EP0034391A1 - Verwendung einer Blei-Legierung für Anoden bei der elektrolytischen Gewinnung von Zink - Google Patents

Verwendung einer Blei-Legierung für Anoden bei der elektrolytischen Gewinnung von Zink Download PDF

Info

Publication number
EP0034391A1
EP0034391A1 EP81200163A EP81200163A EP0034391A1 EP 0034391 A1 EP0034391 A1 EP 0034391A1 EP 81200163 A EP81200163 A EP 81200163A EP 81200163 A EP81200163 A EP 81200163A EP 0034391 A1 EP0034391 A1 EP 0034391A1
Authority
EP
European Patent Office
Prior art keywords
anodes
zinc
lead
weight
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81200163A
Other languages
English (en)
French (fr)
Other versions
EP0034391B1 (de
Inventor
Adolf Dr.-Ing. Von Röpenack
Günter Ing. grad. Stock
Ulrich Dr.-Ing. Heubner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruhr Zink GmbH
Original Assignee
Ruhr Zink GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruhr Zink GmbH filed Critical Ruhr Zink GmbH
Publication of EP0034391A1 publication Critical patent/EP0034391A1/de
Application granted granted Critical
Publication of EP0034391B1 publication Critical patent/EP0034391B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/16Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof

Definitions

  • the wet metallurgical extraction of zinc usually takes place according to the process principle of zinc blende roasting, leaching of the roasted material, lye cleaning, electrolytic deposition of zinc and remelting of the zinc previously drawn off from the cathodes. Electrolytic deposition takes place practically exclusively from sulfuric acid solutions with the help of aluminum cathodes and lead anodes.
  • Anode materials are primarily ternary lead alloys with mostly silver contents that are between 0.5 and 1.0% by weight.
  • the third alloy component studies are available on thallium, tellurium, selenium, bismuth, calcium, gold, mercury, strontium, barium, arsenic, tin and cobalt (The Journal of Applied Chemistry of the USSR -english translation- Vol. 24 (1951) P. 1429 ff) and magnesium and silicon (The Journal of Applied Chemistry of the USSR -english translation- Vol. 26 (1953) p. 847 ff).
  • the object of the invention is to provide an alloy for anodes in the electrolytic extraction of zinc from acidic solutions which do not have the disadvantages of the known alloys, have advantageous electrical and mechanical properties and can be produced as inexpensively as possible.
  • the solution to the problem lies in the use of a lead alloy consisting of 0.05 to 0.25% by weight of strontium and / or 0.05 to 0.1% by weight of calcium and 0.1 to 0.5% by weight. % Silver, balance lead for anodes in the electrolytic extraction of zinc from acidic solutions.
  • strontium-containing alloys those in which the strontium content is 0.05 to 0.1% by weight are preferably used.
  • the anodes made from the aforementioned alloys have considerable hardness and high elasticity. They are dimensionally stable, so that they can be produced in a smaller thickness than conventional anodes. This saves alloy material in general and silver in particular. Due to the low weight of the anodes, the connection elements, in particular the support rods, can also be constructed more easily.
  • the high dimensional stability of the anodes allows the electrode spacing to be reduced, so that a reduction in energy consumption is achieved.
  • Alloys containing calcium or strontium are expediently used for reasons of simpler production. With regard to their properties, however, those that have both alloy components are also equivalent.
  • the anodes can be produced by rolling or casting.
  • the possibility of casting is advantageous insofar as the anodes are immediately given their final dimensions and - if desired - passage openings for the electrolyte can already be provided during the casting.
  • the strength of the metal alloy is so high that even in the manufacture of anodes with through openings, a greater thickness - for reasons of stability, for example - is not necessary.
  • the corrosion resistance of the anodes is so high that there is practically no removal even after months of operation. This is particularly surprising because there was a fear that a reduction in the silver content in the alloy would be associated with an increase in corrosion.
  • the anodes obtained are used under the usual electrolysis conditions, ie for example at a current density of 160 to 630 A / m 2, a temperature of 30 to 46 ° C and a sulfuric acid content of the electrolyte of 165 to 220 g / 1 and a zinc content of the electrolyte of 40 to 70 g / l.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Innerhalb des Naßmetallurgischen Verfahrensganges zur Gewinnung von Zink ist eine wesentliche Stufe dessen elektrolytische Abscheidung. Hierfür sind als Anodenmaterialien vorwiegend ternäre Bleilegierungen gebräuchlich, die neben Silber in Mengen von 0,5 bis 1,0 Gew.-% als dritte Leigierungskomponente, unterschiedlichste Metalle enthalten können. Hinsichtlich der elektrischen und mechanischen Eigenschaffen sowie aus Kostengründen wird für Anoden bei der elektrolytischen Gewinnung von Zink aus sauren Lösungen die Verwendung einer Blei-Legierung vorgeschlagen, die aus 0,05 bis 0,25 Gew.-%Strontium und/oder 0,05 bis 0,1 Gew.-% Calcium sowie 0.1 bis 0,5 Gew.-% Silber, Rest Blei besteht.

Description

  • Die naßmetallurgische Gewinnung von Zink erfolgt üblicherweise nach dem Verfahrensprinzip Zinkblenderöstung, Laugung des Röstgutes, Laugenreinigung, elektrolytische Abscheidung von Zink und Umschmelzen des zuvor von den Kathoden abgezogenen Zinks. Die elektrolytische Abscheidung geschieht dabei praktisch ausschließlich aus schwefelsauren Lösungen mit Hilfe von Aluminiumkathoden und Bleianoden.
  • Anodenmaterialien sind vorwiegend ternäre Blei-Legierungen mit meist Silber-Gehalten, die zwischen 0,5 bis 1,0 Gew.% liegen. Hinsichtlich der dritten Legierungskomponente liegen Untersuchungen über Thallium, Tellur, Selen, Wismut, Calzium, Gold, Quecksilber, Strontium, Barium, Arsen, Zinn und Kobalt vor (The Journal of Applied Chemistry of the UdSSR -english translation- Vol. 24 (1951) S. 1429 ff) sowie Magnesium und Silizium (The Journal of Applied Chemistry of the UdSSR -english translation- Vol. 26 (1953) S. 847 ff).
  • Dabei zeigt sich, daß Anoden aus verschiedenen Legierungen während des Elektrolysebetriebes einen beträchtlichen Gewichtsverlust erleiden, der - abgesehen vom schnellen Verbrauch des Anodenmaterials - auch insofern nachteilig ist, als sich beträchtliche Schlammengen bilden können oder aber das kathodisch abgeschiedene Zink stark verunreinigt wird. Eine zusätzliche Problematik ergibt sich aus dem Umstand, daß verschiedene Legierungen nicht die erforderliche mechanische Festigkeit aufweisen oder während des Gebrauchs die anfänglich vorhandene Festigkeit verlieren. Es kann dann zu Verwerfungen und als Folge hiervon zu Kurzschlüssen und Brennern kommen.
  • Wie insbesondere auch die Ausführungen in "Blei und Blei- legierungen" von W. Hofmann, Springer-Verlag 1962, S. 285 ff zeigen, sind die Einflüsse der von Blei verschiedenen Legierungskomponenten vielfältig, zum Teil widersprüchlich und praktisch nicht vorhersehbar. Schließlich sind auch die mit der Herstellung der Legierung verbundenen Kosten von beträchtlicher Bedeutung, insbesondere wenn man berücksichtigt, daß sich in der Bäderhalle moderner Zinkelektrolysen Bleilegierungsmengen in der Größenordnung von 1.000 t und mehr befinden.
  • Aufgabe der Erfindung ist es, eine Legierung für Anoden bei der elektrolytischen Gewinnung von Zink aus sauren Lösungen bereitzustellen, die die Nachteile der bekannten Legierungen nicht aufweisen, vorteilhafte elektrische und mechanische Eigenschaften besitzen und möglichst kostengünstig herstellbar sind.
  • Die Lösung der Aufgabe liegt in der Verwendung einer Blei-Legierung, bestehend aus 0,05 bis 0,25 Gew.% Strontium und/oder 0,05 bis 0,1 Gew.% Calzium sowie 0,1 bis 0,5 Gew.% Silber, Rest Blei für Anoden bei der elektrolytischen Gewinnung von Zink aus sauren Lösungen.
  • Sofern strontiumhaltige Legierungen vorgesehen sind, kommen vorzugsweise solche zur Anwendung, in denen der Strontium-Gehalt 0,05 bis 0,1 Gew.% beträgt.
  • Die aus den vorgenannten Legierungen hergestellten Anoden besitzen eine beträchtliche Härte und eine hohe Elastizität. Sie sind formbeständig, so daß sie - verglichen mit üblichen Anoden - in geringerer Dicke hergestellt werden können. Hiermit verbunden ist eine Einsparung an Legierungsmaterial generell und insbesondere an Silber möglich. Infolge des geringen Gewichtes der Anoden können auch die Anschlußelemente, insbesondere die Tragestangen, leichter konstruiert werden.
  • Die hohe Formbeständigkeit der Anoden läßt es zu, daß der Elektrodenabstand verkleinert werden kann, so daß eine Verringerung des Energieverbrauchs erzielt wird.
  • Aus Gründen der einfacheren Herstellung werden zweckmäßigerweise Legierungen eingesetzt, die Calzium oder Strontium enthalten. Hinsichtlich ihrer Eigenschaften sind jedoch auch solche, die beide Legierungsbestandteile aufweisen, gleichwertig.
  • Die Herstellung der Anoden kann durch Walzen oder Gießen erfolgen. Insbesondere die Möglichkeit des Gießens ist insofern vorteilhaft, als die Anoden unmittelbar ihre endgültigen Abmessungen erhalten und - sofern erwünscht - bereits beim Guß Durchtrittsöffnungen für den Elektrolyt vorgesehen werden können. Die Festigkeit der Metalllegierung ist so hoch, daß auch bei der Herstellung von Anoden mit Durchtrittsöffnungen eine größere Dicke - etwa aus Stabilitätsgründen - nicht erforderlich ist.
  • Bei der Herstellung von Gußanoden, die generell eine höhere Härte als Walzanoden aufweisen, empfiehlt sich eine langsame Abkühlung, weil hierdurch im Vergleich zur schnellen Abkühlung eine zusätzliche Erhöhung der Härte und der Korrosionsbeständigkeit erzielt wird.
  • Die Korrosionsbeständigkeit der Anoden ist so hoch, daß ein Abtrag selbst nach monatelangem Betrieb praktisch nicht vorhanden ist. Dies ist insbesondere deswegen überraschend als zu befürchten war, daß eine Reduktion des Silber-Gehaltes in der Legierung mit einer Vergrößerung der Korrosion verbunden sein würde.
  • Die erhaltenen Anoden werden unter den üblicherweise angewendeten Elektrolysebedingungen eingesetzt, d.h. beispielsweise
    bei einer Stromdichte von 160 bis 630 A/m2 einer Temperatur von 30 bis 46°C und bei einem Schwefelsäuregehalt des Elektrolyten von 165 bis 220 g/1 und
    einem Zinkgehalt des Elektrolyten von 40 bis 70 g/l.

