EP0608168B1 - Tube convertisseur d'images, et procédé de fabrication d'un tel tube - Google Patents

Tube convertisseur d'images, et procédé de fabrication d'un tel tube Download PDF

Info

Publication number
EP0608168B1
EP0608168B1 EP94400099A EP94400099A EP0608168B1 EP 0608168 B1 EP0608168 B1 EP 0608168B1 EP 94400099 A EP94400099 A EP 94400099A EP 94400099 A EP94400099 A EP 94400099A EP 0608168 B1 EP0608168 B1 EP 0608168B1
Authority
EP
European Patent Office
Prior art keywords
tube
deposited
film
tube according
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94400099A
Other languages
German (de)
English (en)
Other versions
EP0608168B2 (fr
EP0608168A1 (fr
Inventor
Philippe Pradere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Electron Devices SA
Original Assignee
Thomson Tubes Electroniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9443290&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0608168(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Thomson Tubes Electroniques filed Critical Thomson Tubes Electroniques
Publication of EP0608168A1 publication Critical patent/EP0608168A1/fr
Application granted granted Critical
Publication of EP0608168B1 publication Critical patent/EP0608168B1/fr
Publication of EP0608168B2 publication Critical patent/EP0608168B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • H01J31/501Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output with an electrostatic electron optic system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/50Imaging and conversion tubes
    • H01J2231/50005Imaging and conversion tubes characterised by form of illumination
    • H01J2231/5001Photons
    • H01J2231/50031High energy photons
    • H01J2231/50036X-rays

Definitions

  • the present invention relates to an improvement to image converter tubes: this improvement makes it possible to eliminate stray gleams which may develop on the insulators inside these tubes.
  • the invention also relates to a method for the production of such an image converter tube.
  • Such an image converting tube is known from EP-A-0 380 147.
  • Image intensifier tubes are vacuum tubes comprising an input converter, located at the front of the tube, an electronic optical system, and a visible image observation screen located at the rear of the tube, on the side of an exit window of the latter.
  • the input converter includes a scintillator screen which converts the incident X photons into visible photons.
  • Figure 1 schematically shows such an image intensifier tube of the radiological type.
  • the IIR tube comprises an envelope 1 made of glass or metal, one end of which, at the front of the tube, comprises an entry screen 2. This end is closed by an entry window 3 exposed to X-ray radiation.
  • the second end of the envelope forming the rear of the tube is closed by an exit window 4 transparent to light.
  • the X-rays are converted into light rays by a scintillator screen 5.
  • the light rays excite a photocathode 6 which in response produces electrons.
  • the electrons produced by photocathode 6 are accelerated towards the exit window 4 using different electrodes 7, and an anode 8, arranged along a longitudinal axis of the tube and which form the electronic optics system. .
  • the exit window 4 is formed by a transparent piece of glass which, in the example shown, carries a cathodoluminescent screen or exit screen 9 made of phosphors for example.
  • the impact of the electrons on the cathodoluminescent screen or output screen makes it possible to reconstruct an image (amplified in luminance) which at the start was formed on the surface of photocathode 6.
  • the image displayed by the exit screen 9 is visible through the glass piece which constitutes the exit window 4.
  • optical sensor devices are arranged outside the tube near the output window 4 to capture this image through it and allow its observation.
  • the invention aims to limit the electrical charge of the insulators, which is the source of parasitic glows.
  • insulating parts which form part of the enclosure are for this purpose covered with a thin layer of chromium oxide. This layer is made by depositing chromium nitrate by brushing, spraying, or immersion followed by a heat treatment.
  • the object of the invention is to provide an image converter tube with such a thin layer with improved performance and inexpensive. This objective is achieved by the image converter tube according to claim 1 and the method of manufacturing such a tube according to claims 4 and 5.
  • the invention relates to a radiological image intensifier (IIR) tube comprising, inside a vacuum enclosure, at least one input screen associating a scintillator and a photocathode, which transform the rays.
  • IIR radiological image intensifier
  • FIG. 1 which has been described previously rapidly exposed the operation of an IIR tube.
  • Figure 2 shows this sectional view, but it is more particularly oriented on the electrical insulations inside.
  • this IIR tube has a photocathode 6 made of alkali antimonide, and that it is of the tetrode type, with three grids 71, 72, 73 and an anode 8.
  • the electrodes are brought to voltages which can go beyond 30 kV for the anode 8 and about 20 kV for the grid 73.
  • the electrodes 71 and 72 are brought to voltages generally not exceeding 1500 V.
  • the primary screen 2 with its photocathode 6 transforms the X-ray radiation into an electron beam which is then focused by the set of electrodes on the secondary screen 4 which transforms it into a bright image.
  • the anode 8 is brought to a fixed voltage, for example 30 kV, while the other electrodes, including in particular the grid 73 can be brought to variable voltages to enlarge the input image on the output screen , creating a zoom effect.
  • the zoom operating mode can lead to operating voltages greater than 20 kV for the electrode 73.
  • the evaporation of alkali metals is the result of a hot decomposition of a compound of these metals such as for example a chromate, by the heating by Joule effect of the alkaline generators.
  • the closed geometry of these generators, necessary for the confinement of the chromates to optimize the decomposition reactions, and their off-centered position relative to the axis of the tube make evaporation very poorly directive.
  • the alkalis can even evaporate outside the tube: they are then injected into the tube through a sump. In all cases, this evaporation generates a mist which is deposited everywhere inside the tube.
  • FIGS. 3a to 3c allow to understand the phenomenon of appearance of gleams on insulators, and consequently to understand the solution provided by the invention.
  • an insulating part 12 made of alumina, which supports and joins two grids 72 and 73 made of stainless steel, for example.
  • the grid 73 is brought to around 20 kV
  • the grid 72 to around 1.5 kV
  • the alumina wedge 12 has been previously polluted by alkalis, as well as metallic parts.
  • the electric field can be very high in the vicinity of the insulator / low-voltage electrode for reasons of charge of the insulator and proximity of potential sources of electrons.
  • an incident electron which strikes the alumina wedge 12 causes a multiplier effect and tears off at least two secondary electrons, with the consequence that the wedge 12 is charged with at minus a positive charge.
  • This positive charge attracts, in a second emission mechanism symbolized in FIG. 3b, the electrons which have left the metallic parts by field effect, for example in the vicinity of the insulator / electrode.
  • the electrons thus captured bring back to the previous case and create secondary electrons by multiplier effect.
  • there is very quickly an avalanche effect and the emission of electrons by field effect leads - FIG. 3c - to the appearance of gleams on the surface of the insulation bombarded by a mechanism of cathodoluminescence type.
  • These lights are typically blue on the glass and red on the alumina Al 2 O 3 . The lights are generally stable over time although they may vary slightly in position.
  • the parasitic illumination thus generated disturbs the proper functioning of the IIR tube: glow in the absence of a useful signal and deterioration of the contrast in operation.
  • the large leakage current which may be associated with the presence of the lights is also a source of instability in the supply of the IIR tube to the detriment of the image quality, with loss of resolution.
  • a first solution consists in limiting the possibilities of emission of electrons. This solution requires action on the configuration of the parts and their surface condition. Indeed the parasitic emission of electrons by field effect is governed by two parameters: the work of electron output and the microscopic field on the surface of the emission site. If the output work is conditioned by the inevitable presence of alkalis, the microscopic field can be reduced by improving the surface condition and by increasing the radius of curvature of the place at the level of possible emission sites, with decrease in l 'peak effect. The parasitic emission of electrons and therefore the gleams on insulators can therefore be reduced by the introduction of polished and rounded parts, for example at the insulator-metal junctions. These parts are generally expensive and must be handled with care.
  • a second solution consists in protecting the bombarded insulation by depositing a powdery product.
  • a solution consists, for example, of a deposit of chromium oxide, produced using a mixture of chromium oxide powder, water and optionally a binder. Deposited with a brush or a pad, a thick deposit with low adhesion is obtained.
  • This solution if it makes it possible to eliminate the gleams on the surface of the whitewashed insulation, is a source of particulate pollution in the tube and therefore of appearance defects on the output screen.
  • Such a deposit consists for example of a layer of amorphous carbon deposited by sputtering or by a chemical process, stimulated by a plasma and known under the term PECVD (Plasma Enhanced Chemical Vapor Deposition).
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • the PECVD technique makes it possible to obtain a homogeneous, thin, insulating and highly adherent deposit on parts with complex shapes.
  • the substrate is heated to 100 ° C and subjected to a 13.5 MHz HF plasma.
  • This type of thin film is also known as "diamond carbon" or in English ADLC (Amorphous Diamond Like Carbon).
  • Diamond carbon is a material known for its low secondary emission factor. This remains below 1 whatever the incident energy of the electrons: the material does not charge whatever the conditions of electron bombardment.
  • Carbon in the form of graphite is not suitable because it is conductive. Carbon black has been used in vacuum tube technology, but this type of deposit has all the disadvantages of chromium oxide paint: thickness, poor adhesion and therefore the possibility of generating particles in the tube.
  • the diamond carbon deposited in a thin layer by spraying or by PECVD is perfectly homogeneous and adheres to its support; it does not generate dust like chromium oxide paint.
  • Carbon deposition by PECVD makes it possible to process a large number of parts simultaneously.
  • a thickness of 1000 ⁇ (0.1 ⁇ m) is enough to gain a factor of 1.5 to 2 on the threshold for the appearance of gleams on the surface of alumina insulators working at voltages up to 40 kV, because the carbon diamond is very conductive and holds very high voltages.
  • amorphous carbon can be done on alumina parts such as the insulators 11 and 12 between the electrodes 72 and 73 for example, or on the glass bulb 13 which allows the grid 73 / anode 8 insulation.
  • the metal parts adjoining such as the ends of the alumina wedges or the metal parts molded in the glass bulb can also be covered, the deposit also being adherent on a metal substrate and is not likely to generate particles during mounting operations in because of its thinness.
  • FIG. 4 illustrates the invention: an insulating block 12, located between two metal parts such as the electrodes 72 and 73, is covered with a layer 14 of a material having a low secondary emission rate and a low conductivity, deposited using a so-called thin layer technique.
  • the layer 14 behaves like a shield, to prevent incident electrons from charging the insulator 12, by the secondary emission of electrons.
  • the invention can be generalized to any other type of insulating material capable of being deposited in a thin layer and having as main characteristic a low secondary emission rate. Mention will be made, for example, of oxides of titanium, tungsten, vanadium, molybdenum, silver, copper or even chromium oxide in a thin layer.
  • the chromium is deposited, for example, by sputtering with a device for rotating the sample to homogenize the deposit, and the deposit is then oxidized.

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Description

  • La présente invention concerne un perfectionnement aux tubes convertisseurs d'images : ce perfectionnement permet d'éliminer les lueurs parasites qui peuvent se développer sur les isolants à l'intérieur de ces tubes.
  • L'invention concerne également un procédé pour la production d'un tel tube convertisseur d'images.
  • Le rappel préliminaire de la structure et du fonctionnement d'un tube convertisseur d'images permettra de mieux comprendre la nature du problème posé et celle de la solution proposée par l'invention. Mais, de façon à être plus claires et précises les explications ainsi que celles relatives à l'invention s'appuieront sur l'exemple, non limitatif, d'un tube intensificateur d'images radiologiques.
  • Un tel tube convertisser d'images est connu de EP-A-0 380 147.
  • Les tubes intensificateurs d'images sont des tubes à vide comprenant un convertisseur d'entrée, situé à l'avant du tube, un système d'optique électronique, et un écran d'observation de l'image visible situé à l'arrière du tube, du côté d'une fenêtre de sortie de ce dernier.
  • Dans les tubes intensificateurs d'image radiologiques ou en abrégé "tube IIR", le convertisseur d'entrée comporte un écran scintillateur qui convertit les photons X incidents en photons visibles.
  • La figure 1 montre schématiquement un tel tube intensificateur d'image du type radiologique.
  • Le tube IIR comprend une enveloppe 1 en verre ou en métal dont une extrémité, à l'avant du tube, comprend un écran d'entrée 2. Cette extrémité est fermée par une fenêtre d'entrée 3 exposée à un rayonnement de photons X.
  • La seconde extrémité de l'enveloppe formant l'arrière du tube est fermée par une fenêtre de sortie 4 transparente à la lumière .
  • Les rayons X sont convertis en rayons lumineux par un écran scintillateur 5. Les rayons lumineux excitent une photocathode 6 qui en réponse produit des électrons.
  • Les électrons produits par la photocathode 6 sont accélérés vers la fenêtre de sortie 4 à l'aide de différentes électrodes 7, et d'une anode 8, disposées le long d'un axe longitudinal du tube et qui forment le système d'optique électronique.
  • La fenêtre de sortie 4 est formée par une pièce transparente en verre qui, dans l'exemple représenté, porte un écran cathodoluminescent ou écran de sortie 9 fait de luminophores par exemple.
  • L'impact des électrons sur l'écran cathodoluminescent ou écran de sortie permet de reconstituer une image (amplifiée en luminance) qui au départ était formée sur la surface de la photocathode 6.
  • L'image affichée par l'écran de sortie 9 est visible à travers la pièce en verre qui constitue la fenêtre de sortie 4. Généralement des dispositifs capteurs d'optiques (non représentés) sont disposés à l'extérieur du tube à proximité de la fenêtre de sortie 4 pour capter cette image au travers de cette dernière et permettre son observation.
  • Mais cette observation ne peut être efficace que s'il n'intervient pas de lumière parasite. Or, une conséquence du procédé de fabrication, d'une part, et des hautes tensions de l'optique électronique, d'autre part, réside en l'apparition de lueurs en surface des parties isolantes qui soutiennent les électrodes. Il est facilement concevable que ces lueurs dégradent l'image radiologique observée, en particulier en contraste.
  • Ces lueurs parasites proviennent de ce que l'isolation électrique des électrodes est dégradée par la présence des métaux alcalins qui se sont déposés sur ces électrodes, et qui favorisent par effet de champ une émission d'électrons qui vont charger les isolants.
  • L'invention vise à limiter la charge électrique des isolants, qui est à l'origine des lueurs parasites. Dans le convertisseur d'images décrit dans EP-A-0 380 147 des pièces isolantes qui font partie de l'enceinte sont dans ce but recouvertes d'une couche mince en oxyde de chrome. Cette couche est faite par dépôt de nitrate de chrome par brossage, pulverisation, ou immersion suivi d'un traitement thermique.
  • L'objet de l'invention est de proposer un tube convertisseur d'images avec une telle couche mince à performances améliorés et peu coûteuse. Cet objectif est atteint par le tube convertisseur d'images selon la revendication 1 et le procédé de fabrication d'un tel tube selon les revendications 4 et 5.
  • De façon plus précise, l'invention concerne un tube intensificateur d'images radiologiques (IIR) comportant, à l'intérieur d'une enceinte sous vide, au moins un écran d'entrée associant un scintillateur et une photocathode, qui transforment les rayons X incidents sur le scintillateur en électrons, focalisés sur un écran de sortie au moyen d'une optique électronique formée par une pluralité d'électrodes fixées au moyen d'une pluralité de pièces isolantes, ce tube IIR étant caractérisé en ce que, en vue de supprimer les lueurs parasites qui naissent en fonctionnement sur les isolants, ceux-ci sont recouverts d'une couche mince d'un matériau ayant un faible taux d'émission secondaire d'électrons, une très faible conductivité électrique, et susceptible d'être déposé par un procédé physique ou chimique de vaporisation en couche mince.
  • L'invention sera mieux comprise par l'exposé d'un exemple de réalisation, en liaison avec les figures jointes en annexes qui représentent :
    • figure 1 : vue en coupe, schématique, d'un tube IIR selon l'art connu ;
    • figure 2 : vue en coupe d'un tube IIR, orientée sur les problèmes d'isolants résolus par l'invention ;
    • figures 3a à 3c : schéma du mécanisme d'apparition des lueurs sur les isolants ;
    • figure 4 : coupe d'un isolant recouvert d'une couche mince selon l'invention.
  • La figure 1 qui a été décrite précédemment exposait rapidement le fonctionnement d'un tube IIR. La figure 2 reprend cette vue en coupe, mais elle est plus particulièrement orientée sur les isolements électriques à l'intérieur.
  • De façon à rendre plus claire et plus concrète la description, on admettra que ce tube IIR a une photocathode 6 en antimoniure d'alcalins, et qu'il est de type tétrode , avec trois grilles 71, 72, 73 et une anode 8.
  • Les électrodes sont portées à des tensions pouvant aller au delà de 30 kV pour l'anode 8 et à environ 20 kV pour la grille 73. Les électrodes 71 et 72 sont portées à des tensions ne dépassant généralement pas 1500 V. L'écran primaire 2 avec sa photocathode 6 transforme le rayonnement X en un faisceau d'électrons qui est ensuite focalisé par l'ensemble d'électrodes sur l'écran secondaire 4 qui le transforme en image lumineuse. Généralement l'anode 8 est portée à une tension fixe, par exemple 30 kV, tandis que les autres électrodes, dont en particulier la grille 73 peuvent être portées à des tensions variables pour agrandir l'image d'entrée sur l'écran de sortie, créant ainsi un effet de zoom. Le mode de fonctionnement zoom peut conduire à des tensions de fonctionnement supérieures à 20 kV pour l'électrode 73.
  • L'ensemble des grilles 71, 72 et 73, de l'anode 8, et de la fenêtre de sortie 4 forment un ensemble architectural qui est assemblé de façon rigide :
    • d'une part au moyen de cales d'alumine 11 et 12, par exemple, entre les grilles 71, 72 et 73,
    • d'autre part au moyen d'un scellement 13 verre/métal, entre l'enveloppe 1 du tube et les électrodes 8 et 73.
  • Compte tenu des tensions élevées auxquelles peuvent fonctionner les électrodes 73 et l'anode 8, leur isolement électrique vis à vis du reste du tube est un problème délicat, mais il se fait que la tenue en tension est particulièrement dégradée par le procédé de fabrication de la photocathode 6 qui se fait à l'intérieur même du tube à vide 1 par évaporations successives de ses éléments constitutifs. Si l'évaporation de l'antimoine (Sb) par effet Joule à partir d'un creuset inséré sur l'axe du tube est directive et permet d'éviter une pollution importante du reste du tube, il en est tout autrement pour celle des alcalins tels que potassium (K), césium (Cs) ou sodium (Na). L'évaporation des métaux alcalins est le résultat d'une décomposition à chaud d'un composé de ces métaux tel que par exemple un chromate, par le chauffage par effet Joule des générateurs alcalins. La géométrie fermée de ces générateurs, nécessaire au confinement des chromates pour optimiser les réactions de décomposition, et leur position décentrée par rapport à l'axe du tube rendent l'évaporation très peu directive. L'évaporation des alcalins peut même se faire à l'extérieur du tube : ils sont alors injectés dans le tube à travers un queusot. Dans tous les cas, cette évaporation génère un brouillard qui se dépose partout à l'intérieur du tube.
  • Une partie des alcalins vaporisés se dépose sur les pièces métalliques du tube IIR, telles que les électrodes 71, 72, 73, tandis qu'une autre partie des alcalins se dépose sur les pièces isolantes 11, 12, 13. Les figures 3a à 3c permettent de comprendre le phénomène d'apparition des lueurs sur les isolants, et par voie de conséquence de comprendre la solution apportée par l'invention.
  • Soit une pièce isolante 12, en alumine, qui soutient et réunit deux grilles 72 et 73 en acier inoxydable, par exemple. Dans ce cas, la grille 73 est portée à quelque 20 kV, la grille 72 à quelque 1,5 kV et la cale d'alumine 12 a été précédemment polluée par des alcalins, ainsi d'ailleurs que les pièces métalliques.
  • Les alcalins, déposés en surface des pièces métalliques internes du tube, diminuent considérablement le travail de sortie des électrons du métal ce qui favorise les émissions parasites d'électrons par effet de champ aux endroits où le champ électrique est élevé. En particulier, le champ électrique peut être très élevé au voisinage isolant/électrode à basse tension pour des raisons de charge de l'isolant et de proximité de sources potentielles d'électrons.
  • Ainsi, dans un premier mécanisme d'émission représenté en figure 3a, un électron incident qui heurte la cale d'alumine 12 provoque un effet multiplicateur et en arrache au moins deux électrons secondaires, avec la conséquence que la cale 12 est chargée d'au moins une charge positive. Cette charge positive attire, dans un second mécanisme d'émission symbolisé en figure 3b, les électrons qui sont sortis des pièces métalliques par effet de champ, par exemple au voisinage isolant/électrode. Les électrons ainsi captés ramènent au cas précédent et créent des électrons secondaires par effet multiplicateur. C'est ainsi qu'il y a très rapidement un effet d'avalanche, et l'émission d'électrons par effet de champ conduit - figure 3c - à l'apparition de lueurs en surface de l'isolant bombardé par un mécanisme de type cathodoluminescence. Ces lueurs sont typiquement bleues sur le verre et rouge sur l'alumine Al2O3. Les lueurs sont généralement stables dans le temps bien qu'elles peuvent varier légèrement en position.
  • Les lueurs en surface des isolants, visibles directement de la photocathode ou par réflexions sur les électrodes ou les parois métalliques du tube, sont retransmises et amplifiées sur l'écran secondaire 4. L'éclairement parasite ainsi généré perturbe le bon fonctionnement du tube IIR : lueur en l'absence de signal utile et détérioration du contraste en fonctionnement. Le courant de fuite important qui peut être associé à la présence des lueurs est aussi source d'instabilité de l'alimentation du tube IIR au détriment de la qualité de l'image, avec perte de résolution.
  • Pour améliorer l'isolement électrique et en particulier limiter l'apparition de lueurs en surface des isolants, différentes solutions sont connues mais comportent des limitations de performances ou restent très coûteuses.
  • Une première solution consiste à limiter les possibilités d'émission d'électrons. Cette solution nécessite une action sur la configuration des pièces et leur état de surface. En effet l'émission parasite d'électrons par effet de champ est régi par deux paramètres : le travail de sortie des électrons et le champ microscopique en surface du site d'émission. Si le travail de sortie est conditionné par la présence inévitable des alcalins, le champ microscopique peut être diminué en améliorant l'état de surface et en augmentant le rayon de courbure de la place au niveau des sites possibles d'émission, avec diminution de l'effet de pointe. L'émission parasite d'électrons et donc les lueurs sur isolants peuvent donc être diminuées par l'introduction de pièces polies et arrondies, par exemple aux jonctions isolant-métal. Ces pièces sont généralement coûteuses et doivent être manipulées avec soin.
  • Une seconde solution consiste à protéger l'isolant bombardé par un dépôt d'un produit pulvérulent. Une telle solution consiste par exemple en un dépôt d'oxyde de chrome, réalisé en utilisant un mélange de poudre d'oxyde de chrome, d'eau et éventuellement d'un liant. Déposé au pinceau ou au tampon, on obtient un dépôt épais et d'adhérence faible. Cette solution, si elle permet d'éliminer les lueurs en surface de l'isolant badigeonné, est une source de pollution particulaire dans le tube et donc de défauts d'aspect sur l'écran de sortie.
  • Enfin, on peut optimiser la forme de l'isolant, en utilisant des alumines crénelés ou coniques. C'est une solution coûteuse et à l'efficacité limitée compte tenu de la présence d'alcalins dans le tube.
  • Selon l'invention, on limite la charge électrique des isolants à l'origine des lueurs parasites par un dépôt 14 (figures 2 et 4) sur ces isolants d'un produit ayant pour principales caractéristiques :
    • d'avoir un faible taux d'émission secondaire d'électrons, de sorte que s'il est heurté par un électron, il l'absorbe sans émission secondaire avec mutiplication,
    • d'être homogène, c'est-à-dire non pulvérulent, ou déposé par un procédé dit "de couche mince", avec forte adhérence entre le produit et l'isolant,
    • d'être très peu conducteur pour limiter le courant de fuite dans le tube intensificateur d'image.
  • Un tel dépôt consiste par exemple en une couche de carbone amorphe déposée par pulvérisation cathodique ou par un procédé chimique, stimulé par un plasma et connu sous le vocable anglais PECVD (Plasma Enhanced Chemical Vapor Deposition). La technique de PECVD permet l'obtention d'un dépôt homogène, mince, isolant et très adhérent sur des pièces de formes complexes. Le dépôt consiste en un craquage, en surface du substrat, de l'acétylène en présence d'hydrogène à basse pression (13,3 à 0,13 Pa = 10-1 à 10-3 torr). Pour activer la réaction le substrat est chauffé à 100°C et soumis à un plasma HF de 13.5 MHz. Ce type de couches minces est aussi connu sous le nom de "carbone diamant" ou en anglais ADLC (Amorphous Diamond Like Carbon).
  • Le carbone diamant est un matériau connu pour son faible coefficient d'émission secondaire. Celui-ci reste inférieur à 1 quelle que soit l'énergie incidente des électrons : le matériau ne se charge pas quelles que soient les conditions de bombardement électronique.
  • Le carbone sous forme de graphite ne convient pas car il est conducteur. Le noir de carbone a été utilisé en technologie du tube à vide mais ce type de dépôt présente tous les inconvénients de la peinture d'oxyde de chrome : épaisseur, mauvaise adhérence et donc possibilité de générer des particules dans le tube.
  • Le carbone diamant déposé en couche mince par pulvérisation ou par PECVD est parfaitement homogène et adhère à son support ; il ne génère pas de poussières comme la peinture à l'oxyde de chrome.
  • Le dépôt de carbone par PECVD permet de traiter un grand nombre de pièces simultanément. Une épaisseur de 1000 Å (0,1 µm) suffit pour gagner un facteur 1,5 à 2 sur le seuil d'apparition des lueurs en surface d'isolateurs en alumine travaillant à des tensions pouvant aller jusqu'à 40 kV, car le carbone diamant est très peu conducteur et tient de très hautes tensions.
  • Le dépôt de carbone amorphe peut être fait sur des pièces en alumine telles que les isolateurs 11 et 12 entre les électrodes 72 et 73 par exemple, ou sur le bulbe de verre 13 qui permet l'isolement grille 73 / anode 8. Les pièces métalliques attenantes telles que les embouts des cales d'alumine ou les pièces métalliques moulées dans le bulbe en verre peuvent aussi être recouvertes, le dépôt étant aussi adhérent sur un substrat métallique et n'est pas susceptible de générer des particules pendant les opérations de montage en raison de sa faible épaisseur.
  • La figure 4 illustre l'invention : une cale isolante 12, située entre deux pièces métalliques telles que les électrodes 72 et 73, est recouverte d'une couche 14 d'un matériau ayant un faible taux d'émission secondaire et une faible conductivité, déposé selon une technique dite de couche mince.
  • Par rapport à la cale isolante 12, la couche 14 se comporte comme un blindage, pour empêcher que des électrons incidents ne chargent l'isolant 12, par l'émission secondaire d'électrons.
  • L'invention peut être généralisée à tout autre type de matériau isolant susceptible d'être déposé en couche mince et ayant pour caractéristique principale un faible taux d'émission secondaire. On citera par exemple les oxydes de titane, de tungstène, de vanadium, de molybdène, d'argent, de cuivre ou même l'oxyde de chrome en couche mince. Dans ce cas, le chrome est déposé par exemple par pulvérisation cathodique avec un dispositif de rotation de l'échantillon pour homogénéiser le dépôt, et le dépôt est ensuite oxydé.
  • L'invention est précisée par les revendications suivantes.

Claims (5)

  1. Tube convertisseur d'images comportant, à l'intérieur d'une enceinte sous vide (1), au moins un écran d'entrée (2) associant un scintillateur (5) et une photocathode (6), qui transforment les rayons X incidents sur le scintillateur (5) en électrons, focalisés sur un écran de sortie (4) au moyen d'une optique électronique formée par une pluralité d'électrodes (8, 71, 72, 73) fixées au moyen d'une pluralité de pièces isolantes (11, 12, 13), qui, en vue de supprimer les lueurs parasites qui naissent en fonctionnement sur les pièces isolantes (11, 12, 13), sont recouvertes d'une couche mince (14) d'un matériau ayant un faible taux d'émission secondaire d'électrons, une très faible conductivité électrique, cette couche étant caractérisé en ce qu'elle est déposé par un procédé physique ou chimique de vaporisation ou de pulvérisation cathodique en couche mince.
  2. Tube selon la revendication 1, caractérisé en ce que ledit matériau (14) à faible taux d'émission secondaire est choisi parmi le carbone diamant, ou les oxydes de titane, de tungstène, de vanadium, de molybdène, d'argent, de cuivre, ou de chrome.
  3. Tube selon la revendication 1, caractérisé en ce que ledit matériau (14) est déposé sous forme d'une couche adhérente d'épaisseur de l'ordre de 1000 Å (0,1 micromètre).
  4. Procédé de fabrication d'un tube intensificateur d'images radiologiques conforme à la revendication 1, caractérisé en ce qu'une couche de "carbone diamant" est déposée en surface des pièces isolantes (11, 12, 13), chauffés à 100°C, par craquage d'acétylène en présence d'hydrogène, à une pression entre 13,3 et 0,13 Pa (10-1 et 10-3 torr), sous l'action d'un plasma à 13,5 MHz.
  5. Procédé de fabrication d'un tube intensificateur d'images radiologiques conforme à la revendication 1, caractérisé en ce qu'une couche d'oxyde d'un métal choisi parmi titane, tungstène, vanadium, molybdène, argent, cuivre, chrome, est déposée en surface des isolants (11, 12, 13) par pulvérisation cathodique, suivie d'une oxydation.
EP94400099A 1993-01-22 1994-01-14 Tube convertisseur d'images, et procédé de fabrication d'un tel tube Expired - Lifetime EP0608168B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9300638A FR2700889B1 (fr) 1993-01-22 1993-01-22 Tube convertisseur d'images, et procédé de suppression des lueurs parasites dans ce tube.
FR9300638 1993-01-22

Publications (3)

Publication Number Publication Date
EP0608168A1 EP0608168A1 (fr) 1994-07-27
EP0608168B1 true EP0608168B1 (fr) 1997-03-12
EP0608168B2 EP0608168B2 (fr) 2001-01-24

Family

ID=9443290

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94400099A Expired - Lifetime EP0608168B2 (fr) 1993-01-22 1994-01-14 Tube convertisseur d'images, et procédé de fabrication d'un tel tube

Country Status (5)

Country Link
US (1) US6147446A (fr)
EP (1) EP0608168B2 (fr)
JP (1) JP3529152B2 (fr)
DE (1) DE69401966T3 (fr)
FR (1) FR2700889B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1016931A4 (nl) 2005-06-14 2007-10-02 Exponent Challenge Technology Verbeterde meelopende valbeveiliging met flexibele ankerlijn.
JP4469837B2 (ja) * 2006-12-19 2010-06-02 株式会社東芝 イメージインテンシファイア
JP2009217944A (ja) * 2008-03-07 2009-09-24 Toshiba Corp イメージインテンシファイア

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173727A (en) * 1966-06-23 1979-11-06 Westinghouse Electric Corp. Electron image device
US3474275A (en) * 1966-09-26 1969-10-21 Rca Corp Image tube having a gating and focusing electrode
US3708673A (en) * 1971-06-10 1973-01-02 Machlett Lab Inc Image intensifier tube
DE2461262B2 (de) * 1974-12-23 1978-09-14 Siemens Ag, 1000 Berlin Und 8000 Muenchen Röntgenbildverstärkerröhre
US4001618A (en) * 1975-01-29 1977-01-04 Rca Corporation Electron discharge image tube with electrostatic field shaping electrode
US4069357A (en) * 1976-11-09 1978-01-17 The United States Of America As Represented By The United States Department Of Energy Process for diffusing metallic coatings into ceramics to improve their voltage withstanding capabilities
US4221967A (en) * 1978-03-10 1980-09-09 Diagnostic Information, Inc. Gamma ray camera
US4315184A (en) * 1980-01-22 1982-02-09 Westinghouse Electric Corp. Image tube
JPS59215639A (ja) * 1983-05-24 1984-12-05 Nippon Hoso Kyokai <Nhk> 反射電子除去電極
FR2600177B1 (fr) * 1986-06-13 1988-08-19 Thomson Csf Procede de fabrication d'un intensificateur d'images radiologiques et intensificateur d'images radiologiques ainsi obtenu
FR2634057B1 (fr) * 1988-07-08 1991-04-19 Thomson Csf Procede de fabrication d'un tube perfectionne intensificateur d'images radiologiques, tube intensificateur ainsi obtenu
DE3889454D1 (de) * 1988-09-29 1994-06-09 Siemens Ag Röntgenbildverstärker.
DE3833133C2 (de) * 1988-09-29 1995-12-14 Siemens Ag Verfahren zur Herstellung eines Elektrodensystems für einen Röntgenbildverstärker
NL8900039A (nl) * 1989-01-09 1990-08-01 Philips Nv Beeldversterkerbuis met chroomoxyde coating.
JPH0337939A (ja) * 1989-07-05 1991-02-19 Hitachi Ltd 受光素子及びその動作方法
DE4208538C2 (de) * 1992-03-17 1994-01-05 Siemens Ag Röntgenbildverstärker

Also Published As

Publication number Publication date
FR2700889A1 (fr) 1994-07-29
EP0608168B2 (fr) 2001-01-24
DE69401966D1 (de) 1997-04-17
JPH06243806A (ja) 1994-09-02
JP3529152B2 (ja) 2004-05-24
EP0608168A1 (fr) 1994-07-27
DE69401966T3 (de) 2001-05-23
FR2700889B1 (fr) 1995-02-24
US6147446A (en) 2000-11-14
DE69401966T2 (de) 1997-06-26

Similar Documents

Publication Publication Date Title
EP0559550B1 (fr) Tube intensificateur d&#39;image, notamment radiologique, du type à galette de microcanaux
FR2687007A1 (fr) Tube intensificateur d&#39;image notamment du type a focalisation de proximite.
JPS61224234A (ja) 光電子増倍管のダイノ−ドの被膜材料及び被膜形成方法
EP0608168B1 (fr) Tube convertisseur d&#39;images, et procédé de fabrication d&#39;un tel tube
US5359187A (en) Microchannel plate with coated output electrode to reduce spurious discharges
US4724357A (en) Image intensifier tube with reduced veiling glare and method of making same
US6049168A (en) Method and system for manufacturing microchannel plates
CA1093626A (fr) Tube-image avec ecran d&#39;entree conditionne
EP0481465A1 (fr) Tube image à rayons X et procédé de sa fabrication
US3370168A (en) Anode aperture plate for a television camera tube in an electron microscope comprising a stainless steel foil
JPH023262B2 (fr)
US6437491B1 (en) System for enhanced vision employing an improved image intensifier with an unfilmed microchannel plate
EP0249547B1 (fr) Procédé de fabrication d&#39;un intensificateur d&#39;images radiologiques, et intensificateur d&#39;images radiologiques ainsi obtenus
US4853098A (en) Method of making image intensifier tube
US4698544A (en) Imaging and streaking tubes including a lid for covering an aperture in a wall separating the tube envelope into spaces during fabrication thereof
US3391297A (en) Photoconductive target having arsenicselenium layers of different densities on cryolite layer
US3814977A (en) Image storage device
US6268686B1 (en) Cold cathode element
EP0561621A1 (fr) Tube image
US4150165A (en) Lead monoxide target and method of manufacturing same
JP2809657B2 (ja) X線イメージ管及びその製造方法
US6624406B1 (en) Method and system for enhanced vision employing an improved image intensifier and reduced halo
JPH0729884A (ja) 基板表面のイオンエッチング処理および薄膜形成方法
Elsener et al. MCP detector development for WSO-UV
CH359796A (fr) Tubes à rayons X à anode tournante

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR NL

17P Request for examination filed

Effective date: 19941126

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960709

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR NL

REF Corresponds to:

Ref document number: 69401966

Country of ref document: DE

Date of ref document: 19970417

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: SIEMENS AG

Effective date: 19971212

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AG

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20010124

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR NL

NLR2 Nl: decision of opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090104

Year of fee payment: 16

Ref country code: DE

Payment date: 20090108

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090113

Year of fee payment: 16

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100803

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201