EP0325500B1 - Scintillateur d'écran d'entrée de tube intensificateur d'images radiologiques et procédé de fabrication d'un tel scintillateur - Google Patents

Scintillateur d'écran d'entrée de tube intensificateur d'images radiologiques et procédé de fabrication d'un tel scintillateur Download PDF

Info

Publication number
EP0325500B1
EP0325500B1 EP89400032A EP89400032A EP0325500B1 EP 0325500 B1 EP0325500 B1 EP 0325500B1 EP 89400032 A EP89400032 A EP 89400032A EP 89400032 A EP89400032 A EP 89400032A EP 0325500 B1 EP0325500 B1 EP 0325500B1
Authority
EP
European Patent Office
Prior art keywords
needles
metal
scintillator
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89400032A
Other languages
German (de)
English (en)
Other versions
EP0325500A1 (fr
Inventor
Gérard Vieux
Henri Rougeot
Paul De Groot
François Chareyre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0325500A1 publication Critical patent/EP0325500A1/fr
Application granted granted Critical
Publication of EP0325500B1 publication Critical patent/EP0325500B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/12Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/36Photoelectric screens; Charge-storage screens
    • H01J29/38Photoelectric screens; Charge-storage screens not using charge storage, e.g. photo-emissive screen, extended cathode
    • H01J29/385Photocathodes comprising a layer which modified the wave length of impinging radiation

Definitions

  • the present invention relates to an input screen scintillator for an X-ray image intensifier tube. It also relates to a method of manufacturing such a scintillator.
  • Radiological image intensifier tubes are well known in the art. They make it possible in particular to transform a radiological image into a visible image, generally to ensure medical observation. A detailed description of such tubes is found in particular in two European patent documents EP-A-0 197 597 and EP-A-0 199 426 among which the first further describes a method for absorbing secondary X-rays generated by a scintillator; and the second describes in particular how to improve a photon-electron conversion efficiency.
  • These tubes include an input screen, an electronic optical system and an observation screen.
  • the input screen includes a scintillator which converts incident X photons into visible photons which then strike a photocathode, generally constituted by an alkaline antimonide; this photocathode thus excited, generates a flow of electrons.
  • the photocathode is not deposited directly on the scintillator but on an electrically conductive sub-layer which allows the charges of the photocathode material to be reconstituted.
  • This sub-layer can for example consist of alumina, indium oxide or a mixture of these two bodies.
  • the flow of electrons from the photocathode is then transmitted by the electronic optical system which focuses the electrons and directs them onto an observation screen made up of a phosphor which then emits visible light.
  • This light can then be processed, for example, by a television, cinema or photography system.
  • the scintillator of the entry screen generally consists of cesium iodide needles formed by vacuum evaporation on a substrate. Evaporation can take place on a cold or hot substrate.
  • the substrate is preferably aluminum. A thickness of cesium iodide is deposited on this substrate, which is generally between 150 and 500 micrometers.
  • Cesium iodide is naturally deposited in the form of needles 5 to 10 micrometers in diameter. Its refractive index being 1.8, there is a certain optical fiber effect which reduces the lateral scattering of the light generated within the material.
  • scintillators of the type as described in European patent document EP-A-0 242 024 type in which the scintillator is divided into a plurality of cells of approximately 100 micrometers in diameter each; of course in such a case, the resolution is lower than that which is obtained with a scintillator formed of needles.
  • FIG. 1 there is shown schematically, an aluminum substrate 1 carrying a few needles 2 of cesium iodide.
  • the aluminum substrate receives a flow of X photons symbolized by vertical arrows.
  • the figure shows examples of paths followed in cesium iodide needles by the visible radiation created by the incident X photons. The normal paths of these visible rays, which bear the reference 3, cause the production of a light signal at the end of the cesium iodide needles.
  • this resolution depends on the ability of cesium iodide needles to properly channel the light. It also depends on the thickness of the cesium iodide layer. An increase in thickness leads to a deterioration in resolution. But, moreover, the greater the thickness of cesium iodide, the more the X-rays are absorbed. A compromise must therefore be found between the absorption of X-rays and the resolution.
  • This treatment takes place immediately after the evaporation of the cesium iodide under vacuum. It ensures the luminescence of the screen due to the doping of cesium iodide by sodium or thallium ions for example.
  • This heat treatment consists in bringing the screen to the temperature of approximately 340 ° C, for about an hour, by placing it in an atmosphere of dry air or nitrogen.
  • a European patent application EP-A-0 215 699 teaches to coat the needles in cesium iodide with a refractory material having an optical index close to or lower than that of cesium iodide, in order to avoid the coalescence of the needles and promote the optical fiber effect that these present.
  • the object of the invention is precisely to remedy these drawbacks by producing a scintillator in which the cesium iodide needles are covered with a material which is good conductor of electricity, avoiding the coalescence of the needles while notably reducing the lateral diffusion. light.
  • aims are achieved by choosing a material which is a semiconductor or a metal and not a metal oxide.
  • the invention relates to a scintillator for the entry screen of an X-ray image intensifier tube comprising light-conducting cesium iodide needles formed on an electrically conducting and light-reflecting substrate, each needle being entirely coated on its surfaces. , excluding the surface in contact with the substrate, by a layer of the same material, said layer reflecting at least partially the light circulating in each needle and making an impact on the lateral face of each needle towards the inside of the latter, characterized in that said material is a good conductor of electricity for carrying said layer and the substrate to the same electrical potential, and that said material is a metal or a semiconductor with the exclusion of metal oxides, said layer being in electrical contact with the substrate.
  • the material is diluted in a resin.
  • the invention also relates to a method of manufacturing a scintillator according to claim 1, in which the material is a metal, characterized in that it consists in carrying out a direct deposition of said metal on the needles by photochemical decomposition of molecules d '' a metal compound in the gas phase.
  • the method consists in depositing said material on the needles, by diffusion of this material in solution in an organic solvent or a polymerizable resin, this diffusion being followed by heat treatment.
  • the material is a metal and the process consists in depositing said metal on the needles by thermal decomposition of an organo-metallic compound having previously diffused in the gas phase between the needles.
  • the metal is chosen from a list comprising at least indium, gallium, zinc, tin, lead.
  • the material being a semiconductor, it consists of silicon or germanium.
  • the scintillator according to the invention shown diagrammatically in FIG. 3, comprises, like the known scintillator, a metallic substrate 1 (made of aluminum for example), carrying needles 2 made of cesium iodide.
  • each needle is entirely coated, except its surface in contact with the substrate 1, by a material 5, such as a metal or a semiconductor reflecting the light circulating in the needles, towards the inside of those -this.
  • Light beam paths are shown as an example in this figure, at 6, 7, 8, 9.
  • the needles are coated with the material which is inserted into the interstices between these needles and which acts as an optical barrier, while avoiding the coalescence of these needles.
  • the material deposited on the needles which is reflective, metallic or semi-conductive, has a melting point as high as possible so as not to be affected by the heat treatments occurring during manufacture.
  • this material is conductive or semiconductor to the exclusion of metal oxides makes it possible to bring to the same potential the layer which covers the needles of cesium iodide as well as the substrate. This makes it possible to reduce the thickness or to remove the conductive sublayers which exist in the image intensifier tubes, between the scintillator and the photocathode; this also makes it possible to increase the efficiency of the scintillator.
  • the light rays are channeled inside the cesium iodide needles, thanks to the reflective layer 5 which coats these needles.
  • the angles of incidence of the light rays around the periphery of each needle are such that these rays are reflected inside of them.
  • the angle of incidence of the rays on the exit surface 10 of the scintillator is such that these rays are diffused towards the outside.
  • the material which coats the needles can be a semiconductor such as silicon or germanium, or a metal such as indium, gallium, zinc, tin, lead, etc. In the case where the material is a metal, this metal is in the metallic state, unlike scintillators of the state of the art in which metallic oxysulfides or oxides are used.
  • the deposition of the latter on the needles is carried out by photochemical decomposition of corresponding metal molecules, in the gas phase.
  • silane SiH4
  • the silane molecules are destroyed under ultraviolet excitation, possibly in the presence of mercury acting as catalyst. This photochemical action is accompanied by the deposition of the metal on the cesium iodide needles.
  • the material is metallic or semiconductor
  • the material when the material is a metal, it is possible to deposit this metal on the needles, by thermal decomposition of an organometallic compound, having previously diffused into gas phase between the needles.
  • This compound can be of the form MXn, in which M represents the chosen metal and X represents an organic group such as methyl (-CH3) or ethyl (C2H5) or any other organic group containing hydrogen atoms or chlorine atoms.
  • the diffusion of the organometallic compound is carried out under vacuum.
  • the scintillator is then heated and the organometallic compound breaks down into a metal, in contact with the needles of the hot scintillator according to the reaction: MXn ⁇ M + gaseous products.
  • the gaseous products are generally hydrogen and hydrocarbons.
  • the process which has just been described makes it possible to deposit the material in a thin layer on an essentially vertical substrate, constituted by the needles of the scintillator. It overcomes the difficulties of carrying out the coating of needles, which mainly arise from the fact that the interstices between these needles have a great length, compared to their diameter. The interstices have in fact a length which is approximately a thousand times greater than their diameter.
  • the invention makes it possible to achieve the goals mentioned above: it makes it possible to channel the light inside the needles, while making their surface electrically conductive and to increase the efficiency of the scintillator, by eliminating the losses of lateral light .
  • FIG. 4 is a diagram showing the evolution of the modulation transfer function (FTM), with respect to the spatial frequency F of the received radiation, for a scintillator of the state of the art as represented by the curve 11, - that is to say having no coating around the cesium iodide needles - and for a scintillator according to the invention, with coating by a metal or a semiconductor, as represented by curve 12
  • the transfer function (FTM) is much higher in the case of the scintillator of the invention (curve 12), than in the case of a scintillator according to the prior art (curve 11).
  • the scintillator of the invention therefore has better resolution and a higher modulation transfer function than the scintillators of the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of Radiation (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

  • La présente invention concerne un scintillateur d'écran d'entrée de tube intensificateur d'images radiologiques. Elle concerne également un procédé de fabrication d'un tel scintillateur.
  • Les tubes intensificateurs d'images radiologiques sont bien connus dans l'état de la technique. Ils permettent notamment de transformer une image radiologique en image visible, généralement pour assurer l'observation médicale. On trouve une description détaillée de tels tubes notamment dans deux documents de brevets européens EP-A-0 197 597 et EP-A-0 199 426 parmi lesquels le premier décrit en outre une méthode pour absorber un rayonnement X secondaire engendré par un scintillateur ; et le second décrit particulièrement comment améliorer une efficacité de conversion photons-électrons.
  • Ces tubes comprennent un écran d'entrée, un système d'optique électronique et un écran d'observation.
  • L'écran d'entrée comporte un scintillateur qui convertit des photons X incidents en photons visibles qui viennent ensuite frapper une photocathode, généralement constituée par un antimoniure alcalin ; cette photocathode ainsi excitée, génère un flux d'électrons. La photocathode n'est pas déposée directement sur le scintillateur mais sur une sous-couche conductrice de l'électricité qui permet de reconstituer les charges du matériau de la photocathode. Cette sous-couche peut par exemple être constituée d'alumine, d'oxyde d'indium ou d'un mélange de ces deux corps.
  • Le flux d'électrons issu de la photocathode est ensuite transmis par le système d'optique électronique qui focalise les électrons et les dirige sur un écran d'observation constitué d'un luminophore qui émet alors une lumière visible. Cette lumière peut ensuite être traitée, par exemple, par un système de télévision, de cinéma ou de photographie.
  • Le scintillateur de l'écran d'entrée est généralement constitué par des aiguilles d'iodure de césium formées par évaporation sous vide sur un substrat. L'évaporation peut avoir lieu sur un substrat froid ou chaud. Le substrat est de préférence en aluminium. On dépose sur ce substrat une épaisseur d'iodure de césium qui est généralement comprise entre 150 et 500 micromètres.
  • L'iodure de césium se dépose naturellement sous forme d'aiguilles de 5 a 10 micromètres de diamètre. Son indice de réfraction étant de 1,8, on bénéficie d'un certain effet de fibre optique qui diminue la diffusion latérale de la lumière générée au sein du matériau. On peut citer aussi le cas de scintillateurs du type tel que décrit dans le document de brevet européen EP-A-0 242 024, type dans lequel le scintillateur est partage en une pluralité de cellules d'environ 100 micromètres de diamètre chacune ; bien entendu dans un tel cas, la résolution est inférieure à celle qui est obtenue avec un scintillateur formé d'aiguilles.
  • Sur la figure 1, on a représenté de façon schématique, un substrat en aluminium 1 portant quelques aiguilles 2 en iodure de césium. Le substrat en aluminium reçoit un flux de photons X symbolisés par des flèches verticales. On a représenté sur la figure, des exemples de trajets suivis dans les aiguilles d'iodure de césium, par le rayonnement visible créé par les photons X incidents. Les trajets normaux de ces rayonnements visibles, qui portent la référence 3, entraînent la production d'un signal lumineux à l'extrémité des aiguilles en iodure de césium. Il se produit aussi une diffusion latérale de la lumière véhiculée par les aiguilles d'iodure de césium, comme cela est indiqué sur la figure par la référence 4. Cette diffusion latérale provoque une diminution de la résolution du tube. En effet, cette résolution dépend de la capacité des aiguilles d'iodure de césium à bien canaliser la lumière. Elle dépend aussi de l'épaisseur de la couche d'iodure de césium. Une augmentation d'épaisseur entraîne une détérioration de la résolution. Mais, par ailleurs, plus l'épaisseur d'iodure de césium est importante, plus les rayons X sont absorbés. Il faut donc trouver un compromis entre l'absorption des rayons X et la résolution.
  • Un autre facteur qui joue sur la résolution du tube est le traitement thermique que doit subir l'écran d'entrée lors de sa fabrication. Ce traitement a lieu immédiatement après l'évaporation sous vide de l'iodure de césium. Il assure la luminescence de l'écran du fait du dopage de l'iodure de césium par des ions de sodium ou de thallium par exemple. Ce traitement thermique consiste à porter l'écran à la température d'environ 340°C, pendant une heure environ, en le plaçant dans une atmosphère d'air sec ou d'azote.
  • Au cours de ce traitement thermique absolument obligatoire, les aiguilles du scintillateur subissent une certaine coalescence et s'agglomèrent entre elles, comme cela a été représenté schématiquement sur la figure 2. Cette coalescence entraîne une diffusion latérale de la lumière encore plus importante (voir les flèches en pointillés portant le repère 4), et la résolution se trouve détériorée.
  • Pour supprimer la coalescence qui se produit lors du traitement thermique, on a proposé, dans l'art antérieur, de réaliser le scintillateur de l'écran d'entrée en évaporant alternativement de l'iodure de césium pur et de l'iodure de césium dopé avec un matériau réfractaire. On espérait que des aiguilles ainsi constituées par des couches alternées d'iodure de césium pur et d'iodure de césium dopé avec un matériau réfractaire n'entreraient pas en contact lors du traitement thermique.
  • Cette solution n'a pas permis d'obtenir le résultat souhaité. De plus, un autre problème important qui est d'éviter la diffusion latérale de la lumière, n'est pas du tout résolu par l'alternance de couches d'iodure de césium pur et d'iodure de césium dopé par un matériau réfractaire.
  • Il a donc été envisagé, tel que décrit dans le brevet US N°4069355 publié le 17 janvier 1978, de recouvrir les aiguilles d'iodure de césium par du dioxyde de titanium ou par de l'oxysulfure de gadolinium ou de lanthane. Ces matériaux déposés contenant un métal, non pas sous force métallique, mais sous forme d'un oxyde ou d'un composé, permettent de résoudre partiellement les problèmes posés : ils évitent la coalescence des aiguilles et permettent de diminuer légèrement la diffusion latérale de la lumière sans toutefois que cette diminution de diffusion ne provoque une augmentation appréciable du rendement du scintillateur.
    Une demande de brevet européen EP-A-0 215 699 enseigne d'enrober les aiguilles en iodure de césium par un matériau réfractaire présentant un indice optique voisin ou inférieur celui de l'iodure de césium, afin d'éviter la coalescence des aiguilles et favoriser l'effet de fibre optique que présentent ces dernières.
  • Un autre problème non résolu, même dans le scintillateur du brevet précité est celui de la conduction électrique qu'il est souhaitable d'obtenir pour toute couche recouvrant les aiguilles, tout en évitant la coalescence et la diffusion latérale de lumière. Cette conduction est en effet souhaitable pour accroître le rendement du scintillateur en portant au même potentiel la couche recouvrant les aiguilles, le substrat d'aluminium sur lequel sont formées ces aiguilles et une électrode annulaire à laquelle est reliée ce substrat.
  • L'invention a précisément pour but de remédier à ces inconvénients en réalisant un scintillateur dans lequel les aiguilles d'iodure de césium sont recouvertes d'un matériau bon conducteur de l'électricité, évitant la coalescence des aiguilles tout en diminuant notablement la diffusion latérale de la lumière. Ces buts sont atteints en choisissant un matériau qui est un semiconducteur ou un métal et non un oxyde métallique.
  • L'invention concerne un scintillateur d'écran d'entrée de tube intensificateur d'images radiologiques comportant des aiguilles d'iodure de césium conductrices de la lumière formées sur un substrat électriquement conducteur et réfléchissant la lumière, chaque aiguille étant entièrement enrobée sur ses surfaces, à l'exclusion de la surface en contact avec le substrat, par une couche d'un même matériau, ladite couche réfléchissant au moins partiellement la lumière circulant dans chaque aiguille et faisant incidence sur la face latérale de chaque aiguille vers l'intérieur de celle-ci, caractérisé en ce que ledit matériau est bon conducteur d'électricité pour porter au même potentiel électrique ladite couche et le substrat, et que ledit matériau est un métal ou un semiconducteur à l'exclusion d'oxydes de métaux, ladite couche étant en contact électrique avec le substrat.
  • Selon une autre caractéristique de l'invention, le matériau est dilué dans une résine.
  • L'invention concerne aussi un procédé de fabrication d'un scintillateur conforme à la revendication 1, dans lequel le matériau est un métal, caractérisé en ce qu'il consiste à effectuer un dépôt direct dudit métal sur les aiguilles par décomposition photochimique de molécules d'un composé du métal en phase gazeuse.
  • Selon une autre caractéristique de l'invention, le procédé consiste à effectuer un dépôt dudit matériau sur les aiguilles, par diffusion de ce matériau en solution dans un solvant organique ou une résine polymérisable, cette diffusion étant suivie d'un traitement thermique.
  • Selon une autre caractéristique du procédé, le matériau est un métal et le procédé consiste à effectuer un dépôt dudit métal sur les aiguilles par décomposition thermique d'un composé organo-métallique ayant préalablement diffusé en phase gazeuse entre les aiguilles.
  • Selon une autre caractéristique du procédé, le métal est choisi dans une liste comprenant au moins l'indium, le gallium, le zinc, I'étain, le plomb.
  • Selon une autre caractéristique, le matériau étant un semiconducteur, celui-ci est constitué de silicium ou de germanium.
  • Les caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre donnée en référence aux dessins annexés dans lesquels :
    • les figures 1 et 2 ont déjà été décrites et représentent schématiquement un scintillateur connu dans l'état de la technique,
    • la figure 3 représente schématiquement un scintillateur conforme à l'invention,
    • la figure 4 est un diagramme qui représente les fonctions de transfert de modulation (FTM), en fonction de la fréquence spatiale des rayonnements reçus par le scintillateur, pour un scintillateur connu dans l'état de la technique et pour le scintillateur de l'invention.
  • Le scintillateur conforme à l'invention, représenté schématiquement sur la figure 3, comporte, comme le scintillateur connu, un substrat 1 métallique (en aluminium par exemple), portant des aiguilles 2 en iodure de césium. Selon l'invention, chaque aiguille est entièrement enrobée, sauf sa surface en contact avec le substrat 1, par un matériau 5, tel qu'un métal ou un semi-conducteur réfléchissant la lumière circulant dans les aiguilles, vers l'intérieur de celles-ci. Des trajets de faisceau de lumière sont représentés en exemple sur cette figure, en 6, 7, 8, 9. Les aiguilles sont enrobées par le matériau qui vient s'insérer dans les interstices entre ces aiguilles et qui agit comme une barrière optique, tout en évitant la coalescence de ces aiguilles.
  • Le matériau déposé sur les aiguilles, qui est réfléchissant, métallique ou semi-conducteur, présente un point de fusion aussi élevé que possible pour ne pas être affecté par les traitements thermiques intervenant au cours de la fabrication.
  • Le fait que ce matériau soit conducteur ou semi-conducteur à l'exclusion d'oxydes de métaux permet de porter au même potentiel la couche qui recouvre les aiguilles d'iodure de césium ainsi que le substrat. Ceci permet de diminuer l'épaisseur ou de supprimer des sous couches conductrices qui existent dans les tubes intensificateurs d'image, entre le scintillateur et la photocathode ; ceci permet aussi d'augmenter la rendement du scintillateur.
  • Les rayons lumineux dont les trajets ont été représentés en 6, 7, 8, 9 sur la figure 4, sont canalisés à l'intérieur des aiguilles d'iodure de césium, grâce à la couche réfléchissante 5 qui enrobe ces aiguilles. Les angles d'incidence des rayons lumineux sur le pourtour de chaque aiguille sont tels que ces rayons sont réfléchis à l'intérieur de celles-ci. L'angle d'incidence des rayons sur la surface de sortie 10 du scintillateur est tel que ces rayons sont diffusés vers l'extérieur. Le matériau qui enrobe les aiguilles peut être un semi-conducteur tel que le silicium ou le germanium, ou un métal tel que l'indium, le gallium, le zinc, l'étain, le plomb, etc... Dans le cas où le matériau est un métal, ce métal est à l'état métallique, contrairement aux scintillateurs de l'état de la technique dans lesquels on utilise des oxysulfures métalliques ou des oxydes.
  • Selon le procédé de l'invention, dans le cas où le matériau est un métal, le dépôt de celui-ci sur les aiguilles est effectué par décomposition photochimique de molécules métalliques correspondantes, en phase gazeuse. Pour ceci, après une mise sous vide initiale du substrat et des aiguilles d'iodure de césium dans une enceinte, on introduit du silane (SiH₄) dilué dans de l'azote. A une température qui peut aller de la température ambiant à une température voisine de 200°C environ, les molécules de silane sont détruites sous excitation ultraviolette, éventuellement en présence de mercure agissant comme catalyseur. Cette action photochimique s'accompagne du dépôt du métal sur les aiguilles d'iodure de césium.
  • Selon un autre mode de mise en oeuvre du procédé de l'invention, que le matériau soit métallique ou semi-conducteur, il est possible d'effectuer un dépôt de ce matériau sur les aiguilles, par diffusion de ce matériau en solution dans un solvant organique ou une résine polymérisable. Cette diffusion est suivie d'un traitement thermique qui permet d'éliminer le solvant et de laisser sur les aiguilles un film de résine polymérisée contenant le matériau réfléchissant.
  • Selon un autre mode de mise en oeuvre du procédé de l'invention, lorsque le matériau est un métal, il est possible d'effectuer un dépôt de ce métal sur les aiguilles, par décomposition thermique d'un composé organométallique, ayant préalablement diffusé en phase gazeuse entre les aiguilles.
  • Ce composé peut être de la forme MXn, dans laquelle M représente le métal choisi et X représente un groupement organique tel que le méthyl (-CH₃) ou l'éthyl (C₂H₅) ou tout autre groupement organique contenant des atomes d'hydrogène ou des atomes de chlore.
  • La diffusion du composé organométallique est réalisée sous vide. Le scintillateur est ensuite chauffé et le composé organométallique se décompose en un métal, au contact des aiguilles du scintillateur chaud selon la réaction : MXn→M + produits gazeux.
    Figure imgb0001

    Les produits gazeux sont généralement de l'hydrogène et des hydrocarbures.
  • Le procédé qui vient d'être décrit permet de déposer le matériau en couche mince sur un substrat essentiellement vertical, constitué par les aiguilles du scintillateur. Il permet de surmonter les difficultés de réalisation de l'enrobage des aiguilles, qui proviennent essentiellement du fait que les interstices entre ces aiguilles ont une grande longueur, par rapport à leur diamètre. Les interstices ont en effet une longueur qui est approximativement mille fois plus élevée que leur diamètre.
  • L'invention permet bien d'atteindre les buts mentionnés plus haut : elle permet de canaliser la lumière à l'intérieur des aiguilles, tout en rendant leur surface électriquement conductrice et d'augmenter le rendement du scintillateur, en supprimant les pertes de lumière latérale.
  • La figure 4 est un diagramme montrant l'évolution de la fonction de transfert (FTM) de modulation, vis-à-vis de la fréquence spatiale F des rayonnements reçus, pour un scintillateur de l'état de la technique tel que représenté par la courbe 11, - c'est à dire ne comportant pas d'enrobement autour des aiguilles d'iodure de césium- et pour un scintillateur conforme à l'invention, avec enrobement par un métal ou un semiconducteur, tel que représenté par la courbe 12. On voit sur ce diagramme que la fonction de transfert (FTM) est beaucoup plus élevée dans le cas du scintillateur de l'invention (courbe 12), que dans le cas d'un scintillateur selon l'art antérieur (courbe 11). Le scintillateur de l'invention présente donc une meilleure résolution et une fonction de transfert en modulation plus élevée que les scintillateurs de l'état de la technique.

Claims (8)

  1. Scintillateur d'écran d'entrée de tube intensificateur d'images radiologiques comportant des aiguilles (2) d'iodure de césium conductrices de la lumière formées sur un substrat (1) électriquement conducteur et réfléchissant la lumière, chaque aiguille étant entièrement enrobée sur ses surfaces, à l'exclusion de la surface en contact avec le substrat (1), par une couche d'un même matériau (5), ladite couche réfléchissant au moins partiellement la lumière circulant dans chaque aiguille et faisant incidence sur la face latérale de chaque aiguille vers l'intérieur de celle-ci, caractérisé en ce que ledit matériau est bon conducteur d'électricité pour porter au même potentiel électrique ladite couche et le substrat, et que ledit matériau est un métal ou un semiconducteur à l'exclusion d'oxydes de métaux, ladite couche étant en contact électrique avec le substrat.
  2. Scintillateur selon la revendication 1, caractérisé en ce que ladite couche est constituée dudit matériau dilué dans une résine.
  3. Scintillateur selon la revendication 1, caractérisé en ce que ledit matériau (5) est un métal choisi dans une liste comprenant au moins l'indium, le gallium, le zinc, I'étain, le plomb.
  4. Scintillateur selon la revendication 1, caractérisé en ce que ledit matériau (5) est un semiconducteur, constitué de silicium ou de germanium.
  5. Procédé de fabrication d'un scintillateur conforme à la revendication 1, dans lequel le matériau (5) est un métal, caractérisé en ce qu'il consiste à effectuer un dépôt dudit métal sur les aiguilles par décomposition photochimique de molécules d'un composé du métal en phase gazeuse.
  6. Procédé de fabrication d'un scintillateur conforme à la revendication 1, dans lequel ledit matériau (5) est un métal, caractérisé en ce qu'il consiste à effectuer un dépôt dudit métal sur les aiguilles par décomposition thermique d'un composé organo-métallique ayant préalablement diffusé en phase gazeuse entre les aiguilles.
  7. Procédé de fabrication d'un scintillateur conforme à la revendication 1, caractérisé en ce qu'il consiste à effectuer un dépôt dudit matériau (5) sur les aiguilles, par diffusion de ce matériau en solution dans un solvant organique, cette diffusion étant suivie d'un traitement thermique.
  8. Procédé de fabrication d'un scintillateur conforme à la revendication 2, caractérisé en ce qu'il consiste à effectuer un dépôt dudit matériau (5) sur les aiguilles, par diffusion de ce matériau en solution dans une résine polymérisable, cette diffusion étant suivie d'un traitement thermique.
EP89400032A 1988-01-13 1989-01-05 Scintillateur d'écran d'entrée de tube intensificateur d'images radiologiques et procédé de fabrication d'un tel scintillateur Expired - Lifetime EP0325500B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8800297A FR2625838B1 (fr) 1988-01-13 1988-01-13 Scintillateur d'ecran d'entree de tube intensificateur d'images radiologiques et procede de fabrication d'un tel scintillateur
FR8800297 1988-01-13

Publications (2)

Publication Number Publication Date
EP0325500A1 EP0325500A1 (fr) 1989-07-26
EP0325500B1 true EP0325500B1 (fr) 1995-06-28

Family

ID=9362247

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89400032A Expired - Lifetime EP0325500B1 (fr) 1988-01-13 1989-01-05 Scintillateur d'écran d'entrée de tube intensificateur d'images radiologiques et procédé de fabrication d'un tel scintillateur

Country Status (5)

Country Link
US (2) US4980561A (fr)
EP (1) EP0325500B1 (fr)
JP (1) JP3093210B2 (fr)
DE (1) DE68923187T2 (fr)
FR (1) FR2625838B1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2688343A1 (fr) * 1992-03-06 1993-09-10 Thomson Tubes Electroniques Tube intensificateur d'image notamment radiologique, du type a galette de microcanaux.
FR2698482B1 (fr) * 1992-11-20 1994-12-23 Thomson Tubes Electroniques Dispositif générateur d'images par effet de luminescence.
US5427817A (en) * 1993-11-02 1995-06-27 University Of California Process for manufacturing an auto-collimating scintillator and product produced thereby
US6456326B2 (en) 1994-01-28 2002-09-24 California Institute Of Technology Single chip camera device having double sampling operation
USRE42918E1 (en) 1994-01-28 2011-11-15 California Institute Of Technology Single substrate camera device with CMOS image sensor
DE19516450C1 (de) * 1995-05-04 1996-08-08 Siemens Ag Verfahren und Vorrichtung zum Herstellen einer Leuchtschicht aus Cesiumiodid-Thallium auf einem Substrat in einer Bedampfungsanlage
FR2777112B1 (fr) 1998-04-07 2000-06-16 Thomson Tubes Electroniques Dispositif de conversion d'une image
EP1118880B1 (fr) * 1998-06-18 2003-11-26 Hamamatsu Photonics K.K. Procede de depot de film organique
FR2782388B1 (fr) 1998-08-11 2000-11-03 Trixell Sas Detecteur de rayonnement a l'etat solide a duree de vie accrue
DE10301274B4 (de) * 2003-01-15 2005-03-24 Siemens Ag Verfahren zur Herstellung eines Bildwandlers mit einer nadelförmigen Leuchtstoffschicht
US6996209B2 (en) * 2003-10-27 2006-02-07 Ge Medical Systems Global Technology Company, Llc Scintillator coatings having barrier protection, light transmission, and light reflection properties
FR2888045B1 (fr) * 2005-07-01 2007-10-19 Thales Sa Capteur d'image a resolution spatiale amelioree et procede de realisation du capteur
DE102007009174A1 (de) * 2007-02-26 2008-08-28 Siemens Ag Strahlungswandler und Verfahren zur Herstellung eines Strahlungswandlers
TWI476143B (zh) * 2012-11-13 2015-03-11 Nat Inst Chung Shan Science & Technology 具有次微米柱狀排列的閃爍晶體結構與製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0197597A1 (fr) * 1985-04-03 1986-10-15 Koninklijke Philips Electronics N.V. Tube intensificateur d'image de rayons X comportant une couche luminescente absorbant le rayonnement secondaire
EP0199426A2 (fr) * 1985-04-26 1986-10-29 Koninklijke Philips Electronics N.V. Intensificateur d'image de rayonnement
EP0242024A2 (fr) * 1986-03-10 1987-10-21 Picker International, Inc. Tubes intensificateurs d'images de rayonnement

