EP0029164B1 - Hochspannungsdurchführung - Google Patents

Hochspannungsdurchführung Download PDF

Info

Publication number
EP0029164B1
EP0029164B1 EP80106779A EP80106779A EP0029164B1 EP 0029164 B1 EP0029164 B1 EP 0029164B1 EP 80106779 A EP80106779 A EP 80106779A EP 80106779 A EP80106779 A EP 80106779A EP 0029164 B1 EP0029164 B1 EP 0029164B1
Authority
EP
European Patent Office
Prior art keywords
insulating
voltage
edges
electrically conductive
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80106779A
Other languages
English (en)
French (fr)
Other versions
EP0029164A1 (de
Inventor
Günther Matthäus
Joachim Dr. Ruffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6086088&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0029164(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT80106779T priority Critical patent/ATE4521T1/de
Publication of EP0029164A1 publication Critical patent/EP0029164A1/de
Application granted granted Critical
Publication of EP0029164B1 publication Critical patent/EP0029164B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators
    • H01B17/28Capacitor type

Definitions

  • the invention relates to a high-voltage bushing with conductor parts lying at high-voltage potential and at earth potential, and an insulation body made of wound insulating foils arranged therebetween, which contains electrically conductive foils which end within the insulation body as potential control inserts which are folded over at their edges facing the outer boundary surfaces of the insulation body .
  • a high-voltage bushing with such an insulator is known from DE-C-641 252.
  • connection points of electrical devices with high operating voltages of, for example, 100 kV and higher high-voltage parts of these devices have to be passed through parts that are at ground potential in such a way that arcing can be avoided with certainty.
  • a corresponding connection point is, for example, the end closure of a high-voltage cable or the connection of a high-voltage transformer.
  • Corresponding insulating bushings may also be necessary in the case of converters and switchgear.
  • the electrically conductive parts in the high-voltage bushings which are at high voltage potential, are surrounded by special bushing insulators.
  • the bushing insulator known from GB-A-1 129 995 is wound from a flexible, electrically insulating material, for example a sheet-like special paper.
  • so-called electrically conductive potential control inserts are wound concentrically to one another and insulated from one another in this bushing insulator. With these inserts, a control of the voltage distribution via the bushing insulator and thus an increase in the resistance to partial discharge and surge voltage can be achieved (see, e.g., P. Böning: Little Textbook of Electrical Strength, Düsseldorf, 1955, pages 140 to 142).
  • the partial discharge and surge voltage resistance are essentially limited by the axial electrical field strength at the outer edges of the electrically conductive potential control inserts.
  • the outer edges of the potential control inserts end in bead-like thickenings, for example due to the control inserts being folded around an annularly bent wire, in order to obtain the largest possible radius of curvature of the outer edge.
  • these outer edges can also be surrounded by a layer of a material with a high dielectric constant (cf. CH-A-244 927 and CH-A-223 139).
  • a bushing insulator which contains potential control inserts made of thin metal foils which are arranged entirely within a leolization body. These inserts consist of thin metal foils, which are folded over on their edges facing the outer boundary surfaces of the insulating body. Since these foils can be folded with a sufficiently small radius of curvature, wrinkling can be ruled out when winding the insulation body. At these edges, however, the bent metal foils are additionally glued to the adjacent layers of insulating foils. In addition to the fact that the production of such a bushing insulator is relatively complex, the adhesive technology also impairs impregnation with a special insulating medium at these points which are important for the dielectric strength of the insulator.
  • each of these inserts is provided with additional insulation by tearing over the edges of the insulating paper that protrudes during winding around the edges of the control insert. This creates relatively thick ridges on the edges.
  • each such control insert must therefore be applied to its own hard paper cylinder. This does facilitate the disassembly of the winding; the structure of the winding is very expensive, especially when you consider that z. B. for a corresponding 100 kV implementation a large number of tax deposits are required.
  • the object of the present invention is therefore to simplify the construction of the high-voltage bushing mentioned at the outset in such a way that a wrinkle-free winding of its insulation body is made possible and, at the same time, partial discharge and surge voltage resistance are to be ensured, as are required for operating voltages of 100 kV and higher.
