granulatteilchen zu erhalten.
  • Bei den obenbeschriebenen Ausführungsbeispielen können darüber hinaus vor dem Vernadein noch Einlagen eingebracht werden. So ist es möglich, die Kernschicht nicht mittels einer Austragvorrichtung 4 aufzubringen, sondern davon mehrere vorzusehen und zwischen diesen Austragsvorrichtungen der Kernschicht Cordfäden aus synthetischem Material oder auch Stahlfäden einzubringen. Diese Fäden lassen sich wie oben für die Füllstoffe beschrieben mitvernadeln. Als Einlage können aber auch Metallplättchen eingebracht werden, wobei dann beim Vernadeln darauf geachtet werden muss, dass im Bereich dieser Metallplättchen keine Nadeln durchgestochen werden.
  • Die Fäden oder die Metallplättchen werden zuvor entsprechend bearbeitet, so dass beim Vulkanisieren eine Haftwirkung zwischen den Kautschukmassen und den Einlagen vorhanden ist.
  • Beispiel:
  • Es wurden zwei identische Faservliese aus Polyesterfasern mit 70% Fasern eines Titers von 6,7 dtex und 30% Fasern eines Titers von 17 dtex mit einem Flächengewicht von 115 g/m2 und einem Bafatexträger mit einem Flächengewicht von 25 g/m2 unter jeweils zweiseitigem Vernadeln mit einer Stichdichte von 24 Einstichen/cm2 hergestellt.
  • Auf das eine Faservlies als Unterlagsschicht wurde Gummigranulat mit einer Korngrösse von 1 mm mit einem Flächengewicht von 3,7 kg/m2 abgelegt, mit dem anderen Faservlies abgedeckt und mit einer Stichdichte von 24 Einstichen/cm2 vernadelt.
  • Auf die vernadelte Bahn wurde 720 g/m2 eines Gemisches 1:1 von Latex 160 und Wasser aufgetragen und bei 130 °C vier Stunden lang getrocknet.
  • Man erhielt eine elastische Bahn mit einer Dicke von 4 mm.

Claims (25)

1. Verfahren zur kontinuierlichen Herstellung von faserverstärkten Bahnen, bei dem eine Kernschicht aus Partikeln zwischen eine Unterlagsschicht und eine Deckschicht als Aussenschichten gebracht wird, wobei mindestens eine der Aussenschichten aus aktiv nadelfähigen Fasern besteht, worauf die drei Schichten miteinander vernadelt werden, dadurch gekennzeichnet, dass die Kernschicht aus elastischen, unausgeschäumten, von den Vernadelungsnadeln nicht durchstechbaren Granulatpartikeln gebildet wird, und dass die Haltefasern zwischen den Granulatpartikein eingebracht werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Schichten durch der Deckschicht und der Unterlagsschicht entnommene Haltefasern vernadelt werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Granulat aus vulkanisiertem Gummi gewonnen wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kernschicht vor dem Vernadeln Füllstoffe, wie Sandpartikel oder dergleichen beigemischt werden.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kernschicht aus Gummigranulat und/oder Füllstoffen und aufschäumbaren, nicht durchstechbaren Elastomeren besteht, welch letztere nach dem Vernadeln aufgeschäumt werden.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die aufschäumbaren Elastomere in Granulat- oder Kugelform vorliegen.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass als aufschäumbare Elastomere ein mit Treibmitteln versehener Kautschuk oder Kunststoff verwendet wird.
8. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Gummipartikel und gegebenenfalls die Füllstoffpartikel vor dem Einbringen zwischen die beiden äusseren Schichten mit einem Überzug versehen werden.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Partikel mit einem unter Hitze und/oder Druck aktivierbaren Bindemittel überzogen werden.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Bindemittel nach dem Vernadeln der Bahn aktiviert wird.
11. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Überzug die eine Komponente eines Zwei-Komponenten-Bindemittels ist und die zweite Komponente frühestens nach dem Vernadeln eingebracht wird.
12. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Partikel mit einem Gleitmittel überzogen werden.
13. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Partikel mit einem Quellmittel beaufschlagt werden.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das Quellmittel nach dem Vernadeln, vorzugsweise unter Heisskalandern, wieder entfernt wird.
15. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Granulat durch Granulieren von Nadelfilzbodenbelägen gewonnen ist.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass dieses Granulat aus Faserklümpchen besteht, die vorzugsweise mindestens zum Teil mit einem Bindemittel aus Gummilatex verbunden sind.
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine nicht voll deckende Deckschicht mit groben, aktiv nadelfähigen Fasern verwendet wird und diese groben Fasern aktiv vernadelt werden.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die groben Fasern mit einem so geringen Flächengewicht auf die Kernschicht abgelegt und vernadelt werden, dass die Kernschicht zwischen diesen Fasern sichtbar ist.
19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die vernadelte Bahn mit einem Bindemittel getränkt oder beaufschlagt wird.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass als Bindemittel Latex, Flüssiggummi, ein Thermoplast, wie Polyäthylen, elastomerer Bitumen oder dergleichen verwendet werden.
21. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die vernadelte Bahn mit einem Lösungsmittel getränkt oder beaufschlagt wird.
22. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die vernadelte Bahn gepresst oder kalandert, insbesondere formgepresst bzw. -kalandert wird.
23. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die vernadelte Bahn, insbesondere unter Hitze und/ oder Druck, vulkanisiert, abgebunden oder ausgehärtet wird.
24. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die vernadelte Bahn geformt, insbesondere gewickelt wird, und gegebenenfalls in dieser Form vulkanisiert wird bzw. abbindet.
25. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als aktiv nadelbare Fasern unter Hitzeeinwirkung schrumpfbare Fasern verwendet werden und dass nach dem Vernadeln der Bahn ein Schrumpfprozess durchgeführt wird.
EP83102367A 1982-03-12 1983-03-10 Verfahren zur kontinuierlichen Herstellung von faserverstärkten Bahnen Expired EP0089018B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83102367T ATE20254T1 (de) 1982-03-12 1983-03-10 Verfahren zur kontinuierlichen herstellung von faserverstaerkten bahnen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1541/82 1982-03-12
CH154182 1982-03-12

Publications (2)

Publication Number Publication Date
EP0089018A1 EP0089018A1 (de) 1983-09-21
EP0089018B1 true EP0089018B1 (de) 1986-06-04

Family

ID=4212826

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83102367A Expired EP0089018B1 (de) 1982-03-12 1983-03-10 Verfahren zur kontinuierlichen Herstellung von faserverstärkten Bahnen

Country Status (8)

Country Link
EP (1) EP0089018B1 (de)
JP (1) JPS58167152A (de)
AT (1) ATE20254T1 (de)
AU (1) AU563936B2 (de)
CA (1) CA1241533A (de)
DD (1) DD208638A5 (de)
DE (1) DE3363879D1 (de)
NZ (1) NZ203527A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4122993A1 (de) * 1991-07-11 1993-01-14 Naue Fasertechnik Verfahren zur verbesserung des faserverbundes von vernadelten wasser- und/oder oelundurchlaessigen dichtungsmatten

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4217441C2 (de) * 1992-05-26 1995-09-21 Tesch Guenter Polyvinylchlorid enthaltendes Flächengebilde, insbesondere ein Fußbodenbelag
DE4244250C2 (de) * 1992-12-27 1997-05-22 Guenter Tesch Abriebfester, faserverstärkter Bodenbelag, Verfahren zu seiner Herstellung und seine Verwendung
JP2001121655A (ja) * 1999-08-18 2001-05-08 Araco Corp 合成樹脂積層板及びその製造方法
DE202010008043U1 (de) * 2010-07-12 2010-11-11 Öl-Jäger Vertriebs Gmbh Öl-Adsorptionsmatte

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2855059A1 (de) * 1977-12-24 1979-07-05 Breveteam Sa Flaechenhafter, biegsamer schichtkoerper zum behandeln von gasen oder fluessigkeiten, verfahren zu seiner herstellung und seiner verwendung
EP0071209A2 (de) * 1981-07-27 1983-02-09 Günter TESCH Verfahren zur Herstellung von faserverstärkten, ein verfestigbares Bindemittel enthaltenden, flächigen Körpern

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2429486A (en) * 1944-12-23 1947-10-21 Bigelow Sanford Carpet Co Inc Punched felt floor covering and process of making the same
FR1412117A (fr) * 1963-10-19 1965-09-24 Lantor Ltd Tissu composite et son procédé de fabrication
BE668528A (de) * 1964-08-19 1900-01-01
LU68710A1 (de) * 1972-10-31 1974-01-08

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2855059A1 (de) * 1977-12-24 1979-07-05 Breveteam Sa Flaechenhafter, biegsamer schichtkoerper zum behandeln von gasen oder fluessigkeiten, verfahren zu seiner herstellung und seiner verwendung
EP0071209A2 (de) * 1981-07-27 1983-02-09 Günter TESCH Verfahren zur Herstellung von faserverstärkten, ein verfestigbares Bindemittel enthaltenden, flächigen Körpern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4122993A1 (de) * 1991-07-11 1993-01-14 Naue Fasertechnik Verfahren zur verbesserung des faserverbundes von vernadelten wasser- und/oder oelundurchlaessigen dichtungsmatten

Also Published As

Publication number Publication date
AU563936B2 (en) 1987-07-30
NZ203527A (en) 1991-02-26
ATE20254T1 (de) 1986-06-15
JPS58167152A (ja) 1983-10-03
EP0089018A1 (de) 1983-09-21
CA1241533A (en) 1988-09-06
DD208638A5 (de) 1984-04-04
AU1219283A (en) 1983-09-15
DE3363879D1 (en) 1986-07-10

Similar Documents

Publication Publication Date Title
EP0071209B1 (de) Verfahren zur Herstellung von faserverstärkten, ein verfestigbares Bindemittel enthaltenden, flächigen Körpern
DE69806228T2 (de) Verfahren und vorrichtung zur herstellung von textilen produkten und erhaltene textile produkte
DE69508491T2 (de) Poröser Scheuergegenstand, Reinigungseinrichtung und Herstellungsverfahren
DE1956038A1 (de) Verfahren und Vorrichtung zum Herstellen faserverstaerkter Platten oder Folien aus thermoplastischem Material und nach dem Verfahren hergestellte Platte oder Folie
DE2117252A1 (de) Verbundunterlage für einen Teppich
DE2843580A1 (de) Band mit oberflaechen-erhebungen und verfahren zu seiner herstellung
EP0089018B1 (de) Verfahren zur kontinuierlichen Herstellung von faserverstärkten Bahnen
EP3058120B1 (de) Garniturträger
EP2036701B1 (de) Schichtstruktur sowie Verfahren und Vorrichtung zur Herstellung einer Schichtstruktur
EP0598876B1 (de) Flächengebilde, insbesondere fussbodenbelag und verfahren zu seiner herstellung
EP0628104B1 (de) Abriebfester, faserverstärkter bodenbelag, verfahren zu seiner herstellung und seine verwendung
EP1412577B1 (de) Flachgenadeltes nadelvlies aus natur- und/oder synthetikfasern
DE2162200A1 (de) Getufteter Teppich und Verfahren zu seiner Herstellung
DE4126117C2 (de) Festigkeitsträger für Transportbänder
DE2128475A1 (de) Wildlederartiges Plattenmaterial mit Textilgewebegrundlage und Verfahren zu dessen Herstellung
WO2005051622A1 (de) Verfahren und einrichtung zur herstellung von pelletartigen körpern aus ungebundenen fasern
DE2020819C3 (de) Verfahren und Vorrichtung zur Herstellung eines Polstervlieses
DE2742761A1 (de) Gerauhte stoffe und verfahren zu ihrer herstellung
DE1560856A1 (de) Nicht verwebter Textilstoff und Verfahren zu seiner Herstellung
CH650539A5 (de) Kunstleder.
DE2051805A1 (en) Fleece and substrate bonding - with vinyl pyridine rubber and opt rubberising and calendering
DE2742762A1 (de) Ball mit einem bezug aus ungewebtem stoff
DE2704335A1 (de) Verfahren zur herstellung einer florware
DD200663A1 (de) Verfahren zur herstellung eines mehrschichtigen,vorzugsweise zweischichtigen,selbsttragenden vliesstoff-formteiles
CH711781B1 (de) Garnitur.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19831026

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TESCH, GUENTER HORST

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 20254

Country of ref document: AT

Date of ref document: 19860615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3363879

Country of ref document: DE

Date of ref document: 19860710

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 83102367.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19970221

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980129

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990311

EUG Se: european patent has lapsed

Ref document number: 83102367.6

EUG Se: european patent has lapsed

Ref document number: 83102367.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000131

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000201

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000202

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000330

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000331

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010208

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010310

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010528

Year of fee payment: 19

BERE Be: lapsed

Owner name: TESCH GUNTER HORST

Effective date: 20010331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20011001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL