EP1003960B1 - Procede de fonctionnement d'un moteur a combustion interne - Google Patents

Procede de fonctionnement d'un moteur a combustion interne Download PDF

Info

Publication number
EP1003960B1
EP1003960B1 EP99919115A EP99919115A EP1003960B1 EP 1003960 B1 EP1003960 B1 EP 1003960B1 EP 99919115 A EP99919115 A EP 99919115A EP 99919115 A EP99919115 A EP 99919115A EP 1003960 B1 EP1003960 B1 EP 1003960B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
operating
rotational speed
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99919115A
Other languages
German (de)
English (en)
Other versions
EP1003960A2 (fr
Inventor
Winfried Moser
Matthias Philipp
Dirk Mentgen
Michael Oder
Georg Mallebrein
Christian Koehler
Juergen Foerster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1003960A2 publication Critical patent/EP1003960A2/fr
Application granted granted Critical
Publication of EP1003960B1 publication Critical patent/EP1003960B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • F02D41/307Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes to avoid torque shocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3818Common rail control systems for petrol engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode

Definitions

  • the invention relates to a method for operating a Internal combustion engine, in particular of a motor vehicle, at the fuel either in a first mode of operation a compression phase or in a second operating mode directly into a combustion chamber during an intake phase is injected in between the two Operating modes is switched, and in which the actual moment influencing the internal combustion engine Operating variables depending on a target torque in the two operating modes controlled differently and / or be managed.
  • the invention relates to a Internal combustion engine, in particular for a motor vehicle, with an injector, with fuel in either one first operating mode during a compression phase or in a second operating mode directly during an intake phase is injectable into a combustion chamber, and with a Control unit for switching between the two Operating modes and for different control and / or Regulation in the two operating modes of the actual moment of Operating variables influencing internal combustion engine in Dependence on a target torque. (See WO-A-985 1920 and / or WO-A-9 901 654).
  • Such systems for the direct injection of fuel in the combustion chamber of an internal combustion engine are general known. It is the first operating mode so-called shift operation and as a second operating mode so-called homogeneous operation.
  • the Shift operation is particularly important for smaller loads used during the homogeneous operation at larger, at the Internal loads applied to the internal combustion engine.
  • the fuel is used during the Compression phase of the internal combustion engine in the combustion chamber injected in such a way that a Cloud of fuel in the immediate vicinity of a spark plug located.
  • This injection can be different Way. So it is possible that the injected Fuel cloud is already during or immediately after the injection is at the spark plug and from this is ignited. It is also possible that the injected cloud of fuel through a charge movement the spark plug is led and then ignited. at the two combustion processes are not uniform Fuel distribution before, but a stratified charge.
  • the throttle valve becomes the Combustion chamber leading intake pipe wide open and the Combustion is essentially only through the Fuel mass to be injected controlled and / or regulated.
  • the throttle valve In homogeneous operation, the throttle valve is in Dependent on the requested moment opened or closed and the fuel mass to be injected is in Controlled depending on the intake air mass and / or regulated.
  • the object of the invention is a method for operating to create an internal combustion engine with which a improved switching between operating modes possible is.
  • This task is initiated in a procedure mentioned type or in an internal combustion engine of initially mentioned type solved according to the invention in that a change in the actual moment during a Switching operation is determined, and that depending of which at least one of the operating variables is influenced.
  • a first advantageous embodiment of the invention becomes an expected depending on the target torque Speed determined, and it is the expected speed with the detected speed of the internal combustion engine compared. It speed prediction is carried out. It will calculates which speed should be available, if there is no uneven running. Based on a comparison of this expected speed with the actual engine speed will then determines whether jerking occurs during the switching process is present or not.
  • At least one of the Operating variables of the internal combustion engine is influenced when the detected speed by more than a predetermined Speed difference deviates from the expected speed.
  • the expected speed deviates from the actually recorded speed Speed decreases significantly, this leads to uneven running closed during the switching process This then has to Consequence that the actual moment of the internal combustion engine over a of company sizes in the sense of a reduction of Torque change is affected.
  • a second advantageous embodiment of the invention are from the detected speed of the internal combustion engine at least two speed gradients are determined, and there are two of the speed gradients are compared. So it will change the actual speed of the Internal combustion engine monitored. This is through the Calculation of the speed gradient in a simple way reached. Additional components or the like are included not mandatory.
  • the Influencing one of the operating variables adaptively carried out. So there is a permanent correction of the Switchover. This makes it possible, for example Changes in the internal combustion engine over its runtime, in particular signs of wear and the like compensate. It is also possible to deviate between different internal combustion engines of the same type balance during commissioning.
  • the injected fuel mass in particular is influenced in the sense of an increase. It is also advantageous if the ignition angle in the second operating mode or the ignition point in particular in the sense of a Late adjustment is affected.
  • the 1 shows an internal combustion engine 1, in which a piston 2 in a cylinder 3 back and forth is movable.
  • the cylinder 3 has a combustion chamber 4 provided, on the valves 5, an intake pipe 6 and a Exhaust pipe 7 are connected. Furthermore are the Combustion chamber 4 can be controlled with a signal TI Injector 8 and a controllable with a signal ZW Associated with spark plug 9.
  • the intake pipe 6 is with an air mass sensor 10 and that Exhaust pipe 7 can be provided with a lambda sensor 11.
  • the air mass sensor 10 measures the air mass of the Intake pipe 6 supplied fresh air and generated in Depending on this, a signal LM.
  • the lambda sensor 11 measures the oxygen content of the exhaust gas in the exhaust pipe 7 and generates a signal ⁇ depending on this.
  • a throttle valve 12 is in the intake pipe 6 housed, whose rotational position by means of a signal DK is adjustable.
  • the throttle valve 12 becomes wide open.
  • the fuel is supplied from the injection valve 8 during one caused by the piston 2 Compression phase injected into the combustion chamber 4 locally in the immediate vicinity of the spark plug 9 and at a suitable distance before the ignition point. Then the fuel is ignited using the spark plug 9, so that the piston 2 in the now following working phase by the expansion of the ignited fuel is driven.
  • the homogeneous operation of the Internal combustion engine 1 the throttle valve 12 in Dependence on the desired air mass supplied partially opened or closed.
  • the fuel will from the injector 8 during one through the piston 2 induced suction phase in the combustion chamber 4 injected.
  • the air sucked in at the same time the injected fuel swirls and thus in the Combustion chamber 4 is distributed substantially uniformly.
  • the fuel / air mixture during the Compression phase compressed to then from the spark plug 9 to be ignited.
  • the piston 2 is driven by fuel.
  • the driven piston In shift operation as well as in homogeneous operation, the driven pistons a crankshaft 14 in a Rotational movement over which ultimately the wheels of the Motor vehicle are driven.
  • the crankshaft 14 is assigned a speed sensor 15 which is a function of the rotational movement of the crankshaft 14 generates a signal N.
  • Fuel mass is in particular from a control unit 16 with a view to low fuel consumption and / or controlled low pollutant development and / or regulated.
  • the control unit 16 is equipped with a Microprocessor provided in a storage medium, a program in particular in a read-only memory has saved, which is suitable for the named Control and / or regulation to perform.
  • the control unit 16 is acted upon by input signals, the operating variables measured by sensors Represent internal combustion engine.
  • the operating variables measured by sensors Represent internal combustion engine For example, that is Control unit 16 with the air mass sensor 10, the lambda sensor 11 and the speed sensor 15 connected.
  • the control unit 16 with an accelerator pedal sensor 17 connected which generates a signal FP, the position an accelerator pedal actuated by a driver and thus indicates the moment requested by the driver.
  • the Control unit 16 generates output signals with which over Actuators the behavior of the internal combustion engine accordingly the desired control and / or regulation influenced can be.
  • the control unit 16 subsequently uses the Figures 2 and 3 described method for switching from carried out a shift operation in a homogeneous operation.
  • the blocks shown in FIG. 2 represent Functions of the method, for example in the Form of software modules or the like in the Control device 16 are realized.
  • FIG. 2 it is assumed in a block 21 that that the internal combustion engine 1 in a stationary Shift operation is located. Then in a block 22 for example, based on a driver's request Acceleration of the motor vehicle a transition into one Homogeneous operation requested. The time of the request of the homogeneous operation can also be seen from FIG. 3.
  • the throttle valve 12 by means of a block 26 from it in shift operation fully opened wdksch in at least one partially open or closed state wdkhom for controlled homogeneous operation.
  • the Internal combustion engine 1 By adjusting the throttle valve 12 is the Internal combustion engine 1 from the stationary stratified operation in unsteady shift operation. In this Operating state drops the supplied to the combustion chamber 4 Air mass from a filling rlsch during the Shift work slowly towards smaller fillings. This can be seen from Figure 3.
  • the combustion chamber 4 supplied air mass rl or its filling is from the control unit 16, inter alia, from the signal LM of the Air mass sensor 10 determined.
  • the internal combustion engine 1 continues to operate in shifts operated.
  • the fuel mass rk influenced in this way has Consequence that - at least for a certain period of time - the torque Md output by the internal combustion engine 1 would increase. This is compensated for by the fact that Event 41, i.e. with the switchover to Homogeneous operation, the ignition angle ZW, based on the value is adjusted so that the torque Md one of which is from the requested moment resulting target torque mdsoll and thus about remains constant.
  • the fuel mass rk from the Combustion chamber 4 supplied air mass rl on the basis of a stoichiometric fuel / air mixture. Furthermore, the ignition angle ZW is dependent on the Target torque must be adjusted in the direction of a late ignition. With regard to this late adjustment, there is still one certain deviation from normal homogeneous operation before, with the temporarily too much air mass and the resulting too much generated moment of Internal combustion engine 1 is destroyed.
  • a block 30 checks whether the combustion chamber 4 supplied air mass rl finally to that filling which has fallen to a stationary homogeneous operation belongs to a stoichiometric fuel / air mixture. is if this is not yet the case, it will loop over waiting for block 29 further. However, if this is the case, so the internal combustion engine 1 in the stationary Homogeneous operation without an ignition angle adjustment using the Blocks 31 continued to operate. In Figure 3, this is in one the point in time marked with the reference number 42 Case.
  • the stationary shift operation is as Area A
  • the unsteady shift operation as area B
  • the unsteady homogeneous operation as area C
  • the stationary homogeneous operation marked as area D.
  • FIG. 4 shows a switchover from homogeneous operation represented in a shift operation. It is from one stationary homogeneous operation in which for example, due to the size of the company Internal combustion engine 1 in a stationary shift operation should be transferred.
  • the switch to shift operation is carried out by the Control unit 16 initiated by the requirement of Homogeneous operation is withdrawn. After a debouncing the switch to shift operation is released and it turns the throttle valve 12 into that rotational position controlled, which is intended for shift operation. there it is a rotary position in which the Throttle valve 12 is largely open. This is through the transition from wdkhom to wdksch in FIG. 4 shown.
  • the opening of the throttle valve 12 has the consequence that the Combustion chamber 4 supplied air mass rl increases. This goes in 4 from the course of rlhom. After that the switching from the described transient occurs Homogeneous operation in a transient shift operation. This is the case in FIG. 4 at time 43.
  • the increasing air mass supplied to the combustion chamber 4 compensates that the injected fuel mass rk increased and the ignition angle ZW is retarded. This results from the course of rkhom and zwhom.
  • FIG 4 shows the stationary homogeneous operation as Area A, the transient homogeneous operation as area B, the transient shift operation as area C and the stationary shift operation marked as area D.
  • FIG. 5a shows a first method that during the changeover from shift operation to Homogeneous operation according to Figures 2 and 3 or vice versa 4 can be used.
  • the procedure serves to, torque changes of the internal combustion engine 1, that is Changes in the delivered actual torque Md during the Switching process to recognize.
  • Blocks represent functions of the method that for example in the form of software modules or The like are realized in the control unit 16.
  • FIG. 5b shows a second method which during the changeover from shift operation to Homogeneous operation according to Figures 2 and 3 or vice versa 4 can be used.
  • the procedure serves to, torque changes of the internal combustion engine 1, that is Changes in the actual torque Md during the switching process to recognize.
  • each of the areas A, B, C and D of FIGS. 3 and 4 are blocks 55, 56 at least two speeds N of Engine 1 at successive times recorded, from which then a speed gradient dN (i) from the Control unit 16 is calculated.
  • Two at a time calculated speed gradients dN (i) and dN (i + 1) are in a block 57 compared with each other. It results an approximately steady course of the speed gradient, so concluded that no or only changes in load based torque changes are present, one follows, for example, a change in driving resistance and that there is no jerking and no uneven running available. There are therefore no further measures taken.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

L'invention concerne un moteur à combustion interne (1), notamment pour un véhicule à moteur. Ce moteur est équipé d'une soupape d'injection (8) permettant d'injecter du carburant directement dans une chambre de combustion (4), soit, dans un premier mode de fonctionnement, pendant une phase de compression, soit, dans un deuxième mode de fonctionnement, pendant une phase d'admission. Il est prévu en outre un appareil de régulation pour assurer la commutation entre les deux modes de fonctionnement et pour assurer la commande et/ou la régulation, de façon différente dans les deux modes de fonctionnement, des grandeurs de fonctionnement influençant le couple réel du moteur à combustion interne (1), en fonction d'un couple de consigne. Une variation du couple réel pendant le passage d'un mode à l'autre est reconnue par l'appareil de régulation (16) et au moins une des grandeurs de fonctionnement est influencée par l'appareil de régulation (16) en fonction de cette variation.

Claims (13)

  1. Procédé de mise en oeuvre d'un moteur à combustion interne (1). notamment d'un véhicule automobile, selon lequel le carburant est injecté directement dans la chambre de combustion (4) soit selon un premier mode de fonctionnement pendant la phase de compression, soit selon un second mode de fonctionnement pendant la phase d'aspiration, et selon lequel on commute entre les deux modes de fonctionnement et on commande et/ou on régule différemment dans les deux modes de fonctionnement, les grandeurs de fonctionnement qui influencent le couple réel (Md) du moteur à combustion interne (1) suivant le couple de consigne (mdcons),
    caractérisé en ce qu'
    on détermine une variation du couple réel (Md) pendant une opération de commutation (figures 5a, 5b) et
    on l'influence (54, 58) au moins en fonction d'un paramètre de fonctionnement.
  2. Procédé selon la revendication 1.
    caractérisé en ce qu'
    on détermine la variation du couple réel (Md) suivant le régime (N) détecté du moteur à combustion interne (50, 51, 52, 53, 55, 56, 57).
  3. Procédé selon l'une des revendications 1 ou 2.
    caractérisé en ce qu'
    en fonction du couple de consigne (mdcons) on détermine (51) un régime prévisible (N') et on compare (52) le régime prévisible (N') au régime saisi (N) du moteur à combustion Interne (1).
  4. Procédé selon la revendication 3.
    caractérisé en ce qu'
    on influence au moins un paramètre de fonctionnement du moteur à combustion interne (1) si la vitesse de rotation saisie (N) diffère (54) de plus d'une diliérence de vitesse de rotation prédéterminée (λN) par rapport au régime prévisible (N').
  5. Procédé selon la revendication 4,
    caractérisé en ce qu'
    on n'effectue aucune influence si plusieurs différences de vitesses de rotation successives (dN(i-1), dN(1)) présentent (53) un tracé sensiblement constant.
  6. Procédé selon l'une des revendications 1 ou 2,
    caractérisé en ce qu'
    à partir du régime saisi (N) du moteur à combustion interne (1) on détermine (55, 56) au moins deux gradients de vitesses de rotation (dN(i), dN(i+1)) et on compare (57) deux des gradients de vitesses de rotation (dN(i-1), dN(i)) entre eux.
  7. Procédé selon la revendication 6,
    caractérisé en ce qu'
    on influence (58) au moins l'un des paramètres de fonctionnement du moteur à combustion interne (1) si les deux gradients de vitesses de rotation (dB(i-1), dN(i)) ont un tracé non correspondant.
  8. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    on influence de manière adaptative l'un des paramètres de fonctionnement.
  9. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    on influence l'un des paramètres de fonctionnement seulement pour l'opération de commutation suivante.
  10. Procédé selon l'une des revendications précédentes.
    caractérisé en ce que
    dans un premier mode de fonctionnement on influence la masse de carburant à injecter (rk) notamment dans le sens d'une augmentation.
  11. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    dans le second mode de fonctionnement on Influence l'angle d'allumage (ZW) ou l'instant d'allumage notamment dans le sens d'un réglage vers le retard.
  12. Elément de commande, notamment mémoire morte, pour un appareil de commande (16) d'un moteur à combustion interne (1) notamment d'un véhicule automobile contenant un programme destiné à être exécuté dans un calculateur, notamment un microprocesseur pour la mise en oeuvre du procédé selon l'une des revendications 1 à 11.
  13. Moteur à combustion interne (1), notamment pour un véhicule automobile, comportant un injecteur (8) qui injecte le carburant directement dans la chambre de combustion (4) soit selon un premier mode de fonctionnement pendant une phase de compression, soit dans un second mode de fonctionnement pendant une phase d'aspiration, ainsi qu'un appareil de commande (16) pour commuter entre les deux modes de fonctionnement et pour commander différemment et/ou réguler dans les deux modes de fonctionnement les paramètres de fonctionnement qui influencent le couple réel (Md) du moteur à combustion interne (1) en fonction d'un couple de consigne (mdcons),
    caractérisé en ce que
    l'appareil de commande (16) détermine une variation du couple réel (Md) pendant une opération de commutation (figures 5a, 5b) et en fonction de cela influence (54, 58) au moins l'un des paramètres de fonctionnement.
EP99919115A 1998-03-26 1999-03-24 Procede de fonctionnement d'un moteur a combustion interne Expired - Lifetime EP1003960B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19813377 1998-03-26
DE19813377A DE19813377A1 (de) 1998-03-26 1998-03-26 Verfahren zum Betreiben einer Brennkraftmaschine
PCT/DE1999/000873 WO1999049194A2 (fr) 1998-03-26 1999-03-24 Procede de fonctionnement d'un moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP1003960A2 EP1003960A2 (fr) 2000-05-31
EP1003960B1 true EP1003960B1 (fr) 2003-07-02

Family

ID=7862433

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99919115A Expired - Lifetime EP1003960B1 (fr) 1998-03-26 1999-03-24 Procede de fonctionnement d'un moteur a combustion interne

Country Status (5)

Country Link
US (1) US6539914B1 (fr)
EP (1) EP1003960B1 (fr)
JP (1) JP2002500726A (fr)
DE (2) DE19813377A1 (fr)
WO (1) WO1999049194A2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19931826B4 (de) * 1999-07-08 2004-09-02 Robert Bosch Gmbh Verfahren zum Steuern einer Brennkraftmaschine
US6253546B1 (en) * 2000-03-06 2001-07-03 Ford Global Technologies, Inc. Torque control scheme for low emission lean burn vehicle
DE10017545A1 (de) * 2000-04-08 2001-10-11 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
LU90723B1 (en) * 2001-01-26 2002-07-29 Delphi Tech Inc Method for controlling an engine
DE10111928B4 (de) * 2001-03-13 2008-09-04 Robert Bosch Gmbh Verfahren zum anlasserfreien Starten einer mehrzylindrigen Brennkraftmaschine
DE10205024C1 (de) * 2002-02-07 2003-08-21 Bosch Gmbh Robert Vorrichtung zur Steuerung des Drehmoments einer Antriebseinheit eines Fahrzeugs
DE10212515A1 (de) * 2002-03-21 2003-10-02 Bayerische Motoren Werke Ag Verfahren und Vorrichtung zur adaptierten Sammlerdruckvorsteuerung
DE102011086715A1 (de) * 2011-11-21 2013-05-23 Robert Bosch Gmbh Verfahren zum Betreiben eines Motorsteuergeräts für ein Antriebssystem
DE102018114688A1 (de) 2018-06-19 2019-12-19 Volkswagen Aktiengesellschaft Triebwerkschutzfunktion bei hohen Drehzahlgradienten

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051920A1 (fr) * 1997-05-10 1998-11-19 Robert Bosch Gmbh Systeme d'actionnement d'un moteur a combustion interne et a injection directe, notamment dans un vehicule
WO1999001654A1 (fr) * 1997-07-02 1999-01-14 Robert Bosch Gmbh Systeme de fonctionnement d'un moteur a combustion interne, en particulier d'un vehicule a moteur

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3404059B2 (ja) * 1992-10-08 2003-05-06 富士重工業株式会社 筒内直噴式エンジンの燃料噴射方法
JP3508481B2 (ja) * 1997-07-08 2004-03-22 日産自動車株式会社 内燃機関の制御装置
DE19729580C2 (de) * 1997-07-10 1999-04-22 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE19743492B4 (de) * 1997-10-01 2014-02-13 Robert Bosch Gmbh Verfahren zum Starten einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE19813382A1 (de) * 1998-03-26 1999-10-07 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051920A1 (fr) * 1997-05-10 1998-11-19 Robert Bosch Gmbh Systeme d'actionnement d'un moteur a combustion interne et a injection directe, notamment dans un vehicule
WO1999001654A1 (fr) * 1997-07-02 1999-01-14 Robert Bosch Gmbh Systeme de fonctionnement d'un moteur a combustion interne, en particulier d'un vehicule a moteur

Also Published As

Publication number Publication date
DE19813377A1 (de) 1999-10-07
WO1999049194A2 (fr) 1999-09-30
DE59906175D1 (de) 2003-08-07
JP2002500726A (ja) 2002-01-08
EP1003960A2 (fr) 2000-05-31
WO1999049194A3 (fr) 2000-04-06
US6539914B1 (en) 2003-04-01

Similar Documents

Publication Publication Date Title
DE10157104B4 (de) Verfahren und Vorrichtung zur Steuerung von Betriebsübergängen bei Brennkraftmaschinen
EP0923666B1 (fr) Systeme de fonctionnement d'un moteur a combustion interne, en particulier d'un vehicule a moteur
DE69832858T2 (de) Verfahren und Vorrichtung für die Treibstoffeinspritzung bei einem Verbrennungsmotor
EP0853723B1 (fr) Procede et dispositif pour la commande d'un moteur a combustion interne
DE19619320A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10332231A1 (de) Anordnung und Verfahren zur leistungsbasierten Leerlaufdrehzahlregelung
WO2008098880A1 (fr) Procédé et dispositif pour faire fonctionner un moteur à combustion interne par retardement de l'angle d'allumage et compensation des irrégularités de fonctionnement
EP0995025B1 (fr) Procede de fonctionnement d'un moteur a combustion interne notamment pour un vehicule a moteur
EP1015749B1 (fr) Procede de fonctionnement d'un moteur a combustion interne
EP1003960B1 (fr) Procede de fonctionnement d'un moteur a combustion interne
EP1066458B1 (fr) Procede de fonctionnement d'un moteur a combustion interne
EP0995026B1 (fr) Procede de fonctionnement d'un moteur a combustion interne
DE4334864C2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102018212247A1 (de) Verfahren zum Steuern und/oder Regeln des Betriebs eines Verbrennungsmotors, insbesondere eines Verbrennungsmotors eines Kraftfahrzeugs, insbesondere zumindest teilweise arbeitend nach dem Miller-Verfahren
DE10064652B4 (de) Verfahren und Vorrichtung zur schnellen Veränderung eines Drehmoments einer Brennkraftmaschine
DE10033946B4 (de) Kraftstoffeinspritzsteuersystem für eine Brennkraftmaschine mit Direkteinspritzung
EP1099051B1 (fr) Procede de fonctionnement d'un moteur a combustion interne
DE10046446A1 (de) Verfahren zur Regelung einer Brennkraftmaschine
EP1099052B1 (fr) Procede de fonctionnement d'un moteur a combustion interne
EP0985089B1 (fr) Procede de fonctionnement d'un moteur a combustion interne notamment pour un vehicule a moteur
DE10017546A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1300574A2 (fr) Procédé et Dispositiv de Commande d'un Moteur à Combustion Interne pendant l'échangement entre deux Modes de Combustion
DE10156409A1 (de) Verfahren zur Verbesserung der Laufruhe und entsprechender Motor
EP1184557B1 (fr) Procédé d'utilisation d'un moteur à combustion interne d'un véhicule automobile
DE19931826A1 (de) Verfahren zum Steuern einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991227

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59906175

Country of ref document: DE

Date of ref document: 20030807

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031104

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050314

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050318

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050513

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060331

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061003

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060324

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070324