EP0077997B1 - Procédé et dispositif de réglage de la vitesse d'un moteur à combustion - Google Patents

Procédé et dispositif de réglage de la vitesse d'un moteur à combustion Download PDF

Info

Publication number
EP0077997B1
EP0077997B1 EP82109644A EP82109644A EP0077997B1 EP 0077997 B1 EP0077997 B1 EP 0077997B1 EP 82109644 A EP82109644 A EP 82109644A EP 82109644 A EP82109644 A EP 82109644A EP 0077997 B1 EP0077997 B1 EP 0077997B1
Authority
EP
European Patent Office
Prior art keywords
speed
control
idling
dead zone
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82109644A
Other languages
German (de)
English (en)
Other versions
EP0077997A2 (fr
EP0077997A3 (en
Inventor
Wolfgang Misch
Adolf Freytag
Manfred Henning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierburg GmbH
Robert Bosch GmbH
Original Assignee
Pierburg GmbH
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg GmbH, Robert Bosch GmbH filed Critical Pierburg GmbH
Publication of EP0077997A2 publication Critical patent/EP0077997A2/fr
Publication of EP0077997A3 publication Critical patent/EP0077997A3/de
Application granted granted Critical
Publication of EP0077997B1 publication Critical patent/EP0077997B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • F02D31/003Electric control of rotation speed controlling air supply for idle speed control
    • F02D31/004Electric control of rotation speed controlling air supply for idle speed control by controlling a throttle stop

Definitions

  • the invention relates to a method and a device for regulating the speed of an internal combustion engine according to the preamble of the main claim and the first device claim.
  • a "New mixture formation system for Otto engines” is known.
  • the idle speed control system shown there has a PI control algorithm and, with the signal obtained in this way, enables control of the position of an actuator which can change the lower stop of a throttle valve in the air intake pipe.
  • it is also intended to adjust this stop at start, during warm-up and during acceleration phases in order to be able to cope with some critical situations.
  • This publication does not provide details of other signal processing.
  • an idle speed control system is known from DE-A-2 049 669. It has a speed-sensitive electrical circuit, the output signal of which acts on an electromagnetically actuated actuator, with which the amount of intake air can be changed in the idle position of the throttle valve.
  • the electromagnetically actuated actuator acts in a cross-sectional control manner on a bypass channel parallel to the throttle valve.
  • DE-A-2 546 076 is an arrangement for an internal combustion engine containing a throttle valve in the intake manifold for idle speed control, in which an actual value generator and a setpoint generator for the speed are provided, which supply the output voltages to the two inputs of a differential amplifier.
  • the output signal is fed to an actuator designed as a solenoid, which is permanently connected to the throttle valve and adjusts it according to the control deviation.
  • This circuit is not able to introduce boundary conditions into the control and under all circumstances to ensure that the idle speed of an internal combustion engine remains safely within a predetermined range, even if transient conditions that take effect quickly must be intercepted.
  • this known circuit is not suitable to be used at the same time for influencing the overrun operation, namely for fuel-saving thrust cut-off.
  • the object of the present invention is to optimally design the system known from the ATZ article.
  • a PI controller with P and I values being used are constant only for certain speed ranges around the target idling speed in such a way that, with regard to the P and I components, step-by-step grading, respectively constant P components and I components result from the target idling speed and these values are also asymmetrical in relation the idle speed.
  • the idle control system according to the invention with the characterizing features of the main claim or the first device claim has the advantage over the fact that any external boundary conditions are introduced, interfering influences are counteracted and a precise positioning of the idle speed can be realized in particular also while avoiding long-term influences such as temperature and air pressure .
  • a dead zone area which is connected upstream of a non-linear control amplifier for the setpoint formation of a position value for a tappet, ensures a minimally integrating control intervention without widening the natural fluctuation range of the idle speed while simultaneously centering the working point with respect to the long-term influences mentioned.
  • the non-linear control amplifier is asymmetrical and has a proportional, an integral and in particular a differential component, which adds up the setpoint for a downstream subordinate position control circuit for a z.
  • means are provided to lock the actuator to reduce wear in the part-load range, in which case the control function for idling is switched to control when the operating mode is detected, preferably by means of a throttle valve switch, when leaving idling or a speed range close to idling.
  • a speed-dependent position achieved by switching to control is particularly advantageous. and / or integrator control in the sense of tracking the integral component of the asymmetrical control amplifier according to a specific function or position control in stages according to time functions with comparison of engine speed and dead zone in order to achieve smooth transitions from control to regulation, including the implementation of thrust function.
  • a thrust speed comparator which detects overrun phases, a higher-level control intervention for the position of the tappet can be implemented, which acts on the throttle valve position. This results in a position-controlled thrust position of the actuator or tappet for the throttle valve before the mechanical end stop, as a result of which recovery times can be minimized when the actuator is designed in an electropneumatic form.
  • Temperature-dependent influences can be carried out at many points, in particular when forming the setpoint or in the area of the speed-dependent position or integrator control.
  • the system according to the invention for comprehensive control of an internal combustion engine at idle, with additional measures for the operation of this internal combustion engine at thrust and in the idle speed range works in a straight line, that is, in the simplest design so that an actuator controlled on the output side with plunger 1, such as shown in the drawing, so acts on the position of the main throttle valve, which is no longer shown, in the intake manifold, that the regulation or control is implemented by the system according to the invention as a filling intervention in the internal combustion engine. It is essential that the plunger 1 of the actuator only abuts against a throttle valve lever (likewise not shown) to be actuated by it, ie. H.
  • the plunger 1 can open or close the throttle valve substantially more in the idle range (in the closing direction up to a mechanical stop), but on the other hand by arbitrary actuation of the throttle valve, for example as a result of the driver giving gas, the throttle valve can be released from its contact with the tappet 1 at any time and transferred to other positions.
  • the actuator actuating the plunger 1 is designated 2 in the drawing and is preferably designed as an electropneumatic actuator; For this purpose, a venting valve for turning on (opening of the throttle valve by tappet 1) and an evacuating valve for retracting (stronger closing of the throttle valve) are provided.
  • the valves are designated 2a and 2b in the drawing; they are controlled via relays 3a, 3b, which are suitably acted upon by a valve output stage 4 with corresponding electrical signals.
  • the output stage is completed by a position controller 6 connected upstream of the valve output stage, to which either the setpoint and actual value of the throttle valve are supplied in the idling range or during overrun, or to which a comparison point 7 is connected upstream, which at 7a is a setpoint signal and at 7b an actual value signal about the position of the.
  • Tappet and, when the throttle valve is in contact with the tappet, is also fed via the throttle valve.
  • a potentiometer 8 or another suitable component can be provided, the tap 8a of which is driven by the plunger 1 of the actuator 2 and therefore immediately provides an electrical output signal for the actual value.
  • the comparator 7 carrying out the setpoint / actual comparison for the position is preceded by a preferably non-linear control amplifier 9 and this a dead zone circuit 10 with respect to the idle speed range.
  • the one for the acquisition of a desired position signal Ls - if one initially ignores additional peripheral circuits - has an input-side speed / voltage converter 11, the input of which is supplied with a suitable speed signal of the internal combustion engine, for example that at terminal KI1 applied ignition pulses.
  • An output voltage Un proportional to the speed then results at the output of the speed / voltage converter 11.
  • the downstream dead zone circuit 10 Via a comparison point 12 for the speed, which is supplied with a speed reference variable at 12a, for example in the form of a constant voltage Uno and the speed-proportional voltage at 12b, the downstream dead zone circuit 10 is activated, which in turn is generally designed in such a way that the Downstream control amplifier occurs when a dead zone range for the speed is exceeded symmetrically to a setpoint, which is slightly larger than the natural fluctuation range of the idle speed.
  • the dead zone circuit 10 comprises two separate circuit blocks 10a, 10b, the Inputs are fed to the output signal of the speed / voltage converter 11, which is compared with the reference variable.
  • the circuit block 10a of the dead zone circuit is designed in such a way that, as the diagram in the circuit block also indicates, when an upper dead zone speed limit value n T2 is exceeded, an output signal Uto - for example a positive output signal - is generated proportionally or in any other dependence on the speed deviation and via connecting lines 13a a summing point 14 for the integral part and 13b a summing point 15 for the proportional part is fed.
  • the block 10b If the speed idle range falls below a lower speed threshold n T1 , the block 10b generates, for example, a negative output voltage Utu, either likewise proportional to the speed change or in any other dependency, and also supplies this output signal to the summing points 14 and 15 via connecting lines 16a, 16b.
  • a negative output voltage Utu either likewise proportional to the speed change or in any other dependency
  • the summing point 15 for the proportional component is followed by a proportional amplifier 9b of the preferably nonlinear or asymmetrically operating control amplifier 9; the summing point 14 for the integral component works on the input of an integral amplifier 9a.
  • the outputs of the integral amplifier and of the proportional amplifier 9a, 9b are brought together at a summing point 17 for the signal Le of the position setpoint, the output of which is connected to the input 7a of the comparison circuit 7 for the setpoint / actual value comparison mentioned earlier.
  • each summing unkten and amplifiers still supplied signals to be appropriately dealt with below with reference to the description of system according to the invention in more detail; on further circuit blocks there is still a control circuit 18 which effects a speed-dependent control of only the integral range of the control amplifier 9, in the event that the engine speed is above the limit value of the upper dead zone speed n T2 and the throttle valve is open.
  • a throttle valve switch 23 is also provided, which is always closed when the tappet 1 rests on the part of the throttle valve driven by it, for example on the throttle valve lever already mentioned above.
  • the basic control curve is designed such that the filling state of the internal combustion engine is influenced by the design of the control amplifier 9 and its components for forming the desired position value for the tappet position and, in this respect, via the main throttle valve actuated by the latter.
  • the rescue function therefore begins when the internal combustion engine threatens to die off because the effective rotational speed of the internal combustion engine is too low outside the dead zone range; the interception function becomes effective when the speed is higher than the limit speed n T2 and must be traced back to the idling speed.
  • the non-linear control amplifier 9 preferably operates with an integral, proportional and again preferably also with a differential component with respect to the rescue function, while the interception function is represented with a proportional and / or integral component.
  • the proportional amplifier 9b takes over the formation of the proportional component; the integrator or integral amplifier 9a is provided for forming the integral component; As mentioned, both amplifiers 9a, 9b are supplied with the data required for the formation of a rescue function or interception function via the upstream summing points 14 and 15.
  • the proportional amplifier can work with lead; However, it is also possible to weight the individual signals fed to the proportional amplifier, for example by taking a larger value for the steepness of the curve which results in block 10b when the bottom dead center speed n T1 is undershot, so that the proportional amplifier 9b initially becomes disproportionately large reacts and the rescue function intervenes safely and the throttle valve opens more immediately.
  • An advantageous embodiment of the present invention resides in the fact that although a dead zone area which is symmetrical with the target value is provided and realized by the circuit blocks 10a, 10b and which is slightly larger than the natural fluctuation range of the idling speed, that a basic integral portion also exerts an effective area within the dead zone, that speed drifts due to long-term influences by temperature and air pressure are eliminated and the operating point can always be centered safely in the dead zone.
  • an output 11 of the speed / voltage converter 11 at which a voltage value proportional to the respective effective actual speed results, is also connected directly to the summing point 14 for the integral part via a connecting line 25, thus bypassing the dead zone circuit 10, so that an action within the dead zone area is also realized from the integrator side. It is needless to say in this connection that the integral part essentially represents the throttle valve position.
  • the throttle valve switch 23 can be designed electrically, electronically or electromechanically.
  • the throttle valve position and / or the integral component essentially representing the throttle valve position is tracked according to a specific function, this function being able to be represented, for example, by the throttle valve position / speed characteristic.
  • the speed control is switched off from the throttle valve switch 23 via a connecting line 26 which supplies an inhibit signal, that is to say a blocking signal, to the valve output stage 4 when the throttle valve is open.
  • this blocking signal passes via the connecting line 27 connected to the line 26 to a corresponding blocking input of the proportional amplifier 9b of the control amplifier, so that the proportional component is switched off and only the integral component is retained by a special type of control.
  • the memory circuit 19 for the position at the operating point is supplied with the actual position value via the connecting line 28; in this case, however, the memory circuit 19 receives blocking signals Sp1 and Sp2 supplied by the blocks 10a, 10b in each case when the actual speed is exceeded by the dead zone, that is to say when n> n T2 and n ⁇ n ri . Furthermore, a load detection blocking signal S L is sent via line 29 to the storage circuit 19, which can be fed to the terminal 30 and can originate, for example, from a tachometer generator, so that the storage circuit 19 does not take over the actual value signal when the internal combustion engine is under load.
  • the idle speed operating point stored by the memory circuit 19 reaches a comparison point 32 via a connecting line 31, which is connected upstream of the speed-sensitive control circuit 18 for controlling the integrator or the integral amplifier 9a in the control amplifier 9.
  • the comparison point 32 is also fed from the output of the integral amplifier 9a via the connecting line 33 a setpoint signal of the idle speed operating point for the controlled operation.
  • the comparator 32 is supplied with a speed-proportional signal from the output 12b of the converter 11 during the speed-dependent integrator control operation via the connecting line 34, so that the control circuit 18 can work effectively as a function of the speed.
  • the blocking signal of the connecting line 26 which is normally present at the input 18a of the control circuit 18 is then removed; in other words, the control circuit 18 receives an enable signal only when the throttle valve switch 23 opens and at the same time the linkage realized via the connecting line 35 is fulfilled that the effective speed is greater than the top dead center limit speed (n> n T2 ).
  • the control circuit 18, which is activated when the throttle valve switch 23 is open, produces a control signal for the speed-controlled integral component and / or the speed-controlled position at its output 18b and also reaches the summing point 14 for the integral component via the connecting line 36.
  • the actual value of the actuator locked when leaving the dead zone can be used.
  • This measure has the advantage that variable parameters of the controlled system are corrected automatically.
  • This adjustable time is ended at the latest when the engine speed becomes less than or equal to the upper dead zone speed (n ⁇ nT2).
  • a preferred functional sequence with regard to the operation of the internal combustion engine in the part-load and idle range can run in such a way that the lock signal reaches the valve output stage when the throttle valve is opened when it changes from idle to part-load range;
  • this blocking signal itself or components activated by the blocking signal ensure that in this case, that is to say when the throttle valve switch is open, the plunger 1 remains in the last position before the throttle valve switch is opened.
  • the open throttle valve switch causes the speed-dependent integrator control to take effect, in other words, during normal driving, the integrator present in the integral amplifier, which in this respect also has a sub-area called a variable memory, is precharged, so to speak. If there is then a transition to the idling range, then the interception function is used and the plunger 1 is first extended to catch the throttle valve position according to the desired interception function program and to ensure that the engine does not stop due to the abrupt closing of the main throttle valve. As can be seen, problems of overrun operation are affected here, which will be dealt with below.
  • the interception function can initially cause the plunger to extend due to the "pre-charging" of the integrator, with a transition to the idling speed position, only by applying the integral amplifier 9a; So in this case by switching off the proportional amplifier or by interrupting the output signal supplied by it to the summing point for position setpoint 17.
  • controller 9 it is a measure within the scope of the invention to base the rescue function mentioned above particularly strongly on the proportional amplifier and to provide a much stronger P component, so that the controller 9 intervenes strongly at speeds below the dead zone limit speed n T1 , while when the upper dead zone limit speed n T2 is exceeded, normal use is made of proportional and integral components of controller 9 which have been assessed differently. It is therefore a special feature of the present invention that the controller 9 can work asymmetrically and so optimal adaptations to the respective operating behavior of the internal combustion engine are possible.
  • the thrust comparator generates output signals at its two outputs 21b and 21c when n 2 is exceeded or n is undershot (switching hysteresis).
  • the thrust comparator 21 is designed in such a way that it generates a thrust positioning signal S s p at its output 21 and feeds it via the connecting line 41 to a summing point 42 at the input of the position controller 6, with the evaluation “priority for thrust position”, in other words At this point, when the thrust comparator has effectively detected a thrust phase, only this signal is fed to the position controller after the setpoint / actual value comparison has been carried out at 7.
  • the thrust positioning signal is designed so that when the thrust speed threshold is exceeded, the plunger 1 of the actuator 2 is positioned in a thrust position so that the main throttle valve can remain in a mechanical thrust stop, for example in a mechanical 3 ° thrust stop, until it does so the thrust speed threshold n is again fallen below. This thrust positioning signal fed to the position controller with priority for the thrust position can always be generated and present if the speed n 2 was previously exceeded and was then always greater than n.
  • the conditions with regard to the positioning of the main throttle valve, the throttle valve switch and the positioning of the actuating plunger 1 are preferably such that they are always in driving operation when an overrun phase occurs, that is to say when the driver takes his foot off the accelerator pedal, for example, and therefore the Main throttle valve is closed mechanically, a gap remains between the tappet 1 and the throttle valve lever, which can be, for example, about 0.5 mm, so that the throttle valve switch 23 is still open. It should not be overlooked that, with such an open throttle valve switch, the valve output stage 4 cannot be controlled via the position controller 6 due to the blocking signal from the throttle valve switch, so that it is necessary to actively switch the valve output stages 4 when the overrun phase (n ⁇ n,) is undershot .
  • the slide release circuit 22 is provided, which is triggered after a push phase from the output 21 b of the push comparator 21 and ensures that the valve output stage 4 is activated or activated, so that it is at all to actuate the plunger 1 from the push position the electro-pneumatic actuator can come.
  • the thrust release circuit 22 has a time function which, when a thrust phase ends, switches the valve output stages actively for a predetermined period of time (t M ) until the adjuster travel or residual gap of 0.5 mm between the plunger 1 and the throttle valve lever and the throttle valve switch 23 can be closed. In this case, the blocking signal exerted by the latter on the valve output stage 4 then disappears and the regulation can start again, which is made possible by this additional time function of the slide release 22 alone.
  • Thrust comparator 21 with thrust release 22 thus enable a position-controlled thrust position of the tappet, wherein the positioning can also be ensured via an integrated limit switch in series with the evacuating valve; at the end of the overrun phase (falling below the overrun speed threshold n,), the overrun positioning signal is immediately removed from the addition point 42; the priority for this signal disappears and the interception function mentioned above can then intervene in such a way that the plunger 1 is now extended from this push position (for example 1 mm position) towards the working point (the remaining gap 0.5 mm is then overcome)
  • the throttle valve switch 23 switches the control on again or now takes over the activation of the valve output stage 4 after the time function of the slide release circuit 22 has expired, and the interception function returns the speed to the setpoint.
  • the interception function for the harmonic transfer of the engine speed into the idle speed after overrun phases can also be designed so that when the thrust speed falls below the actuator tappet 1 is first controlled to an excessive position compared to the idle speed operating point.
  • the thrust comparator can be designed in such a way that the thrust positioning signal) is raised when the thrust speed is undershot, which affects the tappet 1 via the position controller 6 and the valve output stage 4 and is canceled after a time function. This positioning on the elevated position is then followed by a positioning at the idle speed operating point in the course of the time function mentioned and finally after a further time function has been transferred to the control. The last-mentioned time function is ended prematurely when the actual speed enters the upper limit n T2 of the dead zone.
  • Another threshold switch which is referred to in the illustration of the drawing as the starter detection circuit 20, serves to start the position of the integrator present in the integral amplifier and forces a certain starting position of the integrator at speeds in the vicinity of the starting speed.
  • the starter detection circuit 20 also receives a speed signal from the speed conditioning for idling speed control via line 40 and generates output signals on output lines 45, 45a and 46 during a time during which the engine speed is below a predetermined starting speed threshold (n ⁇ n o ). In the start phase, a signal passes via line 45 from the starter detection circuit 20 to an input 47 of the integral amplifier 9a, which causes an integrator stop as start position.
  • the position memory 19 is set to an adapted initial value (initialization during the starting process) by the start detection circuit before the first current idle working point storage can take place. It is advisable to initially restrict the control in the start-up phase, for example by activating an integrator stop with simultaneous blocking of the proportional amplifier 9b via line 45, 45a, since the controller would otherwise open the main throttle valve widely. It is also essential for the starting process that the integrator should preferably be influenced by taking the engine temperature into account, so that a harmonious transition to idle speed control is then possible from this measure.
  • a sensor for the engine temperature is therefore provided in a manner known per se, for example an NTC resistor which is in suitable heat-conducting contact with engine areas, for example the cooling water, and which is connected via the starter detection circuit 20 or directly to the integral amplifier 9a - with the approval of Starter detection circuit 20, which supplies a supplementary engine temperature signal, which in the Drawing is not shown, and so causes a smooth transition to idle speed control.
  • the effect of the motor temperature can also be maintained via a time function during regulation and can only be gradually reduced.
  • a further advantageous possibility for influencing the temperature results from the fact that the speed-dependent position and / or integrator control is made dependent on the internal combustion engine temperature according to certain functions.
  • the Zener diode 49 still present in the supply line 34 of the speed signal to the comparison point 32 of the integrator control circuit serves to limit the signal supplied here to the speed range n ⁇ n 2, that is to say to the part-load range before the upper limit speed n 2 ' characterizing a coasting phase is reached .
  • Another control intervention with reference to the integral amplifier 9a of the control amplifier starts from a comparison point 48 which compares the stored position signal at the operating point from the output of the memory circuit 19 with the position setpoint signal behind the summing point 17 of the control amplifier 9; this results in a comparison for a lower speed stop; the output signal is also fed to the summing point 14 for the integral component, so that it is ensured that this lower speed stop on the integrator is not undercut.
  • the signal applied to terminal 30 and the memory circuit 19 for storing the actual position value of the plunger only in the no-load state can also come from a gear or clutch switch, in addition to deriving such a signal from a tachometer generator. It is only essential that an incorrect storage of the idle operating point is prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Velocity Or Acceleration (AREA)

Claims (26)

1. Procédé de régulation de la vitesse de rotation d'un moteur à combustion interne avec le papillon de la tubulure d'aspiration, au ralenti ainsi que pour influencer le fonctionnement dans la plage des vitesses de rotation proches du ralenti et en fonctionnement en poussée, en exploitant un signal de valeur réelle proportionnel à la vitesse de rotation, un signal de valeur de consigne de vitesse de rotation en fonction des grandeurs caractéristiques pour former la différence de régulation et une commande correspondante d'un organe de réglage agissant sur le papillon, la régulation se faisant à l'aide d'un régulateur PI (proportionel-intégral) en tenant compte d'un signal rotatif à la position du papillon (commutateur de papillon 23), caractérisé en ce qu'en prédéterminant une plage de zone morte de vitesse de rotation qui, après comparaison avec un signal de dérive de vitesse de rotation obtenu à partir des grandeurs guides de vitesse de rotation de ralenti, sont soumises à une amplification de régulation asymétrique par rapport à la déviation inférieure et supérieure possible, avec au moins une partie intégrale et une partie portionnelle, et en ce que pour centrer le point de fonctionnement de la vitesse de rotation de ralenti par rapport aux influences à long terme, on applique à la partie intégrale de 'l'amplification asymétrique et en shuntant la plage de zone morte, un signal proportionnel à la valeur réelle de la vitesse de rotation, de façon à obtenir une partie intégrale de base avec zone d'action dans la zone morte, en ce qu'on additionne les parties intégrale et proportionnelle respectives et on les applique à un circuit de régulation de position pour le réglage du papillon dans la position de l'organe de réglage définissant le ralenti.
2. Procédé selon la revendication 1, caractérisé en ce que l'amplification de régulation asymétrique de la déviation de régulation de vitesse de rotation forme une fonction de secours lorsqu'on dépasse vers le bas une valeur de vitesse de rotation limite de zone morte inférieure avec une partie proportionnelle plus accentuée de préférence avec une partie différentielle complémentaire.
3. Procédé selon les revendications 1 ou 2, caractérisé en ce que l'amplification asymetrique de la déviation de régulation de vitesse de rotation forme lorsqu'on dépasse une vitesse de rotation limite supérieure de la zone morte, une fonction de récupération en limitant la plage de régulation à la partie intégrale 1 avec retour progressif à la position de la vitesse de rotation de ralenti.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'on détecte des modes de fonctionnement du moteur à combustion interne, différents du ralenti et on commute sur une commande anticipée de la position du poussoir définie par l'organe de réglage en coupant le réglage.
5. Procédé selon la revendication 4, caractérisé en ce que pour obtenir des transitions continues de la commande en régulation comprenant la fonction de poussée avec une commande de position dépendant de la vitesse de rotation par rapport au poussoir et/ou une commande d'intégration selon une fonction déterminée ou une commande de position suivant des échelons selon des fonctions de temps avec comparaison de la vitesse de rotation du moteur et de la zone morte, on agit sur la partie intégrale de l'amplification asymétrique du signal de dérive de vitesse de rotation et en ce qu'on effectue un prépositionnement commandé du poussoir pour reconduire le papillon dans la plage régulée de ralenti.
6. Procédé selon l'une ou plusieurs des revendications 1 à 5, caractérisé en ce que pendant les phases de poussée, le circuit de régulation de position bloqué pour les modes de fonctionnement différents du ralenti est déverrouillé pour le poussoir influençant la position du papillon et on génère un signal de position de poussée, prioritaire pour la position de poussée du poussoir, réglée en situation.
7. Procédé selon l'une ou plusieurs des revendications 1 à 6, caractérisé en ce que la grandeur de consigne obtenue par une amplification asymétrique à partir de la déviation de la vitesse de rotation et/ou la grandeur guide de la vitesse de rotation de ralenti et/ou la génération d'informations de commande en fonction de la vitesse de rotation ne sont influencées que de manière complémentaire en fonction de la température pour la partie intégrale de l'amplification.
8. Dispositif pour la mise en oeuvre du procédé selon l'une ou plusieurs des revendications 1 à 7, pour la régulation de la vitesse de rotation d'un moteur à combustion interne comportant un papillon dans la tubulure d'aspiration, pour le ralenti ainsi que pour influencer cette régulation dans la plage des vitesses de rotation proches du ralenti et en fonctionnement en poussée, comprenant un amplificateur de réglage (9) qui détecte la déviation de régulation entre un signal de valeur réelle proportionnel à une vitesse de rotation et un signal de valeur de consigne de vitesse de rotation, amplificateur (9) à comportement proportionnel-intégral (PI) qui commande lui-même par un organe de réglage relié au papillon et par un circuit de réglage de position (5), en tenant compte d'un signal relatif à la position du papillon (commutateur de position de papillon 23), caractérisé en ce que l'amplificateur de réglage PI (9) comporte un circuit de zone morte (10) symetrique par rapport à la grandeur de consigne de vitesse de rotation de ralenti, et dont la zone morte est légèrement supérieure à l'amplitude d'oscillation naturelle de la vitesse de rotation de ralenti, ainsi qu'en outre des moyens d'amplification de réglage asymétrique avec au moins une partie intégrale et une partie proportionnelle ainsi que des moyens qui pour centrer le point de fonctionnement à la rotation au ralenti ajoutent un signal proportionnel a la valeur réelle de la vitesse de rotation pour centrer le point de fonctionnement de vitesse de rotation au ralenti independamment des influences à long terme, sur la partie intégrale de l'amplification asymétrique en shuntant la plage de la zone morte, et pour mettre en oeuvre une partie intégrale de base dans la plage de zone morte, et en outre un moyen pour additionner aux parties intégrale et proportionnelle respectives qui enfin ajoute à un circuit de réglage de position la position de l'organe de réglage définissant la position du papillon au ralenti.
9. Dispositif selon la revendication 8, caractérisé en ce que le circuit à zone morte (10) se compose de deux blocs pour former une valeur limite supérieure de vitesse de rotation (nT2) et pour former une valeur limite de vitesse de rotation inférieure (nTl) de la plage de zone morte, dans laquelle on ne génère pas de signaux de sortie.
10. Dispositif selon les revendications 8 ou 9, caractérisé en ce que les blocs de circuit de la zone morte (10a, 10b) génèrent en cas de dépassement de leur vitesse de rotation limite de zone morte (nT2, nn), des signaux de sortie proportionnels à la différence de réglage de vitesse de rotation qui leur est appliquée ou les signaux de sortie présentant par rapport à cette différence une liaison fonctionnelle quelconque.
11. Dispositif selon l'une des revendications 8 a 10, caractérisé en ce que le circuit de zone morte (10) est précédé par un convertisseur de vitesse de rotation/tension (17) avec un point de comparaison (12) entre le convertisseur (11) et le circuit de zone morte (10) qui reçoit une grandeur guide de vitesse de rotation de ralenti.
12. Dispositif selon la revendication 8, caractérisé en ce que l'amplificateur de réglage en aval du circuit de zone morte (10) comporte des amplificateurs partiels, distincts, constitués par un amplificateur intégral (9a), un amplificateur proportionnel (9b) ainsi que le cas échéant un amplificateur différentiel pour former les parties proportionnelle, intégrale et différentielle et en ce que les différents amplificateurs partiels sont précédés chaque fois d'un point d'addition (14, 15) pour les parties de signaux appliquées à leur entrée.
13. Dispositif selon la revendication 12, caractérisé en ce que l'amplificateur de réglage (9) qui comprend les amplificateurs partiels est réalisé de manière globalement asymétrique ou non linéaire pour former des fonctions de secours dont l'effet est différent lorsqu'on passe en-dessous de la vitesse de rotation limite inférieure (nri) de zone morte, avec une partie intégrale proportionnelle et différentielle ainsi que des fonctions de récupération lorsqu'on dépasse la vitesse de rotation limite supérieure de la zone morte (nT2) avec une partie proportionnelle et/ou intégrale.
14. Dispositif selon la revendication 12 ou 13, caractérisé en ce que les signaux appliqués aux amplificateurs partiels sont exploités pour former des fonctions de secours ou de récupération différentes.
15. Dispositif selon la revendication 8, caractérisé en ce que les sorties des amplificateurs partiels (9a, 9b) de l'amplificateur de réglage (9) réunies sur un point d'addition (17) pour la valeur de consigne de position sont appliqués à un comparateur (7) du circuit de réglage de position (9) pour positionner le poussoir (1).
16. Dispositif selon la revendication 15, caractérisé en ce que le circuit de réglage de position comprend un régulateur de position (6), un étage de commande de soupape (4) en aval du précédent régulateur ainsi qu'un organe de réglage électropneumatique (2) en aval de l'étage de commande de soupape.
17. Dispositif selon la revendication 16, caractérisé en ce que l'organe de réglage électropneumatique (2) comporte pour la commande du poussoir (1) du papillon ou de pièces reliées mécaniquement au papillon, une soupape à évacuer et à mettre à l'air chaque fois pour rentrer ou mettre en place le poussoir (1), et qui sont commandées par des commutateurs de fin de course distincts.
18. Dispositif selon l'une ou plusieurs des revendications 8 à 17, caractérisé par un commutateur de papillon (23) pour détecter les modes de fonctionnement différents du ralenti.
19. Dispositif selon l'une ou plusieurs des revendications 8 à 17, caractérisé par un circuit de détection de la phase de poussée (comparateur de poussée 21) pour détecter les modes de fonctionnement différents du ralenti.
20. Dispositif selon la revendication 18, caractérisé en ce qu'une liaison (36) qui fournit un signal de blocage lorsque le commutateur de papillon (23) est ouvert, est reliée à l'étage de commande de soupape (4) de façon que dans une plage de charges partielles définies par le papillon ouvert, l'organe de réglage électropneumatique (2) soit bloqué de manière à réduire l'usure.
21. Dispositif selon une ou plusieurs des revendications 8 à 20, caractérisé par une commande d'intégration (18) mise en oeuvre en fonction de la vitesse de rotation lorsque le papillon est ouvert et que l'on dépasse la valeur limite supérieure de la zone morte (nT2) et qui est associée à l'amplificateur intégral (9a), commande dont la sortie est reliée au point d'addition (14) de la partie intégrale et dont l'entrée est reliée à un comparateur (32) qui reçoit un signal de sortie proportionnel à la vitesse de rotation fourni par un convertisseur vitesse de rotation/tension (11) prévu à l'entrée.
22. Dispositif selon l'une ou plusieurs des revendications 8 à 21, caractérisé par une mémoire (19) pour enregistrer la position du poussoir (1) au point de fonctionnement de ralenti, mémoire dont le signal de sortie est appliqué du signal de sortie tie de l'amplificateur intégral (9a) au comparateur (32) en amont de la commande d'intégration (18).
23. Dispositif selon la revendication 22, caractérisé en ce que le commutateur de papillon (23) étant ouvert, en dehors du fonctionnement au ralenti, l'amplificateur proportionnel (9b) reçoit un signal de blocage de façon que seulement la partie intégrale qui représente principalement la position du papillon soit asservie en fonction de la sollicitation de l'amplificateur intégral (9a).
24. Dispositif selon la revendication 19 ou les revendications 19 et 21 ou les revendications 19 et 22 ou les revendications 19 et 23, caractérisé en ce que le comparateur de poussée (27) génère un signal de position de poussée (Ssp) prioritaire pour des conditions de vitesse de rotation (0, < n < n2) tombant dans la plage de la phase de poussée, et ce signal est appliqué à l'entré du circuit de réglage de position (5) en avant du comparateur (7) de la valeur de consigne et de la valeur réelle de manière à obtenir un mode de poussée réglé en position pour le poussoir (2) s'appliquant contre le papillon, en avant de la butée mécanique de fin de course.
25. Dispositif selon la revendication 24, caractérisé en ce que le comparateur de poussée (21) est suivi par un circuit de déverrouillage de poussée'(22) qui génère de manière complémentaire une fonction de temps et commande l'étage de commande de soupape (4) du circuit de réglage de position (5) de façon qu'à la fin de la phase de poussée (dépassement vers le bas d'un seuil de vitesse de rotation inférieur nl) les étages de commande de soupape soient commandés efficacement pour passer en plage de régulation.
26. Dispositif selon l'une ou plusieurs des revendications 8 à 25, caractérisé par un circuit de détection de démarrage (20) dont l'entrée est reliée au convertisseur de vitesse de rotation/tension (11) et qui, pour l'initialisation lors de la phase de démarrage génère un signal de sortie pour la mémoire (19) correspondant au point de fonctionnement de position ainsi qu'un second signal de sortie pour avoir une butée d'intégration comme positionnement de démarrage.
EP82109644A 1981-10-26 1982-10-19 Procédé et dispositif de réglage de la vitesse d'un moteur à combustion Expired EP0077997B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3142360 1981-10-26
DE19813142360 DE3142360A1 (de) 1981-10-26 1981-10-26 Verfahren und vorrichtung zur regelung der drehzahl einer brennkraftmaschine

Publications (3)

Publication Number Publication Date
EP0077997A2 EP0077997A2 (fr) 1983-05-04
EP0077997A3 EP0077997A3 (en) 1984-03-28
EP0077997B1 true EP0077997B1 (fr) 1988-05-18

Family

ID=6144827

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82109644A Expired EP0077997B1 (fr) 1981-10-26 1982-10-19 Procédé et dispositif de réglage de la vitesse d'un moteur à combustion

Country Status (4)

Country Link
US (1) US4478183A (fr)
EP (1) EP0077997B1 (fr)
JP (1) JPS5877136A (fr)
DE (2) DE3142360A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0100063A2 (fr) * 1982-07-26 1984-02-08 Hitachi, Ltd. Appareil et méthode de commande de la quantité d'air au démarrage de moteur
WO2001073288A2 (fr) 2000-03-28 2001-10-04 Robert Bosch Gmbh Procede et dispositif de commande du fonctionnement au ralenti d'une unite d'entrainement

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3149097A1 (de) * 1981-12-11 1983-06-16 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zum regeln der leerlaufdrehzahl bei einer brennkraftmaschine
DE3519220A1 (de) * 1984-05-30 1985-12-05 Nissan Motor Co., Ltd., Yokohama, Kanagawa Vorrichtung zur drosselklappensteuerung
DE3439927A1 (de) * 1984-06-30 1986-01-09 Bosch Gmbh Robert Verfahren und vorrichtung zur adaptiven stoergroessenaufschaltung bei reglern
DE3631289A1 (de) * 1986-09-13 1988-03-24 Vdo Schindling Einrichtung zur begrenzung der geschwindigkeit eines kraftfahrzeugs
US4877002A (en) * 1986-12-17 1989-10-31 Mitsubishi Denki Kabushiki Kaisha Electronic control device for internal-combustion engines
JP2573216B2 (ja) * 1987-04-13 1997-01-22 富士重工業株式会社 エンジンのアイドル回転数制御装置
US5528500A (en) * 1994-02-18 1996-06-18 Caterpillar Inc. Programmable high idle set switch and method of operating same
US6078859A (en) * 1997-08-04 2000-06-20 Ford Global Technologies, Inc. System and method for torque based vehicle speed control
JP2001295677A (ja) * 2000-03-29 2001-10-26 Robert Bosch Gmbh 車両速度の制御方法および装置
JP4246431B2 (ja) * 2001-12-26 2009-04-02 株式会社日立製作所 エンジンの燃料制御装置
US7976639B2 (en) 2007-08-17 2011-07-12 S.C. Johnson & Son, Inc. Method for determining the percentage of allergens picked up from a surface

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2049669A1 (de) * 1970-10-09 1972-04-13 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur Steuerung der Leerlaufdrehzahl von Brennkraftmaschinen mit einem zur Drosselklappe parallel wirkenden Umgehungskanal
US3964457A (en) * 1974-06-14 1976-06-22 The Bendix Corporation Closed loop fast idle control system
DE2546076C2 (de) * 1975-10-15 1982-07-15 Volkswagenwerk Ag, 3180 Wolfsburg Regelanordnung für Verbrennungsmotoren mit einer über einen Einschalter einschaltbaren Drehzahl-Regeleinrichtung
US4081733A (en) * 1976-06-29 1978-03-28 Barber-Colman Company Automatic control system with integrator offset
DE2715408C2 (de) * 1977-04-06 1986-07-17 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zum Betrieb und Regeleinrichtung für eine Brennkraftmaschine zum Konstanthalten wählbarer Drehzahlen
JPS5857623B2 (ja) * 1978-02-25 1983-12-21 日産自動車株式会社 内燃機関のアイドル回転数制御装置
DE2844829A1 (de) * 1978-10-14 1980-04-24 Vdo Schindling Einrichtung zum regeln der fahrgeschwindigkeit eines kraftfahrzeugs
US4275691A (en) * 1979-02-05 1981-06-30 Wolff George D Electromechanical precision governor for internal combustion engines
JPS55160137A (en) * 1979-05-29 1980-12-12 Nissan Motor Co Ltd Suction air controller
JPS55160132A (en) * 1979-05-31 1980-12-12 Nissan Motor Co Ltd Revolution controller of internal combustion engine
JPS5696125A (en) * 1979-12-28 1981-08-04 Hitachi Ltd Rotary speed controller for engine
JPS56126635A (en) * 1980-03-07 1981-10-03 Fuji Heavy Ind Ltd Automatic speed governor for idling
JPS56126634A (en) * 1980-03-07 1981-10-03 Fuji Heavy Ind Ltd Automatic speed governor for idling
JPS56135730A (en) * 1980-03-27 1981-10-23 Nissan Motor Co Ltd Controlling device for rotational number of internal combustion engine
US4363303A (en) * 1980-09-03 1982-12-14 Hitachi, Ltd. Throttle valve opening control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0100063A2 (fr) * 1982-07-26 1984-02-08 Hitachi, Ltd. Appareil et méthode de commande de la quantité d'air au démarrage de moteur
EP0100063A3 (en) * 1982-07-26 1984-08-22 Hitachi, Ltd. Apparatus and method for controlling air amount upon engine start
WO2001073288A2 (fr) 2000-03-28 2001-10-04 Robert Bosch Gmbh Procede et dispositif de commande du fonctionnement au ralenti d'une unite d'entrainement

Also Published As

Publication number Publication date
EP0077997A2 (fr) 1983-05-04
EP0077997A3 (en) 1984-03-28
JPS5877136A (ja) 1983-05-10
US4478183A (en) 1984-10-23
DE3142360A1 (de) 1983-05-05
DE3142360C2 (fr) 1992-06-04
JPH0550588B2 (fr) 1993-07-29
DE3278509D1 (en) 1988-06-23

Similar Documents

Publication Publication Date Title
EP0747585B1 (fr) Commande de la pression de suralimentation d&#39;un turbocompresseur de moteur à combustion
DE19531871C1 (de) Verfahren zur Regelung des Ladedrucks bei einer mittels eines Abgasturboladers mit verstellbarer Turbinengeometrie aufgeladenen Brennkraftmaschine
EP0211877B1 (fr) Procede de regeneration automatique d&#39;un filtre de suie dans un vehicule de tourisme avec moteur diesel
EP0077997B1 (fr) Procédé et dispositif de réglage de la vitesse d&#39;un moteur à combustion
DE60203592T2 (de) Regeleinrichtung für Turbolader mit variabler Geometrie
DE4321413C2 (de) Verfahren und Vorrichtung zur Steuerung der Antriebsleistung eines Fahrzeugs
DE19756053B4 (de) Drosselklappensteuervorrichtung
DE3924582A1 (de) Drosselklappen-steuersystem zur radschlupfunterdrueckung bei kraftfahrzeug-brennkraftmaschinen
EP0077996B1 (fr) Procédé et dispositif de réglage de la vitesse de ralenti pour moteur à combustion
DE19517673A1 (de) Verfahren und Vorrichtung zur Steuerung des Drehmoments einer Brennkraftmaschine
WO2001044641A2 (fr) Procede de regulation de la pression de charge sur un moteur alternatif a combustion interne a turbosoufflante
DE102005010792A1 (de) Brennkraftmaschine und Verfahren zum Betreiben einer Brennkraftmaschine
DE4112848C2 (de) System zur Regelung der Leerlaufdrehzahl einer Brennkraftmaschine
DE3932420C2 (fr)
DE10243268A1 (de) Verfahren zum Regeln der Aufladung einer Brennkraftmaschine
EP3594480B1 (fr) Procédé de commande d&#39;un système de charge
DE2338634A1 (de) Steuervorrichtung fuer eine einwellige kraftfahrzeug-gasturbinenmaschine
DE19812843B4 (de) Verfahren zur Ladedruckregelung einer Brennkraftmaschine
DE4015293A1 (de) System zur regelung eines betriebsparameters einer brennkraftmaschine eines kraftfahrzeugs
DE3222363C2 (fr)
EP1830049B1 (fr) Procédé et appareil de commande destinés au réglage d&#39;une section de passage de turbine d&#39;un turbocompresseur
EP1003960B1 (fr) Procede de fonctionnement d&#39;un moteur a combustion interne
DE3022999A1 (de) Einrichtung zur drehzahlabhaengigen schliessbegrenzung einer vergaser-hauptdrossel
DE4221768C2 (de) Verfahren und Vorrichtung zur Steuerung einer Verstelleinrichtung in einem Fahrzeug
DE19748128A1 (de) Verfahren und Vorrichtung zur Steuerung eines Stellelements einer Antriebseinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19821019

AK Designated contracting states

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PIERBURG GMBH & CO. KG

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PIERBURG GMBH

Owner name: ROBERT BOSCH GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
REF Corresponds to:

Ref document number: 3278509

Country of ref document: DE

Date of ref document: 19880623

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PIERBURG GMBH

Owner name: ROBERT BOSCH GMBH

ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991011

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991022

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991221

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001019

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010703

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST