EP0077996B1 - Procédé et dispositif de réglage de la vitesse de ralenti pour moteur à combustion - Google Patents

Procédé et dispositif de réglage de la vitesse de ralenti pour moteur à combustion Download PDF

Info

Publication number
EP0077996B1
EP0077996B1 EP82109643A EP82109643A EP0077996B1 EP 0077996 B1 EP0077996 B1 EP 0077996B1 EP 82109643 A EP82109643 A EP 82109643A EP 82109643 A EP82109643 A EP 82109643A EP 0077996 B1 EP0077996 B1 EP 0077996B1
Authority
EP
European Patent Office
Prior art keywords
speed
control element
idling
control
overrun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82109643A
Other languages
German (de)
English (en)
Other versions
EP0077996A3 (en
EP0077996A2 (fr
Inventor
Manfred Henning
Wolfgang Misch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierburg GmbH
Robert Bosch GmbH
Original Assignee
Pierburg GmbH
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg GmbH, Robert Bosch GmbH filed Critical Pierburg GmbH
Publication of EP0077996A2 publication Critical patent/EP0077996A2/fr
Publication of EP0077996A3 publication Critical patent/EP0077996A3/de
Application granted granted Critical
Publication of EP0077996B1 publication Critical patent/EP0077996B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • F02D31/003Electric control of rotation speed controlling air supply for idle speed control
    • F02D31/004Electric control of rotation speed controlling air supply for idle speed control by controlling a throttle stop

Definitions

  • the invention relates to a method and a device for regulating the speed of an internal combustion engine according to the preamble of the main claim and the first device claim.
  • the article "New mixture formation system for petrol engines” in “Automobil Technische Zeitschrift 83 (1981) 5 " on page 219 ff discloses an electronically controllable carburettor system with regulation of the idling speed as well as electronic control during start, warm-up and acceleration.
  • the idle speed - control system includes an adjustable in position throttle stop plate. When idling, the measured engine speed is continuously compared with the desired setpoint and a PI control algorithm uses the deviation to calculate the required throttle valve position change.
  • a speed-sensitive electrical circuit acts on an electromagnetically actuated actuator, with which the amount of intake air can be changed in the idle position of the throttle valve.
  • the electromagnetically actuated actuator acts in a cross-sectional control manner on a bypass channel parallel to the throttle valve.
  • the arrangement for idle speed control known from DE-A-2 546 076 acts on a throttle valve arranged in the intake pipe of the internal combustion engine.
  • a setpoint generator and an actual value generator are provided for the speed, the output voltages of which are fed to the two inputs of a differential amplifier.
  • An output signal characterizing the control deviation acts on an actuator designed as a solenoid.
  • the actuator is continuously connected to the throttle valve and adjusts it according to the control deviation.
  • This circuit is also not able to introduce boundary conditions into the control and take external factors into account and thus ensure under all circumstances that the idle speed of an internal combustion engine remains safely within a predetermined range, even if transition conditions that take effect quickly have to be absorbed.
  • this known circuit is not suitable to be used at the same time to influence the overrun operation, namely for fuel-saving overrun cutoff.
  • the object of the invention is to optimally further develop the system known from the article in "Automobil Technische Zeitschrift".
  • the method according to the invention and the device according to the invention, each with the characterizing features of the main claim or the first device claim, have the advantage, in contrast, that any external boundary conditions are introduced in addition, interfering influences and precise positioning of the idling speed, in particular also while avoiding long-term influences such as temperature and air pressure can be realized.
  • transitions between the various operating states which constantly occur during operation of an internal combustion engine, can be smoothly absorbed and smoothed by the invention, for example from thrust to part load, from part load to idling, idling to thrust, etc.
  • the invention works with regard to the setting of the idle speed in fully regulated operation; If the idling speed or the speed in the area close to idling is exceeded, the throttle valve can be switched over to control and partial tracking of the actuator.
  • the regulation and control according to the invention reacts quickly and reliably to all possible disturbance variables.
  • FIG. 1a and 1b show the control behavior of the main controller for idling or the area close to idling with P component and I component, in each case above the speed deviation, based on an idling speed setpoint
  • FIG. 2 in the form of a diagram the transition behavior from thrust to idling, the path of the actuator being plotted over time
  • FIG. 3 in the form of a diagram the transition behavior from thrust to partial load, the actuator path being plotted against time
  • FIG. 4 the transition behavior from part load in Idling in the form of a diagram
  • FIG. 5 the intervention of the control with respect to the actuator control in accordance with a pulse length modulation in the form of a diagram.
  • FIGS. 7 and 8 in Form of block diagram representations Realization options for the electronic control circuit shows in an essentially digital representation.
  • the central electronic control circuit 1 works on the output side via an output stage 1a on an actuator 2, which in the exemplary embodiment shown is preferably designed as an electropneumatic actuator and has an evacuating valve 2a and an aerating valve 2b.
  • the control of the valves 2a, 2b takes place electrically via assigned relays 3a, 3b, specifically, as will be explained further below, according to a process similar to a pulse length modulation via output stage transistors 4a, 4b connected to the respective relays.
  • the actuator 2 actuates with its valves 2a, 2b a push) 10, which rests on the main throttle, not shown, so that when the evacuating valve is actuated, the plunger 10 is retracted and thus the main throttle is closed more tightly, while when the ventilating valve is actuated, the tappet 10 adjusted more and accordingly the main throttle is opened more.
  • the main throttle or a mechanical part connected to it for example a throttle valve lever, can be lifted off the tappet 10 at any time by actuating the accelerator pedal and is therefore also only under e.g. Spring pressure on.
  • the overall control concept distinguishes four functional areas, which are dependent on speed thresholds and a characteristic signal which is derived from the system of the main throttle on the tappet 10.
  • the central electronic regulating and control circuit controls the electropneumatic actuator 2 differently in accordance with the functional range detected in each case.
  • the four functional areas can be characterized as follows:
  • the engine speed is less than a certain starting speed (n ⁇ n Anl ).
  • the speed lies between the starting speed and a thrust speed (n Anl ⁇ n ⁇ n thrust ) and the main throttle is applied to the tappet 10.
  • the internal combustion engine is in the partial load range
  • the speed is between the starting speed and the thrust speed (n Anl ⁇ n ⁇ n thrust ) and the main throttle is not on the tappet 10 (or on a mechanical stop).
  • the effective actual speed of the internal combustion engine is greater than or equal to the overrun speed (n ⁇ n Schun ).
  • the time between two ignition pulses 5, which are supplied to the terminal 6 of the circuit of FIG. 1, is most conveniently measured and the time interval (period duration) thus obtained is used for speed detection.
  • the ignition pulses instead of the ignition pulses, other signals can also be used, which can occur synchronously with the engine speed, for example dead center sensor e. the like
  • the central control circuit 1 can have a clock generator or oscillator, which is not initially shown separately; If the central control circuit is a so-called microcomputer circuit at least in some areas - preferably a 4-bit microcomputer that has neither a timer nor an interrupt option, then the circuit sequence of the controller (namely the controller program in this case) organized in a loop.
  • This program loop has a constant running time T loop and forms the time base of the control program.
  • a flip-flop 7 is always set by the flip-flop, which works as a buffer and can be, for example, a monoflop or a bistable element, ie a flip-flop.
  • the timing between two ignition pulses as a measure of the period of the speed is measured by the oscillator or clock generator of the central control circuit 1, which works with a constant oscillation period, so that with the oscillations of the clock generator with a significantly higher frequency, based on the highest, due to the occurrence of Ignition pulses characterized speed frequency, a counter is acted upon, the current counter reading then in each case in a memory cher loaded and the counter is reset when an ignition pulse occurs.
  • the occurrence of an ignition pulse can be determined in each case by the fact that the flip-flop 7 has been switched to its other state.
  • the flip-flop 7 as a buffer is then, if it is a bistable element, either reset by the next clock pulse - which means that the current counter reading is taken over into the memory at the same time - or the reset takes place automatically if the flip-flop is a monoflop.
  • the memory content is then a measure of the period and thus of the speed of the internal combustion engine, the resolution being determined by the frequency of the clock generator or oscillator in the control circuit. If the program loop frequency of a microcomputer used in this case is used for the derivation of the clock frequency, then the buffer 7 is queried as a monoflop or as a flip-flop once per loop pass and then either reset by the program (with two stable states of the buffer) or automatically reset (with one Monoflop).
  • the program can wait for a reset to wait for the monoflop to reset after an ignition pulse occurs, thereby achieving yitter-free speed detection. Then T Mono t ! O p > Ts ch i e it e . In this case, too, the counter is incremented each time the loop is run, so that when the next ignition pulse occurs, a current counter reading corresponding to the period of the speed is located in it and can be loaded into the memory. In any case, there is always a current speed signal in the memory, which can be evaluated accordingly by the control circuit 1 and is available.
  • the detection of the position of the main throttle (system) on the tappet 10 or on a mechanical stop corresponding to the throttle valve closed or throttle valve opened in order to distinguish between the functional areas mentioned further above takes place with the aid of a throttle valve switch designated by 8 in FIG. 7.
  • the throttle valve switch 8 can be designed such that a signal log 1 results, for example, when the main throttle is present on the actuator or on the tappet 10 and a signal log 0 when the main throttle is not present.
  • a counter via the clock generator or oscillator of the control circuit 1 or by means of the loop frequency of Microprocessor is increased and decreased at signal log 0.
  • This counter can be counted up or down between a maximum and a minimum value.
  • a buffer is set or reset.
  • the buffer can be set to the log 1 signal when the maximum value is reached and to the log 0 signal when the minimum value is reached. It can be seen that this buffer is most appropriately a bistable element, the output signals of which indicate whether the main choke is present or not.
  • the control circuit is given a target idling speed, which can also be a counter content, for example, or in the case of an analog configuration, for example, a constant voltage which is compared with the content of the memory already mentioned above, or with an analog voltage which is derived from the memory content in a known manner
  • the central control circuit 1 is designed such that it has at least one This PI control behavior applies to the idling functional area and to the resulting special control structure of the plunger 10 via output stage 1a and actuator 2.
  • the PI control behavior works with a proportional component en and integrator running speeds, but with a preferably analog design of the control circuit 1, however, a certain asymmetry in the PI control behavior is provided, so that, for example, if the speed falls below the setpoint speed in idle, the reaction can be faster and / or stronger, possibly with an additional D component, to save the engine from going out, so to speak.
  • control circuit 1 is constructed with digital components or implemented in the form of a microcomputer, then e.g. To simplify the program structure, constant proportions and integrator running speeds are not used, but the speed range is divided into several ranges, also and preferably different ranges, around the target idling speed according to the diagrams in FIGS. 1a and 1b, these ranges then each having constant P- Parts and constant I running speeds included. This then results in stepped platform curves for given control deviations for both the P and the I component.
  • the P component and the integrator level are added and used for actuator control.
  • the PI sum of the P and I components can be stored in an output memory and in an intermediate memory.
  • a possible variant here is to load the buffer store with a value in the output store averaged over a certain time. As long as the functional range idling prevails, the circuit operates fully in the regulated mode according to the overall concept, whereby, as will be discussed further below, the plunger position 10 caused by the actuator 2 is also detected and compared with the setpoint value, which is the PI sum at the output of the control amplifier.
  • the integrator In the presence of the partial load functional area, that is to say when the main throttle is actuated and no longer applied, the integrator is first stopped by this transition of the main throttle identification signal from log 1 to log 0; A suitable blocking signal eliminates the further evaluation of the P component.
  • the PI sum in the buffer which corresponds to the last value in the idle range, is still used for actuator control, so that it remains in the last position before the main throttle is actuated (initially).
  • control circuit 1 is configured so that the actuator is moved back for rotational speeds n ⁇ n thrust. Therefore, when the main throttle is not actuated, thrust cut-off is possible via the accelerator pedal if the mixture generator (for example, carburetor) is designed accordingly.
  • the mixture generator for example, carburetor
  • a temperature detection is carried out in addition to setting the initial values for the integrator level and the PI sum in the output memory and buffer.
  • the PI sum is output in the buffer for actuator control for a specific time t vs (t vs can be, for example, 2 seconds) (compare the course of the diagram indicating the actuator's travel over time) Fig. 2).
  • the actuator therefore occupies the last position in the idle range before changing to another range.
  • There is the possibility and can preferably also be used to add a constant for a short time t a (eg t a 0.2 s) in addition to the output value for actuating the actuator from the buffer. This results in a brief increase in filling after thrust cut-off to avoid speed drops.
  • the control is released again after tvs (and t a ) have expired.
  • the function can proceed according to the diagram in FIG. 3 as with the transition from overrun to idle; After the transition period ty s , however, the control is not released, but the actuator remains in the last position of the idle range in accordance with the PI sum stored in the buffer.
  • the transition period t vs shown in FIG. 3 is therefore only given for better understanding and is of no importance for this transition function.
  • the central control circuit 1 controls the actuator in such a way that the actuator remains in the position in the part load range for a predetermined period of time tt (for example also 2 s) has shown the last value before leaving the idle range, i.e. again corresponds to the PI sum in the buffer. The regulation is then released.
  • tt for example also 2 s
  • the central control circuit also receives a position signal or position signal relating to the tappet position and thus, what applies to the control area, also to the position of the throttle valve.
  • This position signal is an actual value signal and is compared by a suitable comparator or comparator of the control circuit with the target value, which results as a PI sum in the buffer.
  • FIG. 5 shows in the form of a diagram how the control circuit controls the actuator 2 with a method approximating the pulse length modulation in order to achieve the desired one Position or location of the plunger 10 to achieve.
  • the position detection of the plunger position is carried out either by simply returning a tapped potentiometer potential, which in turn is adjusted by the plunger position.
  • the position detection can be carried out with the aid of a digital-to-analog converter, which is designated 9 in FIG. 7.
  • the digital-to-analog converter queries the potentiometer voltage that can also be used here (according to the actuator position) via thresholds.
  • the potentiometer, which is adjusted by the actuator or the plunger, is designated by 15 in FIG.
  • FIG. 6 shows in diagram form more precisely what is meant.
  • two thresholds namely an upper threshold A and a lower threshold B, are used to query whether the potentiometer voltage is above, within or below the thresholds; the two valves 2a, 2b of the actuator are then activated accordingly.
  • the two thresholds as shown in Fig. 6, are overlaid with a sawtooth or triangular shape, i.e. they are sawtooth-shaped, so that a pulsed output differential value is obtained directly by comparison with the actual value on the potentiometer, which leads to pulsed control signals with different pulse durations for different actual value positions and, if necessary, corresponding deviation from the setpoint.
  • 6a shows the position setpoint corresponding to the PI sum at C approximately in the buffer.
  • the two threshold curves originating from the digital-to-analog converter are expediently arranged symmetrically upwards and downwards around this setpoint value C, so that when the actual position value is identical to the setpoint value C, there is no overlap between the actual value initially assumed to be horizontal and the Sawtooth pulses of thresholds A and B result.
  • FIGS. 6b to 6d each show two possible curve profiles over time one above the other, the upper diagram always being used for the control of the evacuating valve and the lower curve for the control of the ventilating valve.
  • FIG. 6b shows that the venting valve is not activated at all, i.e. always remains closed, while the control pulses are supplied to the evacuating valve according to the upper curve, in the presence of which the evacuating valve is transferred to its open position. It can be seen that by actuating the evacuating valve, the plunger position is withdrawn (retracted), so that the actual value curve begins to decrease in accordance with curve D in FIG. 6a (this is not shown in the curves shown). However, it can also be seen that a gradual shifting of the actual value curve profile D downwards shortens the duration of the control pulses, that the overlap periods with the sawtooth threshold A become shorter.
  • FIG. 6d is assigned to the gradually increasing actual value curve of the dash-dotted curve F in FIG. 6a; it can be seen that the actual value F is gradually approaching the desired setpoint C and therefore in this case also Control impulses for the ventilating valve become less and less.
  • the digital-to-analog converter 9 already mentioned above can also be used, a counter being increased with each clock pulse from the oscillator or clock generator, which is part of the control circuit 1, or with each program loop run in a microcomputer; this counter reading is given to the digital-to-analog converter; Because of the double use, it goes without saying that this takes place at different times for the position detection of the ram and for the temperature detection, for example in a multiplex method.
  • a comparator 11 is provided (see FIG. 7), the input of which is supplied with an analog temperature signal from a suitable resistance network.
  • This resistance network contains at least one NTC or PTC resistor for temperature detection, which is in heat-conducting contact with suitable parts of the internal combustion engine, such as the cooling water.
  • the comparator 11 Since the comparator 11 is constantly supplied with a counter-proportional voltage, i.e. an increasing voltage from the digital-to-analog converter, the comparator 11 will then emit a signal when the counter-proportional voltage of the central control circuit 1 exceeds the temperature-dependent voltage. At this moment, the last counter reading corresponds to the temperature value at the comparator, so that it is a measure of the temperature range in which the internal combustion engine works. This counter reading is stored, which is easily possible as a transfer signal into a memory due to the comparator output signal, and is used for temperature evaluation. At the same time, the counter can be reset so that temperature changes can also be recorded.
  • a counter-proportional voltage i.e. an increasing voltage from the digital-to-analog converter
  • the following variant can also be implemented for the functional sequence partial load or for the transition function from partial load to idling.
  • the actuator moves the main throttle up to the system by setting the integrator, i.e. in this variant the integrator is not stopped when the main throttle is actuated in the partial load range. If there is then a transition from partial load to idling, the actuator is reset in a controlled manner until the idling speed is reached.
  • This has the advantage that speed drops during the transition from partial load to idling are avoided if the load torque of the engine has previously been increased in the partial load range, for example by switching on consumers, air conditioning and the like; this solution is also advantageous for motor vehicles with automatic transmissions.
  • a further possible variant of the transition behavior from thrust to idle results from the fact that the integrator is set via a D component and the control is then released.
  • the D component is obtained by differentiating the speed signal, a large D component resulting when the speed drop rate is also high.
  • an adjustment of the actuator via the integrator proportional to the speed of the sinking speed is achieved.
  • the advantage lies in the fact that one can achieve a stronger setting of the actuator and thus a better interception of the speed via the higher speed sink rate at high load torques. This is also advantageous for motor vehicles with an automatic transmission, since the load torque of the torque converter strongly depends on the previous history.
  • the actuator in the partial load range in a speed-controlled manner, the speed setpoint also being influenced and the actual speed being able to be tracked.
  • the tracked speed setpoint is then reduced to the actual setpoint after a predetermined time function, with the result that the speed is reduced in a controlled manner via this time function.
  • FIG. 8 shows a possible embodiment from a large number of conceivable forms for realizing the central control circuit 1; in this embodiment, a predominantly digital mode of operation is required; wherein the circuit components already shown in Fig. 7 have the same reference numerals.
  • the clock generator is designated 20; for speed detection, a counter 21 is acted upon by the counting pulses of the clock generator 20 and is then reset via the flip-flop 7 when an ignition pulse arrives; At the same time, a takeover pulse is emitted from the counter 7 via the connecting line 22 to a transfer gate 23 connected downstream of the counter 21, so that there is in each case a counter reading in the transfer gate or buffer store 23 which corresponds to the period of the actual speed.
  • the counter reading in the intermediate counter 23 is to be compared with a target counter reading in a register (not shown separately in FIG. 8), in which the target value of the speed is entered.
  • This comparison can be made by counting the intermediate memory 23 and the register or a takeover counter connected downstream of this in each case with a high clock rate, so that there is a counter difference which is then processed separately with respect to the P component and the I component by supplying corresponding ones digital circuit components that function as shown in FIGS. 1a and 1b.
  • the block carrying out the difference formation with a target speed is generally designated by 24; the two downstream blocks 25 and 26 are each responsible for processing the speed difference.
  • the binary words resulting at the outputs of the P block 25 and the I block are fed in parallel to a buffer memory 27 and the output memory 28, the counter reading of which, in addition of the P component and the I component, then corresponds to the PI sum of the target position of the actuator corresponds.
  • a first counter 29 and a second counter can be operated with a high clock rate 30 can be controlled for the formation of the upper threshold or the lower threshold.
  • the temperature signal can be obtained with the aid of a further counter 34; the output signal of the comparator 11 is then fed back and triggers a take-over memory, which is not shown in FIG. 8 and takes over the current counter reading of the temperature counter 24.
  • a temperature signal is also obtained, which can be used, for example, to effect corresponding setpoint changes.
  • this temperature signal which is a binary word in the exemplary embodiment in FIG. 8, can be used to change the speed setpoint set in a register in accordance with a desired function, so that a cold speed setpoint can be used when the machine is cold.
  • FIG. 8 Another counter 35 is shown in FIG. 8 for obtaining the system signal of the main choke; this counter is supplied with up and down count signals at its inputs 35a, 35b in accordance with the position of the throttle valve switch, ie either log 0 or log 1.
  • a downstream buffer 36 is set or reset.
  • This buffer can be a bistable element and its output then shows the respective position of the throttle valve, whether it is on the actuator or not.
  • the output signal of the buffer initially reaches the control amplifier with a P component and I component via a connecting line 37.
  • the integrator is stopped by this output signal and the proportional control amplifier is blocked for the speed difference.
  • the main purpose of this is the output signal of the buffer 36 for the signal “choke system”.
  • further comparison memories are provided, which are not shown in FIG. 8 and serve to fulfill the functions mentioned above with regard to the functional areas and the transition functions.
  • a further comparison memory in which the limit speed for the overrun operation is set, is used to drive the actuator back here again, bypassing the control operation, namely, for example, by direct activation of the evacuating valve 2a. It is easy to see that all work areas and transition functions can be realized in this way. The transition function from thrust to idle is only considered as an example. If a system signal of the main throttle valve results from a corresponding switchover of the intermediate store 36, its output signal causes the inputs of the counters 29 and 30 or their set registers 31 and 32 to be switched over to the intermediate store 27 in order to take over the PI sum stored there for the actuator control .
  • a counter can be started which determines the delay time t vs until its maximum value is reached and then effects the switch back to the output memory 28, simultaneously with the release of the control.
  • a counter can be started which determines the delay time t vs until its maximum value is reached and then effects the switch back to the output memory 28, simultaneously with the release of the control.
  • different, increased initial values can be entered in the setting registers 31 and 32 for a transition period. Since this is a measure familiar to a person skilled in the art, there is no need to go into this further.
  • the path of the actuator is designated by S in FIGS. 2, 3 and 4, while the control is released in each case at point G of the curve in FIGS. 2 and 4. 2, the last value in idle is also denoted by H; at time t o there is a transition from thrust to idling. Likewise, in the diagram of FIG. 4, at time t 1, the transition from part-load range to idling takes place via the further time delay tvr still provided there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Velocity Or Acceleration (AREA)

Claims (26)

1. Procédé de réglage de la vitesse de rotation d'un moteur à combustion, par la position d'un clapet d'étranglement dans le canal d'aspiration, en fonctionnement au ralenti, ainsi que pour l'influencer dans une zone de vitesse de rotation voisine du ralenti et en fonctionnement en poussée (moteur-frein), en exploitant un signal de valeur réelle proportionnel à la vitesse de rotation, un signal de valeur de consigne de vitesse de rotation pour former l'écart de vitesse en se référant à des signaux, respectivement à la position de clapet d'étranglement (Interrupteur de clapet d'étranglement 8), ainsi qu'à la température du moteur à combustion et la commande correspondante d'un organe de réglage (10) agissant sur le clapet d'étranglement, d'une régulation de type Pl, de l'écart de vitesse de rotation, d'avec la valeur de consigne de la vitesse de rotation en ralenti et une régulation de la situation de l'organe de réglage pour le clapet d'étranglement, caractérisé en ce que, en considérant une zone morte autour de la vitesse de ralenti de consigne, à l'intérieur de laquelle n'est produit aucun signal de sortie par les éléments de type P et de type 1 du régulateur, des parties proportionnelles et des vitesses d'intégration (Constantes de temps, pente) sont à chaque fois formées et qui ne sont à chaque fois constantes que seulement pour certaines zones de vitesses de rotation, au moins au nombre de trois, situées autour de la vitesse de rotation de consigne de ralenti, de telle sorte que relativement aux parties de type P et de type I, en partant de la vitesse de rotation de ralenti de consigne, qui sont en forme d'escalier, étagées, elles donnent des parties de type P et de type I, pour le comportement PI de la régulation globale et que supplémentairement, l'amplification de la régulation est conçue de manière asymétrique pour obtenir des parties proportionnelles et intégrales non constantes, ramené aux écarts de la vitesse de rotation de consigne de ralenti vers le bas ou bien vers le haut qui sont possibles (figure 1b).
2. Procédé selon la revendication 1, caractérisé en ce qu'en divergence de la régulation, en cas de fonctionnement en ralenti lors des modes de fonctionnement que sont le démarrage, la charge partielle ainsi que la poussée, la régulation est déconnectée et que la situation de la partie en contact corporel avec le clapet d'étranglement est seulement déterminée par la commande de l'organe de réglage.
3. Procédé selon la revendication 1, caractérisé en ce que la somme Pl, qui provient de la régulation en ralenti, correspondant à la valeur de consigne de situation de l'organe de réglage, est mise en mémoire de manière continue, dans une mémoire intermédiaire.
4. Procédé selon la revendication 3, caractérisé en ce qu'une valeur de la somme Pl, relative à la valeur de consigne de situation de l'organe de réglage et qui est obtenue au bout d'un certain temps est transférée dans une mémoire de sortie.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'actionnement de l'étranglement principal (par la pédale de gaz) est saisi pour signal d'appui de l'étranglement principal et que l'intégrateur est arrêté pour la zone de fonctionnement présente en charge partielle et que la dernière somme existante dans la mémoire intermédiaire est transférée comme valeur de consigne de situation pour la suite de la commande d'organe de réglage.
6. Procédé selon une ou plusieurs des revendications 1 à 5, caractérisé en ce que lors de la reconnaissance des phases de propulsion (n;::: nSChUb), l'organe de réglage est ramené sur une butée.
7. Procédé selon une ou plusieurs des revendications 1 à 6, caractérisé en ce que lors de la reconnaissance de l'état de fonctionnement en démarrage, l'organe de régulation est complètement sorti et que la température du moteur à combustion est saisie pour positionner les valeurs de début relativement à l'état d'intégrateur ainsi que la somme PI pour la valeur de consigne de situation, ceci dans la mémoire de sortie et la mémoire intermédiaire.
8. Procédé selon une ou plusieurs des revendications 1 à 7, caractérisé en ce que le temps entre deux impulsions apparaissant de manière synchrone par rapport à la rotation du moteur (Impulsions d'allumage, impulsions de transmetteur de point mort) est mesuré pour la saisie de la vitesse de rotation, par le fait qu'un compteur est sollicité par des impulsions de comptage, faisant que l'état actuel du compteur est à chaque fois transféré dans une mémoire, lors de l'apparition d'une impulsion synchrone par rapport à la rotation du moteur, avec simultanément retour à l'état initial du compteur.
9. Procédé selon la revendication 8, caractérisé en ce que lors de l'organisation du programme de régulateur en un boucle, un dispositif central de commande utilise la boucle de programme avec un temps de réalisation constant et est utilisé pour questionner une mémoire intermédiaire qui est attaquée par des impulsions survenant de manière synchrone par rapport à la rotation du moteur, un compteur étant augmenté à chaque parcours de la boucle.
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que pour empêcher le rebondissement d'un interrupteur de clapet d'étranglement pour saisir le signal d'appui du clapet d'étranglement, un compteur est augmenté ou respectivement diminué selon le signal d'appui, une mémoire intermédiaire étant positionnée, ou bien ramenée à l'état initial, lorsqu'on atteint chaque fois la valeur maximale, respectivement la valeur minimale.
11. Procédé selon une ou plusieurs des revendications 1 à 10, caractérisé en ce que lors de la transition de l'état de fonctionnement en poussée vers le ralenti, la somme PI qui se trouve dans la mémoire intermédiaire est sortie, pour valeur de consigne de situation par rapport à la commande d'organe de réglage, de telle sorte que l'organe de réglage prenne la dernière position qu'il a eu dans la zone de ralenti, avant la libération de la régulation à l'achèvement de ce temps.
12. Procédé selon la revendication 11, caractérisé en ce que l'on additionne une valeur constante pour un certain temps (ta) pour valeur de sortie de la commande d'organe de réglage, de telle sorte que l'on obtienne une brève élévation de remplissage pour éviter des ruptures de vitesses de rotation.
13. Procédé selon une ou plusieurs des revendications 1 à 12, caractérisé en ce que lors de la transition de la propulsion en charge partielle, l'organe de réglage reste dans la dernière position acquise dans la zone de ralenti, avec un blocage maintenu de la régulation, jusqu'à l'écoulement du temps de transition (tvs).
14. Procédé selon une ou plusieurs des revendications 1 à 10, caractérisé en ce que lors de la transition de la charge partielle en ralenti du moteur à combustion, l'organe de réglage est maintenu pour un temps prédéterminé (tt) dans la dernière position de charge partielle, en fonction de la dernière valeur de consigne de situation avant de quitter la zone de ralenti, ceci avant que la régulation ne soit libérée à l'achèvement du temps.
15. Procédé selon une ou plusieurs des revendications 1 à 10, caractérisé en ce que lors de la transition du ralenti en poussée, on effectue la reconnaissance de la zone de ralenti avec l'étranglement principal non appuyé en zone de poussée et avec l'étranglement principal appuyé.
16. Procédé selon une ou plusieurs des revendications 1 à 15, caractérisé en ce que l'organe de réglage électropneumatique conformé avec une soupape de mise à l'air libre et une soupape d'évacuation est commandée par impulsion pour chaque soupape, du genre d'une modulation de longueur de pulsation, le taux d'impulsion de cadence de commande augmente de manière quasi constante lorsque l'on s'éloigne de la valeur réelle de situation de l'organe de réglage, depuis la valeur de consigne de situation formée par la somme Pl.
17. Procédé selon une ou plusieurs des revendications 1 à 16, caractérisé en ce qu'une tension de comparaison de seuils, décalée vers le haut ou bien vers le bas face à la valeur de consigne de situation correspondante de la somme Pl, suivant une forme générale en dents de scie ou bien triangulaire est produite et amenée à une entrée d'un comparateur, à l'autre entrée duquel est amenée la tension de valeur réelle de la valeur réelle de situation de l'organe de réglage, obtenue au moyen d'un convertisseur course/tension, (Potentiomètre) et ceci de telle manière que l'on obtienne des impulsions de commande pour les soupapes d'organe de commande à la sortie du comparateur, provenant de la superposition des seuils en dents de scie avec la valeur réelle.
18. Procédé selon une ou plusieurs des revendications 1 à 17, caractérisé en ce qu'un compteur est augmenté avec des impulsions ou bien à chaque exécution de boucle de programme, afin de saisir la température et qu'à chaque fois, l'état réel du compteur est amené à un comparateur, après un convertisseur numérique-analogique et à l'autre entrée duquel est amenée une tension proportionnelle à la température du moteur à combustion, qu'il en résulte un signal de sortie au comparateur, lorsque la tension proportionnelle au compteur est égale à la tension fonction de la température, de telle sorte qu'on puisse l'exploiter comme valeur pour la température, au moment du signal de sortie du comparateur de l'état du compteur.
19. Procédé selon une ou plusieurs des revendications 1 à 18, caractérisé en ce que dans l'état de fonctionnement en propulsion du moteur à combustion, la soupape d'évacuation reste ouverte pour provoquer un retour complet de l'organe de réglage par une commande constante.
20. Procédé selon une ou plusieurs des revendications 1 à 19, caractérisé en ce que dans la zone en poussée, l'organe de commande est maintenu dans une position située devant une butée mécanique par une commande interrompue de la soupape d'évacuation, de telle sorte que l'on obtienne des temps de rétablissement courts pour le fonctionnement normal de l'organe de réglage.
21. Procédé selon une ou plusieurs des revendications 1 à 20, caractérisé en ce qu'en charge partielle, l'organe de réglage de l'étranglement principal est repoussé jusqu'à être en butée par positionnement de l'intégrateur, de telle sorte que lors de la transition de charge partielle en ralenti, un retour régulé de l'organe de réglage soit entrepris, jusqu'à atteindre la vitesse de rotation en ralenti.
22. Procédé selon une ou plusieurs des revendications 1 à 21, caractérisé en ce que lors de la transition de la propulsion en fonctionnement en ralenti, l'intégrateur soit positionné par une partie de type D et que la régulation soit immédiatement libérée, de telle sorte que l'on ait un réglage de l'organe de réglage par l'intégrateur et qui soit proportionnel par rapport à la vitesse de chute de la vitesse de rotation.
23. Procédé selon une ou plusieurs des revendications 1 à 22, caractérisé en ce que dans la zone de charge partielle, l'organe de réglage soit guidé en commande par la vitesse de rotation, avec suivi simultané de la valeur de consigne de vitesse de rotation, relativement à la valeur réelle de vitesse de rotation et qu'à la transition dans la zone de ralenti, la valeur de consigne de vitesse de rotation qui a suivi soit limitée selon une fonction du temps à une valeur de consigne normale de la vitesse de rotation.
24. Dispositif pour exécuter le procédé, selon une ou plusieurs des revendications 1 à 23, pour le réglage de la vitesse de rotation d'un moteur à combustion, avec un clapet d'étranglement dans le canal d'aspiration, en ralenti et pour l'influencer dans la zone de vitesse de rotation voisine du ralenti et en fonctionnement en poussée, avec un amplificateur de régulation saisissant l'écart de régulation entre un signal de valeur réelle proportionnel à la vitesse de rotation et un signal de valeur de consigne de vitesse de rotation et un amplificateur de régulation commandant l'organe de réglage (10) se trouvant en liaison active avec le clapet d'étranglement, avec un circuit de commande électrique central (1), dont les entrées sont des signaux de commande synchrones par rapport à la rotation du moteur (impulsions d'allumage, impulsions de transmetteur de point mort), un signal d'appui d'étranglement principal venant d'un interrupteur de clapet d'étranglement (8), un signal de valeur réelle de situation d'un convertisseur course/tension (Potentiomètre 15) relativement à la position d'organe de réglage et un signal de température de moteur à combustion, provenant d'un capteur de température du moteur à combustion et à la sortie duquel l'organe de réglage (2) est raccordé, lequel déplace un poussoir appuyé au clapet d'étranglement principal, caractérisé en ce que des moyens sont prévus dans le circuit de commande (1) électrique central, pour une régulation en forme d'escalier, asymétrique de type P et de type I, en considérant une zone morte autour de la vitesse de consigne de ralenti.
25. Dispositif selon la revendication 24, caractérisé en ce qu'un convertisseur numérique-analogique (9) est prévu, pour convertir la valeur de consigne de situation en somme Pl, formée de manière digitale, dont le signal de sortie est amené à un comparateur (12), dont l'autre entrée est reliée au convertisseur course/tension (Potentiomètre 10) pour la valeur réelle de situation, de telle sorte que les impulsions de sortie du comparateur servent immédiatement à la commande de l'organe de réglage (2).
26. Dispositif selon les revendications 24 ou 25, caractérisé en ce que l'organe de réglage (2) est conçu, de manière électropneumatique, avec une soupape d'évacuation pour enfoncer le poussoir s'appuyant sur le clapet d'étranglement et une soupape de mise à l'air libre pour mettre en place le poussoir.
EP82109643A 1981-10-26 1982-10-19 Procédé et dispositif de réglage de la vitesse de ralenti pour moteur à combustion Expired EP0077996B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813142409 DE3142409A1 (de) 1981-10-26 1981-10-26 Verfahren und vorrichtung zur regelung der drehzahl einer brennkraftmaschine im leerlauf
DE3142409 1981-10-26

Publications (3)

Publication Number Publication Date
EP0077996A2 EP0077996A2 (fr) 1983-05-04
EP0077996A3 EP0077996A3 (en) 1984-03-28
EP0077996B1 true EP0077996B1 (fr) 1988-06-01

Family

ID=6144844

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82109643A Expired EP0077996B1 (fr) 1981-10-26 1982-10-19 Procédé et dispositif de réglage de la vitesse de ralenti pour moteur à combustion

Country Status (4)

Country Link
US (1) US4474154A (fr)
EP (1) EP0077996B1 (fr)
JP (1) JPS5877135A (fr)
DE (2) DE3142409A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3149097A1 (de) * 1981-12-11 1983-06-16 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zum regeln der leerlaufdrehzahl bei einer brennkraftmaschine
DE3232725A1 (de) * 1982-09-03 1984-03-08 Robert Bosch Gmbh, 7000 Stuttgart Regeleinrichtung fuer ein stellwerk bei einer brennkraftmaschine mit selbstzuendung
JPS59203850A (ja) * 1983-05-04 1984-11-19 Diesel Kiki Co Ltd エンジンの回転速度制御装置
JPS59226243A (ja) * 1983-06-06 1984-12-19 Mazda Motor Corp エンジンのアイドル回転制御装置
DE3329800A1 (de) * 1983-08-18 1985-02-28 Robert Bosch Gmbh, 7000 Stuttgart Drehzahlregelsystem fuer eine brennkraftmaschine mit selbstzuendung
DE3337260A1 (de) * 1983-10-13 1985-04-25 Atlas Fahrzeugtechnik GmbH, 5980 Werdohl Leerlaufregelung fuer einen ottomotor
US4509478A (en) * 1984-06-11 1985-04-09 General Motors Corporation Engine fuel control system
DE3421897A1 (de) * 1984-06-13 1985-12-19 Pierburg Gmbh & Co Kg, 4040 Neuss Verfahren zum bestimmen des anlagezustandes der hauptdrosselkinematik an einem drosselklappenansteller
US4572127A (en) * 1985-04-01 1986-02-25 Ford Motor Company Interactive spark and throttle idle speed control
US4753202A (en) * 1985-07-05 1988-06-28 Honda Giken Kogyo K.K. Idling speed control system for internal combustion engines
JPS62178749A (ja) * 1986-01-29 1987-08-05 Mitsubishi Electric Corp 内燃機関のアイドル回転数制御装置
JPH0718371B2 (ja) * 1986-11-24 1995-03-06 三菱電機株式会社 内燃機関の回転数制御装置
JP2553536B2 (ja) * 1987-01-20 1996-11-13 マツダ株式会社 エンジンのアイドル回転数制御装置
DE3704941A1 (de) * 1987-02-17 1988-08-25 Pierburg Gmbh Verfahren und vorrichtung zur regelung der leerlaufdrehzahl bei brennkraftmaschinen
JPS63146141U (fr) * 1987-03-13 1988-09-27
US4875448A (en) * 1988-09-23 1989-10-24 Briggs & Stratton Corporation Cyclic responding electronic speed governor
US5279271A (en) * 1990-06-29 1994-01-18 Robert Bosch Gmbh Control system for an internal combustion engine and/or motor vehicle
AT398644B (de) * 1992-07-02 1995-01-25 Vaillant Gmbh Digitaler regelkreis
JP3279032B2 (ja) * 1993-12-16 2002-04-30 スズキ株式会社 船外機のエンジン回転数制御装置
DE10018193A1 (de) * 2000-04-12 2001-10-25 Bayerische Motoren Werke Ag Regelverfahren
FR2887797B1 (fr) * 2005-07-01 2008-08-15 Societe De Prospection Et D'inventions Techniques Procede de determination de donnees d'exploitation d'un appareil portatif a actionnement manuel et l'appareil pour la misen en oeuvre du procede
US8032236B2 (en) * 2008-09-30 2011-10-04 Rockwell Automation Technologies, Inc. Asymetrical process parameter control system and method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575256A (en) * 1969-02-12 1971-04-20 Ford Motor Co Speed control system for an automtoive vehicle
DE2049669A1 (de) * 1970-10-09 1972-04-13 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur Steuerung der Leerlaufdrehzahl von Brennkraftmaschinen mit einem zur Drosselklappe parallel wirkenden Umgehungskanal
US3964457A (en) * 1974-06-14 1976-06-22 The Bendix Corporation Closed loop fast idle control system
DE2546076C2 (de) * 1975-10-15 1982-07-15 Volkswagenwerk Ag, 3180 Wolfsburg Regelanordnung für Verbrennungsmotoren mit einer über einen Einschalter einschaltbaren Drehzahl-Regeleinrichtung
US4098242A (en) * 1976-06-17 1978-07-04 Barber-Colman Company Automatic control system with gain switching
US4081733A (en) * 1976-06-29 1978-03-28 Barber-Colman Company Automatic control system with integrator offset
DE2715408C2 (de) * 1977-04-06 1986-07-17 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zum Betrieb und Regeleinrichtung für eine Brennkraftmaschine zum Konstanthalten wählbarer Drehzahlen
JPS5857623B2 (ja) * 1978-02-25 1983-12-21 日産自動車株式会社 内燃機関のアイドル回転数制御装置
JPS55160137A (en) * 1979-05-29 1980-12-12 Nissan Motor Co Ltd Suction air controller
JPS55160132A (en) * 1979-05-31 1980-12-12 Nissan Motor Co Ltd Revolution controller of internal combustion engine
JPS6038544B2 (ja) * 1979-10-17 1985-09-02 株式会社デンソー エンジンの回転速度制御方法
JPS5925111B2 (ja) * 1979-11-06 1984-06-14 マツダ株式会社 エンジンのアイドル回転数制御装置
JPS56126635A (en) * 1980-03-07 1981-10-03 Fuji Heavy Ind Ltd Automatic speed governor for idling
JPS56126634A (en) * 1980-03-07 1981-10-03 Fuji Heavy Ind Ltd Automatic speed governor for idling
FR2478202A1 (fr) * 1980-03-17 1981-09-18 Sibe Dispositif de carburation pour moteur a combustion interne
JPS56135730A (en) * 1980-03-27 1981-10-23 Nissan Motor Co Ltd Controlling device for rotational number of internal combustion engine
US4401075A (en) * 1980-10-27 1983-08-30 The Bendix Corporation Automatic speed control for heavy vehicles

Also Published As

Publication number Publication date
EP0077996A3 (en) 1984-03-28
EP0077996A2 (fr) 1983-05-04
US4474154A (en) 1984-10-02
DE3142409A1 (de) 1983-05-05
DE3278575D1 (en) 1988-07-07
JPS5877135A (ja) 1983-05-10
DE3142409C2 (fr) 1992-07-30

Similar Documents

Publication Publication Date Title
EP0077996B1 (fr) Procédé et dispositif de réglage de la vitesse de ralenti pour moteur à combustion
DE3313038C2 (fr)
DE3039435C2 (de) Vorrichtung zur Regelung der Leerlauf-Drehzahl von Brennkraftmaschinen
EP0176750B2 (fr) Procédé pour le contrôle électronique d'une transmission automatique pour véhicules
DE3426799C2 (fr)
EP0211877B1 (fr) Procede de regeneration automatique d'un filtre de suie dans un vehicule de tourisme avec moteur diesel
DE3020131C2 (fr)
DE3003749C2 (de) Steuerung für automatische Getriebe
DE2804389C2 (fr)
DE2715408C2 (de) Verfahren zum Betrieb und Regeleinrichtung für eine Brennkraftmaschine zum Konstanthalten wählbarer Drehzahlen
DE2842389A1 (de) Vorrichtung zur einstellung des drehmomentes einer brennkraftmaschine
DE2749369A1 (de) Steuereinrichtung fuer ein magnetventil im umgehungskanal einer drosselklappe bei brennkraftmaschinen
DE19501299B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine eines Fahrzeugs
EP0130341B1 (fr) Procédé et dispositif de commande d'un moteur à combustion interne en décélération
DE2912355C2 (de) Gemischbildungseinrichtung für Brennkraftmaschinen mit Vergaser
EP0077997B1 (fr) Procédé et dispositif de réglage de la vitesse d'un moteur à combustion
DE4036566A1 (de) Vorrichtung zur steuerung und/oder regelung einer betriebsgroesse einer brennkraftmaschine
DE4015293A1 (de) System zur regelung eines betriebsparameters einer brennkraftmaschine eines kraftfahrzeugs
DE3048626C2 (fr)
EP0205916B1 (fr) Procédé de commande et/ou de régulation des caractéristiques de fonctionnement d'un moteur à combustion
EP1005609B1 (fr) Procede permettant de commander le recyclage des gaz d'echappement d'un moteur a combustion interne
DE4445462A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine eines Fahrzeugs
EP0641414B1 (fr) Systeme de commande pour le dosage du carburant dans un moteur a combustion interne
DE10058354B4 (de) Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines Fahrzeugs
DE2707411C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19821019

AK Designated contracting states

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PIERBURG GMBH & CO. KG

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PIERBURG GMBH

Owner name: ROBERT BOSCH GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3278575

Country of ref document: DE

Date of ref document: 19880707

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921012

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921027

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931019

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971229

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990803