  • the advantages of this design of the high-voltage bushing are, in particular, that the electrical field strength at the edges of the potential control inserts is limited in a simple manner and thus the partial discharge and surge voltage resistance of the high-voltage bushing are correspondingly high.
  • the double-layer foils can be folded over at the edges with a sufficiently small radius of curvature, so that wrinkling of the insulation foils during the winding of the insulation body can be ruled out.
  • FIG. 1 schematically illustrates a high-voltage bushing.
  • 2 schematically shows a part of this high-voltage bushing designed according to the invention.
  • the high-voltage bushing shown in FIG. 1 as a longitudinal section can, for. B. Be part of an end closure of a high-voltage cable (see “3rd International Symposium on High Voltage Engineering •, Milan, 28th-31st August 1979, report No. 32.09).
  • the implementation contains a central conductor 2, the z. B. is a copper tube and is at high voltage potential, for example 200 kV at 50 Hz.
  • An insulating body 3 is arranged concentrically around the conductor, which has two beveled, conical jacket-shaped side parts 4 and 5 and a cylindrical jacket surface 6 in between. This insulation body is wound from an insulating film, for example from a special paper or a plastic film.
  • capacitor inserts 7 to 10 which are indicated in the figure by lines parallel to the axis and are used for potential control, are arranged in the insulation body 3 concentrically with respect to one another and isolated from one another. These capacitor inserts are advantageously stepped at one end so that an approximately linear potential gradient can form from the inside to the outside along the bevelled side surfaces 4 and 5 of the insulation body 3.
  • the approximately linear potential characteristic on the side surfaces 4 and 5 can be achieved in a known manner by a suitable choice of the radial distances between the individual capacitor inserts and by their axial lengths (cf., for example, US Pat. No. 3,462,545).
  • the innermost, near-conductor and 8 and 9 designated capacitor inserts are at high voltage potential, while the outermost capacitor insert 10 is on the outer surface 6 with an electrical connection 11 at ground potential.
  • Suitable media are e.g. B. special oils or gases such as SF s .
  • SF 6 cf. CIGRE 1972, Paper No. 15-02.
  • the insulation body can also be covered by a cryogenic medium such as, for. B. be impregnated with helium (see. DE-A-2 327 629).
  • the section of the insulating body 3 of a high-voltage bushing according to the invention contains two capacitor control inserts made of double-layer films, which are arranged parallel to one another and are generally designated 7 and 10. These double-layer films each contain an electrically conductive layer 14 and an insulating layer 15.
  • the insulating layer consists of a material with a high dielectric constant Er.
  • the dielectric constant can in particular be greater than 2, preferably greater than 3.
  • Special plastic materials are particularly suitable.
  • aluminum-laminated films made of a plastic such as polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP) or polycarbonate (PC) can advantageously be provided as double-layer films.
  • Hard PVC material e.g. B. has a dielectric constant Er of about 3.8 to 4.3 at room temperature.
  • the double-layer foils used for potential control are arranged in the insulation body 3 and on the bevelled side surface 4 turned sides so folded to edges 17 that the insulating layers 15 each point outwards. This ensures that, at least in the edge region, the folded edges 18 formed with the electrically conductive layers 14 are always tightly enclosed by the insulating material of the insulating layers 15. Since both the electrically conductive material and the plastic materials can be folded or bent relatively easily with a small radius of curvature, kinks or breaks at the edges can be avoided.
  • the folded double-layer films 7 and 10 are each arranged between adjacent layers 19 and 20 of isolatlonsfollen from which the insulation body 3 is wound.
  • the insulation foils can consist, for example, of a plastic material such as polypropylene.
  • a gusset-shaped cavity 22 is formed between the adjacent layers 19 and 20 of insulation films, which cavity fills with the insulation medium, for example the SF 6 gas.
  • edges of the electrically conductive layers 14 or control inserts 7 and 10 denoted by 18 do not protrude directly into these cavities 22, but instead are tightly enclosed there by the solid insulation material with high dielectric constant ⁇ r of the insulating layers 15, direct contact is made the outer fold edges 18 of the electrically conductive layers 14 with the insulating gas in the cavities 22 are avoided.
  • the electric field strength produced at edges 17 is accordingly correspondingly lower than in the insulating gas and consequently the partial discharge and surge voltage resistance are also increased accordingly.
  • the high-voltage bushing according to the invention is also suitable for electrical devices in which high-voltage potential is present on the outside and earth potential on the inside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulators (AREA)
  • Insulating Bodies (AREA)

Description

  • Die Erfindung bezieht sich auf eine Hochspannungsdurchführung mit auf Hochspannungspotential und auf Erdpotential liegenden Leiterteilen sowie einem dazwischen angeordneten Isolationskörper aus gewickelten lsolierfolien, der elektrisch leitende, innerhalb des Isolationskörpers endende Folien als Potentialsteuereinlagen enthält, die an ihren, den äußeren Begrenzungsflächen des Isolationskörpers zugewandten Rändern umgeschlagen sind. Eine derartige Hochspannungsdurchführung mit einem solchen Isolator ist aus der DE-C-641 252 bekannt.
  • An den Anschlußstellen von elektrischen Einrichtungen mit hohen Betriebsspannungen von beispielsweise 100 kV und höher müssen hochspannungsführende Teile dieser Einrichtungen durch auf Erdpotential liegende Teile so isoliert hindurchgeführt werden, daß mit Sicherheit Überschläge vermieden werden. Eine entsprechende Anschlußstelle stellt beispielsweise der Endverschluß eines Hochspannungskabels oder der Anschluß eines Hochspannungstransformators dar. Auch bei Wandlern und Schaltanlagen können entsprechende isolierende Durchführungen erforderlich sein.
  • Zur Vermeidung solcher unerwünschter Überschläge sind die auf Hochspannungspotential liegenden elektrisch leitenden Teile in den Hochspannungsdurchführungen von besonderen Durchführungsisolatoren umgeben.
  • Der aus der GB-A-1 129 995 bekannte Durchführungsisolator ist aus einem flexiblen, elektrisch isolierenden Material, beispielsweise einem folienartigen Spezialpapier, gewickelt. Außerdem sind in diesen Durchführungsisolator sogenannte elektrisch leitende Potentialsteuereinlagen konzentrisch zueinander und gegeneinander isoliert mit eingewickelt. Mit diesen Einlagen läßt sich eine Steuerung der Spannungsverteilung über den Durchführungsisolator und somit eine Erhöhung der Teilentladungs- und Stoßspannungsfestigkeit erreichen (vgl. z. B. P. Böning : Kleines Lehrbuch der elektrischen Festigkeit, Karlsruhe, 1955, Seiten 140 bis 142).
  • Ferner ist es bekannt, daß bei Hochspannungsdurchführungsisolatoren aus gewickelten Isolierstoffolien mit kapazitiver Potentialsteuerung die Teilentladungs- und Stoßspannungsfestigkeit im wesentlichen durch die axiale elektrische Feldstärke an den äußeren Kanten der elektrisch leitenden Potentialsteuereinlagen begrenzt werden. Bei bekannten Hochspannungsdurchführungsisolatoren enden deshalb die äußeren Kanten der Potentialsteuereinlagen in wulstartigen Verdickungen, beispielsweise aufgrund einer Falzung der Steuereinlagen um einen ringförmig gebogenen Draht, um so einen möglichst großen Krümmungsradius der Außenkante zu erhalten. Außerdem können diese Außenkanten noch mit einer Schicht aus einem Material mit hoher Dielektrizitätskonstanten umgeben sein (vgl. CH-A-244 927 und CH-A-223 139). Bei diesen Hochspannungsdurchführungsisolatoren befinden sich jedoch die wulstartigen Außenkanten der Potentialsteuereinlagen stets außerhalb des gewickelten Isolationskörpers, da sich diese Kanten nicht ohne weiteres mit in einen Isolierwickel einwickeln lassen, weil sonst die Gefahr eines zu lockeren Aufbaus des Wickels und von Faltungen einzelner Wickelfolien bestünde.
  • Aus der eingangs genannten DE-C-641 252 ist ein Durchführungsisolator bekannt, der Potentialsteuereinlagen aus dünnen Metallfolien enthält, die vollständig innerhalb eines leolationskörpers angeordnet sind. Diese Einlagen bestehen aus dünnen Metallfolien, welche an ihren den äußeren Begrenzungsflächen des Isolationskörpers zugewandten Rändern umgeschlagen sind. Da sich diese Folien mit hinreichend kleinem Krümmungsradius falzen lassen, ist zwar eine Faltenbildung beim Wickeln des Isolationskörpers auszuschließen. An diesen Rändern sind jedoch die umgebogenen Metallfolien zusätzlich mit den jeweils benachbarten Lagen aus Isolierfolien verklebt. Abgesehen davon, daß die Herstellung eines solchen Durchführungsisolators verhältnismäßig aufwendig ist, wird durch die Verklebungstechnik auch eine Tränkung mit einem besonderen Isoliermedium an diesen für die Spannungsfestigkeit des Isolators wichtigen Stellen behindert.
  • Bei der aus der DE-C-738 569 bekannten Kondensatordurchführung ist zwar auf eine besondere Verklebung der an ihren Rändern umgebogenen Potentialsteuereinlagen verzichtet. Stattdessen ist jede dieser Einlagen mit einer zusätzlichen Isolation versehen, indem die beim Wickeln überstehenden Enden des unter der jeweiligen Steuereinlage liegenden Isolierpapiers um die Ränder der Steuereinlage umgerissen werden. An den Rändern entstehen so verhältnismäßig dicke Wülste. Um Faltungen des Wickels zu vermeiden, muß deshalb jede derartige Steuereinlage auf einem eigenen Hartpapierzylinder aufgebracht werden. Dies erleichtert zwar die Demontage des Wickels ; der Aufbau des Wickels ist jedoch sehr aufwendig, insbesondere wenn man bedenkt, daß z. B. für eine entsprechende 100 kV-Durchführung eine Vielzahl von Steuereinlagen erforderlich sind.
  • Aufgabe der vorliegenden Erfindung ist es deshalb, den Aufbau der eingangs genannten Hochspannungsdurchführung so zu vereinfachen, daß ein faltenfreies Wickeln ihres Isolationskörpers ermöglicht wird und zugleich eine Teilentladungs- und Stoßspannungsfestigkeit zu gewährleisten sind, wie sie für Betriebsspannungen von 100 kV und höher gefordert werden.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß als Potentialsteuereinlagen in dem mit einem besonderen Isoliermedium getränkten Isolationskörper Doppelschichtfolien mit jeweils einer Schicht aus elektrisch leitendem Material und einer Schicht aus einem isolierenden Kunststoffmaterial mit einer Dielektrizitätskonstanten Er bei Raumtemperatur von mindestens 2 vorgesehen sind und daß die Doppelschichttolien so umgeschlagen sind, daß an den Rändern jeweils die isolierende Schicht die elektrisch leitende Schicht umschließt.
  • Die Vorteile dieser Gestaltung der Hochspannungsdurchführung liegen insbesondere darin, daß auf einfache Weise die elektrische Feldstärke an den Rändern der Potentialsteuereinlagen begrenzt ist und somit die Teilentladungs- und Stoßspannungsfestigkeit der Hochspannungsdurchführung entsprechend hoch sind. Dies folgt daraus, daß die umgeschlagenen Ränder der Steuereinlagen nicht unmittelbar in die an ihnen ausgebildeten, zwickelartigen, mit dem Isoliermedium gefüllten Hohlräume zwischen benachbarten Windungen aus den isolierenden Wickelfolien ragen sondern mit dem Dielektrikum der isolierenden Schichten unmittelbar umgeben sind. Dennoch lassen sich die Doppelschichtfolien an den Rändern mit hinreichend kleinem Krümmungsradius umschlagen, so daß eine Faltenbildung der Isolationsfolien beim Wickeln des Isolationskörpers ausgeschlossen werden kann.
  • Vorteilhafte Ausgestaltungen der Hochspannungsdurchführung nach der Erfindung gehen aus den Unteransprüchen hervor.
  • Zur weiteren Erläuterung der Erfindung und deren in den Unteransprüchen gekennzeichneten Ausbildungen wird auf die Zeichnung Bezug genommen, in deren Fig. 1 eine Hochspannungsdurchführung schematisch veranschaulicht ist. Fig. 2 zeigt schematisch einen gemäß der Erfindung ausgebildeten Teil dieser Hochspannungsdurchführung.
  • Die in Fig. 1 als Längsschnitt dargestellte Hochspannungsdurchführung kann z. B. Teil eines Endverschlusses eines Hochspannungskabels sein (vgl. « 3rd Int. Symposium on High Voltage Engineering •, Mailand, 28.-31.8.1979, Bericht Nr. 32.09). Die Durchführung enthält einen zentralen Leiter 2, der z. B. ein Kupferrohr ist und auf Hochspannungspotential, beispielsweise 200 kV bei 50 Hz, liegt. Um den Leiter ist konzentrisch ein Isolationskörper 3 angeordnet, der zwei abgeschrägte, kegelmantelförmige Seitenteile 4 und 5 und dazwischen eine zylinderförmige Mantelfläche 6 aufweist. Dieser Isolationskörper ist aus einer isolierenden Folie, beispielsweise aus einem Spezialpapier oder einer Kunststoffolie, gewickelt. In dem Isolationskörper 3 sind konzentrisch zueinander und isoliert gegeneinander sogenannte Kondensatoreinlagen 7 bis 10 angeordnet, die in der Figur durch achsenparallele Linien angedeutet sind und zur Potentialsteuerung dienen. Diese Kondensatoreinlagen sind an ihrem einen Ende vorteilhaft so abgestuft zueinander angeordnet, daß sich längs der abgeschrägten Seitenflächen 4 und 5 des Isolationskörpers 3 von innen nach außen ein annähernd lineares Potentia!gefälle ausbilden kann. Die annähernd lineare Potentiaicharakteristik an den Seitenflächen 4 und 5 läßt sich dabei in bekannter Weise durch eine geeignete Wahl der radialen Abstände zwischen den einzelnen Kondensatoreinlagen sowie durch ihre axialen Längen erreichen (vgl. z. B. US-A-3 462 545). Die innersten, leiternahen und mit 8 und 9 bezeichneten Kondensatoreinlagen liegen dabei auf Hochspannungspotential, während sich die äußerste Kondensatoreinlage 10 an der Mantelfläche 6 mit einem elektrischen Anschluß 11 auf Erdpotential befindet.
  • Zur Erhöhung der Spannungsfestigkeit des Isolationskörpers 3 ist dieser von einem isolierenden Medium durchtränkt. Geeignete Medien sind z. B. spezielle Öle oder Gase wie SFs. Gemäß dem Ausführungsbeispiel nach der Figur sei angenommen, daß der Isolationskörper 3 mit SF6 getränkt ist (vgl. CIGRE 1972, Paper No. 15-02).
  • Falls die Hochspannungsdurchführung für eine auf Tieftemperatur befindliche Einrichtung, beispielsweise für den Endverschluß eines supraleitenden Kabels, vorgesehen sein soll, kann der Isolationskörper auch von einem kryogenen Medium wie z. B. von Helium durchtränkt sein (vgl. DE-A-2 327 629).
  • Es hat sich nun gezeigt, daß die Teilentladungs- und Stoßspannungsfestigkeit einer solchen Durchführung wesentlich durch die axiale elektrische Feldstärke an den äußeren, d. h. den abgeschrägten Seitenflächen 4 und 5 zugewandten Kanten der elektrisch leitenden Potentialsteuereinlagen 7 bis 10 begrenzt werden. Gemäß der Erfindung sind deshalb diese äußeren Kanten der Steuereinlagen besonders gestaltet. Diese Gestaltung geht aus Fig. 2 näher hervor, in der ein entsprechendes, in Fig. 1 mit 12 bezeichnetes Teilstück des Isolationskörpers 3 vergrößert dargestellt ist. Mit Fig. 1 übereinstimmende Teile sind dabei mit denselben Bezugszeichen versehen.
  • Das als Längsschnitt in Fig. 2 dargestellte Teilstück des Isolationskörpers 3 einer Hochspannungsdurchführung nach der Erfindung enthält zwei parallel zueinander angeordnete, allgemein mit 7 und 10 bezeichnete Kondensatorsteuereinlagen aus Doppelschichtfolien. Diese Doppelschichtfolien enthalten jeweils eine elektrisch leitende Schicht 14 und eine isolierende Schicht 15. Die isolierende Schicht besteht dabei gemäß der Erfindung aus einem Material mit hoher Dielektrizitätskonstanten Er. Die Dielektrizitätskonstante kann insbesondere größer als 2, vorzugsweise größer als 3 sein. Besonders geeignet sind spezielle Kunststoffmaterialien. Beispielsweise können als Doppelschichtfolien vorteilhaft mit Aluminium kaschierte Folien aus einem Kunststoff wie Polyvinylchlorid (PVC), Polyäthylen (PE), Polypropylen (PP) oder Polycarbonat (PC) vorgesehen werden. Hartes PVC-Material z. B. hat bei Raumtemperatur eine Dielektrizitätskonstante Er von etwa 3,8 bis 4,3. Die zur Potentialsteuerung dienenden Doppelschichtfolien sind in dem Isolationskörper 3 so angeordnet und an den der abgeschrägten Seitenfläche 4 zugewandten Seiten so zu Kanten 17 gefalzt, daß die isolierenden Schichten 15 jeweils nach außen weisen. Es ist so gewährleistet, daß zumindest Im Kantenbereich die mit den elektrisch leitenden Schichten 14 gebildeten gefalzten Kanten 18 stets von dem isolierenden Material der isolierenden Schichten 15 dicht umschlossen sind. Da sich sowohl das elektrlch leitende Material als auch die Kunststoffmaterialien verhältnismäßig leicht mit kleinem Krümmungsradius falzen bzw. biegen lassen, können dabei Knicke oder Brüche an den Kanten vermieden werden.
  • Die gefalzten Doppelschichttolien 7 und 10 sind jeweils zwischen benachbarten Lagen 19 und 20 von lsolatlonsfollen angeordnet, aus denen der Isolationskörper 3 gewickelt ist. Die Isolationsfolien können beispielsweise aus einem Kunststoffmaterial wie Polypropylen bestehen. Vor den der abgeschrägten Seitenfläche 4 des Isolationskörpers 3 zugewandten Kanten 17 der Steuereinlagen 7 bzw. 10 ist zwischen den benachbarten Lagen 19 und 20 aus Isolationsfolien jeweils ein zwickelförmiger Hohlraum 22 ausgebildet, der sich mit dem Isolationsmedium, beispielsweise dem SF6-Gas, füllt. Da gemäß der Erfindung die mit 18 bezeichneten Kanten der elektrisch leitenden Schichten 14 oder Steuereinlagen 7 und 10 nicht unmittelbar in diese Hohlräume 22 hineinragen, sondern dort von dem festen Isolationsmaterial mit hoher Dielektrizitätskonstanten εr der Isolierenden Schichten 15 dicht umschlossen sind, wird ein unmittelbarer Kontakt der äußeren Falzkanten 18 der elektrisch leitenden Schichten 14 mit dem isolierenden Gas in den Hohlräumen 22 vermieden. Die an Kanten 17 hervorgerufene elektrische Feldstärke ist somit entsprechend geringer als in dem isolierenden Gas und sind folglich auch die Teilentladungs-und Stoßspannungsfestigkeit entsprechend erhöht.
  • Gemäß dem Ausführungsbeispiel nach den Figuren ist davon ausgegangen, daß ein auf Hochspannungspotential liegender elektrischer Leiter zentral angeordnet ist und von einem Isolationskörper umgeben ist. Die Hochspannungsdurchführung nach der Erfindung ist jedoch ebensogut auch für elektrische Einrichtungen geeignet, bei denen an der Außenseite Hochspannungspotential und innen Erdpotential anliegen.

Claims (3)

1. Hochspannungsdurchführung mit auf Hochspannungspotential und auf Erdpotential liegenden Leiterteilen sowie einem dazwischen angeordneten Isolationskörper (3) aus gewickelten Isolierfolien, der elektrisch leitende, innerhalb des Isolationskörpers (3) endende Folien als Potentialsteuereinlagen (7 bis 10) enthält, die an ihren den äußeren Begrenzungsflächen (4, 5) des Isolationskörpers (3) zugewandten Rändern (17, 18) umgeschlagen sind, dadurch gekennzeichnet, daß als Potentialsteuereinlagen (7 bis 10) in dem mit einem besonderen Isoliermedium getränkten Isolationskörper (3) Doppelschichtfolien (7, 10) mit jeweils einer Schicht (14) aus elektrisch leitendem Material und einer Schicht (15) aus einem isolierenden Kunststoffmaterial mit einer Dielektrizitätskonstanten Er bei Raumtemperatur von mindestens 2 vorgesehen sind und daß die Doppelschlchtfollen (7, 10) so umgeschlagen sind, daß an den Rändern (17, 18) jeweils die isolierende Schicht (15) die elektrisch leitende Schicht (14) umschließt.
2. Hochspannungsdurchführung nach Anspruch 1, gekennzeichnet durch eine Dielektrizitätskonstante Er des isolierenden Kunststoffmaterials bei Raumtemperatur von mindestens 3.
3. Hochspannungsdurchführung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Doppelschichtfolien (7, 10) mit Aluminium kaschierte Kunststoffolien vorgesehen sind.
EP80106779A 1979-11-15 1980-11-04 Hochspannungsdurchführung Expired EP0029164B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80106779T ATE4521T1 (de) 1979-11-15 1980-11-04 Hochspannungsdurchfuehrung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2946172 1979-11-15
DE19792946172 DE2946172A1 (de) 1979-11-15 1979-11-15 Hochspannungsdurchfuehrung

Publications (2)

Publication Number Publication Date
EP0029164A1 EP0029164A1 (de) 1981-05-27
EP0029164B1 true EP0029164B1 (de) 1983-08-24

Family

ID=6086088

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80106779A Expired EP0029164B1 (de) 1979-11-15 1980-11-04 Hochspannungsdurchführung

Country Status (4)

Country Link
US (1) US4370514A (de)
EP (1) EP0029164B1 (de)
AT (1) ATE4521T1 (de)
DE (1) DE2946172A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8608484D0 (en) * 1986-04-08 1986-05-14 Raychem Gmbh Electrical apparatus
US5281767A (en) * 1992-10-30 1994-01-25 A.B. Chance Company Reduced mechanical stress bushing and conductor rod assembly
DE19644482C1 (de) * 1996-10-25 1998-03-05 Siemens Ag Isolatoranordnung
DE19856123C2 (de) * 1998-12-04 2000-12-07 Siemens Ag Hohlisolator
DE102005021255B4 (de) * 2005-05-02 2007-08-16 Siemens Ag Barrierensystem für die Leitungsdurchführung einer elektrischen Anlage
CH698971A1 (de) * 2008-06-04 2009-12-15 Trench Switzerland Ag Isoliereinrichtung.
EP2375423A1 (de) 2010-04-07 2011-10-12 ABB Research Ltd. Elektrische Durchführung
WO2011154029A1 (en) * 2010-06-07 2011-12-15 Abb Research Ltd High-voltage sensor with axially overlapping electrodes
EP2431982B1 (de) * 2010-09-21 2014-11-26 ABB Technology AG Steckbare Durchführung und Hochspannungsanlage mit einer solchen Durchführung
EP2528071B1 (de) * 2011-05-27 2018-08-08 ABB Schweiz AG Hochspannungsanordnung mit Isolationsstruktur
DE102018201160A1 (de) * 2018-01-25 2019-07-25 Pfisterer Kontaktsysteme Gmbh Hochspannungsdurchführung, elektrisches Gerät mit Hochspannungsdurchführung und Verfahren zur Herstellung des elektrischen Gerätes
EP3667684A1 (de) 2018-12-12 2020-06-17 ABB Schweiz AG Elektrische durchführung
US20230041971A1 (en) * 2019-12-30 2023-02-09 Hitachi Energy Switzerland Ag Condenser bushing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE641252C (de) * 1929-04-12 1937-01-25 Aeg Durchfuehrungsisolator oder aehnliche kondensatorartig wirkende Einrichtung aus geschichtetem Isolierstoff mit mehrschichtigen metallischen Einlagen
DE738569C (de) * 1941-02-16 1943-08-21 Aeg In Isolieroel oder eine Isoliermasse eingebettete Kondensatordurchfuehrung, bei welcher die einzelnen Kondensatorstufen durch auf Weichpapier aufgewickelte Metallbelaegemit umgeschlagenen Raendern gebildet werden, die durch umgerissene Papierstreifen querisoliert sind
DE1490664A1 (de) * 1964-09-21 1969-06-04 Siemens Ag Endenabschluss fuer Hochspannungsleiter mit einer Isolierung aus einem thermoplastischen Kunststoff,insbesondere aus Polyaethylen
DE1803468A1 (de) * 1967-10-18 1969-08-14 Elek Sitetsforsyningens Forskn Anordnung zur kapazitiven Hochspannungsverteilung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB339227A (de) * 1929-04-11 1930-12-04 International General Electric Company Incorporated
CH223139A (de) * 1942-01-19 1942-08-31 Bbc Brown Boveri & Cie Hochspannungsdurchführung mit Kondensatoreinlagen.
CH244927A (de) * 1945-06-30 1946-10-15 Bbc Brown Boveri & Cie Anordnung mit durch Kondensatorbeläge potentialgesteuerter Stelle des Austrittes von elektrischen Leitergebilden aus der Isoliermasse.
GB1129995A (en) * 1964-12-08 1968-10-09 Micanite & Insulators Co Ltd Improvements in and relating to electric insulating bushings
US3462545A (en) * 1967-01-13 1969-08-19 Westinghouse Electric Corp Condenser bushing
US3390312A (en) * 1967-03-03 1968-06-25 Sprague Electric Co Metallized film capactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE641252C (de) * 1929-04-12 1937-01-25 Aeg Durchfuehrungsisolator oder aehnliche kondensatorartig wirkende Einrichtung aus geschichtetem Isolierstoff mit mehrschichtigen metallischen Einlagen
DE738569C (de) * 1941-02-16 1943-08-21 Aeg In Isolieroel oder eine Isoliermasse eingebettete Kondensatordurchfuehrung, bei welcher die einzelnen Kondensatorstufen durch auf Weichpapier aufgewickelte Metallbelaegemit umgeschlagenen Raendern gebildet werden, die durch umgerissene Papierstreifen querisoliert sind
DE1490664A1 (de) * 1964-09-21 1969-06-04 Siemens Ag Endenabschluss fuer Hochspannungsleiter mit einer Isolierung aus einem thermoplastischen Kunststoff,insbesondere aus Polyaethylen
DE1803468A1 (de) * 1967-10-18 1969-08-14 Elek Sitetsforsyningens Forskn Anordnung zur kapazitiven Hochspannungsverteilung

Also Published As

Publication number Publication date
DE2946172A1 (de) 1981-05-21
US4370514A (en) 1983-01-25
EP0029164A1 (de) 1981-05-27
ATE4521T1 (de) 1983-09-15

Similar Documents

Publication Publication Date Title
DE69728972T2 (de) Transformator/reactor
US3538241A (en) Arrangement for capacitive control of the voltage distribution on electrical insulators
EP0029164B1 (de) Hochspannungsdurchführung
DE1665269A1 (de) Elektrische Einrichtung
EP0032690B1 (de) Folienisolierte Hochspannungsdurchführung mit Potentialsteuereinlagen
DE1438666A1 (de) Induktives elektrisches Geraet
DE202005019390U1 (de) Elektrische Wicklung
DE2624908C2 (de) Scheibenförmiger Stützisolator für eine dreiphasig gekapselte, druckgasisolierte Hochspannungsleitung
DE2728191A1 (de) Hochspannungsstromwandler
DE60024399T2 (de) Durchführungsisolator mit Halbkapazitätsgradienten und mit Isoliergasfüllung, wie SF6
DE2157388A1 (de) Isolierstuetzer fuer rohrgaskabel
DE2054317C3 (de) Impulstransformator
DE3312076A1 (de) Kondensator hoher energiedichte und verfahren zu seiner herstellung
EP0032687B1 (de) Hochspannungsdurchführung mit Lagen aus geprägten Isolierfolien
DE19811370A1 (de) Variation der Dielektrizitätskonstanten in Isolierungen von Hochspannungswicklungen elektrischer Maschinen
DE2554143A1 (de) Spannungswandler fuer hohe spannungen
EP0658271B1 (de) Stromwandler
DE4007335A1 (de) Elektrischer isolator
WO2019020311A1 (de) Steckbare hochspannungsdurchführung und elektrisches gerät mit der steckbaren hochspannungsdurchführung
DE3226057A1 (de) Hochspannungsdurchfuehrung mit einem gewickelten isolationskoerper
DE903235C (de) Kabelverschluss fuer elektrische Kabel
DE1064623B (de) Mit Schilden versehene Lagenwicklung fuer Transformatoren
DE2513218A1 (de) Anordnung zum verhindern von glimmentladungen an den elektroden elektrischer hochspannungseinrichtungen
DE898495C (de) Roentgeneinrichtung, bei der die Roentgenroehre und der Hochspannungserzeuger in einem gemeinsamen geerdeten Gehaeuse untergebracht sind
DE2051561C3 (de) Elektrisches Kabel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH FR GB IT SE

17P Request for examination filed

Effective date: 19810904

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19830824

REF Corresponds to:

Ref document number: 4521

Country of ref document: AT

Date of ref document: 19830915

Kind code of ref document: T

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840224

Year of fee payment: 4

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: MWB MESSWANDLER-BAU GMBH

Effective date: 19840509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841120

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19841231

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19851030

Year of fee payment: 6

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19850912

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80106779.4

Effective date: 19860805