EP0043401B1 - Verfahren und Einrichtung zum Entfernen von Tritium aus einem Gasgemisch - Google Patents

Verfahren und Einrichtung zum Entfernen von Tritium aus einem Gasgemisch Download PDF

Info

Publication number
EP0043401B1
EP0043401B1 EP81101653A EP81101653A EP0043401B1 EP 0043401 B1 EP0043401 B1 EP 0043401B1 EP 81101653 A EP81101653 A EP 81101653A EP 81101653 A EP81101653 A EP 81101653A EP 0043401 B1 EP0043401 B1 EP 0043401B1
Authority
EP
European Patent Office
Prior art keywords
tritium
gaseous mixture
reaction vessel
hydrogenation
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81101653A
Other languages
English (en)
French (fr)
Other versions
EP0043401A1 (de
Inventor
Heinrich Dr. Dipl.-Chem. Weichselgartner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Publication of EP0043401A1 publication Critical patent/EP0043401A1/de
Application granted granted Critical
Publication of EP0043401B1 publication Critical patent/EP0043401B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/02Treating gases

Definitions

  • the present invention relates to a method according to the preamble of claim 1. Furthermore, the invention relates to devices for performing such methods.
  • gaseous tritium (T,) is produced, which is known to be radioactive and must therefore be removed from the atmosphere of the work area or the like.
  • a final concentration of some 10 -5 Ci / m 3 air can be achieved in this way. In practice, however, you often have to be content with a few 10- 4 cm 3 .
  • the present invention is accordingly based on the object of specifying methods and devices with which tritium can be removed from a gas mixture more completely than was previously possible.
  • the known oxidation process in which the tritium is oxidized to water is therefore replaced by a reduction process or hydrogenation process which provides an easily separable, in particular liquid or solid, reaction product.
  • the reaction of tritium with oxygen should not fall under the terms of reduction or hydrogenation processes.
  • Suitable and proven hydrogenation reactions are the hydrogenation of carbon and petroleum or fat hardening (hydrogenation of oily fats to solid fats), the addition of hydrogen to double or triple bonds (conversion of benzene into cyclohexane, of naphthalene into decalin and tetralin), the reduction from aldehydes and ketones to alcohols and from nitriles and nitro compounds to amines.
  • the tritium can be removed from a gas mixture by hydrogenating unsaturated organic compounds, in particular unsaturated carboxylic acids.
  • unsaturated monocarboxylic acids are used with particular advantage, and the hydrogenation can advantageously be carried out catalytically.
  • Unsaturated fatty acids in particular those having 5 to 20 carbon atoms, are preferably used.
  • the linolenic acid C 17 H 29 -COOH has three double bonds: and the linoleic acid C 17 H 31 -COOH two of which: both are converted into stearic acid CH 3 - (CH 2 ) 16 -COOH during the hydrogenation. If these unsaturated monocarboxylic acids are hydrogenated with tritium, the tritium is firmly bound in the stearic acid, ie one or more of the CH 2 groups contain T instead of H.
  • the hydrogenation process can be controlled so that the tritiated stearic acid is broken down by the incorporation of the tritium into fragments with a shorter chain length and other physical properties than the long-chain C 17 fatty acids.
  • This has the great advantage that the tritium-containing reaction products can be separated continuously or discontinuously from the compounds not reacted with tritium and removed from the hydrogenation device as a result of different solubility, density or melting and boiling points. This means that a fresh reactant is always available for the hydrogenation and only relatively small amounts of tritium-containing, radioactive reaction products are formed.
  • a fixed bed, a fluidized bed, a liquid or an emulsion column can be used as the hydrogenation device or column.
  • the method and the devices according to the invention are excellently suited for exhaust air purification of work rooms and for air purification of closed systems, such as inert gas glove boxes.
  • closed systems such as inert gas glove boxes.
  • inert gas gloveboxes The advantage of inert gas gloveboxes is that the preferred unsaturated fatty acids cannot be autoxidized due to the absence of air-oxygen, so the effectiveness cannot be reduced (no high "blind consumption” of unsaturated fatty acids, no resinification, etc.).
  • the lowest T concentrations can be continuously eliminated in inert gas containers.
  • a device for carrying out the method according to the invention is shown schematically.
  • the device serves to clean the atmosphere in a closed work space 10, which is shown as a so-called glovebox.
  • the atmosphere in the closed space 10 is circulated by a fan.
  • the gas from the room 10 flows through an extraction line 14, an activity measuring device 16, a hydrogenation device 18, which is connected to a regeneration device 20, then through another activity measuring device 22 and finally through the blower 12 and a return line 24 back into the room 10.
  • the atmosphere in room 10 can consist of an inert gas, in particular an inert gas such as argon.
  • the hydrogenation device 18 can contain a fluidized bed or a fixed bed, solution or emulsion column.
  • the hydrogenation device preferably contains an unsaturated fatty acid and the regeneration device 20 serves for the separation of tritium-containing reaction products.
  • the hydrogenation device 18 may also be preceded by a known oxidizing device 26, which contains a catalytic furnace 28 and a molecular sieve column 30 and may otherwise be designed in a known manner.
  • the aim should therefore be to improve the mixing of the gas phase with the liquid phase, for example by pumping, atomizing or similar measures.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren gemäss dem Oberbegriff des Anspruchs 1. Ferner betrifft die Erfindung Einrichtungen zur Durchführung solcher Verfahren.
  • Bei manchen kern- und plasmaphysikalischen Experimenten und Arbeiten entsteht gasförmiges Tritium (T,), das bekanntlich radioaktiv ist und daher aus der Atmosphäre des betreffenden Arbeitsraumes oder dergl. entfernt werden muss.
  • Es ist bekannt, tritiumhaltige Luft aus Arbeitsräumen, Gloveboxen und dergleichen mittels eines Gebläses abzusaugen und das Tritium in einem katalytischen Ofen, der CuO, Pd oder Pt als Katalysator enthalten kann, mit Sauerstoff zu tritiumhaltigem Wasser umzusetzen. Das entstehende Wasser wird anschliessend in einem Molekularsieb absorbiert. Die heute üblichen Tritiumabscheidungssysteme dieser Art enthalten ausser dem katalytischen Ofen und dem Molekularsieb, die die beiden Hauptkomponenten des Systems darstellen, noch Heizvorrichtungen, Kühlvorrichtungen, Wärmeaustauscher und dergleichen.
  • Man kann auf diese Weise eine Endkonzentration von einigen 10-5Ci/m3 Luft erzielen. In der Praxis muss man sich jedoch oft mit einigen 10-4 Cilm3 begnügen.
  • Es ist noch weitgehend inklar, von welchen Faktoren die minimal zu erzielende T-Konzentration in der gereinigten Luft abhängt. Wesentlich ist vermutlich der Wasserdampfpartialdruck im Molekularsieb und die Ausbeute bei der katalytischen Oxidation. Bereits bei einer 1%-igen Beladung eines Molekularsiebs beträgt der Wasserdampfpartialdruck bei 20°C etwa 1,3 · 10-5 Pa (10-7 Torr), was bezogen auf THO einer T-Aktivität von 2 · 10-4Ci/m3 Luft entspricht. Hieraus ist sofort ein gravierender Nachteil der heute üblichen Reinigungstechnik ersichtlich: Da die Raumluft-Feuchtigkeit gleichzeitig mit dem tritiumhaltigen Wasser von den Molekularsieben absorbiert wird, ist die Grenze der optimalen Beladung der Molekularsiebe (ca. 1%) sehr schnell erreicht. Man muss daher die Molekularsiebkolonnen entsprechend gross dimensionieren oder aber häufig regenerieren, was zu grossen Mengen an kontaminiertem Wasser führt. Bei unvollständiger katalytischer Oxidation des Tritiums zu Wasser verbleibt gasförmiges Tritium, das dieMolekularsiebe ungehindert passiert und somit als unzulässige Abluftaktivität auftritt.
  • Man hat versucht, die oben erwähnten bekannten Verfahren durch Kühlung der Molekularsiebe mit flüssigem Stickstoff und durch neuartige Edelmetall-Katalysatoren zu beheben, die Erfolge sind jedoch nicht befriedigend.
  • Der vorliegenden Erfindung liegt dementsprechend die Aufgabe zugrunde, Verfahren und Einrichtungen anzugeben, mit denen Tritium aus einem Gasgemisch vollständiger entfernt werden kann, als es bisher möglich war.
  • Diese Aufgabe wird erfindungsgemäss durch die Massnahmen gemäss Anspruch 1 gelöst.
  • Gemäss der Erfindung wird also das bekannte Oxidationsverfahren, bei dem das Tritium zu Wasser oxidiert wird, durch ein Reduktionsverfahren oder Hydrierungsverfahren das ein leicht abscheidbares, insbesondere flüssiges oder festes Reaktionsprodukt liefert, ersetzt. Die Umsetzung des Tritiums mit Sauerstoff soll dabei nicht unter die Begriffe Reduktions- oder Hydrierungsverfahren fallen.
  • Wasserstoff und damit auch Tritium, insbesondere in atomarer Form, reagiert mehr oder weniger leicht mit anderen Atomen oder Molekülen, insbesondere ungesättigte Kohlenwasserstoffverbindungen. Geeignete und erprobte Hydrierungsreaktionen sind die Hydrierung von Kohlenstoff und Erdöl oder die Fetthärtung (Hydrierung öliger Fette zu festen Fetten), ferner die Anlagerung von Wasserstoff an Doppel- oder Dreifachbindungen (Umwandlung von Benzol in Cyclohexan, von Naphthalin in Dekalin und Tetralin), die Reduktion von Aldehyden und Ketonen zu Alkoholen und von Nitrilen und Nitroverbindungen zu Aminen.
  • Schwere Erdölfraktionen können durch das sog. «Hydrocracking» in Produkte mit niederem Siedebereich umgewandelt werden. Das Verfahren arbeitet bei mässigen Drücken und Temperaturen in Gegenwart von Edelmetallkatalysatoren. Bei einem Einsatz von 100 Gew.-Teilen schwerem Vacuumgasöl und 3 Gew.-Teilen Wasserstoff entstehen beispielsweise nach einmaligem Durchgang
    • 3,2 Gew.-Teile NH3 + H2S
    • 2,5 Gew.-Teile C1 bis C3-Fraktionen
    • 3,6 Gew.-Teile C4-Fraktion
    • 8,7 Gew.-Teile Cs und Ce-Fraktionen
    • 14,8 Gew.-Teile C7-Fraktion

    und 70,3 Gew.-Teile einer höher siedenden Fraktion.
    (nach: Read, D., C.H. Watkins u. J.G. Eckhouse; Oil Gas J. 63, 86 (24.5.1965)).
  • Es ist also grundsätzlich möglich, Hydrierungen so zu steuern, dass längerkettige Kohlenwasserstoffe in kürzerkettige überführt werden. Wie später dargelegt werden wird, stellt diese Tatsache einen besonderen Vorzug des erfindungsgemässen Verfahrens dar.
  • Es hat sich herausgestellt, dass sich das Tritium aus einem Gasgemisch durch Hydrierung von ungesättigten organischen Verbindungen, insbesondere von ungesättigten Carbonsäuren, entfernenlässt. Mit besonderem Vorteil werden ungesättigte Monocarbonsäuren verwendet, wobei die Hydrierung vorteilhafterweise katalytisch erfolgen kann. Vorzugsweise werden ungesättigte Fettsäuren, insbesondere solche mit 5 bis 20 C-Atomen verwendet.
  • Beispielsweise weist die Linolensäure C17H29-COOH drei Doppelbindungen auf:
    Figure imgb0001
    und die Linolsäure C17H31-COOH deren zwei:
    Figure imgb0002
    beide gehen bei der Hydrierung in Stearinsäure CH3-(CH2)16-COOH über. Werden diese ungesättigten Monocarbonsäuren mit Tritium hydriert, so wird das Tritium fest in der Stearinsäure gebunden, d.h. eine oder mehrere der CH2-Gruppen T enthalten anstelle von H.
  • Der Hydrierungsprozess kann so gesteuert werden, dass die tritierte Stearinsäure durch den Einbau des Tritiums in Bruchstücke mit geringerer Kettenlänge und anderen physikalischen Eigenschaften als die langkettigen C17-Fettsäuren aufgespalten wird. Dies hat den grossen Vorteil, dass die tritiumhaltigen Reaktionsprodukte infolge unterschiedlicher Löslichkeit, Dichte bzw. Schmelz-und Siedepunkten kontinuierlich oder diskontinuierlich von den nicht mit Tritium umgesetzten Verbindungen abgetrennt und aus der Hydrierungsvorrichtung entfernt werden können. Damit steht für die Hydrierung immer ein frischer Reaktionspartner zur Verfügung und es entstehen nur verhältnismässig geringe Mengen von tritiumhaltigen, radioaktiven Reaktionsprodukten.
  • Als Hydrierungsvorrichtung oder - kolonne können ein Festbett, ein Wirbelbett, eine Flüssigkeits- bzw. eine Emulsionskolonne verwendet werden.
  • Das Verfahren und die Einrichtungen gemäss der Erfindung eignen sich hervorragend zur Abluftreinigung von Arbeitsräumen und zur Umluftreinigung von geschlossenen Systemen, wie Inertgasgloveboxen. Bei Inertgasgloveboxen ergibt sich der Vorteil, dass eine Autoxidation der vorzugsweise verwendeten ungesättigten Fettsäuren wegen der Abwesenheit von Luft-Sauerstoff nicht stattfinden kann, somit kann die Effektivität nicht verringert werden (kein hoher «Blindverbrauch» an ungesättigten Fettsäuren, keine Verharzung usw.).
  • Wird eine Einrichtung, die nach dem erfindungsgemässen Verfahren arbeitet, als Not- bzw. Störfallsystem eingesetzt, so werden alle denkbaren Nachteile (Autoxidation, Abbau der Verbindungen) minimalisiert, da die vergleichsweise geringen Kosten für den Ersatz verbrauchter Chemikalien nicht ins Gewicht fallen.
  • Durch die Erfindung werden die folgenden Vorteile erreicht:
  • Herkömmliche Systeme werden stets vom Wirkungsgrad der Oxidationsreaktion abhängen, nicht umgesetztes Tz-Gas verlässt die bekannten Anlagen ungehindert. Besonders in Räumen mit hoher Luftfeuchtigkeit wird die maximal zulässige Beladung der Molekularsiebe rasch überschritten. Die Restgasaktivität steigt dann rasch an.
  • Diese Nachteile entfallen bei dem erfindungsgemässen Verfahren. Insbesondere bei Kombination des herkömmlichen Oxidationsverfahrens mit dem erfindungsgemässen Reduktions- bzw. Hydrierungsverfahren werden sowohl tritiumhaltiges Wasser als auch T2 weitestgehend aus den gereinigten Gasgemischen beseitigt. Bei Verwendung in einem Störfallsystem hat das Verfahren gemäss der Erfindung den besonderen Vorteil, dass «Durchbruchskonzentrationen" ( > 1 % Wasserdampfkonzentration) am Molekularsieb und damit Aktivitäten über 10-5 Ci/M3 nicht auftreten können. Bei dem Verfahren gemäss der Erfindung ist ein kontinuierlicher Ersatz des verbrauchten Reaktionspartners (hydrierte Fettsäuren) und damit ein Dauereinsatz möglich, es sind keine Regenerationspausen erforderlich und die Aktivität kann daher nicht ansteigen.
  • In Inertgascontainments können geringste T-Konzentrationen kontinuierlich beseitigt werden.
  • In der Zeichnung ist beispielsweise eine Einrichtung zur Durchführung des erfindungsgemässen Verfahrens schematisch dargestellt. Die Einrichtung dient zur Reinigung der Atmosphäre in einem abgeschlossenen Arbeitsraum 10, der als sogenannte Glovebox dargestellt ist. Die Atmosphäre in dem abgeschlossenen Raum 10 wird durch ein Gebläse umgewälzt. Das Gas aus dem Raum 10 strömt durch eine Entnahmeleitung 14, ein Aktivitätsmessgerät 16, eine Hydrierungsvorrichtung 18, die mit einer Regenerationsvorrichtung 20 verbunden ist, dann durch eine weitere Aktivitätsmessvorrichtung 22 und schliesslich durch das Gebläse 12 und eine Rückführungsleitung 24 zurück in den Raum 10. Die Atmosphäre im Raum 10 kann aus einem Inertgas, insbesondere einem Edelgas wie Argon bestehen. Die Hydrierungsvorrichtung 18 kann ein Wirbelbett oder eine Festbett-, Lösungs- oder Emulsions-Kolonne enthalten. Vorzugsweise enthält die Hydrierungsvorrichtung eine ungesättigte Fettsäure und die Regenerierungsvorrichtung 20 dient zur Abscheidung von tritiumhaltigen Reaktionsprodukten.
  • Wenn die Atmosphäre im Raum 10 Sauerstoff enthält und z. B. aus Luft besteht, kann der Hydrierungsvorrichtung 18 noch eine bekannte Oxidierungsvorrichtung 26 vorgeschaltet sein, die einen katalytischen Ofen 28 und eine Molekularsiebkolonne 30 enthält und im übrigen in bekannter Weise ausgebildet sein kann.
  • Die folgenden Versuchsergebnisse zeigen die Leistungsfähigkeit des erfindungsgemässen Verfahrens:
    • Die erste Versuchsanordnung bestand lediglich aus einer ständig geschüttelten Gasmaus (Vol. 150 ml), in der bei normaler Raumtemperatur 50 ml Linolsäure, 5 ml Linolensäure und 1 g eines Pd-Katalysators mit 1 ml H2 beaufschlagt wurden. so dass im freien Gasraum über der Säure-Katalysatormischung die Wasserstoff-Konzentration 1 % in Luft betrug. Die Konzentrationsabnahme wurde durch in zeitlichen Abständen durchgeführte Messungen der Wasserstoffkonzentration in µl H2 (pro ml Probe) bestimmt.
  • Nach 8 Minuten ergaben sich noch 3,25 µl H2, nach 15 min noch 0,50 µl, nach 22 min noch 0,05 µl und schliesslich nach 30 min nur noch 0,002 µl H2. Wenn man die H2-Werte formal auf Tritium umrechnet, so könnte die Abnahme der Aktivität wie folgt angegeben werden:
    • Start-Aktivität 2,5 Ci, nach 8 min noch 0,8 Ci, nach 15 min noch 0,1 Ci, nach 22 min 0,01 Ci und schliesslich nach 30 min nur noch 0,001 Ci, d. h. mit dieser Anordnung würde eine Tritium-Aktivität von 2,5 Ci innerhalb von 30 Minuten auf 10-3 Ci reduziert.
  • Die zweite Versuchsanordnung bestand aus einer senkrecht stehenden Edelstahl-Kolonne (0 70 mm, h = 450 mm), in der 300 ml einer Linol/ Linolensäuremischung mit Pd-Katalysator (2 g Pd auf Al2O3; 5% an Pd) über Glaskugel-Füllkörper (5 mm 0) verteilt sind. Unterhalb der Füllkörper mündet ein Gaseinleitrohr, oberhalb derselben sind Prallbleche angeordnet. Mittels einer Membranpumpe wurde ein Inertgas (He, 4 1 pro min) umgewälzt. Das freie Volumen betrug 1,5 I. Um zu vergleichbaren H2-Konzentrationen zu kommen, wurden in diese Apparatur 15 ml H2 (=37,5 Ci auf Tritium umgerechnet) eingegeben.
  • Mit dieser Anordnung konnte eine Abnahme der (Auf der Basis der Hz-Werte errechneten) Aktivität auf 10-3 Ci erst in rund 160 min erreicht werden.
  • Gegenüber der ersten Versuchsanordnung ist also die fünffache Zeit aufzuwenden. Diese Tatsache ist auf die wesentlich schlechtere Durchmischung zurückzuführen. Es ist also anzustreben, beispielsweise durch Umpumpen, Zerstäuben oder ähnliche Massnahmen, die Durchmischung der Gasphase mit der Flüssigkeitsphase zu verbessern.
  • Trotzdem zeigt ein Vergleich mit einer von der Industrie gefertigten Anlage, die nach dem bisher angewandten Prinzip (katalytische Oxidation/ Molekularsieb-Adsorption) arbeitet, welches Potential im neuen Verfahren steckt:
    • Bei gleicher H2-Startkonzentration benötigt die Industrieanlage rund 70 min um die Konzentration um einen Faktor von 10-3 zu verringern (die Laborapparatur wie beschrieben 160 min). Dabei nimmt erstere einen Raum von ca. 1,2 x 1,0 x 0,75 m ein, während die Laborapparatur lediglich 0,25 x 0,2 x 0,6 m misst und ganz wesentlich weniger kostet.
  • Eine praktische Anlage zur Prozessierung von Glovebox-Atmosphären kann z.B. die folgenden Parameter aufweisen:
    • Volumen - Glovebox ca. 1000 1
    • Gebläse-Leistung ca. 100 1/min
    • Abmessungen der Hydrierkolonne 0 12 cm h 60cm
    • Füllkörper (z. B. Al2O3) mit Pd beschichtet ca. 2 I
    • (ca. 10 g Pd pro I Flüssigkeit)
    • Füllung mit Linol/Linolensäure ca. 2 I.

Claims (7)

1. Verfahren zum Reinigen eines Gasgemisches, das einen kleinen Anteil von Tritium enthält, bei welchem man das Gasgemisch zur weitestgehenden Entfernung des Tritiums durch ein Reaktionsgefäss strömen lässt, in dem das Tritium durch eine chemische Reaktion gebunden und dadurch aus dem Gasgemisch entfernt wird, dadurch gekennzeichnet, dass das Reaktionsgefäss, durch das das tritiumhaltige Gasgemisch strömt, eine ungesättigte organische Verbindung, insbesondere eine ungesättigte Carbonsäure, enthält, an der das Tritium durch eine Hydrierungsreaktion gebunden wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Gasgemisch durch ein Reaktionsgefäss geführt wird, welches mindestens eine mehrfach ungesättigte Monocarbonsäure, insbesondere Linolsäure und/oder Linolensäure, enthält.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Reaktionsgefäss zusätzlich einen die Hydrierungsreaktion katalysierenden Katalysator enthält.
4. Einrichtung zur Durchführung des Verfahrens nach Anspruch 1 mit einem Reaktionsgefäss, welches eine durch Tritium hydrierbare Verbindung enthält, gekennzeichnet durch eine Anordnung zum Hindurchleiten eines einen kleinen Anteil an Tritium enthaltenden Gasgemisches durch das eine ungesättigte organische Verbindung, insbesondere eine ungesättigte Carbonsäure, enthaltende Reaktionsgefäss und eine Vorrichtung zum kontinuierlichen Abscheiden von mit Tritium hydrierten Verbindungen.
5. Einrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das Reaktionsgefäss ein Wirbelbett, eine Festbettkolonne, ein Lösungssystem oder ein Emulsionssystem enthält.
6. Einrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass dem Reaktionsgefäss eine Vorrichtung zum katalytischen Oxidieren des Tritiums und zum Abscheiden des tritiumhaltigen Wassers vorgeschaltet sind.
7. Einrichtung nach Anspruch 4, 5 oder 6, dadurch gekennzeichnet, dass die Vorrichtung zum Hindurchleiten des tritiumhaltigen Gasgemisches zu einem geschlossenen Gaskreislauf gehört, welcher ausserdem einen Arbeitsraum (10) sowie eine Umwälzvorrichtung (12) enthält.
EP81101653A 1980-07-04 1981-03-06 Verfahren und Einrichtung zum Entfernen von Tritium aus einem Gasgemisch Expired EP0043401B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3025494 1980-07-04
DE3025494A DE3025494C2 (de) 1980-07-04 1980-07-04 Verfahren zum Entfernen von Tritium aus einem Gasgemisch

Publications (2)

Publication Number Publication Date
EP0043401A1 EP0043401A1 (de) 1982-01-13
EP0043401B1 true EP0043401B1 (de) 1985-09-25

Family

ID=6106468

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81101653A Expired EP0043401B1 (de) 1980-07-04 1981-03-06 Verfahren und Einrichtung zum Entfernen von Tritium aus einem Gasgemisch

Country Status (5)

Country Link
US (1) US4490288A (de)
EP (1) EP0043401B1 (de)
JP (1) JPS5717898A (de)
CA (1) CA1165096A (de)
DE (2) DE3025494C2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3511320C1 (de) * 1985-03-28 1986-10-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Vorrichtung zur Reinigung der Gasatmosphaeren mehrerer Arbeitsraeume
DE3606317A1 (de) * 1986-02-27 1987-09-03 Kernforschungsz Karlsruhe Verfahren und vorrichtung zur dekontamination des abgases des brennstoffkreislaufs eines fusionsreaktors von tritium und/oder deuterium in chemisch gebundener form enthaltenden abgas-bestandteilen
DE3636632A1 (de) * 1986-10-28 1988-05-05 Ntg Neue Technologien Gmbh & C Organisches feststoffgetter zur absorption von tritium (t) aus einem stroemenden gasgemisch
FR2620262B1 (fr) * 1987-09-09 1989-11-17 Commissariat Energie Atomique Procede et installation de traitement de dechets organiques solides contamines par du tritium
JP6044003B2 (ja) 2014-07-03 2016-12-14 株式会社ピーシーエス トリチウム含有水におけるトリチウム置換方法及びトリチウム除去方法
CN109887632A (zh) * 2019-04-19 2019-06-14 江油联合氚碳仪器有限责任公司 用于高湿空气除氚的系统
CN115382389A (zh) * 2022-08-23 2022-11-25 中国原子能科学研究院 尾气处理方法和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147243A (en) * 1960-08-08 1964-09-01 Continental Oil Co Radioactive polymers
US4178350A (en) * 1973-08-27 1979-12-11 Engelhard Minerals & Chemicals Corp. Removal of tritium and tritium-containing compounds from a gaseous stream
US4020003A (en) * 1976-02-24 1977-04-26 The United States Of America As Represented By The United States Energy Research And Development Administration Fixation of tritium in a highly stable polymer form