Claims (2)

1. Verwendung einer Blei-Legierung, bestehend aus 0,05 bis 0,25 Gew.% Strontium und/oder 0,05 bis 0,1 Gew.% Calzium sowie 0,1 bis 0,5 Gew.% Silber, Rest Blei für Anoden bei der elektrolytischen Gewinnung von Zink aus sauren Lösungen.
2. Verwendung gemäß Anspruch 1 mit der Maßgabe, daß der Gehalt an Strontium 0,05 bis 0,1 Gew.% beträgt.
EP81200163A 1980-02-15 1981-02-11 Verwendung einer Blei-Legierung für Anoden bei der elektrolytischen Gewinnung von Zink Expired EP0034391B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3005674 1980-02-15
DE19803005674 DE3005674A1 (de) 1980-02-15 1980-02-15 Verwendung einer blei-legierung fuer anoden bei der elektrolytischen gewinnung von zink

Publications (2)

Publication Number Publication Date
EP0034391A1 true EP0034391A1 (de) 1981-08-26
EP0034391B1 EP0034391B1 (de) 1983-08-24

Family

ID=6094697

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81200163A Expired EP0034391B1 (de) 1980-02-15 1981-02-11 Verwendung einer Blei-Legierung für Anoden bei der elektrolytischen Gewinnung von Zink

Country Status (8)

Country Link
US (1) US4364807A (de)
EP (1) EP0034391B1 (de)
JP (1) JPS56127743A (de)
AU (1) AU538729B2 (de)
DE (2) DE3005674A1 (de)
ES (1) ES8704552A1 (de)
FI (1) FI65821C (de)
NO (1) NO153976C (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0052106A1 (de) * 1980-03-10 1982-05-26 KNIGHT, Bill J. Verfahren zur elektrogewinnung von metallen
EP0090435A1 (de) * 1982-02-18 1983-10-05 Eltech Systems Corporation Elektroplattierverfahren
FR2575109A1 (fr) * 1984-12-21 1986-06-27 Samim Soc Azionaria Minero Met Materiau composite et son utilisation comme materiau pour electrodes et comme isolant acoustique
FR2691649A1 (fr) * 1992-05-29 1993-12-03 Extramet Sa Procédé de décontamination des terres polluées par des métaux.
WO2000042241A1 (en) * 1999-01-13 2000-07-20 Rsr Technologies, Inc. Electrowinning anodes which rapidly produce a protective oxide coating
WO2014029848A1 (en) 2012-08-24 2014-02-27 Novartis Ag Nep inhibitors for treating diseases characterized by atrial enlargement or remodeling

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1133952B (it) * 1980-10-20 1986-07-24 Samim Spa Anodo inattaccabile in piombo alligato
JPS5959891A (ja) * 1982-09-28 1984-04-05 Akita Seiren Kk 金属電解採取用陽極
US4439288A (en) * 1983-07-11 1984-03-27 Exxon Research & Engineering Company Process for reducing Zn consumption in zinc electrolyte purification
JPH0652737U (ja) * 1992-12-26 1994-07-19 合資会社榊原 缶詰め飲食物の断熱具
US5648286A (en) * 1996-09-03 1997-07-15 Advanced Micro Devices, Inc. Method of making asymmetrical transistor with lightly doped drain region, heavily doped source and drain regions, and ultra-heavily doped source region
US6139705A (en) * 1998-05-06 2000-10-31 Eltech Systems Corporation Lead electrode
JP5048981B2 (ja) * 2006-08-29 2012-10-17 アシスト株式会社 ミストサウナ装置
US7458902B2 (en) * 2007-03-14 2008-12-02 Eaton Corporation Changeable golf grip
BG110844A (bg) * 2011-02-04 2012-10-31 "Кцм" Ад Метод и устройство за електроекстракция на цинк от сулфатни разтвори
CN103042031B (zh) * 2011-10-12 2016-06-08 云南大泽电极科技有限公司 铅合金板材的铸轧生产方法
CN106319565A (zh) * 2016-09-21 2017-01-11 东莞市联洲知识产权运营管理有限公司 一种氨性体系下制备电积锌的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272339A (en) * 1980-03-10 1981-06-09 Knight Bill J Process for electrowinning of metals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol 84, no. 16, 19 April 1976, Columsbus, Ohio USA G.Z. KIRYAKOV " Lead alloy" page 293, column 1, abstract no. 110019e & ussr 473, 756 (Cl.C22C), 14 june 1975, appl. 1, 956, 571 21 august 1973 *
chemical abstracts, vol. 82, no. 20, 19th may 1975, columbus , ohio,usa g.z. kiryakov " prospective improvements in lead-based anodes" page 398, column 1, abstract no. 130938r & Tsvetn. Met 1975, (1), 21-2 (RUSS) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0052106A1 (de) * 1980-03-10 1982-05-26 KNIGHT, Bill J. Verfahren zur elektrogewinnung von metallen
EP0052106A4 (de) * 1980-03-10 1982-07-20 Bill J Knight Verfahren zur elektrogewinnung von metallen.
EP0090435A1 (de) * 1982-02-18 1983-10-05 Eltech Systems Corporation Elektroplattierverfahren
FR2575109A1 (fr) * 1984-12-21 1986-06-27 Samim Soc Azionaria Minero Met Materiau composite et son utilisation comme materiau pour electrodes et comme isolant acoustique
FR2691649A1 (fr) * 1992-05-29 1993-12-03 Extramet Sa Procédé de décontamination des terres polluées par des métaux.
WO1993024250A1 (fr) * 1992-05-29 1993-12-09 Entreprises Vibec Inc. Procede de decontamination des terres polluees par des metaux
WO1993024249A1 (fr) * 1992-05-29 1993-12-09 Unimetal - Societe Française Des Aciers Longs Procede de decontamination des terres polluees par des metaux
US5549811A (en) * 1992-05-29 1996-08-27 Unimetal Societe Francaise Des Aciers Longs Process for decontamination soils polluted with metals
WO2000042241A1 (en) * 1999-01-13 2000-07-20 Rsr Technologies, Inc. Electrowinning anodes which rapidly produce a protective oxide coating
WO2014029848A1 (en) 2012-08-24 2014-02-27 Novartis Ag Nep inhibitors for treating diseases characterized by atrial enlargement or remodeling