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7014007A (fr) * 1970-09-22 1972-03-24
CA939428A (en) * 1970-09-30 1974-01-01 Howard D. Doolittle Image intensifier with improved input screen
FR2360989A1 (fr) * 1976-08-03 1978-03-03 Thomson Csf Intensificateur d'image radiologique, et son procede de fabrication
JPS5346631A (en) * 1976-10-07 1978-04-26 Matsushita Electric Ind Co Ltd Manufacturing method of flyback transformer
US4269896A (en) * 1979-08-31 1981-05-26 Hughes Aircraft Company Surface passivated alkali halide infrared windows
US4528210A (en) * 1980-06-16 1985-07-09 Tokyo Shibaura Denki Kabushiki Kaisha Method of manufacturing a radiation excited input phosphor screen
JPS58131644A (ja) * 1981-12-26 1983-08-05 Toshiba Corp 放射線像増倍管及びその製造方法
US4552434A (en) * 1982-03-16 1985-11-12 Sumitomo Electric Industries, Ltd. Crystalline infrared optical fiber with a small gap and a process for the production of same
JPS5949141A (ja) * 1982-09-13 1984-03-21 Shimadzu Corp X線螢光増倍管の入力面
JPS59121737A (ja) * 1982-12-28 1984-07-13 Yoshihiro Hamakawa X線イメ−ジ管の入力面
JPS60125801A (ja) * 1983-12-12 1985-07-05 Sumitomo Electric Ind Ltd 赤外透過材用反射防止膜
FR2586508B1 (fr) * 1985-08-23 1988-08-26 Thomson Csf Scintillateur d'ecran d'entree de tube intensificateur d'images radiologiques et procede de fabrication d'un tel scintillateur
US5097175A (en) * 1990-06-04 1992-03-17 Itt Corporation Thin film phosphor screen structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0197597A1 (fr) * 1985-04-03 1986-10-15 Koninklijke Philips Electronics N.V. Tube intensificateur d'image de rayons X comportant une couche luminescente absorbant le rayonnement secondaire
EP0199426A2 (fr) * 1985-04-26 1986-10-29 Koninklijke Philips Electronics N.V. Intensificateur d'image de rayonnement
EP0242024A2 (fr) * 1986-03-10 1987-10-21 Picker International, Inc. Tubes intensificateurs d'images de rayonnement

Also Published As

Publication number Publication date
DE68923187D1 (de) 1995-08-03
FR2625838A1 (fr) 1989-07-13
US4980561A (en) 1990-12-25
JPH01209637A (ja) 1989-08-23
EP0325500A1 (fr) 1989-07-26
US5298294A (en) 1994-03-29
DE68923187T2 (de) 1995-11-02
JP3093210B2 (ja) 2000-10-03
FR2625838B1 (fr) 1996-01-26

Similar Documents

Publication Publication Date Title
EP0325500B1 (fr) Scintillateur d'écran d'entrée de tube intensificateur d'images radiologiques et procédé de fabrication d'un tel scintillateur
EP0215699B1 (fr) Scintillateur d'écran d'entrée de tube intensificateur d'images radiologiques, et procédé de fabrication d'un tel scintillateur
US6452184B1 (en) Microchannel high resolution x-ray sensor having an integrated photomultiplier
JPS5944738B2 (ja) 発光スクリ−ンの製造方法
EP0352152B1 (fr) Procédé de fabrication d'un scintillateur et scintillateur ainsi obtenu
EP0559550B1 (fr) Tube intensificateur d'image, notamment radiologique, du type à galette de microcanaux
EP0428667B1 (fr) Ecran d'entree de tube intensificateur d'image radiologique
EP0403802B1 (fr) Intensificateur d'images de rayons X et procédé pour la fabrication d'un écran d'entrée
EP0372395A2 (fr) Intensificateurs d'images de rayons X et sa méthode de fabrication
EP0553578B1 (fr) Tube intensificateur d'image avec compensation de courbe de brillance
FR2545271A1 (fr) Dispositif de production d'images presentant un rendement quantique ameliore et son procede de fabrication
EP0324676B1 (fr) Procédé de fabrication d'une photocathode pour tube intensificateur d'images
FR2521781A1 (fr) Convertisseur d'images radiologiques
JPH04154030A (ja) X線イメージ管及びその製造方法
EP0249547B1 (fr) Procédé de fabrication d'un intensificateur d'images radiologiques, et intensificateur d'images radiologiques ainsi obtenus
EP0143714B1 (fr) Ecran luminescent et procédé de fabrication d'un tel écran
FR2530368A1 (fr) Ecran scintillateur convertisseur de rayonnement
EP0170310A1 (fr) Ecran cathodoluminescent incrusté à cavités restaurées et tube de visualisation utilisant un tel écran
EP0608168B1 (fr) Tube convertisseur d'images, et procédé de fabrication d'un tel tube
WO1999014618A1 (fr) Detecteur a scintillation, revetement refracteur pour scintillateur et procede de fabrication d'un tel revetement
FR2525406A1 (fr) Tube cathodique a laser et procede pour son traitement thermique sous vide
JPS635853B2 (fr)
FR2794565A1 (fr) Ecran de conversion de rayonnements x en photons lumineux de grande dimension et systeme de radiologie comportant cet ecran
JPH04154032A (ja) X線蛍光増倍管及びその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19890826

17Q First examination report despatched

Effective date: 19910814

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 68923187

Country of ref document: DE

Date of ref document: 19950803

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951220

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970105

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060103

Year of fee payment: 18

Ref country code: DE

Payment date: 20060103

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060110

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131