EP0249547B1 - Procédé de fabrication d'un intensificateur d'images radiologiques, et intensificateur d'images radiologiques ainsi obtenus - Google Patents

Procédé de fabrication d'un intensificateur d'images radiologiques, et intensificateur d'images radiologiques ainsi obtenus Download PDF

Info

Publication number
EP0249547B1
EP0249547B1 EP87401281A EP87401281A EP0249547B1 EP 0249547 B1 EP0249547 B1 EP 0249547B1 EP 87401281 A EP87401281 A EP 87401281A EP 87401281 A EP87401281 A EP 87401281A EP 0249547 B1 EP0249547 B1 EP 0249547B1
Authority
EP
European Patent Office
Prior art keywords
intensifier
photocathode
layer
anode
alkali metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87401281A
Other languages
German (de)
English (en)
Other versions
EP0249547A2 (fr
EP0249547A3 (en
Inventor
Gérard Vieux
Francis Diaz
Henri Rougeot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0249547A2 publication Critical patent/EP0249547A2/fr
Publication of EP0249547A3 publication Critical patent/EP0249547A3/fr
Application granted granted Critical
Publication of EP0249547B1 publication Critical patent/EP0249547B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/12Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/32Secondary emission electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/34Photoemissive electrodes
    • H01J2201/342Cathodes
    • H01J2201/3421Composition of the emitting surface
    • H01J2201/3426Alkaline metal compounds, e.g. Na-K-Sb

Definitions

  • the present invention relates to a method of manufacturing a radiological image intensifier. It also relates to the radiological image intensifiers thus obtained.
  • Radiological image intensifier tubes or I.I.R. are well known in the prior art. They transform a radiological image into a visible image, for example to ensure medical observation.
  • an IIR which is represented schematically, seen in longitudinal section in FIG. 1, consists of an input screen, an electronic optical system and an observation screen contained in a vacuum enclosure 1.
  • the input screen includes a scintillator 2 which converts the incident X photons into visible photons, a photocathode 3 which converts the visible photons into electrons. Between the scintillator and the photocathode, an electrically conductive sublayer is generally inserted, the role of which is to re-supply the photocathode with electrical charges while it emits its electrons. This sublayer is not shown in FIG. 1.
  • the scintillator may consist, for example, of cesium iodide doped with sodium or with thallium.
  • the photocathode can consist of an alkaline antimonide, of formula for example Sb Css, Sb K 3 , Sb K 2 Cs .
  • the conductive undercoat can consist, for example, of indium oxide of formula In 2 0 3 .
  • the electronic optical system generally consists of three electrodes G 1 , G 2 , G 3 and an anode A which carries the observation screen 4.
  • Photocathode 3 is generally connected to the ground of the tube.
  • the electrodes Gi, G 2 , G 3 and the anode A are brought to electrical potentials increasing up to 30 KV for example.
  • An electric field E is therefore created in the tube, directed along the longitudinal axis of the tube, towards the photocathode.
  • the electrons from the photocathode go up this field and strike the observation screen 4, made of a cathodoluminescent material such as zinc sulfide for example, which makes it possible to obtain a visible image.
  • the problem which arises and which the present invention seeks to solve is that one observes in the IIR, even in the absence of X-ray, a disturbing parasitic lighting of the observation screen.
  • This stray light is due to the alkali metals involuntarily deposited on the IIR electrodes during the development of the photocathode.
  • the intense electric field which reigns in the tube manages to tear electrons from these alkali metals which are very electro-positive, and therefore very easily ionizable. These electrons go up the electric field, strike the observation screen and create parasitic lighting.
  • FIG. 2 represents a partial section view of the grid G 3 and of the anode A of the IIR in FIG. 1.
  • the reference to the layer of alkali metals deposited on the grid is designated by reference 7 G 3 and which, under the action of the electric field E, prevailing between the grid G 3 and the anode A and directed towards the grid Ga, releases electrons which go up the electric field and strike the observation screen 4 .
  • photocathodes of the alkaline antimonide type are done in the vacuum chamber of the IR because the alkali metals are very reactive and must be created under vacuum to be stable.
  • These photocathodes can be produced by successive evaporations of their constituent elements.
  • an antimony generator which is constituted by a usual crucible containing antimony, which is caused to evaporate by heating the crucible, by Joule effect for example.
  • the antimony generator 5 is generally placed close to the photocathode and on the electron path as shown in FIG. 1, which explains why it is generally removed from the enclosure, once the photocathode is finished.
  • the alkali metals are evaporated from alkaline generators 6 generally located on the electrode G s , which is closest to the anode A, as shown in FIG. 1.
  • the alkaline generators are generally left in the vacuum enclosure once the photocathode is finished. There are known methods of manufacturing IR in which the alkaline generators are not carried by the electrode G 3 and are removed from the vacuum enclosure, once the photocathode is finished.
  • the evaporation of alkali metals is the result of silicothermia or aluminothermia of the chromates of the metals that we are trying to evaporate. Silicothermia or aluminothermia are triggered by Joule heating of alkaline generators.
  • Alkaline generators are much less directive than antimony generators. This is due to the fact that it is necessary for silicothermia or aluminothermia to occur under good conditions to use special crucibles in which the chromates are confined. This type of crucible has poor directivity which has the advantage of ensuring a very uniform deposition of alkali metals over the entire surface of the photocathode which is distant from these crucibles 6. It does, however, have the disadvantage of causing the deposition of alkali metals on all parts of the IIR tube, and in particular on the electrodes G 1 , G 2 and G 3 , which causes the problem of stray lighting of the observation screen.
  • This solution eliminates stray lighting from the observation screen, but introduces discharges through this oxide layer.
  • the IR When the IR receives X-rays, part of the electrons from the photocathode fall on the electrode Ga. As the electrode G 3 is covered with an oxide layer, these electrons do not flow and there occurs discharges through the oxide layer.
  • the present invention provides a solution to the problem mentioned which does not have the drawbacks of the known solution.
  • the present invention relates to a method of manufacturing an intensifier of radiological images, comprising in particular a photocathode consisting of an alkaline antimonide, several grids and an anode, characterized in that a layer of a conductive material of the electricity and having the property of oxidizing the alkali metals which enter into the composition of the photocathode is deposited at least on a part of the grid which is closest to the anode before introducing it into the intensifier.
  • a layer of an electrically conductive material is deposited on the grid G 3 on which the antimony generators are generally fixed. having the property of oxidizing alkali metals.
  • the problem of stray lighting is due to the metallic nature of the parasitic alkalies.
  • the solution proposed by the invention is to chemically react these alkali metals with a material capable of oxidizing them and transforming them into ionic or covalent compounds.
  • the alkali metals are fixed and no longer release electrons creating the stray light that we are trying to remove.
  • the deposit used must also be electrically conductive so as to avoid the discharge phenomena encountered in the prior art when an oxide layer covers the Ga electrode.
  • the invention proposes to use to cover the electrode G 3 of the IIR, before introducing it into the IIR, preferably, one of the following elements: selenium, tellurium, sulfur, arsenic, phosphorus, antimony ...
  • the electrode G 3 is covered with a layer 8, of tellurium for example, before being introduced into the IIR. It is possible to cover the whole of the electrode G 3 with tellurium or, as is the case in FIG. 3, only the zones of the electrode G 3 which are most likely to cause the phenomenon of parasitic lighting. These areas can be determined experimentally. They can also be determined by calculation using computer programs. The zones which are most likely to cause the phenomenon of parasitic lighting are generally very curved zones whose radius of curvature is small and whose electric field is strong. These areas are located near the alkaline generators and the observation screen. In FIG. 3, we see that the periphery of the orifice of the grid G 3 which allows the passage of the electrons has been covered with layer 8.
  • layer 8 which is sufficiently conductive, there is no problem of discharge.
  • this layer 8 there are also compounds of this layer and alkali metals, but whether these compounds are conductive or not, does not change the fact that layer 8 is sufficiently conductive so that there is no discharge and breakdown problem.
  • the layer 8 of electrically conductive material having the property of oxidizing the alkalis is deposited at least on the Ga electrode, which generally carries the alkaline generators and which is closest to the anode.
  • this layer 8 is also deposited on the grid G 2 .
  • this layer 8 it is also possible to cover with this layer 8 the grid G i , as well as more generally any part of the IR which must be electrically connected to an electrode of the IIR, that is to say say to one of the grids or to the anode.
  • One of these methods is to lay the neck che 8 by evaporation by heating by Joule effect a crucible containing the product to be deposited and causing condensation of the vapors from the crucible on the surfaces to be covered with layer 8.
  • Another method consists in dipping the parts to be covered with layer 8 in a reactive chemical bath which contains the product to be deposited.
  • Another process is electrolysis.
  • the part to be covered constitutes an electrode immersed in an electrolysis bath.
  • the deposition of layer 8 can also be carried out by sputtering or by using a plasma.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

  • La présente invention concerne un procédé de fabrication d'un intensificateur d'images radiologiques. Elle concerne également les intensificateurs d'images radiologiques ainsi obtenus.
  • Les tubes intensificateurs d'images radiologiques ou I.I.R. sont bien connus de l'Art Antérieur. Ils transforment une image radiologique en image visible, par exemple pour assurer l'observation médicale.
  • On rappelle qu'un IIR, qui est représenté de façon schématique, vu en coupe longitudinale sur la figure 1, est constitué par un écran d'entrée, un système d'optique électronique et un écran d'observation contenus dans une enceinte à vide 1.
  • L'écran d'entrée comporte un scintillateur 2 qui convertit les photons X incidents en photons visibles, une photocathode 3 qui convertit les photons visibles en électrons. Entre le scintillateur et la photocathode, est généralement intercalée une sous-couche conductrice de l'électricité dont le rôle est de ré-approvisionner la photocathode en charges électriques pendant qu'elle émet ses électrons. Cette sous-couche n'est pas représentée sur la figure 1.
  • Le scintillateur peut être constitué, par exemple, d'iodure de césium dopé au sodium ou au thallium. La photocathode peut être constituée d'un antimoniure alcalin, de formule par exemple Sb Css, Sb K3, Sb K2 Cs .....La sous-couche conductrice peut être constituée, par exemple, d'oxyde d'indium de formule In2 03.
  • Le système d'optique électronique est constitué généralement de trois électrodes G1, G2, G3 et d'une anode A qui porte l'écran d'observation 4.
  • La photocathode 3 est généralement reliée à la masse du tube. Les électrodes Gi, G2, G3 et l'anode A sont portées à des potentiels électriques croissant jusqu'à de 30 KV par exemple. Il se crée donc dans le tube un champ électrique E, dirigé selon l'axe longitudinal du tube, vers la photocathode. Les électrons issus de la photocathode remontent ce champ et viennent frapper l'écran d'observation 4, constitué d'un matériau cathodoluminescent tel que du sulfure de zinc par exemple, ce qui permet d'obtenir une image visible.
  • Le problème qui se pose et que la présente invention cherche à résoudre est qu'on l'on observe dans les IIR, même en l'absence de rayonnement X, un éclairage parasite gênant de l'écran d'observation. Cet éclairage parasite est dû aux métaux alcalins déposés involontairement sur les électrodes de l'IIR lors de l'élaboration de la photocathode. Le champ électrique intense qui règne dans le tube parvient à arracher des électrons à ces métaux alcalins qui sont très électro-positifs, et donc très facilement ionisables. Ces électrons remontent le champ électrique, viennent percuter l'écran d'observation et créent un éclairage parasite.
  • Ce phénomène est illustré sur la figure 2 qui représente une vue en coupe partielle de la grille G3 et de l'anode A de l'IIR de la figure 1. On désigne par la référence 7 la couche de métaux alcalins déposée sur la grille G3 et qui, sous l'action du champ électrique E, régnant entre la grille G3 et l'anode A et dirigé vers la grille Ga, libère des électrons qui remontent le champ électrique et viennent percuter l'écran d'observation 4.
  • Il faut savoir que la fabrication des photocathodes du type antimoniure alcalin se fait dans l'enceinte à vide de l'lIR car les métaux alcalins sont très réactifs et doivent être créés sous vide pour être stables. Ces photocathodes peuvent être réalisées par évaporations successives de leurs éléments constitutifs. A cet effet, on dispose dans le tube, un générateur d'antimoine qui est constitué par un creuset usuel contenant de l'antimoine, dont on provoque l'évaporation en chauffant le creuset, par effet Joule par exemple. Le générateur d'antimoine 5 est généralement placé à proximité de la photocathode et sur le trajet des électrons comme cela est représenté sur la figure 1, ce qui explique qu'on l'enlève généralement de l'enceinte, une fois la photocathode terminée. Les métaux alcalins sont évaporés à partir de générateurs alcalins 6 situés généralement sur l'électrode Gs, qui est la plus proche de l'anode A, comme cela est représenté sur la figure 1.
  • On laisse généralement les générateurs d'alcalins dans l'enceinte à vide une fois la photocathode terminé. On connait des procédés de fabrication d'lIR dans lesquels les générateurs d'alcalins ne sont pas portés par l'électrode G3 et sont enlevés de l'enceinte à vide, une fois la photocathode terminés.
  • L'évaporation des métaux alcalins est le résultat d'une silicothermie ou d'une aluminothermie des chromates des métaux que l'on cherche à évaporer. La silicothermie ou l'aluminothermie sont déclenchées par le chauffage par effet Joule des générateurs alcalins.
  • Les générateur alcalins sont beaucoup moins directifs que les générateurs d'antimoine. Cela est dû au fait qu'il est nécessaire pour que la silicothermie ou l'aluminothermie se produisent dans de bonnes conditions d'utiliser des creusets particuliers dans lesquels les chromates sont confinés. Ce type de creuset présente une mauvaise directivité qui a l'avantage d'assurer un dépôt bien uniforme des métaux alcalins sur toute la surface de la photocathode qui est éloignée de ces creusets 6. Il a par contre l'inconvénient de provoquer le dépôt de métaux alcalins sur toutes les pièces du tube IIR, et notamment sur les électrodes G1, G2 et G3 ce qui entraîne le problème de l'éclairage parasite de l'écran d'observation.
  • Pour résoudre ce problème, il est connu de recouvrir au moins une partie de l'électrode G3 d'une couche électriquement isolante de matériau organique, qui fixe les métaux alcalins (voir FR-A 2 176 850). Une autre solution utilisée par la Demanderesse est de recouvrir d'une couche d'oxyde l'électrode Ga, généralement en aluminium. Un tel procédé est décrit, par exemple, dans la demande de brevet français FR-A 2 168 553.
  • Cette solution permet de supprimer l'éclairage parasite de l'écran d'observation, mais introduit des décharges à travers cette couche d'oxyde.
  • Lorsque l'lIR reçoit un rayonnement X, une partie des électrons issus de la photocathode tombe sur l'électrode Ga. Comme l'électrode G3 est recouverte d'une couche d'oxyde, ces électrons ne s'écoulent pas et il se produit des décharges à travers la couche d'oxyde.
  • La présente invention propose une solution au problème évoqué qui ne présente pas les inconvénients de la solution connue.
  • La présente invention a pour objet un procédé de fabrication d'un intensificateur d'images radiologiques, comportant notamment une photocathode constituée d'un antimoniure alcalin, plusieurs grilles et une anode, caractérisé en ce qu'une couche d'un matériau conducteur de l'électricité et ayant la propriété d'oxyder les métaux alcalins qui entrent dans la composition de la photocathode est déposée au moins sur une partie de la grille qui est la plus proche de l'anode avant de l'introduire dans l'intensificateur.
  • D'autres objets, caractéristiques et résultats de l'invention ressortiront de la description suivante, donnée à titre d'exemple non limitatif et illustrée par les figures annexées qui représentent :
    • - la figure 1, une vue en coupe longitudinale d'un IIR ;
    • - les figures 2 et 3, des vues en coupe de la grille G3 et de l'anode A de l'IIR de la figure 1 illustrant la solution connue selon l'Art Antérieur et la solution apportée par l'invention.
  • Sur les différentes figures, les mêmes repères désignent les mêmes éléments, mais, pour des raisons de clarté, les cotes et proportions des divers éléments ne sont pas respectées.
    • Les figures 1 et 2 ont été décrites dans l'introduction à la description.
    • La figure 3 représente une vue en coupe partielle de la grille G3 et de l'anode A de l'IIR de la figure 1, illustrant la solution apportée par l'invention au problème de l'éclairage parasite précédemment évoqué.
  • Selon l'invention, avant de l'introduire dans l'enceinte à vide de l'IIR, on dépose sur la grille G3 sur laquelle sont généralement fixés les générateurs d'antimoine, une couche d'un matériau conducteur de l'électricité ayant la propriété d'oxyder les métaux alcalins.
  • Le problème de l'éclairage parasite est dû à la nature métallique des alcalins parasitaires. La solution proposée par l'invention est de faire réagir chimiquement ces métaux alcalins avec un matériau capable de les oxyder et de les transformer en composés ioniques ou covalents. Ainsi les métaux alcalins sont fixés et ne libèrent plus d'électrons créant l'éclairage parasite que l'on cherche à supprimer. Le dépôt utilisé doit être de plus conducteur de l'électricité de façon à éviter les phénomènes de décharge rencontrés dans l'Art Antérieur lorsqu'une couche d'oxyde recouvre l'électrode Ga.
  • L'invention propose d'utiliser pour recouvrir l'électrode G3 de l'IIR, avant de l'introduire dans l'IIR, de préférence, l'un des éléments suivants :sélénium, tellure, soufre, arsenic, phosphore, antimoine...
  • On peut utiliser ces éléments seuls ou sous forme de composés ayant par exemple l'une des formules suivantes : Pb Te, Cd Te, Zn Te, In Te, Pb Se, Cd Se, Zn Se, In Se, Pb S, Cd S, Zn S, Zn3 P2...
  • Sur la figure 3 on montre que l'électrode G3 est recouverte d'une couche 8, de tellure par exemple, avant d'être introduite dans l'IIR. On peut recouvrir la totalité de l'électrode G3 de tellure ou, comme c'est le cas sur la figure 3, uniquement les zones de l'électrode G3 qui sont les plus susceptibles de provoquer le phénomène d'éclairage parasite. Ces zones peuvent être déterminées expérimentalement. Elles peuvent aussi être déterminées par le calcul en utilisant des programmes d'ordinateurs. Les zones qui sont les plus susceptibles de provoquer le phénomène d'éclairage parasite sont généralement des zones très courbées dont le rayon de courbure est faible et dont le champ électrique est fort. Ces zones sont situées à proximité des générateurs d'alcalins et de l'écran d'observation. Sur la figure 3, on voit qu'on a recouvert de la couche 8 la périphérie de l'orifice de la grille G3 qui permet le passage des électrons.
  • L'arrivée d'alcalins parasitaires lors de la fabrication de la photocathode provoque la réaction suivante à la surface de la couche 8 de tellure dans le cas où du césium est évaporé :
    • 2Cs+Te → Cs2Te
  • On ne retrouve donc pas sur la couche 8 de métaux alcalins mais des composés comportant ces alcalins.
  • Du fait de ces composés, tel celui de formule Cs2 Te, malgré le champ électrique existant entre la grille G3 et la cathode, on n'observe plus d'émission d'électrons provoquant un éclairage parasite de l'écran d'observation.
  • De plus, du fait de la présence de la couche 8, qui est suffisament conductrice, il n'y a pas de problème de décharge. Dans cette couche 8, il y a aussi des composés de cette couche et des métaux alcalins, mais que ces composés soient conducteurs ou non, ne change pas le fait que la couche 8 soit suffisamment conductrice pour qu'il n'y ait pas de problème de décharge et de claquage.
  • A titre d'exemple, lorsqu'on évapore du césium et que la couche 8 est en tellure de plomb, la réaction est la suivante :
    • 2Cs + Pb Te → Cs2 Te + < <Pb> >p b Te
  • Il y a donc génération de plomb qui reste dissout dans la couche 8 en tellure de plomb.
  • On dépose la couche 8 de matériau conducteur de l'électricité et ayant la propriété d'oxyder les alcalins au moins sur l'électrode Ga, qui porte généralement les générateurs alcalins et, qui est la plus proche de l'anode.
  • Pour supprimer plus complètement l'éclairement parasite de l'écran d'observation, on dépose aussi cette couche 8 sur la grille G2.
  • On peut par mesure de précaution recouvrir également de cette couche 8 la grille Gi, ainsi que d'une façon plus générale toute pièce de l'lIR qui doit être reliée électriquement à une électrode de l'IIR, c'est-à-dire à l'une des grilles ou à l'anode.
  • Pour déposer la couche 8, divers procédés sont utilisables.
  • L'un de ces procédés consiste à déposer la couche 8 par évaporation en chauffant par effet Joule un creuset contenant le produit à déposer et en provoquant la condensation des vapeurs issues du creuset sur les surfaces à recouvrir de la couche 8.
  • Un autre procédé consiste à tremper les pièces à recouvrir de la couche 8 dans un bain chimique réactif qui comporte le produit à déposer.
  • Un autre procédé est l'électrolyse. Dans ce cas la pièce à recouvrir constitue une électrode plongeant dans un bain d'électrolyse.
  • Le dépôt de la couche 8 peut être aussi réalisé par pulvérisation cathodique ou en utilisant un plasma.
  • Tous les procédés qui viennent d'être évoqués pour déposer la couche 8 sont bien connus et leur liste n'est pas limitative.
  • Comme cela a été expliqué précédemment, on peut sans inconvénient déposer la couche 8 sur la totalité des grilles Gi, G2, G3 et des pièces reliées électriquement à une électrode de l'IIR ou seulement sur une partie de ces grilles et de ces pièces.

Claims (12)

1. Procédé de fabrication d'un intensificateur d'images radiologiques, comportant notamment une photocathode (3) constituée d'un antimoniure alcalin, plusieurs grilles (G1, G2, Gs) et une anode (A), caractérisé en ce, qu'une couche (8) d'un matériau conducteur de l'électricité et ayant la propriété d'oxyder les métaux alcalins qui entrent dans la composition de la photocathode (3) est déposée au moins sur une partie de la grille (Ga) qui est la plus proche de l'anode (A) avant de l'introduire dans l'intensificateur.
2. Procédé selon la revendication 1, caractérisé en ce, qu'une couche (8) d'un matériau conducteur de l'électricité et ayant la propriété d'oxyder les métaux alcalins qui entrent dans la composition de la photocathode est déposée au moins sur une partie de la grille (G2) voisine de celle (Ga) qui est la plus proche de l'anode (A) avant de l'introduire dans l'intensificateur.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce, qu'une couche (8) d'un matériau conducteur de l'électricité et ayant la propriété d'oxyder les métaux alcalins qui entrent dans la composition de la photocathode est déposée au moins sur une partie des autres grilles (Gi, G2) de l'intensificateur avant de les introduire dans l'intensificateur.
4. Procédé selon la revendication 3, caractérisé en ce, qu'une couche (8) d'un matériau conducteur de l'électricité et ayant la propriété d'oxyder les métaux alcalins qui entrent dans la composition de la photocathode est déposée au moins sur une partie de toutes les pièces de l'intensificateur qui doivent être reliées électriquement à l'une des grilles ou à l'anode de l'intensificateur avant de les introduire dans l'intensificateur.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le dépôt de ladite couche (8) s'effectue selon l'un des techniques suivantes : dépôt par condensation - dépôt par trempage dans un bain chimique - dépôt par électrolyse - dépôt par pulvérisation cathodique - dépôt par plasma.
6. Intensificateur d'images radiologiques, comportant notamment une photocathode (3), consituée d'un antimoniure alcalin, plusieurs grilles (Gi, G2, Ga) et une anode (A), caractérisé en ce qu'au moins une partie de la grille (Gs) qui est la plus proche de l'anode (A) porte une couche (8) d'un matériau conducteur de l'électricité et ayant la propriété d'oxyder les métaux alcalins qui entrent dans la composition de la photocathode (3).
7. Intensificateur selon la revendication 6, caractérisé en ce qu'au moins une partie de la grille (G2) voisine de celle (G3) qui est la plus proche de l'anode (A) porte une couche (8) d'un matériau conducteur de l'électricité et ayant la propriété d'oxyder les métaux alcalins qui entrent dans la composition de la photocathode (3).
8. Intensificateur selon l'une des revendications 6 ou 7, caractérisé en ce que les autres grilles de l'intensificateur portent au moins sur une partie une couche (8) d'un matériau conducteur de l'électricité et ayant la propriété d'oxyder les métaux alcalins qui entrent dans la composition de la photocathode (3).
9. Intensificateur selon la revendication 8, caractérisé en ce que les pièces de l'intensificateur qui sont reliées électriquement à l'une des grilles ou à l'anode de l'intensificateur portent au moins sur une partie une couche (8) d'un matériau conducteur de l'électricité et ayant la propriété d'oxyder les métaux alcalins qui entrent dans la composition de la photocathode.
10. Intensificateur selon l'une des revendications 6 à 9, caractérisé en que ledit matériau est l'un des éléments suivants : sélénium, tellure, soufre, arsenic, phosphore, antimoine.
11. Intensificateur selon l'une des revendications 6 à 9, caractérisé en ce que ledit matériau est un composé comportant l'un des éléments suivants : sélénium, tellure, soufre, arsenic, phosphore, antimoine.
12. Intensificateur selon la revendication 11, caractérisé en ce que le composé est l'un des composés suivants : Pb Te, Cd Te, Zn Te, In Te, Pb Se, Cd Se, Zn Se, In Se, Pb S, Cd S, Zn S, Zns P2.
EP87401281A 1986-06-13 1987-06-05 Procédé de fabrication d'un intensificateur d'images radiologiques, et intensificateur d'images radiologiques ainsi obtenus Expired - Lifetime EP0249547B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8608588A FR2600177B1 (fr) 1986-06-13 1986-06-13 Procede de fabrication d'un intensificateur d'images radiologiques et intensificateur d'images radiologiques ainsi obtenu
FR8608588 1986-06-13

Publications (3)

Publication Number Publication Date
EP0249547A2 EP0249547A2 (fr) 1987-12-16
EP0249547A3 EP0249547A3 (en) 1988-01-13
EP0249547B1 true EP0249547B1 (fr) 1990-01-10

Family

ID=9336316

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87401281A Expired - Lifetime EP0249547B1 (fr) 1986-06-13 1987-06-05 Procédé de fabrication d'un intensificateur d'images radiologiques, et intensificateur d'images radiologiques ainsi obtenus

Country Status (5)

Country Link
US (1) US4862006A (fr)
EP (1) EP0249547B1 (fr)
JP (1) JPH0821335B2 (fr)
DE (1) DE3761405D1 (fr)
FR (1) FR2600177B1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958920A (ja) * 1982-09-28 1984-04-04 Fujitsu Ltd バツフア回路
FR2634057B1 (fr) * 1988-07-08 1991-04-19 Thomson Csf Procede de fabrication d'un tube perfectionne intensificateur d'images radiologiques, tube intensificateur ainsi obtenu
FR2650438B1 (fr) * 1989-07-28 1996-07-05 Thomson Tubes Electroniques Procede de fabrication de tube perfectionne intensificateur d'image, tube intensificateur ainsi obtenu
US5306907A (en) * 1991-07-11 1994-04-26 The University Of Connecticut X-ray and gamma ray electron beam imaging tube having a sensor-target layer composed of a lead mixture
FR2700889B1 (fr) 1993-01-22 1995-02-24 Thomson Tubes Electroniques Tube convertisseur d'images, et procédé de suppression des lueurs parasites dans ce tube.
FR2782388B1 (fr) 1998-08-11 2000-11-03 Trixell Sas Detecteur de rayonnement a l'etat solide a duree de vie accrue

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1585625A (fr) * 1968-07-02 1970-01-30 Thomson Csf
FR2119203A5 (fr) * 1970-12-23 1972-08-04 Thomson Csf
IL41312A (en) * 1972-01-21 1975-06-25 Varian Associates Image tube employing high field electron emission suppression
DE2213493C3 (de) * 1972-03-20 1980-02-28 Siemens Ag, 1000 Berlin Und 8000 Muenchen Elektronische Bildverstärkerröhre, bei der ein elektrisch leitendes TeU mit einer elektrisch isolierenden Schicht versehen ist, und Verfahren zur Herstellung dieser Schicht
US4069121A (en) * 1975-06-27 1978-01-17 Thomson-Csf Method for producing microscopic passages in a semiconductor body for electron-multiplication applications
FR2335056A1 (fr) * 1975-09-12 1977-07-08 Thomson Csf Dispositif de visualisation d'information donnee sous forme d'energie rayonnee
FR2345815A1 (fr) * 1976-01-30 1977-10-21 Thomson Csf Nouveau detecteur solide de rayonnement ionisant
FR2344132A1 (fr) * 1976-03-09 1977-10-07 Thomson Csf Detecteur de rayonnement ionisant a semi-conducteur
FR2351422A1 (fr) * 1976-05-14 1977-12-09 Thomson Csf Dispositif detecteur, localisateur solide d'impacts de rayonnement ionisants
FR2352346A1 (fr) * 1976-05-18 1977-12-16 Thomson Csf Nouvel ensemble de prise de vues de scintigraphie
FR2361790A1 (fr) * 1976-08-10 1978-03-10 Thomson Csf Dispositif a elements semiconducteurs pour la visualisation d'un signal electrique
FR2502842A1 (fr) * 1981-03-27 1982-10-01 Thomson Csf Cible de tube intensificateur d'image et tube intensificateur d'image a sortie video muni d'une telle cible
US4475059A (en) * 1982-06-01 1984-10-02 International Telephone And Telegraph Corporation Image intensifier tube with reduced veiling glare and method of making same
JPS6056341A (ja) * 1983-09-06 1985-04-01 Hamamatsu Photonics Kk イメ−ジ管およびその製造方法

Also Published As

Publication number Publication date
EP0249547A2 (fr) 1987-12-16
US4862006A (en) 1989-08-29
EP0249547A3 (en) 1988-01-13
FR2600177A1 (fr) 1987-12-18
DE3761405D1 (de) 1990-02-15
JPS63935A (ja) 1988-01-05
FR2600177B1 (fr) 1988-08-19
JPH0821335B2 (ja) 1996-03-04

Similar Documents

Publication Publication Date Title
US2586304A (en) Protection of phosphors from attack by alkali vapors
EP0249547B1 (fr) Procédé de fabrication d&#39;un intensificateur d&#39;images radiologiques, et intensificateur d&#39;images radiologiques ainsi obtenus
EP0559550B1 (fr) Tube intensificateur d&#39;image, notamment radiologique, du type à galette de microcanaux
JPS61224234A (ja) 光電子増倍管のダイノ−ドの被膜材料及び被膜形成方法
EP0325500B1 (fr) Scintillateur d&#39;écran d&#39;entrée de tube intensificateur d&#39;images radiologiques et procédé de fabrication d&#39;un tel scintillateur
EP0350359B1 (fr) Procédé de fabrication d&#39;un tube perfectionné intensificateur d&#39;images radiologiques, tube intensificateur ainsi obtenu
FR2493036A1 (fr) Photocathode bialcaline a reponse spectrale elargie et procede de fabrication
JPH0766758B2 (ja) 放射線イメ−ジインテンシフアイヤ
US3387162A (en) Photocathode comprising channeled matrix with conductive inserts in channels tipped with photoconductive material
US3697794A (en) Photocathode comprising layers of tin oxide, antimony oxide, and antimony
JPH023262B2 (fr)
EP0044239B1 (fr) Tube intensificateur d&#39;images à micro-canaux et ensemble de prise de vues comprenant un tel tube
US4960608A (en) Manufacturing process of a photocathode for an image intensifier tube
US11658003B2 (en) Method for producing phosphor panel, phosphor panel, image intensifier and scanning-type electronic microscope
FR2650438A1 (fr) Procede de fabrication de tube perfectionne intensificateur d&#39;image, tube intensificateur ainsi obtenu
US3361919A (en) Target including at least three photoconductive layers of lead oxide of similar conductivity type
US3502928A (en) Image converter tube with a target screen assembly carrying cathode-forming evaporators and a fluorescent target screen spring-biased against tube window
EP0608168B1 (fr) Tube convertisseur d&#39;images, et procédé de fabrication d&#39;un tel tube
US3232781A (en) Electron image intensifying devices
US5417766A (en) Channel evaporator
US4150165A (en) Lead monoxide target and method of manufacturing same
FR2740606A1 (fr) Tube renforcateur d&#39;image radiographique
CN104603907A (zh) 电子管
JPS635853B2 (fr)
JP2004362964A (ja) 表示装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE GB NL

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19880213

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17Q First examination report despatched

Effective date: 19890524

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 3761405

Country of ref document: DE

Date of ref document: 19900215

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960516

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970605

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970605

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020521

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020531

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040101