Also Published As

Publication number Publication date
ES499435A0 (es) 1987-06-01
DE3160775D1 (en) 1983-09-29
NO153976C (no) 1986-06-25
AU6728681A (en) 1981-08-20
FI65821C (fi) 1984-07-10
JPS56127743A (en) 1981-10-06
DE3005674A1 (de) 1981-08-20
US4364807A (en) 1982-12-21
JPS6323274B2 (de) 1988-05-16
ES8704552A1 (es) 1987-06-01
FI810395L (fi) 1981-08-16
NO153976B (no) 1986-03-17
NO810416L (no) 1981-08-17
AU538729B2 (en) 1984-08-23
FI65821B (fi) 1984-03-30
EP0034391B1 (de) 1983-08-24

Similar Documents

Publication Publication Date Title
EP0034391B1 (de) Verwendung einer Blei-Legierung für Anoden bei der elektrolytischen Gewinnung von Zink
DE1094245B (de) Bleidioxyd-Elektrode zur Verwendung bei elektrochemischen Verfahren
DE2737928A1 (de) Verfahren zur wiedergewinnung des metallgehaltes aus kupferraffinations- schlamm
AT393697B (de) Verbesserte metallegierung auf kupferbasis, insbesondere fuer den bau elektronischer bauteile
DE4497281C2 (de) Eisenhaltige Kupferlegierung für elektrische und elektronische Bauteile
DE3515742C2 (de)
DE2352704A1 (de) Schweissbare, oxidationsbestaendige kobaltlegierung
DE1483361A1 (de) Verfahren zur Herstellung eines supraleitenden Drahtes
DE2027575C3 (de) Verwendung einer Bleilegierung für Anoden in sauren galvanischen Verchromungsbädern
DE3136817C2 (de) Galvanisch aufgetragene Laufschichtlegierung für ein Mehrschichtgleitlager
DE1533474C2 (de) Verfahren zur Herstellung von Magnesiumenthaltendem Ferrosilizium
DE3443338A1 (de) Verfahren zur herstellung von elektrolyt-mangandioxid
DE1234397B (de) Verwendung von Gold- und/oder Silber-Legierungen als Werkstoff fuer elektrische Kontakte und Verfahren zur Herstellung von Kontakten
DE852845C (de) Verfahren zum Zersetzen von Alkaliamalgamen
DE189875C (de)
DE2825424C2 (de) Siliciumhaltiges Tantalpulver, Verfahren zu seiner Herstellung und seine Verwendung
DE2656876A1 (de) Bleilegierung hoher festigkeit und daraus gefertigte akkumulatorenplatten
AT228521B (de) Magnetischer Werkstoff und Verfahren zu seiner Herstellung
DE898468C (de) Verfahren zur Herstellung von elektrischen Widerstaenden
DE1237327B (de) Thermoelektrische Tellur-Antimon-Wismut-Legierung
DE3402072C2 (de)
DE2210345C3 (de) Verfahren zur Herstellung einer Zinkphosphatlösung
DE450278C (de) Kupfer-Silicium-Mangan-Legierung
DE3213976A1 (de) Aufraubare aluminiumfolie
DE1907523C3 (de) Verfahren zur extraktiven Elektrolyse von Zink aus seinen schwefelsauren Lösungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR IT NL

17P Request for examination filed

Effective date: 19811031

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR IT NL

REF Corresponds to:

Ref document number: 3160775

Country of ref document: DE

Date of ref document: 19830929

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19891221

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900308

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900313

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19911101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST