EP0143714B1 - Ecran luminescent et procédé de fabrication d'un tel écran - Google Patents

Ecran luminescent et procédé de fabrication d'un tel écran Download PDF

Info

Publication number
EP0143714B1
EP0143714B1 EP84402396A EP84402396A EP0143714B1 EP 0143714 B1 EP0143714 B1 EP 0143714B1 EP 84402396 A EP84402396 A EP 84402396A EP 84402396 A EP84402396 A EP 84402396A EP 0143714 B1 EP0143714 B1 EP 0143714B1
Authority
EP
European Patent Office
Prior art keywords
grains
layer
screen
substrate
luminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84402396A
Other languages
German (de)
English (en)
Other versions
EP0143714A1 (fr
Inventor
Daniel Gibilini
Jean-Pierre Galves
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0143714A1 publication Critical patent/EP0143714A1/fr
Application granted granted Critical
Publication of EP0143714B1 publication Critical patent/EP0143714B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/28Luminescent screens with protective, conductive or reflective layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/185Luminescent screens measures against halo-phenomena

Definitions

  • the present invention relates to luminescent screens. It also relates to a method of manufacturing these luminescent screens.
  • the screens in question in the present invention comprise, in particular, several layers of luminescent material, in the form of grains, which are deposited on a transparent support; generally, it is a glass substrate, with parallel faces.
  • the luminescent material may be cathodoluminescent, that is to say that it becomes luminescent when subjected to the bombardment of an electron beam.
  • cathodoluminescent screens are used for example in cathode ray tubes, radiological image intensifiers.
  • the luminescent material can also be, for example, electroluminescent, that is to say that it becomes luminescent under the action of an electric field.
  • an IIR has been represented schematically.
  • This tube has a primary screen which converts the X photons it receives into light photons, then into photoelectrons.
  • Electronic optics which are not shown, ensure the focusing of the electronic trajectories and the energy gain of the electrons.
  • a cathodoluminescent secondary screen ensures the conversion of electrons into visible photons. It is this secondary screen that will be discussed later.
  • FIGS. 2a and b an embodiment of the secondary screen in FIG. 1 has been seen in cross section.
  • the cathodoluminophore body used can be, for example zinc sulfide doped with silver.
  • the diameter of the grains can vary for example between 1 and 3 ⁇ m, depending on the desired resolution.
  • the thickness of the glass substrate 1 is for example, from 1 to 3 mm approximately, while the thickness of luminescent material is approximately 10 ⁇ m.
  • FIG. 4 there is shown a sectional view of the luminescent screen, the thickness of the metallic film 3 and of the layers of luminescent material 2 has been greatly increased in FIG. 4 relative to the thickness of the substrate 1.
  • C 1 the rays coming to touch the grain C are re-emitted, some, such as C 1 , towards the observer and others such as C 2 , by total reflection, are returned to another grain D distant from '' a distance equal to about 2e of the grain C.
  • FIG. 5 the substrate is represented seen in section as well as the path of the light rays, and in particular of those which undergo a total reflection.
  • FIG. 5 also shows the variations in intensity 1 observed and corresponding to the central spot and to the different halos.
  • the present invention makes it possible to solve this problem and makes it possible, as will be explained in detail below, to obtain an optimized contrast screen without the gain dropping too much and without the resolution being reduced.
  • the present invention as characterized in claim 1, relates to a luminescent screen comprising in particular several layers of luminescent material in the form of grains, deposited on a transparent support, characterized by the presence of blocks, arranged between the grains of the first layer of material and the support, these blocks having a cross section at most equal to the cross section of the grains and having an optical transparency of less than 1.
  • a first solution consists in using a mass-tinted glass substrate whose optical transparency T l is less than 1.
  • the gain is the ratio between the light power emitted by the screen and the electric power it receives.
  • a second solution consists in rejecting the halos outside the useful area of the screen by increasing the thickness e of the screen. If we call ⁇ the diameter of the useful area delimited by a cover 4 in FIG. 7, it is clear that for all the halos to be located outside this area it suffices that the following relation is verified: 2e » ⁇ .
  • FIG. 8 illustrates the solution where this intermediate layer is metallic, of transparency T 2 .
  • the gain G 2 and the contrast C 2 are expressed by the same type of relationship as when a tinted glass substrate is used:
  • An additional drawback of the metallic intermediate layer is that for example in the case of the intensity ray A in FIG. 8, there is transmission to the observer of a ray of intensity AT 2 and reflection on the metallic layer d '' a ray of intensity A ⁇ (1 - T 2 ) which is finally transmitted to the observer but contributes to the decrease in the resolution of the screen, because it increases the diameter of the central spot corresponding to the impact of the electron beam.
  • FIG. 9 shows the reflection coefficient R of this layer as a function of the angle of incidence 6. When the angle of incidence is less than the total reflection angle 8 0 , the reflection coefficient is substantially zero. This reflection coefficient becomes substantially equal to 1 for an angle of incidence greater than 6 0 .
  • this layer prevents the exit to the observer of the rays which contribute to the halos.
  • FIG. 10 it can be seen that the ray B, whose angle of incidence is equal to 6 0 , propagates laterally in the substrate without exiting towards the observer. This ray B undergoes successive total reflections on the two faces of the substrate.
  • This intermediate layer has the disadvantage of causing a drop in resolution by the same phenomenon as that explained for the metallic layer. In addition, it is difficult and expensive to carry out.
  • FIG 11 there is shown in section an embodiment of a screen according to the invention.
  • blocks 6, having a section at most equal to the section of the grains and having an optical transparency T 3 of less than 1.
  • the light rays generated in the grains of the first layer but which emerge from these grains in a place other than the point of contact of the grain with the substrate may have to pass through a block 6 as shown in FIG. 11. an intensity radius BT3 for example. It may also happen that these spokes do not have to cross paving stones.
  • Some of these rays do not undergo total reflection and exit, for example with an intensity B ⁇ T 3 . Others undergo a total reflection, for example the radius of intensity CT 3 . Such a ray can come out of the substrate with a CT 3 3 intensity after being reflected on another grain and having crossed twice the block supporting this grain.
  • FIG. 6 which relates to the use of a tinted glass support, it can be seen that the rays generated in grains other than those of the first layer are not attenuated.
  • G 3 and C 3 denote the gain and the contrast of the screen according to the invention.
  • the calculation also shows that, on the assumption that a minimum gain is respected, for a screen according to the invention and for a screen with a tinted glass support, the invention allows lower transparency. As when the transparency is the same, the contrast is better with the blocks according to the invention, it is clear that the invention makes it possible, while respecting a minimum gain, to further improve the contrast.
  • Another advantage of the invention is that the presence of blocks does not decrease the resolution, whereas this occurs when there is an intermediate layer between the glass substrate and the first layer of grains.
  • FIGS. 12a, b, c and d A method of producing a screen according to the invention will now be described with reference to FIGS. 12a, b, c and d.
  • a thin layer 7 of material having the desired transparency is deposited on the substrate 1-see FIG. 12a.
  • This deposition can be carried out, for example, by vacuum evaporation or by electrochemical means.
  • This layer 7 may for example have a thickness of a few hundred angstroms.
  • the material used can be any absorbent material, for example metal or carbon.
  • a first layer of luminescent material is deposited on layer 7.
  • layer 7 is subjected to a selective plasma attack using the grains of the first layer as a mask. This attack is symbolized by vertical arrows in Figure 12b.
  • attack is carried out with Argon ions for example.
  • a carbon layer produced for example by evaporation by using a plasma comprising a hydrocarbon gas or by depositing a single layer of carbon particles with a diameter less than 0.1 ⁇ m for example, while the grains of luminescent material have a much larger diameter, of about ten ⁇ rn for example.
  • an attack is carried out by oxygen plasma.
  • Figure 12c shows the result of this attack. This attack must be stopped on the surface of the substrate in order not to frost it, and thus not to deteriorate the resolution of the screen.
  • FIGS. 13a, b, c a grain of luminescent material 2 and its block 6 have been shown.
  • the block has a section substantially equal to that of the grain
  • the block in FIGS. 13b and c, the block a a significantly decreasing section, less than that of the grain. It is clear that the more the section of the block is limited to the point of contact between the grain and the block, the more the efficiency and the contrast are improved. Thus, the attenuation of intensity due to the pavement is limited to the rays created at the point of grain-pavement contact.
  • the production method described makes it possible to obtain blocks of section at most equal to the section of the grains.
  • the material used to make the pavers must have good adhesion with the glass of the substrate. It must also be able to be well attacked by plasma while the luminescent material of the grains and the glass are not very attacked.
  • a metal such as silver or gold for example, or carbon
  • we can also use a layer such as that cited above and described in European patent application No. 0 018 666 This increases gain and efficiency, without reducing the screen resolution. In this case it is also necessary to use for the selective attack, a plasma which very preferably attacks this layer while the luminescent material of the grains and the support are not very attacked.

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

  • La présente invention concerne les écrans luminescents. Elle concerne également un procédé de fabrication de ces écrans luminescents.
  • Les écrans dont il est question dans la présente invention comportent, notamment, plusieurs couches de matériau luminescent, sous forme de grains, qui sont déposées sur un support transparent ; généralement, il s'agit d'un substrat en verre, à faces parallèles.
  • Le matériau luminescent peut être cathodoluminescent, c'est-à-dire qu'il devient luminescent lorsqu'il est soumis au bombardement d'un faisceau électronique. De tels écrans cathodolumi- nescents sont utilisés par exemple dans les tubes à rayons cathodiques, les intensificateurs d'images radiologiques. Le matériau luminescent peut être aussi, par exemple, électroluminescent, c'est-à-dire qu'il devient luminescent sous l'action d'un champ électrique.
  • Dans la suite de la description, les problèmes à résoudre et les solutions apportées par l'invention vont être décrits dans le cas d'écrans cathodolu- minescents utilisés dans des intensificateurs d'images radiologiques ou IIR, mais il est bien entendu que l'invention s'applique à tous les types d'écrans mentionnés précédemment.
  • Sur la figure- 1, on a représenté de façon schématique un IIR. Ce tube comporte un écran primaire qui assure la conversion des photons X qu'il reçoit en photons lumineux, puis en photo- électrons. Une optique électronique, qui n'est pas représentée, assure la focalisation des trajectoires électroniques et le gain en énergie des électrons. Enfin, un écran secondaire cathodoluminescent assure la conversion des électrons en photons visibles. C'est de cet écran secondaire qu'il va être question par la suite.
  • Sur les figures 2a et b, on a représenté vu en coupe transversale un mode de réalisation de l'écran secondaire de la figure 1.
  • Sur le substrat en verre 1, il y a un dépôt 2 de plusieurs couches de cristaux d'un corps cathodoluminophore, dont la première couche est en contact direct avec le substrat. La dernière couche de cristaux est recouverte d'un film métallique 3, en aluminium par exemple. Ce film sert à réfléchir vers l'observateur la lumière créée dans l'écran et à appliquer une tension d'accélération aux électrons incidents. La figure 2b montre, agrandie, la zone de l'écran entourée d'un cercle sur la figure 2a.
  • Le corps cathodoluminophore utilisé peut être par exemple du sulfure de zinc dopé à l'argent. Le diamètre des grains peut varier par exemple entre 1 et 3 µm, selon la résolution recherchée.
  • L'épaisseur du substrat en verre 1 est par exemple, d'1 à 3 mm environ, alors que l'épaisseur de matériau luminescent est d'environ 10 µm.
  • Il est connu que les écrans dont il vient d'être question présentent un phénomène dit de halos. Lorsque l'écran est excité en un point, on observe autour de ce point, rendu lumineux, des anneaux lumineux ou halos, centrés sur ce point, qui sont équidistants à une distance voisine de deux fois l'épaisseur du substrat et dont l'intensité décroît lorsqu'on s'éloigne du point lumineux central.
  • Ce phénomène est illustré par les figures 3a et b.
  • Sur la figure 3a, on voit l'écran vu de profil et recevant un impact électronique dirigé selon l'axe XX'.
  • Sur la figure 3b, on voit le point lumineux central dû à cet impact et trois des halos créés.
  • L'explication de ce phénomène de halos va être rappelée en se référant aux figures 4 et 5.
  • Sur la figure 4, on a représenté une vue en coupe de l'écran luminescent, l'épaisseur du film métallique 3 et des couches de matériau luminescent 2 a été fortement augmentée sur la figure 4 par rapport à l'épaisseur du substrat 1.
  • Tout rayon lumineux qui est généré dans un grain A qui n'est pas en contact avec le substrat, traverse le substrat 1 comme s'il s'agissait d'une lame à faces parallèles et donne en sortie un rayon Ai. Il en est de même pour les rayons lumineux générés dans des grains qui sont en contact avec le substrat mais qui émergent des grains en un autre endroit que le point du contact du grain avec le substrat. C'est le cas pour le rayon Bo issu du grain B.
  • Considérons maintenant le cas des rayons lumineux émis par le grain B en contact avec le substrat et qui en plus pénètrent dans le substrat par le point de contact du grain et du substrat.
  • Tout se passe pour ces rayons comme s'ils étaient créés par une source lumineuse en contact optique intime avec le substrat. Lorsque l'angle d'incidence 6 de ces rayons sur la face interne de sortie du substrat est inférieur à l'angle 00 tel que sin 00 = 1/n, avec n l'indice optique du substrat, ces rayons traversent le substrat vers l'observateur. C'est le cas des rayons B1 et B2 de la figure 4. Par contre lorsque l'angle d'incidence est supérieur ou égal à 60, il se produit un phénomène de réflexion totale et les rayons tels que B3 sur la figure 4 sont renvoyés vers la face interne d'entrée du substrat. Ces rayons sont renvoyés latéralement sur un grain C en contact avec le substrat et distant du grain B de la distance : D = 2e . 00 = 2e, car avec un substrat en verre, n = 1,5 et 60 = 42°. Par diffraction ou diffusion, les rayons venant toucher le grain C sont ré-émis, certains, tel que C1, vers l'observateur et d'autres tel que C2, par réflexion totale, sont renvoyés vers un autre grain D éloigné d'une distance égale à 2e environ du grain C.
  • Ce phénomène se poursuit de proche en proche jusqu'à épuisement de l'intensité lumineuse et dans toutes les directions autour du point B. Il apparaît ainsi autour d'une tache lumineuse centrée en B, une multitude d'anneaux, séparés par une distance D et d'intensité lumineuse I, I1, I2, I3 décroissante. Les autres points tels que C ou D sont le siège de phénomènes de halos, moins lumineux que les halos centrés au point B.
  • Sur la figure 5, le substrat est représenté vu en coupe ainsi que le trajet des rayons lumineux, et en particulier de ceux qui subissent une réflexion totale. On a également représenté sur la figure 5 les variations d'intensité 1 observées et correspondant à la tache centrale et aux différents halos.
  • On exposera dans la suite de la description, et en se référant aux figures 6 à 10, diverses techniques connues qui cherchent à supprimer ce phénomène de halos. Ce phénomène est très gênant car il donne naissance à des informations qui parasitent l'information utile. De plus, il produit une diminution du contraste de l'écran.
  • Le problème qui se pose est que les techniques connues ne donnent pas satisfaction. En particulier, ces techniques améliorent le contraste mais font chuter le rendement lumineux. Certaines de ces techniques produisent une diminution de la résolution.
  • La présente invention permet de résoudre ce problème et permet, comme cela sera expliqué en détails par la suite, d'obtenir un écran à contraste optimisé sans que le gain ne chute trop et sans que la résolution soit diminuée.
  • La présente invention, telle que caractérisée dans la revendication 1, concerne un écran luminescent comportant notamment, plusieurs couches de matériau luminescent sous forme de grains, déposées sur un support transparent, caractérisé par la présence de pavés, disposés entre les grains de la première couche de matériau et le support, ces pavés ayant une section au plus égale à la section des grains et ayant une transparence optique inférieure à 1.
  • La présente invention, telle que caractérisée dans la revendication 8, concerne également un procédé de fabrication d'un écran luminescent, comporte les étapes suivantes :
    • a) on dépose sur le support transparent une couche mince ayant la transparence optique recherchée ;
    • b) on dépose sur cette couche une première couche de grains en matériau luminescent ;
    • c) on réalise une attaque sélective par plasma de la couche mince en utilisant les grains de la première couche comme masque de façon à obtenir les pavés :
    • d) on dépose les autres couches de grains luminescents, et on termine l'écran de la façon habituelle.
  • D'autres objets, caractéristiques et résultats de l'invention ressortiront de la description suivante, donnée à titres d'exemple non limitatif et illustrée par les figures annexées qui représentent :
    • la figure 1, le schéma d'un intensificateur d'image radiologique ;
    • les figures 2a et b. des vues en coupe d'un écran luminescent ;
    • les figures 3a et b et 4 et 5, des schémas illustrant le phénomène de halos observé dans les écrans luminescents ;
    • les figures 6 à 10, des schémas illustrant les techniques connues utilisées contre le phénomène de halos ;
    • la figure 11, une vue en coupe d'un mode de réalisation de l'écran selon l'invention ;
    • les figures 12a à d, des schémas illustrant les différentes étapes d'un procédé de fabrication d'un mode de réalisation d'un écran selon l'invention ;
    • les figures 13a. b, c, des schémas montrant le pavé associé à chaque grain de la première couche.
  • Sur les différentes figures, les mêmes repères désignent les mêmes éléments, mais, pour des raisons de clarté, les cotes et proportions de divers éléments ne sont pas respectées.
  • On va rappeler brièvement en se référant aux figures 6 à 10 les solutions utilisées dans l'art antérieur contre le phénomène de halos.
  • Une première solution consiste à utiliser un substrat en verre teinté dans la masse dont la transparence optique Tl est inférieure à 1.
  • Sur la figure 6, on a représenté vu en coupe un tel écran. Les rayons d'intensité AT1 et BT1 ne participent pas à la formation des halos comme c'est le cas pour le rayon d'intensité CT,3 qui subit une réflexion totale.
  • Le gain G (ou rendement lumineux) de cet écran s'exprime en fonction du gain G0 d'un écran comportant un substrat en verre transparent par la relation G, = Go - T1. On rappelle que le gain est le rapport entre la puissance lumineuse émise par l'écran et la puissance électrique qu'il reçoit.
  • Le contraste Ci de cet écran s'exprime en fonction du contraste Co d'un écran à substrat en verre transparent par la relation : C, = Co -(1/T1 2). On rappelle que le contraste est le rapport des luminances d'une zone d'écran excitée et d'une zone d'écran non excitée.
  • Cette solution permet donc d'augmenter le contraste mais en contre-partie diminue le gain. Un compromis doit être établi dans le choix de la transparence T, afin que le gain minimum acceptable pour les utilisateurs soit respecté.
  • Une deuxième solution consiste à rejeter les halos en dehors de la zone utile de l'écran en augmentant l'épaisseur e de l'écran. Si l'on appelle φ le diamètre de la zone utile délimitée par un cache 4 sur la figure 7, il est clair que pour que tous les halos soient situés en dehors de cette zone il suffit que la relation suivante soit vérifiée : 2e » φ.
  • On est limité dans l'augmentation de l'épaisseur e du substrat par des raisons pratiques. Une trop forte augmentation de cette épaisseur modifierait le chemin optique disponible à la sortie de l'IIR vers l'utilisation de l'image.
  • Les deux autres solutions qui vont être exposées maintenant comportent l'utilisation d'une couche intermédiaire 5 entre le substrat 1 et la première couche de matériau luminescent.
  • Sur la figure 8 est illustrée la solution où cette couche intermédiaire est métallique, de transparence T2. Le gain G2 et le contraste C2 s'expriment par le même type de relations que lorsqu'on utilise un substrat en verre teinté :
    Figure imgb0001
    Figure imgb0002
  • On retrouve donc les mêmes inconvénients d'augmentation du contraste et de diminution du gain que dans le cas d'un substrat en verre teinté.
  • Un inconvénient supplémentaire de la couche intermédiaire métallique est que par exemple dans le cas du rayon d'intensité A sur la figure 8, il y a transmission vers l'observateur d'un rayon d'intensité AT2 et réflexion sur la couche métallique d'un rayon d'intensité A · (1 - T2) qui est finalement transmis vers l'observateur mais contribue à la diminution de la résolution de l'écran, car il fait augmenter le diamètre de la tache centrale correspondant à l'impact du faisceau d'électrons.
  • L'autre solution connue utilise une couche intermédiaire 5 qui a été décrite dans la demande de brevet européen n° 0 018666. Cette couche intermédiaire peut être constituée de couches alternées d'oxyde de silicium et d'oxyde de titane. On a représenté sur la figure 9 le coefficient de réflexion R de cette couche en fonction de l'angle d'incidence 6. Lorsque l'angle d'incidence est inférieur à l'angle de réflexion totale 80, le coefficient de réflexion est sensiblement nul. Ce coefficient de réflexion devient sensiblement égal à 1 pour un angle d'incidence supérieur à 60.
  • En conséquence, cette couche intermédiaire a une transparence T (avec T = 1 - R) pratiquement totale pour des rayons tels que le rayon A de la figure 10 dont l'angle d'incidence est inférieur à θ0. Par contre, cette couche empêche la sortie vers l'observateur des rayons qui contribuent aux halos. Sur la figure 10, on voit que le rayon B, dont l'angle d'incidence égale 60, se propage latéralement dans le substrat sans sortir vers l'observateur. Ce rayon B subit des réflexions totales successives sur les deux faces du substrat.
  • Cette couche intermédiaire a l'inconvénient de provoquer une baisse de la résolution par le même phénomène que celui expliqué pour la couche métallique. De plus, elle est difficile et coûteuse à réaliser.
  • Sur la figure 11, on a représenté vu en coupe un mode de réalisation d'un écran selon l'invention. Entre les grains de la première couche de matériau luminescent et le support transparent 1, on trouve des pavés 6, ayant une section au plus égale à la section des grains et ayant une transparence optique T3 inférieure à 1.
  • On voit sur la figure 11 que les rayons lumineux générés dans un grain qui n'est pas en contact avec le substrat ressortent vers l'observateur sans être atténués, c'est le cas du rayon A.
  • Les rayons lumineux générés dans les grains de la première couche mais qui émergent de ces grains en un autre endroit que le point de contact du grain avec le substrat peuvent avoir à traverser un pavé 6 comme cela est représenté sur la figure 11. On obtient alors un rayon d'intensité BT3 par exemple. Il peut se faire aussi que ces rayons n'aient pas à traverser de pavé.
  • Considérons maintenant le cas des rayons lumineux émis par un grain en contact avec le substrat et qui en plus pénètrent dans le substrat par le point de contact du grain et de substrat.
  • Certains de ces rayons ne subissent pas la réflexion totale et sortent, par exemple avec une intensité B · T3. D'autres subissent une réflexion totale, par exemple le rayon d'intensité CT3. Un tel rayon peut sortir du substrat avec une intensité CT3 3 après s'être réfléchi sur un autre grain et avoir traversé deux fois le pavé supportant ce grain.
  • Par rapport à la figure 6, qui concerne l'utilisation d'un support en verre teinté, on constate que les rayons générés dans des grains autres que ceux de la première couche ne sont pas atténués.
  • Ceci permet d'améliorer le gain et le contraste par rapport aux solutions connues.
  • On désigne par G3 et C3, le gain et le contraste de l'écran selon l'invention.
  • Le calcul montre que dans l'hypothèse, où la transparence T3 des pavés et celle T1 du support 1 en verre teinté sont les mêmes, on obtient les relations suivantes :
    Figure imgb0003
  • Les relations ci-dessus montrent que l'invention permet d'obtenir - pour T3 = T1 - un contraste C3 supérieur à celui Ci obtenu avec un support en verre teinté, et supérieur à celui Co obtenu sans aucun aménagement. L'invention permet simultanément d'obtenir un gain G3 supérieur à celui obtenu avec une glace teintée G1, mais inférieur à celui Go obtenu sans aménagement.
  • Le calcul montre aussi que dans l'hypothèse où un gain minimum est respecté, pour un écran selon l'invention et pour un écran à support en verre teinté, l'invention permet une transparence plus faible. Comme lorsque la transparence est la même, le contraste est meilleur avec les pavés selon l'invention, il est clair que l'invention permet en respectant un gain minimum d'améliorer encore le contraste.
  • Un autre avantage de l'invention est que la présence de pavés ne diminue pas la résolution, alors que cela se produit lorsqu'il y a une couche intermédiaire entre le substrat en verre et la première couche de grains.
  • On va décrire maintenant un procédé de réalisation d'un écran selon l'invention en se référant aux figures 12a, b, c et d.
  • On dépose sur le substrat 1 une couche mince 7 de matériau ayant la transparence voulue-voir figure 12a. Ce dépôt peut être réalisé par exemple, par évaporation sous vide ou par voie électrochimique. Cette couche 7 peut avoir par exemple une épaisseur de quelques centaines d'angs- trôms.
  • Le matériau utilisé peut être n'importe quel matériau absorbant, par exemple du métal ou du carbone.
  • On dépose sur la couche 7, une première couche de grains en matériau luminescent. Par des techniques classiques, on obtient des grains bien individualisés - voir figure 12b. On réalise une attaque sélective par plasma de la couche 7 en utilisant les grains de la première couche comme masque. Cette attaque est symbolisée par des flèches verticales sur la figure 12b.
  • Dans le cas d'une couche 7 en argent ou en or, on attaque par des ions Argon par exemple.
  • On peut utiliser une couche de carbone réalisée par exemple par évaporation, par utilisation d'un plasma comportant un gaz hydrocarbure ou en déposant une couche unique de particules de carbone d'un diamètre inférieur à 0,1 ¡Jom par exemple, alors que les grains de matériau luminescent ont un diamètre beaucoup plus important, d'une dizaine de µrn par exemple. Dans le cas d'une couche 7 de carbone, on réalise une attaque par plasma oxygène.
  • La figure 12c montre le résultat de cette attaque. Cette attaque doit être arrêtée à la surface du substrat pour ne pas le dépolir, et ainsi ne pas détériorer la résolution de l'écran.
  • Ensuite, on dépose d'autres couches de grains de matériau luminescent sur la première couche et on termine l'écran de la façon habituelle - voir figure 12d.
  • Sur les figures 13a, b, c, on a représenté un grain de matériau luminescent 2 et son pavé 6. Sur la figure 13a, le pavé a une section sensiblement égale à celle du grain, sur les figures 13b et c, le pavé a une section décroissante sensiblement, inférieure à celle du grain. Il est clair que plus la section du pavé est limitée au point de contact entre le grain et le pavé, plus le rendement et le contraste sont améliorés. Ainsi, on limite l'atténuation d'intensité due au pavé aux rayons créés au point de contact grain-pavé.
  • Le procédé de réalisation décrit permet d'obtenir des pavés de section au plus égale à la section des grains. Pour obtenir des configurations telles que celle de la figure 13c, on peut jouer sur la directivité d'attaque du plasma.
  • Le matériau utilisé pour réaliser les pavés doit présenter une bonne adhérence avec le verre du substrat. Il doit aussi pouvoir être bien attaqué par plasma alors que le matériau luminescent des grains et le verre sont peu attaqués. On a vu que l'on peut utiliser un métal comme l'argent ou l'or par exemple, ou du carbone, on peut utiliser aussi une couche telle que celle citée précédemment et décrite dans la demande du brevet européen n° 0 018 666. On accroît ainsi le gain et le rendement, sans diminuer la résolution de l'écran. Il faut dans ce cas aussi utiliser pour l'attaque sélective, un plasma qui attaque très préférentiellement cette couche alors que le matériau luminescent des grains et le support sont peu attaqués.
  • On peut en même temps qu'on utilise des pavés entre le substrat en verre et les grains de la première couche augmenter l'épaisseur e du substrat. Cette épaisseur e doit rester inférieure au rayon de la zone utile, car autrement il n'y a plus de halos mais cette trop grande épaisseur entraîne d'autres problèmes.

Claims (9)

1. Ecran luminescent comportant notamment, plusieurs couches de matériau luminescent (2) sous forme de grains, déposées sur un support transparent (1), caractérisé par la présence de pavés, disposés entre les grains de la première couche de matériau et le support, ces pavés ayant une section au plus égale à la section des grains et ayant une transparence optique (T3) inférieure à 1.
2. Ecran selon la revendication 1, caractérisé en ce que les pavés (6) sont en métal ou en carbone.
3. Ecran selon la revendication 1, caractérisé en ce que les pavés (6) sont constitués de couches alternées d'oxyde de silicium et d'oxyde de titane.
4. Ecran selon l'une des revendications 1 à 3, caractérisé en ce qu'il comporte plusieurs couches d'un matériau cathodoluminescent (2).
5. Ecran selon l'une des revendications 1 à 4, caractérisé en ce que le support transparent (1) est en verre.
6. Procédé de fabrication d'un écran selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte les étapes suivantes :
a) on dépose sur le support transparent (1) une couche mince (7) ayant la transparence optique (T3) recherchée ;
b) on dépose sur cette couche (7) une première couche de grains en matériau luminescent (2) ;
c) on réalise une attaque sélective par plasma de la couche mince (7) en utilisant les grains de la première couche comme masque de façon à obtenir les pavés (6) ;
d) on dépose les autres couches de grains luminescents, et on termine l'écran de la façon habituelle.
7. Procédé selon la revendication 6, caractérisé en ce que la couche mince (7) est en argent et en ce qu'on réalise une attaque sélective par des ions Argon.
8. Procédé selon la revendication 6, caractérisé en ce que la couche mince est en carbone et en ce qu'on réalise une attaque sélective par plasma oxygène.
9. Procédé selon l'une des revendications 6 à 8, caractérisé en ce qu'on joue sur la directivité du plasma pour diminuer la section des pavés.
EP84402396A 1983-11-29 1984-11-23 Ecran luminescent et procédé de fabrication d'un tel écran Expired EP0143714B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8319019A FR2555806B1 (fr) 1983-11-29 1983-11-29 Ecran luminescent et procede de fabrication d'un tel ecran
FR8319019 1983-11-29

Publications (2)

Publication Number Publication Date
EP0143714A1 EP0143714A1 (fr) 1985-06-05
EP0143714B1 true EP0143714B1 (fr) 1987-01-21

Family

ID=9294638

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84402396A Expired EP0143714B1 (fr) 1983-11-29 1984-11-23 Ecran luminescent et procédé de fabrication d'un tel écran

Country Status (5)

Country Link
US (1) US4661742A (fr)
EP (1) EP0143714B1 (fr)
JP (1) JPS60133638A (fr)
DE (1) DE3462199D1 (fr)
FR (1) FR2555806B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137598A (en) * 1990-06-04 1992-08-11 Itt Corporation Thin film phosphor screen structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2599739A (en) * 1950-04-12 1952-06-10 American Optical Corp Cathode-ray tube
NL6905835A (fr) * 1969-04-16 1970-10-20
US3726678A (en) * 1970-08-24 1973-04-10 Zenith Radio Corp Method of screening a color picture tube
JPS607344B2 (ja) * 1976-03-08 1985-02-23 株式会社東芝 カラー受像管
US4310784A (en) * 1979-05-07 1982-01-12 Anthon Erik W Cathode ray tube face plate construction for suppressing the halo and method
US4251610A (en) * 1979-11-02 1981-02-17 Tektronix, Inc. Method of making multicolor CRT display screen with minimal phosphor contamination
US4485158A (en) * 1983-10-17 1984-11-27 Rca Corporation Method for preparing a mosaic luminescent screen using a mosaic precoating

Also Published As

Publication number Publication date
FR2555806A1 (fr) 1985-05-31
FR2555806B1 (fr) 1986-03-28
EP0143714A1 (fr) 1985-06-05
JPS60133638A (ja) 1985-07-16
US4661742A (en) 1987-04-28
DE3462199D1 (en) 1987-02-26

Similar Documents

Publication Publication Date Title
EP1232407B1 (fr) Filtre anticalorique et procede de fabrication de ce filtre
EP0186225B1 (fr) Capteur d'images pour caméra fonctionnant en mode "jour-nuit"
FR2625333A1 (fr) Procede de fabrication de microguides de lumiere a faibles pertes de propagation optique par depot de multicouches
EP3671849A1 (fr) Procédé de fabrication d'un pixel d'un micro-écran à oleds
EP0428667B1 (fr) Ecran d'entree de tube intensificateur d'image radiologique
EP0209535B1 (fr) Dispositif d'affichage a effet memoire comprenant des couches minces electroluminescente et photoconductrice
EP0109865B1 (fr) Procédé de fabrication de circuits intégrés comportants des éléments du type grille-isolant-semiconducteur à au moins deux niveaux de grille
EP0325500B1 (fr) Scintillateur d'écran d'entrée de tube intensificateur d'images radiologiques et procédé de fabrication d'un tel scintillateur
EP2583299B1 (fr) Écran phosphore à fibres optiques comportant un filtre angulaire
EP0143714B1 (fr) Ecran luminescent et procédé de fabrication d'un tel écran
EP0553578B1 (fr) Tube intensificateur d'image avec compensation de courbe de brillance
EP0319080B1 (fr) Tube intensificateur d'images à rayons X
EP0412887B1 (fr) Ecran cathodoluminescent à haute efficacité pour tubes à rayons cathodiques haute luminance
JPH04154030A (ja) X線イメージ管及びその製造方法
EP0062553A1 (fr) Cible de tube intensificateur d'image et tube intensificateur d'image à sortie vidéo muni d'une telle cible
WO1999014618A1 (fr) Detecteur a scintillation, revetement refracteur pour scintillateur et procede de fabrication d'un tel revetement
CA3149864A1 (fr) Dosimetre
EP0851455B1 (fr) Tube intensificateur d'image radiologique
EP0182405B1 (fr) Dispositif photoélectrique pour la détection d'évènements lumineux
EP1183717A1 (fr) Procede de croissance d'une couche d'oxyde de silicium de faible epaisseur sur une surface de substrat de silicium et machine a deux reacteurs
EP0427842A1 (fr) Ecran cathodoluminescent a film mince pour tube a rayons cathodiques a haute luminance
FR3128783A1 (fr) Ecran de blindage electromagnetique auto-adaptatif a couches minces
FR2491677A1 (fr) Multiplicateur d'electrons, procede de fabrication et tubes images comportant ledit multiplicateur
WO1992004737A1 (fr) Detecteur infrarouge a substrat aminci et procede de fabrication
FR2647591A1 (fr) Ecran cathodoluminescent a duree de vie elevee pour tubes a rayons cathodiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19850812

17Q First examination report despatched

Effective date: 19860403

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 3462199

Country of ref document: DE

Date of ref document: 19870226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951013

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951020

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951021

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961123

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970801