EP0053848B2 - Verfahren zum Einblasen von hochsauerstoffhaltigen Gasen in ein NE-Metall-Schmelzbad - Google Patents

Verfahren zum Einblasen von hochsauerstoffhaltigen Gasen in ein NE-Metall-Schmelzbad Download PDF

Info

Publication number
EP0053848B2
EP0053848B2 EP81201257A EP81201257A EP0053848B2 EP 0053848 B2 EP0053848 B2 EP 0053848B2 EP 81201257 A EP81201257 A EP 81201257A EP 81201257 A EP81201257 A EP 81201257A EP 0053848 B2 EP0053848 B2 EP 0053848B2
Authority
EP
European Patent Office
Prior art keywords
slag
nozzles
temperature
pressure
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81201257A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0053848A1 (de
EP0053848B1 (de
Inventor
Werner Dr.-Ing. Schwartz
Peter Dr.-Ing. Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6118459&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0053848(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0053848A1 publication Critical patent/EP0053848A1/de
Application granted granted Critical
Publication of EP0053848B1 publication Critical patent/EP0053848B1/de
Publication of EP0053848B2 publication Critical patent/EP0053848B2/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/02Obtaining lead by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/003Bath smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/003Bath smelting or converting
    • C22B15/0041Bath smelting or converting in converters
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ

Definitions

  • the invention relates to a method for blowing in highly oxygen-containing gases into a non-ferrous metal melt bath by means of double tube nozzles immersed in the melt through the reactor wall, a protective fluid being blown in as a coolant through the annular space between the inner and outer tube of each double tube nozzle.
  • non-ferrous metals or stone phases enriched with non-ferrous metals from sulfidic ores or refined melts containing non-ferrous metals are blown into a melt.
  • the high-oxygen gases are blown into the melt from the bottom or from the side through the masonry of a reactor using nozzles.
  • a protective fluid is blown in to protect the nozzles and the surrounding masonry against the high temperatures occurring at the nozzles. This is done using double tube nozzles.
  • the inner tube is generally used to inject the highly oxygen-containing gas and the protective fluid that cools through the annular space between the inner and outer tubes.
  • Such methods are e.g. B. from DE-OS 2 417 978 and DE-OS 2 807 964 known.
  • the invention is based, to reduce or avoid the wear of the double tube nozzles and the surrounding masonry when blowing high oxygen-containing gases with protective fluids into a non-ferrous metal melt pool.
  • composition and temperature of the slag is adjusted so that even with a slight local cooling of the slag at the nozzles, the crystallization temperature of high-melting constituents - originally dissolved in the slag - is fallen below, the amount of protective fluid in
  • the composition of the slag and the temperature difference of the slag from the solidification point it is set in such a way that gas-permeable deposits are formed from slag constituents on the nozzles, on the other hand the deposits do not exceed a desired thickness, and the stirring effect of the gases blown through the nozzles is adjusted in such a way that that regardless of the layer height of a metal bath on the bottom of the reactor, an emulsion of slag and metal reaches the nozzles, and the adjustment of the thickness of the approaches by regulating the pressure rise of the flowing protective fluid against the urs initial pressure to a desired value.
  • the thickness of the lugs on the nozzles and the surrounding masonry is chosen so that the desired protection is achieved on the one hand, but on the other hand the lugs are gas-permeable and gas distribution is achieved.
  • the thickness depends on the operating conditions of the process and is determined empirically. In the case of continuous processes, the required amount of protective fluid remains largely constant, whereas in batch-operated processes it has to be regulated in larger areas. Flammable and non-flammable gases or liquids, such as e.g. B. nitrogen, S0 2 , C0 2 , water vapor, hydrocarbons can be used. Your Selection depends on the process engineering conditions.
  • the amount of protective fluid required to generate the batches depends on the solidification temperature of the slag or high-melting components of the slag and the temperature difference of the slag from this solidification temperature before it comes into contact with the protective fluid.
  • the outlet cross section for the protective fluid should be as small as possible and the protective fluid should be blown in under high pressure, for example above 6 bar, so that the required amount of protective fluid can be kept as small as possible.
  • the composition of the slag is adjusted so that it is almost saturated with high-melting compounds such as magnetite, calcium silicates or similar compounds. This is achieved by a corresponding chemical composition of the slag, a corresponding oxidation potential, which depends on the desired metal-sulfide-oxide balance of the non-ferrous metal to be obtained, and by a corresponding temperature of the slag, which is just above the saturation temperature for the high-melting point Connections. This creates a good build-up with small amounts of protective fluids.
  • high-melting compounds such as magnetite, calcium silicates or similar compounds.
  • the stirring effect of the gases blown in through the nozzles is adjusted so that, regardless of the layer height of a metal bath on the bottom of the reactor, an emulsion of slag and metal reaches the nozzles.
  • the stirring effect of the injected gases can be regulated by adjusting their pressure or quantity accordingly and / or by adjusting the thickness of the metal layer above the nozzles. This also creates a good approach.
  • a preferred embodiment of the invention consists in that the desired value of the pressure is regulated by keeping the pressure constant. Only the pressure is kept constant and the volume adjusts to the corresponding value. A particularly simple and effective regulation of the thickness of the lugs is thereby achieved.
  • a preferred embodiment is that the reactor is bricked up depending on the composition of the slag and temperature in such a way that a constant film of high-melting constituents forms on the masonry.
  • the lining is chosen so that the heat radiation cools the slag on the inside in such a way that a thin starting film is formed. This also protects the masonry in the vicinity of the nozzles, on which no deposits form due to the direct action of the protective fluid.
  • the examples relate to the continuous oxidation of sulfidic concentrates in a refractory-lined reactor in the form of a horizontal cylinder with a length of 4.50 m and a diameter of 1.80 m.
  • Additives were added to the sulfidic concentrates in order to produce slags of a certain chemical composition suitable for carrying out the process according to the invention.
  • the reactor was equipped with 3 double tube nozzles with an inner tube diameter of 10 mm and a propane-oxygen auxiliary burner in order to be able to influence the temperature of the melt independently of the chemical-metallurgical reactions taking place.
  • the examples are limited to the oxidation of sulfidic lead concentrates, the slags formed here behave particularly aggressively because of their lead oxide content in relation to all metallic and ceramic materials known in the art.
  • the measures described in the examples for protecting the nozzles and masonry of the reactor can therefore be applied analogously to the melting of a number of other non-ferrous metals and intermediates, including concentrates, stones, food, slags, dusts and sludges containing copper, Transfer nickel, cobalt, zinc, lead, tin, antimony or bismuth.
  • the mouthpiece of the third nozzle had been covered with a porous, cone-shaped attachment of approximately 30 mm in height and 50 mm in base diameter, which consisted of 70% magnetite and 30% different silicates.
  • the masonry in the vicinity of the other two nozzle mouthpieces showed funnel-shaped traces of corrosion of approx. 50 or 100 mm in diameter, the depth of which corresponded to the nozzle burnup. In contrast, the masonry around the third nozzle was completely preserved.
  • Example 1 To test the influence of overheating of the slag, three tests were carried out at different temperatures of the slag.
  • the flow rates of the protective fluid (6.9 bar nitrogen pressure) used in Example 1 for the second nozzle were set here. At the end of the tests, the nozzles were again drawn and measured:
  • the reactor was cleaned in succession with a pure lead oxide slag (Pb0) and a lead silicate slag with the approximate composition 2PbO. Si0 2 filled.
  • Pb0 lead oxide slag
  • Si0 2 the approximate composition 2PbO. Si0 2 filled.
  • a slag temperature of 930 ° C was set, while the nozzles were operated with oxygen and a nitrogen pressure of 6.9 bar.
  • no mixture of concentrate and additives was added in order not to change the composition of the slag.
  • neither of the two experiments could a firm approach be created in front of the nozzle mouthpieces.
  • the nozzles and the surrounding masonry were almost destroyed:
  • the thickness of the metallic soil phase must be taken into account, provided that it consists of a low-melting metal.
  • the advantages of the invention are that the nozzles and the surrounding masonry are protected from chemical attack and erosion by the molten phase with simple means, the amount of protective fluid is kept to a minimum and nevertheless a good gas distribution in the melt is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Details (AREA)
EP81201257A 1980-12-05 1981-11-11 Verfahren zum Einblasen von hochsauerstoffhaltigen Gasen in ein NE-Metall-Schmelzbad Expired EP0053848B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803045992 DE3045992A1 (de) 1980-12-05 1980-12-05 Verfahren zum einblasen von hochsauerstoffhaltigen gasen in ein ne-metalle enthaltendes schmelzbad
DE3045992 1980-12-05

Publications (3)

Publication Number Publication Date
EP0053848A1 EP0053848A1 (de) 1982-06-16
EP0053848B1 EP0053848B1 (de) 1984-10-24
EP0053848B2 true EP0053848B2 (de) 1987-10-14

Family

ID=6118459

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81201257A Expired EP0053848B2 (de) 1980-12-05 1981-11-11 Verfahren zum Einblasen von hochsauerstoffhaltigen Gasen in ein NE-Metall-Schmelzbad

Country Status (17)

Country Link
US (1) US4435211A (xx)
EP (1) EP0053848B2 (xx)
JP (1) JPS57120626A (xx)
KR (1) KR890002800B1 (xx)
AU (1) AU542613B2 (xx)
BR (1) BR8107861A (xx)
CA (1) CA1180194A (xx)
DE (2) DE3045992A1 (xx)
ES (1) ES8300871A1 (xx)
FI (1) FI68659C (xx)
IN (1) IN152960B (xx)
MA (1) MA19349A1 (xx)
MX (1) MX156287A (xx)
PH (1) PH19449A (xx)
PL (1) PL234079A1 (xx)
YU (1) YU42003B (xx)
ZA (1) ZA817664B (xx)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661153A (en) * 1983-07-01 1987-04-28 Southwire Company Refractory porous plug
DE3814310A1 (de) * 1988-04-28 1989-11-09 Messer Griesheim Gmbh Verfahren zur raffination von si-metall und si-eisenlegierungen
FR2646789B1 (fr) * 1989-05-12 1994-02-04 Air Liquide Procede de traitement d'oxydation d'un bain liquide
CA2041297C (en) * 1991-04-26 2001-07-10 Samuel Walton Marcuson Converter and method for top blowing nonferrous metal
US5435833A (en) * 1993-09-30 1995-07-25 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process to convert non-ferrous metal such as copper or nickel by oxygen enrichment
US5814126A (en) * 1994-01-12 1998-09-29 Cook; Thomas H. Method and apparatus for producing bright and smooth galvanized coatings
DE4429937A1 (de) * 1994-08-24 1996-02-29 Metallgesellschaft Ag Verfahren zum Verblasen von NE-Metall-Schrott und Hütten-Zwischenprodukten
DE19638148A1 (de) * 1996-09-18 1998-03-19 Linde Ag Sauerstofflanze und Verfahren zum Verblasen von flüssigem Metall
DE10253535A1 (de) * 2002-11-16 2004-05-27 Sms Demag Ag Gaszuleitungssystem für einen metallurgischen Ofen sowie Betriebsverfahren hierzu
FR2856631B1 (fr) * 2003-06-26 2005-09-23 Jean Noel Claveau Procede de decoration d'un article et equipement pour la mise en oeuvre de ce procede
FR2856630B1 (fr) * 2003-06-26 2006-09-29 Jean Noel Claveau Procede de decoration d'un article et equipement pour la mise en oeuvre de ce procede
FR2881988B1 (fr) * 2005-02-15 2007-06-29 Jean Noel Claveau Procede de decoration d'un article et equipement pour la mise en oeuvre de ce procede
DE102010020179A1 (de) * 2009-06-09 2010-12-16 Sms Siemag Ag Verfahren zum Betreiben eines Bodenspülsystems eines BOF-Konverters
EP2302082B1 (de) * 2009-09-03 2013-04-17 Linde AG Verfahren zum Betreiben eines Konverters und Vorrichtung zur Durchführung des Verfahrens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US443758A (en) 1890-12-30 Process of converting copper matte to copper
US3892559A (en) 1969-09-18 1975-07-01 Bechtel Int Corp Submerged smelting
BE748041A (fr) * 1970-03-26 1970-09-28 Centre Rech Metallurgique Perfectionnements aux procedes d'affinage,
LU62933A1 (xx) * 1971-04-06 1973-05-16
FR2219235B2 (xx) * 1973-02-26 1976-05-14 Creusot Loire
BE795117A (fr) * 1973-02-07 1973-05-29 Centre Rech Metallurgique Procede et dispositif pour le convertissage de matieres cuivreuses
US3941587A (en) * 1973-05-03 1976-03-02 Q-S Oxygen Processes, Inc. Metallurgical process using oxygen
DE2504946C2 (de) 1975-02-06 1980-04-30 Kloeckner-Werke Ag, 4100 Duisburg Verfahren und Vorrichtung zum Einschmelzen von Schrott, Eisenschwamm, Pellets oder dgl

Also Published As

Publication number Publication date
PL234079A1 (xx) 1982-07-19
KR830007855A (ko) 1983-11-07
CA1180194A (en) 1985-01-02
FI813743L (fi) 1982-06-06
PH19449A (en) 1986-04-18
AU542613B2 (en) 1985-02-28
DE3166865D1 (en) 1984-11-29
FI68659B (fi) 1985-06-28
KR890002800B1 (ko) 1989-07-31
AU7827981A (en) 1982-06-10
US4435211A (en) 1984-03-06
IN152960B (xx) 1984-05-12
BR8107861A (pt) 1982-09-08
ES507717A0 (es) 1982-11-01
ZA817664B (en) 1982-10-27
MX156287A (es) 1988-08-08
EP0053848A1 (de) 1982-06-16
JPS57120626A (en) 1982-07-27
YU42003B (en) 1988-04-30
EP0053848B1 (de) 1984-10-24
YU283681A (en) 1984-04-30
JPH0147532B2 (xx) 1989-10-16
MA19349A1 (fr) 1982-07-01
DE3045992A1 (de) 1982-07-22
ES8300871A1 (es) 1982-11-01
FI68659C (fi) 1985-10-10

Similar Documents

Publication Publication Date Title
EP0053848B2 (de) Verfahren zum Einblasen von hochsauerstoffhaltigen Gasen in ein NE-Metall-Schmelzbad
DE3042222A1 (de) Verfahren zur rueckgewinnung von fluechtigen metallen aus metaloxid-haltigem material
DE1941282A1 (de) Verfahren zur Veredelung von Stahl durch Umschmelzen in einem Plasma-Lichtbogen
DE1941760A1 (de) Verfahren und Vorrichtung zum Zusetzen von Additiven zu einer Schmelze
DE3220609C2 (xx)
EP0118412A2 (de) Verfahren zur Durchführung von Schmelz-, schmelzmetallurgischen und/oder reduktionsmetallurgischen Prozessen in einem Plasmaschmelzofen sowie Einrichtung zur Durchführung des Verfahrens
DE2521830A1 (de) Verfahren und vorrichtung zur thermischen raffination von stark verunreinigtem kupfer in schmelzfluessiger phase
DE2727618C2 (xx)
DE1533891B1 (de) Verfahren und Vorrichtung zum Spruehfrischen von kohlenstoffhaltigen Metallschmelzen,insbesondere Roheisenschmelzen
DE1294982B (de) Kontinuierliches Frischverfahren und Vorrichtung zum Frischen einer Metallschmelze
DE69004054T2 (de) Verfahren und Vorrichtung zum kontinuierlichen Abstechen von Metall und Schlacke im geschmolzenem Zustand.
DE2900676C2 (xx)
DE3212100C2 (de) Verfahren und Vorrichtung zur Durchführung pyrometallurgischer Prozesse
DE3049053A1 (de) Verfahren und vorrichtung zur abtrennung von schlacke und zum ausgiessen einer stahlschmelze aus einem behaelter
DE1026079B (de) Duese zur Einfuehrung von Fluessigkeiten in eine Reaktionskammer
DE2645585C3 (de) Verfahren zur kontinuierlichen oder diskontinuierlichen Behandlung von geschmolzenen schwermetalloxidhaltigen Schlacken zur Freisetzung von Wertmetallen und/oder deren Verbindungen
EP0045532B1 (de) Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus schwefelhaltigen Bleimaterialien
EP0012226A1 (de) Verfahren zur Behandlung von borhaltigem Stahl
DE69124350T2 (de) Verfahren zum Steuern der Metalloxyd-Rauchentwicklung während der sauerstoffinduzierten Aufteilung eines Körpers, der Metallbestandteile enthält
DE1282867B (de) Verfahren zur Herstellung von Ferrophosphorpulver
DE1015609B (de) Verfahren und Vorrichtung zum Einbringen von feinkoernigen Zusatzstoffen unter die Oberflaeche von Metallschmelzen
DE1533949C2 (de) Vorrichtung zum kontinuierlichen Herstellen von Vakuumstahl aus Roheisen
DD245678A1 (de) Verfahren zur entfernung verunreinigender elemente aus roheisen, stahl und sonstigen metallen, sowie metall-legierungen
DE1533891C (de) Verfahren und Vorrichtung zum Sprühfrischen von kohlenstoffhaltigen Metallschmelzen, insbesondere Roheisenschmelzen
DE4429937A1 (de) Verfahren zum Verblasen von NE-Metall-Schrott und Hütten-Zwischenprodukten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT SE

17P Request for examination filed

Effective date: 19820525

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT SE

REF Corresponds to:

Ref document number: 3166865

Country of ref document: DE

Date of ref document: 19841129

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: UNION CARBIDE CORPORATION

Effective date: 19850724

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19871014

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): BE DE FR GB IT SE

ET3 Fr: translation filed ** decision concerning opposition
ITF It: translation for a ep patent filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930914

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930917

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931025

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19931202

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931209

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19941130

EAL Se: european patent in force in sweden

Ref document number: 81201257.3

BERE Be: lapsed

Owner name: METALLGESELLSCHAFT A.G.

Effective date: 19941130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950801

EUG Se: european patent has lapsed

Ref document number: 81201257.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST