EP0066926B1 - Dispositif semiconducteur, émetteur d'électrons, dont la couche active possède un gradient de dopage - Google Patents
Dispositif semiconducteur, émetteur d'électrons, dont la couche active possède un gradient de dopageInfo
- Publication number
- EP0066926B1 EP0066926B1 EP82200648A EP82200648A EP0066926B1 EP 0066926 B1 EP0066926 B1 EP 0066926B1 EP 82200648 A EP82200648 A EP 82200648A EP 82200648 A EP82200648 A EP 82200648A EP 0066926 B1 EP0066926 B1 EP 0066926B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- active layer
- doping
- semiconductor
- semiconductor device
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 title claims description 24
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 12
- 230000005855 radiation Effects 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 2
- 239000000370 acceptor Substances 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 description 14
- 239000000758 substrate Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 238000005554 pickling Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 239000010431 corundum Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001803 electron scattering Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/32—Secondary-electron-emitting electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/34—Photo-emissive cathodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/34—Photoemissive electrodes
- H01J2201/342—Cathodes
- H01J2201/3421—Composition of the emitting surface
- H01J2201/3423—Semiconductors, e.g. GaAs, NEA emitters
Definitions
- the invention relates to a semiconductor device having a surface capable of emitting electrons in response to electronic bombardment or to the impact of light radiation.
- the invention relates to electronic or optoelectronic devices, such as photocathodes used in picture tubes and photomultipliers, which convert between photons and electrons, or dynodes used in photomultipliers, which operate by secondary electronic emission.
- the object of the invention is to obtain semiconductor devices whose efficiency is improved, that is to say whose excitation, diffusion and electronic emission are simultaneously improved.
- the invention is based on the fact that these functions are separable.
- the semiconductor device according to the present invention is remarkable in that it comprises a so-called active semiconductor layer, flush with the emitting surface, the doping of which increases when the distance to said emitting surface decreases.
- the active layer of this device has characteristics which vary as a function of the distance from the emitting surface, so that in depth, the diffusion length is high due to low doping, which makes it possible to improve the scattering of excited electrons, and that on the surface, the probability of emission is high due to strong doping.
- the semiconductor active layer consists of at least two different doping zones, the zone close to the emitting surface being relatively more doped.
- the doping varies "in steps" instead of continuously varying, but the separation of the broadcasting and transmission functions is also ensured.
- the active layer is made of a III-V compound, for example gallium arsenide, of type p conductivity, of a thickness less than 10 microns, and has a doping which varies radially between 10 18 and 10 19 atoms / cm 3 continuously or discontinuously.
- a III-V compound for example gallium arsenide, of type p conductivity, of a thickness less than 10 microns, and has a doping which varies radially between 10 18 and 10 19 atoms / cm 3 continuously or discontinuously.
- Electron emitting devices generally fall into two types, depending on their mode of operation in transmission or reflection.
- the invention is intended to apply to devices of both types, but for simplicity the following description will rather refer to devices of the first type, without being able to draw any limitation therefrom.
- FIG. 1 represents a photocathode with an inverted structure, operating in transmission, capable of emitting electrons as a result of the absorption of light radiation.
- This photon-electron transducer does indeed belong to the devices targeted by the present invention, and will serve as the basis for its description.
- Such a photocathode is constituted by the sealing on a glass substrate 1 (or of corundum) of a complex semiconductor structure, by means of a sealing layer 2, for example in a glass of the short type such as that described in the French patent application, number 2,300,413, filed on February 4, 1975, in the name of the Applicant.
- the semiconductor structure consists of a semiconductor layer 3, called “active layer”, generally made of gallium arsenide, of p conductivity type, and an additional layer 4, called “passivation layer”, placed between the glass and the active layer, the function of which is to decrease the rate of recombination at the interface.
- an active layer 3 of GaAs (p) it is composed of gallium and aluminum arsenide, Ga i -y Aly As, also of p conductivity type.
- the active semiconductor layer 3 has on its outer face, intended to be subjected to vacuum, a state of negative apparent electronic affinity, obtained for example, by a conventional surface treatment, well known in the prior art, of covering with cesium and oxygen.
- Such a glass-semiconductor composite material is not obtained immediately by simple bonding, but initially requires the growth of a double hetero-structure on a substrate, then the subsequent removal by pickling. chemical of the first heterostructure.
- the production of this structure therefore requires epitaxial growth, on a GaAs substrate 5, shown in dotted lines in FIG. 1 as destined to disappear, of a first layer 6 of Ga 1-x Al x A s , for which x typically equals 0.5, the so-called “chemical stop” layer (or blocking, because it makes it possible to stop the pickling process of the substrate, which would otherwise continue in the active layer 3), a second layer of GaAs called “active layer” 3, of p conductivity type, obtained for example by doping with zinc (Zn) or germanium (Ge), and finally a third layer 4 of Ga 1-y Al y As, for which varies there between 0.25 and 1, according to the desired characteristics, the so-called passivation layer, and the functions of which have been specified previously.
- the growth of these layers can be carried out by epitaxy in the liquid phase or in the vapor phase, for example according to the organometallic method.
- This structure is then bonded to a substrate 1 of glass (or corundum), which plays a role of mechanical support and optical window, this sealing being able to be carried out by means of a layer of glass 2, layer 4 known as passivation being the closest to the glass substrate 1, which explains in particular the mention of photocathode "with inverted structure".
- the substrate 5 and the chemical barrier layer 6 are removed by chemical pickling; an example of a bath used for the chemical attack on the GaAs substrate 1 is a solution of NH 4 0H (- 40%) at 5% by volume in H 2 0 2 (- 30%), a bath which has the advantage of '' a relatively high attack speed and excellent selectivity vis-à-vis the stop layer 6.
- This last layer 6 is then removed, for example by a commercial dilute hydrofluoric acid (HF) bath (40% V), a bath which practically does not attack the GaAs.
- HF dilute hydrofluoric acid
- the active layer 3 is brought to an optimum thickness if necessary, for example by a light chemical pickling, then activated, in an ultra-vacuum frame, in order to obtain a photocathode, if that is its destination. .
- the electron thus excited reaches the GaAs / vacuum interface, it can be emitted in vacuum, provided that the material is placed in a state of apparent negative affinity.
- the probability of electronic emission depends on several factors, including the crystal orientation, the doping, etc ... and in particular, it is all the greater the higher the doping level.
- the invention aims to improve the apparent diffusion length by proposing a new structure for the active layer.
- the active layer 3 has a doping which increases when the distance to the emitting surface decreases.
- the active layer of a photoemitter is obtained in the form of two different doping zones, in gallium arsenide of p conductivity type, doped with a low coefficient material diffusion such as germanium (Ge).
- the continuous variation of doping can be obtained either by a variable dosage of impurities in the process of growth, for example in the epitaxy reactor in the vapor phase, or by diffusion thanks to the choice of an impurity do pante with greater diffusion coefficient, such as zinc (Zn).
- This structure can also be obtained with any other semiconductor material, such as binary or pseudo-binary compounds III-V or II-VI, etc., the values of the compositions, dopings and thicknesses of layers then being adapted to each case. and easily calculable by the practitioner, without it being done for that purpose.
- any other semiconductor material such as binary or pseudo-binary compounds III-V or II-VI, etc.
- the invention is not limited to photocathodes, but also finds its application for the production of dynodes, generally in any semiconductor device emitting electrons.
- FIG. 2 is a network of theoretical curves, giving an example of the variation of the sensitivity (on the abscissa, in ⁇ A / lumen) in white light (2854 K), photocathodes with inverted structure, in accordance with the present invention, as a function the thickness of the active layer 3 of GaAs (on the ordinate, in ⁇ m), for different values of the apparent electron scattering length (parameter, in ⁇ m), and for which P represents the probability of photoelectron emission, and S the photoelectron recombination speed at the GaAs / GaAl As interface.
Landscapes
- Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
- Cold Cathode And The Manufacture (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR8110993 | 1981-06-03 | ||
| FR8110993A FR2507386A1 (fr) | 1981-06-03 | 1981-06-03 | Dispositif semi-conducteur, emetteur d'electrons, dont la couche active possede un gradient de dopage |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0066926A1 EP0066926A1 (fr) | 1982-12-15 |
| EP0066926B1 true EP0066926B1 (fr) | 1985-02-13 |
Family
ID=9259150
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP82200648A Expired EP0066926B1 (fr) | 1981-06-03 | 1982-05-27 | Dispositif semiconducteur, émetteur d'électrons, dont la couche active possède un gradient de dopage |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US4518980A (enExample) |
| EP (1) | EP0066926B1 (enExample) |
| JP (1) | JPS57210539A (enExample) |
| DE (1) | DE3262303D1 (enExample) |
| FR (1) | FR2507386A1 (enExample) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4677342A (en) * | 1985-02-01 | 1987-06-30 | Raytheon Company | Semiconductor secondary emission cathode and tube |
| DE69030145T2 (de) * | 1989-08-18 | 1997-07-10 | Galileo Electro Optics Corp | Kontinuierliche Dünnschicht-Dynoden |
| US5680008A (en) * | 1995-04-05 | 1997-10-21 | Advanced Technology Materials, Inc. | Compact low-noise dynodes incorporating semiconductor secondary electron emitting materials |
| JPH1196896A (ja) * | 1997-09-24 | 1999-04-09 | Hamamatsu Photonics Kk | 半導体光電面 |
| US7161162B2 (en) * | 2002-10-10 | 2007-01-09 | Applied Materials, Inc. | Electron beam pattern generator with photocathode comprising low work function cesium halide |
| CN100426439C (zh) * | 2003-12-24 | 2008-10-15 | 中国科学院半导体研究所 | 中浓度p型掺杂透射式砷化镓光阴极材料及其制备方法 |
| US10692683B2 (en) * | 2017-09-12 | 2020-06-23 | Intevac, Inc. | Thermally assisted negative electron affinity photocathode |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3959038A (en) * | 1975-04-30 | 1976-05-25 | The United States Of America As Represented By The Secretary Of The Army | Electron emitter and method of fabrication |
| FR2300413A1 (fr) * | 1975-02-04 | 1976-09-03 | Labo Electronique Physique | Fenetre |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3478213A (en) * | 1967-09-05 | 1969-11-11 | Rca Corp | Photomultiplier or image amplifier with secondary emission transmission type dynodes made of semiconductive material with low work function material disposed thereon |
| US3631303A (en) * | 1970-01-19 | 1971-12-28 | Varian Associates | Iii-v cathodes having a built-in gradient of potential energy for increasing the emission efficiency |
| US3981755A (en) * | 1972-11-24 | 1976-09-21 | U.S. Philips Corporation | Photocathode manufacture |
| DE2261757A1 (de) * | 1972-12-16 | 1974-06-20 | Philips Patentverwaltung | Semitransparente photokathode |
| GB1446592A (en) * | 1973-01-09 | 1976-08-18 | English Electric Valve Co Ltd | Dynode structures |
| AU7731575A (en) * | 1974-01-18 | 1976-07-15 | Nat Patent Dev Corp | Heterojunction devices |
| US3959045A (en) * | 1974-11-18 | 1976-05-25 | Varian Associates | Process for making III-V devices |
| GB1536412A (en) * | 1975-05-14 | 1978-12-20 | English Electric Valve Co Ltd | Photocathodes |
| DE2909956A1 (de) * | 1979-03-14 | 1980-09-18 | Licentia Gmbh | Halbleiter-glas-verbundwerkstoff |
-
1981
- 1981-06-03 FR FR8110993A patent/FR2507386A1/fr active Granted
-
1982
- 1982-05-21 US US06/380,633 patent/US4518980A/en not_active Expired - Fee Related
- 1982-05-27 DE DE8282200648T patent/DE3262303D1/de not_active Expired
- 1982-05-27 EP EP82200648A patent/EP0066926B1/fr not_active Expired
- 1982-06-01 JP JP9227582A patent/JPS57210539A/ja active Granted
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2300413A1 (fr) * | 1975-02-04 | 1976-09-03 | Labo Electronique Physique | Fenetre |
| US3959038A (en) * | 1975-04-30 | 1976-05-25 | The United States Of America As Represented By The Secretary Of The Army | Electron emitter and method of fabrication |
Also Published As
| Publication number | Publication date |
|---|---|
| FR2507386A1 (fr) | 1982-12-10 |
| DE3262303D1 (en) | 1985-03-28 |
| FR2507386B1 (enExample) | 1984-05-04 |
| JPH0411973B2 (enExample) | 1992-03-03 |
| US4518980A (en) | 1985-05-21 |
| EP0066926A1 (fr) | 1982-12-15 |
| JPS57210539A (en) | 1982-12-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1454370B1 (fr) | Dispositif d emission de lumiere et procede de fabrication d un tel dispositif | |
| EP0201127B1 (fr) | Photodiode PIN à faible courant de fuite | |
| KR900004180B1 (ko) | 반도체 광검지기 및 그 제조방법 | |
| EP3568869B1 (fr) | Substrat pour capteur d'image de type face avant et procédé de fabrication d'un tel substrat | |
| EP0066926B1 (fr) | Dispositif semiconducteur, émetteur d'électrons, dont la couche active possède un gradient de dopage | |
| EP3465725B1 (fr) | Méthode de fabrication d'une photocathode à nanofils | |
| US6110758A (en) | Transmission mode photocathode with multilayer active layer for night vision and method | |
| US3959038A (en) | Electron emitter and method of fabrication | |
| US3959037A (en) | Electron emitter and method of fabrication | |
| US3972750A (en) | Electron emitter and method of fabrication | |
| EP3568868B1 (fr) | Substrat pour capteur d'image de type face avant et procédé de fabrication d'un tel substrat | |
| EP3563426B1 (fr) | Procede de realisation d'un dispositif optoelectronique comportant une etape de gravure de la face arriere du substrat de croissance | |
| EP0317024A1 (fr) | Procédé de réalisation d'un photodétecteur infrarouge intégré | |
| US4008106A (en) | Method of fabricating III-V photocathodes | |
| US4801990A (en) | HgCdTe avalanche photodiode | |
| RU2676221C1 (ru) | Способ изготовления импульсного фотодетектора | |
| JPH0542837B2 (enExample) | ||
| EP0142891B1 (fr) | Dispositif à couplage de charges sensible au rayonnement infrarouge et procédé de réalisation d'un tel dispositif | |
| JP2001111094A (ja) | 赤外受光素子及びその製造方法 | |
| EP0143714B1 (fr) | Ecran luminescent et procédé de fabrication d'un tel écran | |
| FR2820891A1 (fr) | Laser semi conducteur a ruban enterre et procede de fabrication | |
| FR2793264A1 (fr) | Procede de nettoyage d'une surface de substrat de silicium et application a la fabrication de composants electroniques integres | |
| EP4634988A1 (fr) | Procédé de préparation d'un empilement en vue d'un collage | |
| Thomas | Photocathodes | |
| JPH1093141A (ja) | 化合物半導体素子およびその製造方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19820527 |
|
| AK | Designated contracting states |
Designated state(s): DE FR GB |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Designated state(s): DE FR GB |
|
| REF | Corresponds to: |
Ref document number: 3262303 Country of ref document: DE Date of ref document: 19850328 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19920430 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19920724 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19930526 Year of fee payment: 12 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19930527 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19930527 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19940201 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950131 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |