EP0066926B1 - Semiconductor electron emitting device whose active layer has a doping gradient - Google Patents

Semiconductor electron emitting device whose active layer has a doping gradient

Info

Publication number
EP0066926B1
EP0066926B1 EP82200648A EP82200648A EP0066926B1 EP 0066926 B1 EP0066926 B1 EP 0066926B1 EP 82200648 A EP82200648 A EP 82200648A EP 82200648 A EP82200648 A EP 82200648A EP 0066926 B1 EP0066926 B1 EP 0066926B1
Authority
EP
European Patent Office
Prior art keywords
active layer
doping
semiconductor
semiconductor device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82200648A
Other languages
German (de)
French (fr)
Other versions
EP0066926A1 (en
Inventor
Pierre Guittard
Philippe Jarry
Alphonse Ducarre
Lazhar Haji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laboratoires dElectronique Philips SAS
Koninklijke Philips NV
Original Assignee
Laboratoires dElectronique et de Physique Appliquee
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoires dElectronique et de Physique Appliquee, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Laboratoires dElectronique et de Physique Appliquee
Publication of EP0066926A1 publication Critical patent/EP0066926A1/en
Application granted granted Critical
Publication of EP0066926B1 publication Critical patent/EP0066926B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/32Secondary-electron-emitting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/34Photo-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/34Photoemissive electrodes
    • H01J2201/342Cathodes
    • H01J2201/3421Composition of the emitting surface
    • H01J2201/3423Semiconductors, e.g. GaAs, NEA emitters