Also Published As

Publication number Publication date
JPS5717898A (en) 1982-01-29
CA1165096A (en) 1984-04-10
EP0043401A1 (de) 1982-01-13
JPH0147758B2 (de) 1989-10-16
DE3025494C2 (de) 1986-01-16
DE3025494A1 (de) 1982-02-04
US4490288A (en) 1984-12-25
DE3172399D1 (en) 1985-10-31

Similar Documents

Publication Publication Date Title
DE69209948T2 (de) Verfahren zur Aktivierung eines Fischer-Tropsch Katalysators und der aktivierte Katalysator
EP0081041B1 (de) Verfahren zur selektiven Hydrierung von mehrfach ungesättigten Kohlenwasserstoffen in Kohlenwasserstoff-Gemischen
DE1249228C2 (de) Hydrierungskatalysator
DE1954315C3 (de) Verfahren zur Abtrennung von Metallcarbonylkatalysatoren aus Oxoreaktionsge mischen
DE2620580A1 (de) Hydrierungskatalysator und verfahren zum hydrieren von ungesaettigten kohlenwasserstofffraktionen
EP0043401B1 (de) Verfahren und Einrichtung zum Entfernen von Tritium aus einem Gasgemisch
DE2620554B2 (de) Kupfer-Nickel-Si liciumoxid-Katalysator und seine Verwendung
DE68910310T2 (de) Hydroformylierungsverfahren zur Herstellung von Aldehyden.
WO2004037409A1 (de) Verfahren zur regenerierung eines hydrierkatalysators
DE69817937T2 (de) Beladene Ionenaustauscherharze, deren Herstellung und Verwendungen
DE1148982B (de) Verfahren zur selektiven Entfernung von Oxyden des Stickstoffs aus sauerstoff-haltigen Gasgemischen
DE2134115C3 (de) Verfahren zur katalytischen Isomerisierung von Essigsäureallylestern
EP0208987A1 (de) Verfahren zur Herstellung von Katalysatoren und ihre Verwendung bei Hydrier- und Aminierreaktionen
EP1080036A1 (de) Hochreine wässrige wasserstoffperoxid-lösungen, verfahren zu ihrer herstellung und ihre verwendung
DE60015544T2 (de) Selektive trennung von eisen mit einem diphosphonsäuregruppen enthaltenden ionenaustauscherharz
DE3853619T2 (de) Chemische Reaktion in Anwesenheit eines Kupfer-Trägerkatalysators.
DE102014223759A1 (de) Entfernung von Sauerstoff aus Kohlenwasserstoff-haltigen Gasgemischen
EP0001761A1 (de) Verfahren zur Reinigung von Tetrahydrofuran
DE10135431C2 (de) Verfahren zur Vorbehandlung von Reaktoren zur Wasserstofferzeugung und Reaktor
DE69108148T2 (de) Verfahren zur Zersetzung von Chlorfluorkohlenwasserstoffen.
DE19710762A1 (de) Verfahren zur Reinigung von Stoffströmen
DE69513659T2 (de) Verfahren zur entfernung von stickstofftrichlorid aus chlorrohprodukten
DE2905806A1 (de) Verfahren zur herstellung alkylsubstituierter aromatischer verbindungen
DE2107749A1 (de) Verfahren zur Transalkylierung zwischen Alkoholen und tertiären Aminen
DE1201262B (de) Verfahren zur praktisch voelligen Entfernung von in Wasser geloestem Sauerstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19820119

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3172399

Country of ref document: DE

Date of ref document: 19851031

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920303

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920309

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920311

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920318

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920330

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920331

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920527

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930331

Ref country code: CH

Effective date: 19930331

Ref country code: BE

Effective date: 19930331

BERE Be: lapsed

Owner name: MAX-PLANCK-G-ZUR FORDERUNG DER WISSENSCHAFTEN E.V

Effective date: 19930331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930306

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81101653.4

Effective date: 19931008