Definitions

  • the invention relates to a semiconductor device having a surface capable of emitting electrons in response to electronic bombardment or to the impact of light radiation.
  • the invention relates to electronic or optoelectronic devices, such as photocathodes used in picture tubes and photomultipliers, which convert between photons and electrons, or dynodes used in photomultipliers, which operate by secondary electronic emission.
  • the object of the invention is to obtain semiconductor devices whose efficiency is improved, that is to say whose excitation, diffusion and electronic emission are simultaneously improved.
  • the invention is based on the fact that these functions are separable.
  • the semiconductor device according to the present invention is remarkable in that it comprises a so-called active semiconductor layer, flush with the emitting surface, the doping of which increases when the distance to said emitting surface decreases.
  • the active layer of this device has characteristics which vary as a function of the distance from the emitting surface, so that in depth, the diffusion length is high due to low doping, which makes it possible to improve the scattering of excited electrons, and that on the surface, the probability of emission is high due to strong doping.
  • the semiconductor active layer consists of at least two different doping zones, the zone close to the emitting surface being relatively more doped.
  • the doping varies "in steps" instead of continuously varying, but the separation of the broadcasting and transmission functions is also ensured.
  • the active layer is made of a III-V compound, for example gallium arsenide, of type p conductivity, of a thickness less than 10 microns, and has a doping which varies radially between 10 18 and 10 19 atoms / cm 3 continuously or discontinuously.
  • a III-V compound for example gallium arsenide, of type p conductivity, of a thickness less than 10 microns, and has a doping which varies radially between 10 18 and 10 19 atoms / cm 3 continuously or discontinuously.
  • Electron emitting devices generally fall into two types, depending on their mode of operation in transmission or reflection.
  • the invention is intended to apply to devices of both types, but for simplicity the following description will rather refer to devices of the first type, without being able to draw any limitation therefrom.
  • FIG. 1 represents a photocathode with an inverted structure, operating in transmission, capable of emitting electrons as a result of the absorption of light radiation.
  • This photon-electron transducer does indeed belong to the devices targeted by the present invention, and will serve as the basis for its description.
  • Such a photocathode is constituted by the sealing on a glass substrate 1 (or of corundum) of a complex semiconductor structure, by means of a sealing layer 2, for example in a glass of the short type such as that described in the French patent application, number 2,300,413, filed on February 4, 1975, in the name of the Applicant.
  • the semiconductor structure consists of a semiconductor layer 3, called “active layer”, generally made of gallium arsenide, of p conductivity type, and an additional layer 4, called “passivation layer”, placed between the glass and the active layer, the function of which is to decrease the rate of recombination at the interface.
  • an active layer 3 of GaAs (p) it is composed of gallium and aluminum arsenide, Ga i -y Aly As, also of p conductivity type.
  • the active semiconductor layer 3 has on its outer face, intended to be subjected to vacuum, a state of negative apparent electronic affinity, obtained for example, by a conventional surface treatment, well known in the prior art, of covering with cesium and oxygen.
  • Such a glass-semiconductor composite material is not obtained immediately by simple bonding, but initially requires the growth of a double hetero-structure on a substrate, then the subsequent removal by pickling. chemical of the first heterostructure.
  • the production of this structure therefore requires epitaxial growth, on a GaAs substrate 5, shown in dotted lines in FIG. 1 as destined to disappear, of a first layer 6 of Ga 1-x Al x A s , for which x typically equals 0.5, the so-called “chemical stop” layer (or blocking, because it makes it possible to stop the pickling process of the substrate, which would otherwise continue in the active layer 3), a second layer of GaAs called “active layer” 3, of p conductivity type, obtained for example by doping with zinc (Zn) or germanium (Ge), and finally a third layer 4 of Ga 1-y Al y As, for which varies there between 0.25 and 1, according to the desired characteristics, the so-called passivation layer, and the functions of which have been specified previously.
  • the growth of these layers can be carried out by epitaxy in the liquid phase or in the vapor phase, for example according to the organometallic method.
  • This structure is then bonded to a substrate 1 of glass (or corundum), which plays a role of mechanical support and optical window, this sealing being able to be carried out by means of a layer of glass 2, layer 4 known as passivation being the closest to the glass substrate 1, which explains in particular the mention of photocathode "with inverted structure".
  • the substrate 5 and the chemical barrier layer 6 are removed by chemical pickling; an example of a bath used for the chemical attack on the GaAs substrate 1 is a solution of NH 4 0H (- 40%) at 5% by volume in H 2 0 2 (- 30%), a bath which has the advantage of '' a relatively high attack speed and excellent selectivity vis-à-vis the stop layer 6.
  • This last layer 6 is then removed, for example by a commercial dilute hydrofluoric acid (HF) bath (40% V), a bath which practically does not attack the GaAs.
  • HF dilute hydrofluoric acid
  • the active layer 3 is brought to an optimum thickness if necessary, for example by a light chemical pickling, then activated, in an ultra-vacuum frame, in order to obtain a photocathode, if that is its destination. .
  • the electron thus excited reaches the GaAs / vacuum interface, it can be emitted in vacuum, provided that the material is placed in a state of apparent negative affinity.
  • the probability of electronic emission depends on several factors, including the crystal orientation, the doping, etc ... and in particular, it is all the greater the higher the doping level.
  • the invention aims to improve the apparent diffusion length by proposing a new structure for the active layer.
  • the active layer 3 has a doping which increases when the distance to the emitting surface decreases.
  • the active layer of a photoemitter is obtained in the form of two different doping zones, in gallium arsenide of p conductivity type, doped with a low coefficient material diffusion such as germanium (Ge).
  • the continuous variation of doping can be obtained either by a variable dosage of impurities in the process of growth, for example in the epitaxy reactor in the vapor phase, or by diffusion thanks to the choice of an impurity do pante with greater diffusion coefficient, such as zinc (Zn).
  • This structure can also be obtained with any other semiconductor material, such as binary or pseudo-binary compounds III-V or II-VI, etc., the values of the compositions, dopings and thicknesses of layers then being adapted to each case. and easily calculable by the practitioner, without it being done for that purpose.
  • any other semiconductor material such as binary or pseudo-binary compounds III-V or II-VI, etc.
  • the invention is not limited to photocathodes, but also finds its application for the production of dynodes, generally in any semiconductor device emitting electrons.
  • FIG. 2 is a network of theoretical curves, giving an example of the variation of the sensitivity (on the abscissa, in ⁇ A / lumen) in white light (2854 K), photocathodes with inverted structure, in accordance with the present invention, as a function the thickness of the active layer 3 of GaAs (on the ordinate, in ⁇ m), for different values of the apparent electron scattering length (parameter, in ⁇ m), and for which P represents the probability of photoelectron emission, and S the photoelectron recombination speed at the GaAs / GaAl As interface.

Description

L'invention concerne un dispositif semiconducteur ayant une suface capable d'émettre des électrons en réponse à un bombardement électronique ou à L'impact de rayonnement Lumineux.The invention relates to a semiconductor device having a surface capable of emitting electrons in response to electronic bombardment or to the impact of light radiation.

L'invention a trait aux dispositifs électroniques ou optoélectroniques, tels que les photocathodes utilisées dans les tubesimage et les photomultiplicateurs, qui assurent une conversion entre les photons et les électrons, ou les dynodes utilisées dans les photomultiplicateurs, qui fonctionnent par émission électronique secondaire.The invention relates to electronic or optoelectronic devices, such as photocathodes used in picture tubes and photomultipliers, which convert between photons and electrons, or dynodes used in photomultipliers, which operate by secondary electronic emission.

Ces différents dispositifs émetteurs d'électrons, généralement dans le vide, sont connus de l'art antérieur, tant dans leur structure que leur procédé de fabrication, et l'on citera pour exemple le brevet des Etats-Unis d'Amérique, de numéro 3.959.038, délivré le 25 Mai 1976 et décrivant des photocathodes en GaAs, fonctionnant en transmission.These various electron emitting devices, generally in a vacuum, are known from the prior art, both in their structure and in their manufacturing process, and the example of the United States patent, number 3,959,038, issued on May 25, 1976 and describing GaAs photocathodes, operating in transmission.

Ces dispositifs comprennent très généralement une couche active, affleurant la surface émettrice, qui est le siège de trois phénomènes physiques distincts:

  • le premier est l'excitation d'un électron, par exemple sous l'effet du rayonnement dans le cas des photocathodes, le second est la diffusion de cet électron au sein de la couche active, et le troisième est son émission dans le vide. Ces trois phénomènes physiques distincts obéissent à des lois différentes et sont favorisés par des caractéristiques différentes du matériau semiconducteur formant ladite couche active.
These devices very generally comprise an active layer, flush with the emitting surface, which is the seat of three distinct physical phenomena:
  • the first is the excitation of an electron, for example under the effect of radiation in the case of photocathodes, the second is the diffusion of this electron within the active layer, and the third is its emission in a vacuum. These three distinct physical phenomena obey different laws and are favored by different characteristics of the semiconductor material forming said active layer.

L'invention a pour but d'obtenir des dispositifs semiconducteurs dont l'efficacité est améliorée, c'est-à-dire dont l'excitation, la diffusion et l'émission électronique sont simultanément améliorées.The object of the invention is to obtain semiconductor devices whose efficiency is improved, that is to say whose excitation, diffusion and electronic emission are simultaneously improved.

L'invention s'appuie sur le fait que ces fonctions sont séparables.The invention is based on the fact that these functions are separable.

Le dispositif semiconducteur selon la présente invention est remarquable en ce qu'il comporte une couche semiconductrice dite active, affleurant la surface émettrice, dont le dopage croît lorsque la distance à ladite surface émettrice diminue.The semiconductor device according to the present invention is remarkable in that it comprises a so-called active semiconductor layer, flush with the emitting surface, the doping of which increases when the distance to said emitting surface decreases.

Ainsi, la couche active de ce dispositif présente des caractéristiques qui varient en fonction de la distance à la surface émettrice, de telle manière qu'en profondeur, la longueur de diffusion est élevée en raison d'un faible dopage, ce qui permet d'améliorer la diffusion des électrons excités, et qu'en surface, la probabilité d'émission est élevée en raison d'un fort dopage.Thus, the active layer of this device has characteristics which vary as a function of the distance from the emitting surface, so that in depth, the diffusion length is high due to low doping, which makes it possible to improve the scattering of excited electrons, and that on the surface, the probability of emission is high due to strong doping.

Selon une réalisation pratique de l'invention, la couche active semiconductrice se compose d'au moins deux zones de dopages différents, la zone proche de la surface émettrice étant relativement plus dopée.According to a practical embodiment of the invention, the semiconductor active layer consists of at least two different doping zones, the zone close to the emitting surface being relatively more doped.

Dans ce cas, le dopage varie »en escalier« au lieu de varier continûment, mais la séparation des fonctions diffusion et émission est également assurée.In this case, the doping varies "in steps" instead of continuously varying, but the separation of the broadcasting and transmission functions is also ensured.

Enfin, selon une réalisation particulière de l'invention, la couche active est en un composé III-V, par exemple de l'arséniure de gallium, de type de conductivité p, d'une épaisseur inférieure à 10 microns, et présente un dopage qui varie radialement entre 1018 et 1019 atomes/cm3 de façon continue ou discontinue.Finally, according to a particular embodiment of the invention, the active layer is made of a III-V compound, for example gallium arsenide, of type p conductivity, of a thickness less than 10 microns, and has a doping which varies radially between 10 18 and 10 19 atoms / cm 3 continuously or discontinuously.

La description qui va suivre, en regard des dessins annexés, donnés à titre non limitatif, permettra de mieux comprendre comment l'invention s'exécute et d'en apprécier sa portée.The description which follows, with reference to the appended drawings, given without limitation, will make it possible to better understand how the invention is executed and to appreciate its scope.

Les dispositifs émetteurs d'électrons ressortissent généralement à deux types, selon leur mode de fonctionnement en transmission ou en réflexion. L'invention a vocation à s'appliquer aux dispositifs des deux types, mais par simplicité la description suivante fera plutôt référence à des dispositifs du premier type, sans que l'on puisse en tirer une quelconque limitation.Electron emitting devices generally fall into two types, depending on their mode of operation in transmission or reflection. The invention is intended to apply to devices of both types, but for simplicity the following description will rather refer to devices of the first type, without being able to draw any limitation therefrom.

Ainsi, la figure 1 représente une photocathode à structure inversée, fonctionnant en transmission, capable d'émettre des électrons par suite de l'absorption de rayonnements lumineux. Ce transducteur photon-électron appartient bien aux dispositifs visés par la présente invention, et servira de base à sa description.Thus, FIG. 1 represents a photocathode with an inverted structure, operating in transmission, capable of emitting electrons as a result of the absorption of light radiation. This photon-electron transducer does indeed belong to the devices targeted by the present invention, and will serve as the basis for its description.

Une telle photocathode est constituée par le scellement sur un substrat de verre 1 (ou de corindon) d'une structure semiconductrice complexe, au moyen d'une couche de scellement 2, par exemple en un verre de type court tel que celui décrit dans la demande de brevet français, de numéro 2 300 413, déposée le 4 Février 1975, au nom de la Demanderesse. La structure semiconductrice se compose d'une couche semiconductrice 3, dite »couche active«, généralement en arséniure de gallium, de type de conductivité p, et d'une couche supplémentaire 4, dite »couche de passivation«, disposée entre le verre et la couche active et dont la fonction consiste à diminuer la vitesse de recombinaison à l'interface. Dans le cas d'une couche active 3 en GaAs (p), elle se compose d'arséniure de gallium et d'aluminium, Gai -y Aly As, également de type de conductivité p. Cette couche 4 permet également de définier la limite inférieure en longueur d'onde de la bande spectrale passante du rayonnement; par exemple, pour y=0,50, elle autorise le passage du rayonnement dont la longueur d'onde est supérieure à 0,60 µm.Such a photocathode is constituted by the sealing on a glass substrate 1 (or of corundum) of a complex semiconductor structure, by means of a sealing layer 2, for example in a glass of the short type such as that described in the French patent application, number 2,300,413, filed on February 4, 1975, in the name of the Applicant. The semiconductor structure consists of a semiconductor layer 3, called "active layer", generally made of gallium arsenide, of p conductivity type, and an additional layer 4, called "passivation layer", placed between the glass and the active layer, the function of which is to decrease the rate of recombination at the interface. In the case of an active layer 3 of GaAs (p), it is composed of gallium and aluminum arsenide, Ga i -y Aly As, also of p conductivity type. This layer 4 also makes it possible to define the lower limit in wavelength of the pass band of the radiation; for example, for y = 0.50, it allows the passage of radiation whose wavelength is greater than 0.60 µm.

Enfin, la couche semiconductrice active 3 présente sur sa face extérieure, destinée à être soumise au vide, un état d'affinité électronique apparente négative, obtenu par exemple, par un traitement de surface classique, bien connu de l'art antérieur, de couverture par du césium et de l'oxygène.Finally, the active semiconductor layer 3 has on its outer face, intended to be subjected to vacuum, a state of negative apparent electronic affinity, obtained for example, by a conventional surface treatment, well known in the prior art, of covering with cesium and oxygen.

Un tel matériau composite verre-semiconducteur ne s'obtient pas immédiatement par simple collage, mais nécessite initialement la croissance d'une double hétéro-structure sur un substrat, puis la suppression ultérieure par décapage chimique de la première hétérostructure.Such a glass-semiconductor composite material is not obtained immediately by simple bonding, but initially requires the growth of a double hetero-structure on a substrate, then the subsequent removal by pickling. chemical of the first heterostructure.

Selon un procédé maintenant classique, la réalisation de cette structure nécessite donc la croissance épitaxiale, sur un substrat 5 en GaAs, représenté en pointillés à la figure 1 car destiné à disparaître, d'une première couche 6 de Ga1-x Alx As, pour laquelle x égale typiquement 0,5, couche dite d'»arrêt chimique« (ou de bloquage, car elle permet d'arrêter le procédé de décapage du substrat, qui se poursuivrait sans cela dans la couche active 3), une deuxième couche de GaAs dite »couche active« 3, de type de conductivité p, obtenue par exemple par dopage au zinc (Zn) ou au germanium (Ge), et enfin une troisième couche 4 de Ga1-y Aly As, pour laquelle y varie entre 0,25 et 1, selon les caractéristiques souhaitées, couche dite de passivation, et dont les fonctions ont été précisées antérieurement.According to a now conventional method, the production of this structure therefore requires epitaxial growth, on a GaAs substrate 5, shown in dotted lines in FIG. 1 as destined to disappear, of a first layer 6 of Ga 1-x Al x A s , for which x typically equals 0.5, the so-called "chemical stop" layer (or blocking, because it makes it possible to stop the pickling process of the substrate, which would otherwise continue in the active layer 3), a second layer of GaAs called "active layer" 3, of p conductivity type, obtained for example by doping with zinc (Zn) or germanium (Ge), and finally a third layer 4 of Ga 1-y Al y As, for which varies there between 0.25 and 1, according to the desired characteristics, the so-called passivation layer, and the functions of which have been specified previously.

La croissance de ces couches peut s'effectuer par épitaxie en phase liquide ou en phase vapeur, par exemple selon la méthode aux organométalliques. Cette structure est ensuite collée sur un substrat 1 de verre (ou de corindon), qui joue un rôle de support mécanique et de fenêtre optique, ce scellement pouvant s'effectuer au moyen d'une couche de verre 2, la couche 4 dite de passivation étant la plus proche du substrat de verre 1, ce qui explique notamment la mention de photocathode »à structure inversée«.The growth of these layers can be carried out by epitaxy in the liquid phase or in the vapor phase, for example according to the organometallic method. This structure is then bonded to a substrate 1 of glass (or corundum), which plays a role of mechanical support and optical window, this sealing being able to be carried out by means of a layer of glass 2, layer 4 known as passivation being the closest to the glass substrate 1, which explains in particular the mention of photocathode "with inverted structure".

Après scellement, le substrat 5 et la couche d'arrêt chimique 6 sont enlevés par décapage chimique; un exemple de bain utilisé pour l'attaque chimique du substrat 1 de GaAs est une solution de NH40H (- 40%) à 5% en volume dans H202 (- 30%), bain qui présente l'avantage d'une vitesse d'attaque relativement importante et une excellente sélectivité vis-à-vis de la couche d'arrêt 6. Cette dernierère couche 6 est ensuite enlevée, par exemple par un bain d'acide fluorhydrique (HF) dilué commercial (40% V), bain qui n'attaque pratiquement pas le GaAs.After sealing, the substrate 5 and the chemical barrier layer 6 are removed by chemical pickling; an example of a bath used for the chemical attack on the GaAs substrate 1 is a solution of NH 4 0H (- 40%) at 5% by volume in H 2 0 2 (- 30%), a bath which has the advantage of '' a relatively high attack speed and excellent selectivity vis-à-vis the stop layer 6. This last layer 6 is then removed, for example by a commercial dilute hydrofluoric acid (HF) bath (40% V), a bath which practically does not attack the GaAs.

Enfin, après toutes ces opérations, la couche active 3 est mise si nécessaire à épaisseur optimale, par exemple par un léger décapage chimique, puis activée, dans un bâti à ultra-vide, afin d'obtenir une photocathode, si telle est sa destination.Finally, after all these operations, the active layer 3 is brought to an optimum thickness if necessary, for example by a light chemical pickling, then activated, in an ultra-vacuum frame, in order to obtain a photocathode, if that is its destination. .

Le fonctionnement de ces photocathodes est maintenant bien connu du physicien. L'absorption d'un photon dans le matériau semiconducteur provoque l'excitation d'un électron qui passe ainsi de la bande de valence à la bande de conduction, et qui va diffuser au sein du matériau, après thermalisation, pendant le temps durant lequel il demeure mobile (durée de vie τ), sur une distance moyenne Lα (longueur de diffusion). Les atomes d'impuretés introduisent des niveaux d'énergie supplémentaires dans la bande interdite du matériau, dont l'emplacement et la densité modifient la durée de vie des porteurs de charge (pièges) et donc sa longueur de diffusion. D'une façon générale, cette longueur de diffusion est une fonction décroissante du dopage, ce qui implique que pour accroître cette longueur, il convient de ne doper que faiblement le matériau.The operation of these photocathodes is now well known to the physicist. The absorption of a photon in the semiconductor material causes the excitation of an electron which thus passes from the valence band to the conduction band, and which will diffuse within the material, after thermalization, during the time during which it remains mobile (lifetime τ), over an average distance Lα (diffusion length). The impurity atoms introduce additional energy levels into the forbidden band of the material, the location and density of which modify the lifetime of the charge carriers (traps) and therefore its diffusion length. In general, this diffusion length is a decreasing function of doping, which implies that in order to increase this length, the material should only be lightly doped.

Et, lorsque l'électron ainsi excité atteint l'interface GaAs/vide, il peut être émis dans le vide, à condition que le matériau soit placé en état d'affinité apparente négative. La probabilité d'émission électronique dépend de plusieurs facteurs, dont l'orientation cristalline, le dopage, etc... et en particulier, elle est d'autant plus grande que le niveau de dopage est élevé.And, when the electron thus excited reaches the GaAs / vacuum interface, it can be emitted in vacuum, provided that the material is placed in a state of apparent negative affinity. The probability of electronic emission depends on several factors, including the crystal orientation, the doping, etc ... and in particular, it is all the greater the higher the doping level.

Ces deux critères sont donc parfaitement opposés, et la solution traditionnelle a été jusqu' à présent de réaliser un compromis dans la valeur du dopage. Les matériaux réalisées à ce jour sont considérés comme convenables, si la longueur de diffusion atteint 4 µm, pour un dopage de 1.1019 atomes/cm3.These two criteria are therefore perfectly opposed, and the traditional solution has so far been to achieve a compromise in the value of doping. The materials produced to date are considered suitable, if the diffusion length reaches 4 μm, for a doping of 1.10 19 atoms / cm 3 .

L'invention vise à améliorer la longueur de diffusion apparente en proposant une nouvelle structure de la couche active.The invention aims to improve the apparent diffusion length by proposing a new structure for the active layer.

Conformément à la présente invention, la couche active 3 présente un dopage qui croît lorsque la distance à la surface émettrice diminue.According to the present invention, the active layer 3 has a doping which increases when the distance to the emitting surface decreases.

De cette manière, un électron excité par suite de l'absorption de rayonnement diffusera sur une longueur plus grande au sein du matériau par suite d'un dopage plus faible en profondeur, alors que sa probabilité d'émission dans le vide sera relativement élevée, du fait que le dopage au voisinage de la surface émettrice sera plus fort.In this way, an electron excited as a result of the absorption of radiation will diffuse over a greater length within the material as a result of a lower doping in depth, while its probability of emission in vacuum will be relatively high, because the doping in the vicinity of the emitting surface will be stronger.

Selon un exemple de réalisation, effectuée par la Demanderesse, la couche active d'un photoémetteur est obtenue sous la forme de deux zones de dopages différents, dans de l'arséniure de gallium de type de conductivité p, dopé par un matériau à faible coefficient de diffusion tel que le germanium (Ge).According to an exemplary embodiment, carried out by the Applicant, the active layer of a photoemitter is obtained in the form of two different doping zones, in gallium arsenide of p conductivity type, doped with a low coefficient material diffusion such as germanium (Ge).

ZoneZoned

  • e=4 µme = 4 µm
  • NA―ND~ 1 à 2.1018 at/cm3 N A ―N D ~ 1 to 2.10 18 at / cm 3
  • LD,1=8 µmL D, 1 = 8 µm
Zone IlZone II

  • e=1 µme = 1 µm
  • NA―ND~ 1 à 2.1019 at/cm3 N A ―N D ~ 1 to 2.10 19 at / cm 3
  • LD,2=4 µmL D, 2 = 4 µm

Une telle structure, d'une épaisseur totale de 5 pm, présente ue longueur de diffusion apparente pour son fonctionnement en photoémetteur:

  • LD,app ≃ 7 µm
Such a structure, with a total thickness of 5 μm, has an apparent diffusion length for its operation as a photoemitter:
  • L D, app ≃ 7 µm

La réalisation d'une variation continue du dopage peut s'obtenir soit par un dosage variable d'impuretés en cours de croissance, par exemple dans le réacteur d'épitaxie en phase vapeur, soit par diffusion grâce au choix d'une impureté dopante à plus grand coefficient de diffusion, tel que le zinc (Zn).The continuous variation of doping can be obtained either by a variable dosage of impurities in the process of growth, for example in the epitaxy reactor in the vapor phase, or by diffusion thanks to the choice of an impurity do pante with greater diffusion coefficient, such as zinc (Zn).

Cette structure peut également être obtenue avec tout autre matériau semiconducteur, tel que des composés III-V ou II-VI binaires ou pseudo-binaires ..., les valeurs des compositions, des dopages et des épaisseurs de couches étant alors adaptées à chaque cas et aisément calculables par le praticien, sans qu'il soit fait pour cela oeuvre d'esprit.This structure can also be obtained with any other semiconductor material, such as binary or pseudo-binary compounds III-V or II-VI, etc., the values of the compositions, dopings and thicknesses of layers then being adapted to each case. and easily calculable by the practitioner, without it being done for that purpose.

Il est bien entendu également que l'invention ne se limite pas aux photocathodes, mais trouve également son application pour la réalisation de dynodes, d'une manière générale dans tout dispositif semiconducteur émetteur d'électrons.It is also understood that the invention is not limited to photocathodes, but also finds its application for the production of dynodes, generally in any semiconductor device emitting electrons.

La figure 2 est réseau de courbes théoriques, donnant un exemple de la variation de la sensibilité (en abscisses, en µ A/lumen) en lumière blanche (2854 K), des photocathodes à structure inversée, conformes à la présente invention, en fonction de l'épaisseur de la couche active 3 de GaAs (en ordonnées, en µm), pour différentes valeurs de la longueur de diffusion électronique apparente (paramètre, en µm), et pour lesquelle P représente la probabilité d'émission des photoélectrons, et S la vitesse de recombinaison des photoélectrons à l'interface GaAs/GaAl As.FIG. 2 is a network of theoretical curves, giving an example of the variation of the sensitivity (on the abscissa, in μ A / lumen) in white light (2854 K), photocathodes with inverted structure, in accordance with the present invention, as a function the thickness of the active layer 3 of GaAs (on the ordinate, in μm), for different values of the apparent electron scattering length (parameter, in μm), and for which P represents the probability of photoelectron emission, and S the photoelectron recombination speed at the GaAs / GaAl As interface.

Il est intéressant de souligner que le maximum de sensibilité croît avec la longueur de diffusion conformément à l'expérience, ce qui montre le parfait accord entre l'expérience et la théorie, mais également que l'épaisseur optimale de la couche active 3 de GaAs augmente, ce qui facilite sa réalisation et que les courbes s'aplatissent, ce qui rend moins critique le choix de cette épaisseur, effet secondaire non négligeable vis-à-vis de l'élaboration de ces structures.It is interesting to emphasize that the maximum sensitivity increases with the diffusion length in accordance with the experiment, which shows the perfect agreement between the experiment and the theory, but also that the optimal thickness of the active layer 3 of GaAs increases, which facilitates its realization and that the curves flatten, which makes the choice of this thickness less critical, a non-negligible side effect with respect to the development of these structures.

Il est bien évident pour l'homme de l'art que de nombreuses variantes peuvent être envisagées sans pour cela sortir du cadre de la présente invention tel que défini par les revendications ci-après annexées.It is obvious to those skilled in the art that many variants can be envisaged without departing from the scope of the present invention as defined by the claims below appended.

Claims (9)

1. A semiconductor device having a surface capable of emitting electrons in response to an electron bombardment or to the inpact of luminous radiation, characterized in that it has a so- called active semiconductor layer (3) which adjoins the emissive surface and the doping of which increases as the distance to the said emissive surface decreases.
2. A semiconductor device as claimed in Claim 1, characterized in that the active layer (3) is formed by at least two discrete doping zones, the zone near the emissive surface being comparatively highly doped.
3. A semiconductor device as claimed in Claim 1 or 2, characterized in that the semiconductor material is chosen among the binary or pseudo- binary III-V, II-VI compounds.
4. A semiconductor device as claimed in Claim 3, characterized in that the semiconductor material which forms the active layer (3) is of gallium arsenide of the p-conductivity type.
5. A semiconductor device as claimed in Claim 4, characterized in that the doping of the active layer (3), going from the emissive surface varies between 1019 and 1018 acceptors/cm3.
6. A photocathode as claimed in any of the Claims 1 to 5.
7. A dynode as claimed in any of the Claims 1 to 5.
8. A display tube comprising at least a photocathode as claimed in Claim 6.
9. A photomultiplier comprising a semiconductor electron emitter as claimed in any of the Claims 6 and 7.
EP82200648A 1981-06-03 1982-05-27 Semiconductor electron emitting device whose active layer has a doping gradient Expired EP0066926B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8110993A FR2507386A1 (en) 1981-06-03 1981-06-03 SEMICONDUCTOR DEVICE, ELECTRON TRANSMITTER, WITH ACTIVE LAYER HAVING A DOPING GRADIENT
FR8110993 1981-06-03

Publications (2)

Publication Number Publication Date
EP0066926A1 EP0066926A1 (en) 1982-12-15
EP0066926B1 true EP0066926B1 (en) 1985-02-13

Family

ID=9259150

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82200648A Expired EP0066926B1 (en) 1981-06-03 1982-05-27 Semiconductor electron emitting device whose active layer has a doping gradient

Country Status (5)

Country Link
US (1) US4518980A (en)
EP (1) EP0066926B1 (en)
JP (1) JPS57210539A (en)
DE (1) DE3262303D1 (en)
FR (1) FR2507386A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677342A (en) * 1985-02-01 1987-06-30 Raytheon Company Semiconductor secondary emission cathode and tube
DE69030145T2 (en) * 1989-08-18 1997-07-10 Galileo Electro Optics Corp Continuous thin film dynodes
US5680008A (en) * 1995-04-05 1997-10-21 Advanced Technology Materials, Inc. Compact low-noise dynodes incorporating semiconductor secondary electron emitting materials
JPH1196896A (en) * 1997-09-24 1999-04-09 Hamamatsu Photonics Kk Semiconductor photoelectric surface
US7161162B2 (en) * 2002-10-10 2007-01-09 Applied Materials, Inc. Electron beam pattern generator with photocathode comprising low work function cesium halide
CN100426439C (en) * 2003-12-24 2008-10-15 中国科学院半导体研究所 Middle concentration P-type doping transmission type gallium arsenide optical cathode material and method for preparing same
US10692683B2 (en) * 2017-09-12 2020-06-23 Intevac, Inc. Thermally assisted negative electron affinity photocathode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959038A (en) * 1975-04-30 1976-05-25 The United States Of America As Represented By The Secretary Of The Army Electron emitter and method of fabrication
FR2300413A1 (en) * 1975-02-04 1976-09-03 Labo Electronique Physique WINDOW

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3478213A (en) * 1967-09-05 1969-11-11 Rca Corp Photomultiplier or image amplifier with secondary emission transmission type dynodes made of semiconductive material with low work function material disposed thereon
US3631303A (en) * 1970-01-19 1971-12-28 Varian Associates Iii-v cathodes having a built-in gradient of potential energy for increasing the emission efficiency
US3981755A (en) * 1972-11-24 1976-09-21 U.S. Philips Corporation Photocathode manufacture
DE2261757A1 (en) * 1972-12-16 1974-06-20 Philips Patentverwaltung SEMITRANSPARENT PHOTOCATHOD
GB1446592A (en) * 1973-01-09 1976-08-18 English Electric Valve Co Ltd Dynode structures
AU7731575A (en) * 1974-01-18 1976-07-15 Nat Patent Dev Corp Heterojunction devices
US3959045A (en) * 1974-11-18 1976-05-25 Varian Associates Process for making III-V devices
GB1536412A (en) * 1975-05-14 1978-12-20 English Electric Valve Co Ltd Photocathodes
DE2909956A1 (en) * 1979-03-14 1980-09-18 Licentia Gmbh SEMICONDUCTOR GLASS COMPOSITE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2300413A1 (en) * 1975-02-04 1976-09-03 Labo Electronique Physique WINDOW
US3959038A (en) * 1975-04-30 1976-05-25 The United States Of America As Represented By The Secretary Of The Army Electron emitter and method of fabrication

Also Published As

Publication number Publication date
DE3262303D1 (en) 1985-03-28
EP0066926A1 (en) 1982-12-15
US4518980A (en) 1985-05-21
FR2507386B1 (en) 1984-05-04
JPS57210539A (en) 1982-12-24
JPH0411973B2 (en) 1992-03-03
FR2507386A1 (en) 1982-12-10

Similar Documents

Publication Publication Date Title
EP1454370B1 (en) Light emitting device and method for making same
EP0201127B1 (en) P-i-n photodiode with low leakage current
EP0066926B1 (en) Semiconductor electron emitting device whose active layer has a doping gradient
EP3465725B1 (en) Method of producing a nanowire photocathode
US3959038A (en) Electron emitter and method of fabrication
US3959037A (en) Electron emitter and method of fabrication
US3972750A (en) Electron emitter and method of fabrication
US6110758A (en) Transmission mode photocathode with multilayer active layer for night vision and method
EP3568869B1 (en) Substrate for a front-side-type image sensor and method for producing such a substrate
EP0939447B1 (en) Indium based alloy, infrared transducer using the same and its fabrication method
EP3568868B1 (en) Substrate for a front-side-type image sensor and method for producing such a substrate
US4008106A (en) Method of fabricating III-V photocathodes
US4801990A (en) HgCdTe avalanche photodiode
Gutierrez et al. High‐sensitivity transmission‐mode GaAs photocathode
RU2676221C1 (en) Method of making pulse photodetector
EP3563426B1 (en) Method for producing an optoelectronic device comprising a step of etching the rear face of the growth substrate
JPH11354837A (en) Light emitting diode and fabrication thereof
JPH0542837B2 (en)
EP0142891B1 (en) Infrared-sensitive charge-coupled device and method of manufacturing the same
JP2001111094A (en) Infrared light receiving element and method of manufacturing the same
EP0143714B1 (en) Luminescent screen and process for manfacturing the same
JPS60173882A (en) Semiconductor device
FR2820891A1 (en) SEMI-CONDUCTIVE BLEED RIBBON LASER AND MANUFACTURING METHOD
Thomas Photocathodes
FR2793264A1 (en) METHOD FOR CLEANING A SILICON SUBSTRATE SURFACE AND APPLICATION TO THE MANUFACTURE OF INTEGRATED ELECTRONIC COMPONENTS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820527

AK Designated contracting states

Designated state(s): DE FR GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3262303

Country of ref document: DE

Date of ref document: 19850328

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920430

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920724

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930526

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930527

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST