EP0027787A1 - Anlage zur Gewinnung der fühlbaren Wärme von im Stranggiessverfahren gegossenen Brammen - Google Patents

Anlage zur Gewinnung der fühlbaren Wärme von im Stranggiessverfahren gegossenen Brammen Download PDF

Info

Publication number
EP0027787A1
EP0027787A1 EP80890104A EP80890104A EP0027787A1 EP 0027787 A1 EP0027787 A1 EP 0027787A1 EP 80890104 A EP80890104 A EP 80890104A EP 80890104 A EP80890104 A EP 80890104A EP 0027787 A1 EP0027787 A1 EP 0027787A1
Authority
EP
European Patent Office
Prior art keywords
cooling chamber
slabs
water
heat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80890104A
Other languages
English (en)
French (fr)
Other versions
EP0027787B1 (de
Inventor
Aktiengesellschaf Voest-Alpine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine AG
Original Assignee
Voestalpine AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3589783&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0027787(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Voestalpine AG filed Critical Voestalpine AG
Publication of EP0027787A1 publication Critical patent/EP0027787A1/de
Application granted granted Critical
Publication of EP0027787B1 publication Critical patent/EP0027787B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads

Definitions

  • the invention relates to a method for extracting the sensible heat from slabs cast in a continuous casting process, the slabs, after being cut to length, being passed through a cooling chamber within which heat is released from the slabs to a cooling medium, and to systems for carrying out the method.
  • the slabs emerging from the cooling chamber have a temperature of more than 400 ° C. If you want to reduce the outlet temperature of the slabs to below 400 ° C, it would be necessary to increase the residence time of the slabs within the cooling chamber many times over. Since the slabs are produced continuously, either several cooling chambers connected in parallel would have to be arranged next to one another or a cooling chamber of extreme length would have to be provided.
  • a low slab outlet temperature of below 400 ° C, in particular from 150 to 200 C, is not only important because of the greater heat yield, but also important in order to make the intermediate storage as small as possible - the slabs can be stacked closer together at low temperatures - and around to achieve shorter interim storage times.
  • the invention aims to avoid these disadvantages and difficulties and has as its object to provide a method and a plant for carrying out the method by which a greater heat yield of the heat of the slabs can be achieved than before, but with the residence time of the slabs in the cooling chamber remains within tolerable limits, so that it can be found with a relatively small and accordingly economical cooling chamber.
  • cooling medium in the cooling chamber is brought into direct contact with the slab surfaces and the heated cooling medium is used outside the cooling chamber as a heating medium, in particular for a circulating medium guided in a thermodynamic cycle.
  • Air is preferably passed through the cooling chamber as the cooling medium, so that despite the low slab exit temperature too short cooling chamber on the slabs is avoided.
  • water is sprayed onto the surface of the slabs as the cooling medium in the cooling chamber, the steam formed is extracted from the cooling chamber and the heat of the steam is used to heat water, as a result of which the cooling chamber is kept particularly short and the slab outlet temperature is kept particularly low can.
  • This variant is advantageous for certain steel grades that can withstand abrupt cooling.
  • the steam condensed after the heat is released into the water is expediently circulated.
  • a system for carrying out the method according to the invention with a cooling chamber provided with inlet and outlet locks and a transport device for the slabs within the cooling chamber is characterized in that an air inlet line connected to a blower opens in the area of the outlet lock of the cooling chamber and at the other end of the cooling chamber in An air outlet line is connected to the area of the entrance lock.
  • a heat exchanger for heating water is expediently provided in the air outlet line, which heat exchanger is connected in line with a turbine and a condenser via a closed steam cycle system, the turbine being able to serve as a drive for a generator.
  • a further heat exchanger for preheating the feed water is connected in the air outlet line following the heat exchanger.
  • the height of the cooling chamber is a multiple of the height of the slabs and the transport device receives slab stacks formed from a plurality of slabs stacked at a distance from one another.
  • a system for carrying out the method according to the invention with a cooling chamber and a transport device for the slabs within the cooling chamber is characterized in that at least one water supply line with spray nozzles is provided in the cooling chamber and that a steam suction line is provided on the ceiling of the cooling chamber, in which a heat exchanger for heating water is provided.
  • a return line for the steam condensed in the heat exchanger connects to the heat exchanger and opens into the water supply line, so that the cooling water sprayed onto the slabs can be circulated.
  • a water drain is expediently provided in the bottom of the cooling chamber and opens into the water supply line.
  • FIG. 1 shows a schematic diagram in which air is provided as the cooling medium.
  • Fig. 2 shows the plan of the cooling chamber shown schematically in Fig. 1.
  • 3 shows a schematic diagram analogous to FIG. 1, water being provided as the cooling medium.
  • the conveyed with a conveyor, for example a R 1 ollgang to the cooling chamber 2 slabs 3 are divided from the cast strand 4 in pieces of predetermined length. 5
  • the slabs 3 are fed transversely (in the direction of arrow 6) to the longitudinal direction of the cooling chamber 2.
  • the slabs 3 are stacked in front of the cooling chamber 2, the slabs being kept at a distance by spacers 7 inserted between them.
  • the stacking can be done by a crane or similar lifting equipment.
  • the cooling chamber 2 has an inlet 8 and an outlet lock 9 in order to seal the interior 10 of the cooling chamber against outside air during the introduction and removal of the slab stacks 11.
  • These locks 8, 9 are equipped with either lifting gates or swing gates.
  • the slab stacks 11 are moved within the cooling chamber by means of a conveyor device, not shown.
  • the stacks can be transported using various systems, e.g. by means of walking beams or by means of trolleys with external rollers or by means of a roller table.
  • the cooling chamber 2 is inclined downwards in the direction in which the slabs 3 pass, so that the slab stacks 11 can be transported more easily.
  • an air inlet line 12 opens into the cooling chamber, through which air is blown into the interior 10 of the cooling chamber 2 by means of a blower 13.
  • an air outlet line 14 is provided, in which heat exchangers 15, 16 are provided. These heat exchangers are used to generate steam for the water carried in the closed steam cycle system 17.
  • the steam emerging from the heat exchangers 15, 16 is fed to a turbine 18 which drives a generator 19.
  • the expanded steam is led from the turbine into a condenser 20.
  • the water emerging from the condenser is fed to a feed water tank 22 with degasser via a further heat exchanger 21, which is connected downstream of the first-mentioned heat exchangers 15, 16 in the air outlet line 14.
  • the water is fed from the feed water tank to the heat exchangers by means of a pump 23.
  • a Part of the steam is fed to the feed water tank via line 24 for preheating the feed water.
  • This steam cycle corresponds to that of a conventional small calorific power plant.
  • the slabs enter the cooling chamber 2 at a temperature of approximately 900 ° C. and have a temperature of only 250 ° C. when they leave the cooling chamber.
  • the amount of heat introduced into the cooling chamber 2 with the slabs is 30,000 kJ, whereas the heat escaping with the slabs is 9,000 kJ.
  • External power of around 630 kW is required for the blower.
  • 5,300 kJ are the heat loss at the locks and the air that flows into the open air after leaving the downstream heat exchanger.
  • the condenser 20 causes a heat loss of approximately 10,900 kJ.
  • the generator output is approximately 4,800 kW.
  • the air used as the heating medium can only be cooled down to a certain temperature, which depends on the design of the heat exchanger.
  • the heat exchanger 21 connected downstream in the air outlet line 14 is provided.
  • the water inlet temperature in this downstream heat exchanger 21 is substantially lower (approx. 40 ° C.), so that the air can be cooled even further.
  • the air, which is still higher than the ambient air and exits from this downstream heat exchanger 21, can either be released into the atmosphere (FIG. 1, open circuit) or fed back to the suction side of the blower 13, as a result of which a closed circuit is created.
  • the amount of heat removed by air from the cooling chamber could also be used differently, for example this air could be used for hot water use for drying purposes or as preheated combustion air for a boiler system.
  • the slabs 3 are also conveyed through a cooling chamber 25 transversely to their longitudinal direction in the direction of arrow 6.
  • the slabs 3 lie next to one another in one layer. They are sprayed with water which emerges from water supply lines 27 equipped with spray nozzles 26. These spray nozzles are arranged both on the tops of the slabs 3 and in the vicinity of the undersides of the slabs.
  • the steam generated in the cooling chamber is sucked off on the ceiling 28 through a steam suction line 29 by means of a fan 30. Ambient air entering at the two ends 31, 32 of the cooling chamber 25 is also sucked in through this steam suction line.
  • the cooling chamber is under a slight negative pressure by the fan 30, it is not necessary to provide locks at the ends 31, 32.
  • the steam-air mixture is fed via the suction line 29 to a heat exchanger 33 in which the steam condenses.
  • the extracted air also exits through a line 34.
  • the condensed steam is supplied to the water supply lines 27 via a return line 35, a pump 36 and a filter 37.
  • the water escaping through line 34 with the air must be replaced.
  • a water outlet 39 is provided in the bottom 38 of the cooling chamber, through which the sprayed water, which has not been converted into steam, is likewise fed to the return line 35.
  • the heat exchanger 33 is used to heat water which is circulated by means of a pump 40 via a hot water tank 41.
  • Hot water with a temperature of 55 to 85 ° C. can be taken from the hot water tank, for example for underfloor heating.
  • the inlet temperature of the water returned to the hot water tank 41 from the underfloor heating is about 30 ° C.
  • An external power of 100 kW is required for the blower 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Continuous Casting (AREA)

Abstract

Bei einem solchen Verfahren werden die Brammen (3) nach Ablängung durch eine Kühlkammer (2) geführt, innerhalb der von den Brammen (3) Wärme an ein Kühlmedium abgegeben wird. Um dabei eine hohe Wärmeausbeute und eine niedrige Austrittstemperatur der Brammen (3) aus der Kühlkammer (2) zu erzielen, wird das Kühlmedium in der Kühlkammer (2) in direkten Kontakt mit den Brammenoberflächen gebracht und das erwärmte Kühlmedium außerhalb der Kühlkammer als Heizmedium, insbesondere für ein in einem thermodynamischen Kreisprozeß geführtes Kreislaufmedium verwendet.

Description

  • Die Erfindung betrifft ein Verfahren zur Gewinnung der fühlbaren Wärme von im Stranggießverfahren gegossenen Brammen, wobei die Brammen nach ihrer Ablängung durch eine Kühlkammer geführt werden, innerhalb der von den Brammen Wärme an ein Kühlmedium abgegeben wird, sowie Anlagen zur Durchführung des Verfahrens.
  • Da das Walzen stranggegossener Brammen zu Blechen diskontinuierlich erfolgt, ist man gezwungen, die stranggegos- senen Brammen in einem Zwischenlager zu lagern. In diesem Zwischenlager kühlen die Brammen bis auf die Umgebungstemperatur ab.
  • Um die fühlbare Wärme der Brammen zu nutzen, ist es bekannt, die Brammen vor ihrer Zwischenlagerung durch eine Kühlkammer zu leiten, innerhalb welcher Kammer Kesselrohre angeordnet sind, durch die ein Kühlmedium, wie Wasser, strömt. Dieses Kühlmedium wird in den Kesselrohren durch Wärmestrahlung von den Brammen erhitzt. Der dabei entstehende Dampf dient der Eigenversorgung des Stahlwerkes. Bei diesem bekannten Verfahren wird die Wärme von den Brammen allein durch Strahlung über die Kesselrohre dem Kühlmedium zugeführt.
  • Da der Wärmeübergang durch Strahlung nur in den oberen Temperaturbereichen der Brammen, also zwischen 900 und 600°C, effektiv ist, weisen bei dem bekannten Verfahren die aus der Kühlkammer austretenden Brammen eine Temperatur von mehr als 400°C auf. Will man die Austrittstemperatur der Brammen auf unter 400°C senken, so wäre es notwendig, die Verweilzeit der Brammen innerhalb der Kühlkammer um ein Vielfaches zu erhöhen. Da die Brammen kontinuierlich anfallen, müßten entweder mehrere Kühlkammern parallel geschaltet nebeneinander angeordnet oder müßte eine Kühlkammer mit extremer Länge vorgesehen werden. Eine niedrige Brammenaustrittstemperatur von unter 400°C, insbesondere von 150 bis 200 C, ist nicht nur wegen der größeren Wärmeausbeute von Bedeutung, sondern auch wichtig, um das Zwischenlager möglichst klein gestalten zu können - die Brammen sind bei niedriger Temperatur enger stapelbar - und um kürzere Zwischenlagerzeiten zu erreichen.
  • Die Erfindung bezweckt die Vermeidung dieser Nachteile und Schwierigkeiten und stellt sich die Aufgabe, ein Verfahren sowie eine Anlage zur Durchführung des Verfahrens anzugeben, durch welche eine größere Wärmeausbeute der Wärme der Brammen als bisher erzielt werden kann, wobei jedoch die Verweilzeit der Brammen in der Kühlkammer in erträglichen Grenzen bleibt, sodaß mit einer relativ kleinen und dementsprechend wirtschaftlichen Kühlkammer das Auslangen gefunden werden kann.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Kühlmedium in der Kühlkammer in direkten Kontakt mit den Brammenoberflächen gebracht wird und das erwärmte Kühlmedium außerhalb der Kühlkammer als Heizmedium, insbesondere für ein in einem thermodynamischen Kreisprozeß geführtes Kreislaufmedium verwendet wird.
  • Vorzugsweise wird als Kühlmedium Luft durch die Kühlkammer geleitet, wodurch trotz niedriger Brammenaustrittstemperatur und kurzer Kühlkammer eine zu schroffe Kühlung an den Brammen vermieden wird.
  • Nach einer anderen bevorzugten Variante wird als Kühlmedium in der Kühlkammer Wasser auf die Oberfläche der Brammen gesprüht, der dabei entstehende Dampf aus der Kühlkammer abgesaugt und die Wärme des Dampfes zum Aufheizen von Wasser verwendet, wodurch die Kühlkammer besonders kurz und die Brammenaustrittstemperatur besonders niedrig gehalten werden kann. Diese Variante ist für bestimmte Stahlqualitäten, die eine schroffe Abkühlung vertragen, von Vorteil.
  • Zweckmäßig wird dabei der nach Abgabe der Wärme an das Wasser kondensierte Dampf im Kreislauf geführt.
  • Eine Anlage zur Durchführung des erfindungsgemäßen Verfahrens mit einer mit Ein- und Ausgangsschleusen versehenen Kühlkammer und einer Transporteinrichtung für die Brammen innerhalb der Kühlkammer ist dadurch gekennzeichnet, daß im Bereich der Ausgangsschleuse der Kühlkammer eine an ein Gebläse angeschlossene Lufteintrittsleitung mündet und am anderen Ende der Kühlkammer im Bereich der Eingangsschleuse eine Luftaustrittsleitung angeschlossen ist.
  • Zweckmäßig ist in der Luftaustrittsleitung ein Wärmetauscher zur Erwärmung von Wasser vorgesehen, welcher Wärmetauscher leitungsmäßig mit einer Turbine und einem Kondensator über ein geschlossenes Dampfkreislaufsystem verbunden ist, wobei die Turbine als Antrieb für einen Generator dienen kann.
  • Zur besseren Wärmeausbeute der aus der Kühlkammer austretenden Luft ist in der Luftaustrittsleitung im Anschluß an den Wärmetauscher ein weiterer Wärmetauscher zur Vorwärmung des Speisewassers nachgeschaltet.
  • Um die Kühlkammer besonders kurz, also wenig Grundfläche einnehmend gestalten zu können, beträgt. die Höhe der Kühlkammer ein Vielfaches der Höhe der Brammen und nimmt die Transporteinrichtung Brammenstapel gebildet aus einer Mehrzahl von mit Abstand übereinander geschichteten Brammen auf.
  • Gemäß einer bevorzugten Ausführungsform ist eine Anlage zur Durchführung des erfindungsgemäßen Verfahrens mit einer Kühlkammer und einer Transporteinrichtung für die Brammen innerhalb der Kühlkammer dadurch gekennzeichnet, daß in der Kühlkammer mindestens eine Wasserzuführungsleitung mit Sprühdüsen vorgesehen ist und daß an der Decke der Kühlkammer eine Dampfabsaugungsleitung vorgesehen ist, in der ein Wärmetauscher zur Erwärmung von Wasser vorgesehen ist.
  • Vorteilhaft schließt an den Wämetauscher eine Rücklaufleitung für den in dem Wärmetauscher kondensierten Dampf an, die in die Wasserzuführungsleitung mündet, sodaß das auf die Brammen aufgesprühte Kühlwasser im Kreislauf geführt werden kann.
  • Zum Rückleiten des beim Aufsprühen nicht verdampfenden Wassers ist zweckmäßig im Boden der Kühlkammer ein Wasserablauf vorgesehen, der in die Wasserzuführungsleitung mündet.
  • Die Erfindung ist nachfolgend anhand der Zeichnung näher erläutert, wobei Fig. 1 einen Schemaplan zeigt, bei dem Luft als KüHlmedium vorgesehen ist. Fig. 2 zeigt den Grundriß der in Fig. 1 schematisch dargestellten Kühlkammer. In Fig. 3 ist in zu Fig. 1 analoger Darstellung ein Schemaplan gezeigt, wobei als Kühlmedium Wasser vorgesehen ist.
  • Die mit einer Fördereinrichtung, beispielsweise einem Rollgang 1 zur Kühlkammer 2 geförderten Brammen 3 sind vom Gußstrang 4 in Stücke vorgegebener Länge 5 unterteilt.
  • Die Brammen 3 werden quer (in Richtung des Pfeiles 6) zu ihrer Längsrichtung der Kühlkammer 2 zugeführt. Vor der Kühlkammer 2 werden die Brammen 3 gestapelt, wobei die Brammen durch zwischen sie eingelegte Distanzstücke 7 im Abstand gehalten werden. Die Stapelung kann durch einen Zangenkran oder ähnliche Hubeinrichtungen erfolgen.
  • Die Kühlkammer 2 weist eine Ein- 8 und Ausgangsschleuse 9 auf, um das Innere 10 der Kühlkammer gegen Außenluft während des Ein- und Ausbringens der Brammenstapel 11 zu dichten. Diese Schleusen 8, 9 sind entweder mit Hebetoren oder Schwingtoren ausgestattet. Die Brammenstapel 11 werden innerhalb der Kühlkammer mittels einer nicht näher dargestellten Fördereinrichtung bewegt. Der Transport der Stapel kann mittels verschiedener Systeme erfolgen, z.B. mittels Hubbalken oder mittels Rollwagen mit außenliegenden Rollen oder mittels eines Rollganges.
  • Die Kühlkammer 2 ist, wie in Fig. 1 schematisch gezeigt, in Durchlaufrichtung der Brammen 3 abwärts geneigt, damit die Brammenstapel 11 leichter transportierbar sind. Im Bereich der Ausgangsschleuse 9 mündet eine Lufteintrittsleitung 12 in die Kühlkammer, durch die mittels eines Gebläses 13 Luft in das Innere 10 der Kühlkammer 2 geblasen wird. Im Bereich der Eingangsschleuse 8 ist eine Luftaustrittsleitung 14 vorgesehen, in der Wärmetauscher 15, 16 vorgesehen sind. Diese Wärmetauscher dienen zur Dampferzeugung des im geschlossenen Dampfkreislaufsystem 17 geführten Wassers. Der von den Wärmetauschern 15, 16 austretende Dampf wird einer Turbine 18 zugeleitet, die einen Generator 19 antreibt. Von der Turbine wird der entspannte Dampf in einen Kondensator 20 geführt. Das aus dem Kondensator austretende Wasser wird über einen weiteren Wärmetauscher 21, der den erstgenannten Wärmetauschern 15, 16 in der Luftaustrittsleitung 14 nachgeschaltet ist, einem Speisewasserbehälter 22 mit Entgaser zugeführt. Mittels einer Pumpe 23 wird das Wasser vom Speisewasserbehälter den Wärmetauschern zugeführt. Ein Teil des Dampfes wird über die Leitung 24 zur Vorwärmung des Speisewassers dem Speisewasserbehälter zugeführt. Dieser Dampfkreislauf entspricht dem eines üblichen kleinen kalorischen Kraftwerkes.
  • Bei dem in Fig. 1 dargestellten Ausführungsbeispiel treten die Brammen mit einer Temperatur von etwa 900°C in die Kühlkammer 2 ein und weisen beim Verlassen der Kühlkammer eine Temperatur von lediglich 250°C auf. Die mit den Brammen in die Kühlkammer 2 eingebrachte Wärmemenge beträgt 30.000 kJ, wogegen die mit den Brammen austretende Wärme 9.000 kJ beträgt. Für das Gebläse wird eine Fremdleistung von etwa 630 kW benötigt. 5.300 kJ sind etwa der Wärmeverlust bei den Schleusen und der nach Verlassen des nachgeschalteten Wärmetauschers ins Freie mündenden Luft. Der Kondensator 20 bedingt einen Wärmeverlust von etwa 10.900 kJ. Die Generatorleistung beträgt etwa 4.800 kW.
  • Bedingt durch die Wassertemperatur von 100 bis 120°C am Eintritt in den Wärmetauscher 15 kann die als Heizmedium verwendete Luft nur bis zu einer bestimmten Temperatur, die von der Konstruktion des Wärmetauschers abhängt, abgekühlt werden. Um den Wärmeinhalt der Luft besser nutzen zu können, ist der in der Luftaustrittsleitung .14 nachgeschaltete Wärmetauscher 21 vorgesehen. Die Wassereintrittstemperatur ist bei diesem nachgeschalteten Wärmetauscher 21 wesentlich niedriger (ca. 40°C), sodaß die Luft noch weiter abgekühlt werden kann. Die noch eine höhere Temperatur als die Umgebungsluft aufweisende, aus diesem nachgeschalteten Wärmetauscher 21 austretende Luft kann entweder in die Atmosphäre abgegeben werden (Fig. 1, offener Kreislauf), oder wieder der Saugseite des Gebläses 13 zugeführt werden, wodurch ein geschlossener Kreislauf entsteht.
  • Anstelle zur Dampferzeugung könnte die mittels Luft aus der Kühlkammer abgeführte Wärmemenge auch andersartig genutzt werden, z.B. könnte man diese Luft für eine Warmwasserbereitung, für Trocknungszwecke oder auch als vorgewärmte Verbrennungsluft für eine Kesselanlage verwenden.
  • Bei der in Fig. 3 dargestellten Ausführungsform werden die Brammen 3 ebenfalls quer zu ihrer Längsrichtung in Richtung des Pfeiles 6 durch eine Kühlkammer 25 gefördert. Die Brammen 3 liegen jedoch einlagig nebeneinander. Sie werden mit Wasser besprüht, welches aus mit Sprühdüsen 26 ausgestatteten Wasserzuführungsleitungen 27 austritt. Diese Sprühdüsen sind sowohl an den Oberseiten der Brammen 3 als auch in der Nähe der Unterseiten der Brammen angeordnet. Der in der Kühlkammer entstehende Dampf wird an der Decke 28 durch eine Dampfabsaugungsleitung 29 mittels eines Gebläses 30 abgesaugt. Durch diese Dampfabsaugungsleitung wird auch an den beiden Enden 31, 32 der Kühlkammer 25 eintretende Umgebungsluft mitgesaugt. Da die Kühlkammer durch das Gebläse 30 unter einem leichten Unterdruck steht, ist es nicht notwendig, Schleusen an den Enden 31, 32 vorzusehen. Das Dampf-Luft-Gemisch wird über die Absaugungsleitung 29 einem Wärmetauscher 33 zugeführt, in dem der Dampf kondensiert. Die mitabgesaugte Luft tritt durch eine Leitung 34 ins Freie. Der kondensierte Dampf wird über eine Rücklaufleitung 35 über eine Pumpe 36 und ein Filter 37 den Wasserzuführungsleitungen 27 zugeführt. Das durch die Leitung 34 mit der Luft austretende Wasser muß ersetzt werden. Im Boden 38 der Kühlkammer ist ein Wasserablauf 39 vorgesehen, durch den das versprühte, nicht in Dampf übergeführte Wasser ebenfalls zur Rücklaufleitung 35 zugeführt wird.
  • Der Wärmetauscher 33 dient zur Erwärmung von Wasser, welches mittels einer Pumpe 40 über einen Warmwasserspeicher 41 im Kreislauf geführt ist. Aus dem Warmwasserspeicher kann Warmwasser mit einer Temperatur von 55 bis 850C entnommen werden, beispielsweise für eine Fußbodenheizung. Die Eintrittstemperatur des in den Warmwasserspeicher 41 von der Fußbodenheizung rückgeführten Wassers beträgt etwa 30°C. Bei einer Annahme einer Eintrittstemperatur der Brammen 3 von 900°C mit einer Wärmemenge von 30.000 kJ und einer Austrittstemperatur der Brammen 3 von 150°C mit einer Wärmemenge von 3.500 kJ und einem Wärmeverlust von etwa 1000 kJ ergibt sich eine nutzbare Wärmemenge von 25.500 kJ. Für das Gebläse 30 wird eine Fremdleistung von 100 kW benötigt.

Claims (11)

1. Verfahren zur Gewinnung der fühlbaren Wärme von im Stranggießverfahren gegossenen Brammen, wobei die Brammen nach ihrer Ablängung durch eine Kühlkammer geführt werden, innerhalb der von den Brammen Wärme an ein Kühlmedium abgegeben wird, dadurch gekennzeichnet, daß das Kühlmedium in der Kühlkammer in direkten Kontakt mit den Brammenoberflächen gebracht wird und das erwärmte Kühlmedium außerhalb der Kühlkammer als Heizmedium, insbesondere für ein in einem thermodynamischen Kreisprozeß geführtes Kreislaufmedium verwendet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Kühlmedium Luft durch die Kühlkammer geleitet wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daßas Kühlmedium in der Kühlkammer Wasser auf die Oberfläche der Brammen gesprüht, der dabei entstehende Dampf aus der Kühlkammer abgesaugt und die Wärme des Dampfes zum Aufheizen von Wasser verwendet wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der nach Abgabe der Wärme an das Wasser kondensierte Dampf im Kreislauf geführt wird.
5. Anlage zur Durchführung des Verfahrens nach den Ansprüchen 1 oder 2, mit einer mit Ein- und Ausgangsschleusen versehenen Kühlkammer und einer Transporteinrichtung für die Brammen innerhalb der Kühlkammer, dadurch gekennzeichnet, daß im Bereich der Ausgangsscleuse (9) der Kühlkammer (2) eine an ein Gebläse (13) angeschlossene Lufteintrittsleitung (12) mündet und am anderen Ende der Kühlkammer im Bereich der Eingangsschleuse (8) eine Luftaustrittsleitung (14) angeschlossen ist (Fig. 1, 2).
6. Anlage nach Anspruch 5, dadurch gekennzeichnet, daß in der Luftaustrittsleitung (14) ein Wärmetauscher (15, 16) zur Erwärmung von Wasser vorgesehen ist, welcher Wärmetauscher (15, 16) leitungsmäßig mit einer Turbine (18) und einem Kondensator (20) über ein geschlossenes Dampfkreislaufsystem (17) verbunden ist (Fig. 1, 2).
7. Anlage nach Anspruch 6, dadurch gekennzeichnet, daß in der Luftaustrittsleitung (14) im Anschluß an den Wärmetauscher (15, 16) ein weiterer Wärmetauscher (21) zur Vorwärmung des Wassers nachgeschaltet ist (Fig. 1,2).
8. Anlage nach den Ansprüchen 5 bis 7, dadurch gekennzeichnet, daß die Höhe der Kühlkammer (2) ein Vielfaches der Höhe der Brammen. (3) beträgt und die Transporteinrichtung Brammenstapel (11) gebildet aus einer Mehrzahl von mit Abstand übereinander geschichteten Brammen (3) aufnimmt (Fig. 1, 2).
9. Anlage zur Durchführung des Verfahrens nach Anspruch 1 oder 3, mit einer Kühlkammer und einer Transporteinrichtung für die Brammen innerhalb der Kühlkammer, dadurch gekennzeichnet, daß in der Kühlkammer (25) mindestens eine Wasserzuführungsleitung (27) mit Sprühdüsen (26) vorgesehen ist und daß an der Decke (28) der Kühlkammer (25) eine Dampfabsaugungsleitung (29) vorgesehen ist, in der ein Wärmetauscher (33) zur Erwärmung von Wasser vorgesehen ist (Fig. 3).
10. Anlage nach Anspruch 9, dadurch gekennzeichnet, daß an den Wärmetauscher (33) eine Rücklaufleitung (35) für den in dem Wärmetauscher kondensierten Dampf anschließt, die in die Wasserzuführungsleitung (27) mündet (Fig. 3).
11. Anlage nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß im Boden (38) der Kühlkammer (25) ein Wasserablauf (39) vorgesehen ist, der in die Wasserzuführungsleitung (35) mündet (Fig. 3).
EP80890104A 1979-10-18 1980-09-12 Anlage zur Gewinnung der fühlbaren Wärme von im Stranggiessverfahren gegossenen Brammen Expired EP0027787B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0679079A AT363209B (de) 1979-10-18 1979-10-18 Verfahren zur gewinnung der fuehlbaren waerme von im stranggiessverfahren gegossenen brammen sowie anlage zur durchfuehrung dieses verfahrens
AT6790/79 1979-10-18

Publications (2)

Publication Number Publication Date
EP0027787A1 true EP0027787A1 (de) 1981-04-29
EP0027787B1 EP0027787B1 (de) 1984-01-11

Family

ID=3589783

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80890104A Expired EP0027787B1 (de) 1979-10-18 1980-09-12 Anlage zur Gewinnung der fühlbaren Wärme von im Stranggiessverfahren gegossenen Brammen

Country Status (8)

Country Link
US (1) US4351633A (de)
EP (1) EP0027787B1 (de)
JP (1) JPS56154214A (de)
AT (1) AT363209B (de)
BR (1) BR8006693A (de)
CA (1) CA1157223A (de)
DE (1) DE3066096D1 (de)
ES (2) ES496055A0 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3203016A1 (de) * 1982-01-29 1983-08-11 Oschatz Gmbh Anlage zur gewinnung der fuehlbaren waerme von heissen werkstuecken
DE4328301A1 (de) * 1993-08-23 1995-03-02 Fhw Brenntechnik Gmbh Verfahren zur Gewinnung von Energie aus einem keramischen Brennofen für den Brand von Keramik, insbesondere Tunnelofen für Ziegel sowie Anlage zur Durchführung dieses Verfahrens
EP0960670A1 (de) * 1998-05-28 1999-12-01 Kawasaki Steel Corporation Verfahren zum Kühlen von Brammen mit Wasser und Wasserkühlbecken
WO2010099929A1 (de) * 2009-03-02 2010-09-10 Sms Siemag Ag Verfahren und anlage zur herstellung und/oder zur verarbeitung einer bramme bzw. eines bandes aus metalischem werkstoff
WO2011138171A3 (de) * 2010-05-07 2011-12-29 Sms Siemag Ag VERFAHREN UND VORRICHTUNG ZUR RÜCKGEWINNUNG VON ENERGIE HINTER EINER STRANGGIEßANLAGE
WO2011051220A3 (de) * 2009-10-28 2012-01-12 Sms Siemag Ag Verfahren zur energierückgewinnung in hüttentechnischen anlagen und hüttentechnische anlage auf basis von thermoelementen
CN102341198A (zh) * 2009-11-21 2012-02-01 Sms西马格股份公司 用于铸造和轧制金属的设备和方法
WO2013113714A1 (fr) * 2012-01-31 2013-08-08 Centre de Recherches Métallurgiques asbl - Centrum voor Research in de Metallurgie vzw Installation et procédé de récupération d'énergie à l'aide de co2 supercritique
EP2495068A3 (de) * 2011-03-01 2014-06-25 Deggendorfer Werkstätten e.V. Vorrichtung und Verfahren zur Kühlung eines erhitzten Materialstranges
WO2016178641A1 (de) * 2015-05-06 2016-11-10 Topal Ömer Ali Abwärmetauscher für gefertigte warme metallteile
EP2432601B2 (de) 2009-05-18 2017-10-25 Primetals Technologies Germany GmbH Verfahren und vorrichtung zur rückgewinnung von energie aus einem warmbandbund
CN108788058A (zh) * 2018-06-21 2018-11-13 泽州县金秋铸造有限责任公司 一种余热收集装置
CN111272000A (zh) * 2020-01-21 2020-06-12 董荣华 板坯汽化冷却装置以及板坯显热回收发电系统
CN112170799A (zh) * 2020-09-30 2021-01-05 首钢集团有限公司 一种板坯连铸机扇形段冷却装置及控制方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT365498B (de) * 1980-04-15 1982-01-25 Voest Alpine Ag Verfahren zur gewinnung fuehlbarer waerme von einem im stranggiessverfahren gegossenen gussstrang und einrichtung zur durchfuehrung des verfahrens
JPS5741867A (en) * 1980-08-25 1982-03-09 Sumitomo Heavy Ind Ltd Continuous casting machine
JPS58215255A (ja) * 1982-06-09 1983-12-14 Sumitomo Heavy Ind Ltd 連続鋳造機の顕熱回収装置
DE3340498C2 (de) * 1983-11-09 1986-03-13 Hans Lingl Anlagenbau Und Verfahrenstechnik Gmbh & Co Kg, 7910 Neu-Ulm Einrichtung zum Rückführen von Leerpaletten in einem Schnelltrockner für keramische Formlinge
DE19619836B4 (de) * 1996-05-17 2005-05-12 Alstom Einrichtung zur Speisewasser-Vorsteuerung eines Kühllufttemperaturreglers für einen Kühlluftkühler
US5809943A (en) * 1997-05-14 1998-09-22 Asea Brown Boveri Ag Device for precontrolling the feedwater of a cooling-air temperature controller for a cooling-air cooler
DE102009031557A1 (de) * 2009-03-02 2010-09-09 Sms Siemag Ag Energierückgewinnung in Warmbandstraßen durch Umwandlung der Kühlwärme der Stranggießanlage sowie der Restwärme von Brammen und Coils in elektrische Energie oder sonstige Nutzung der aufgefangenen Prozesswärme
DE102010047693A1 (de) 2010-10-06 2012-04-12 Sms Siemag Ag Vorrichtung zur Energierückgewinnung in hüttentechnischen Anlagen
DE102012210182A1 (de) * 2012-06-18 2013-12-19 Siemens Aktiengesellschaft Verfahren zur Wärmerückgewinnung in einer Metallverarbeitungsanlage, sowie Metallverarbeitungsanlage
JP6118635B2 (ja) * 2013-05-17 2017-04-19 富士電子工業株式会社 高周波焼入装置
JP6032235B2 (ja) * 2014-03-31 2016-11-24 Jfeスチール株式会社 熱電発電設備を備えた連続鋳造設備およびそれを用いた熱電発電方法
WO2020012221A1 (en) 2018-07-11 2020-01-16 Arcelormittal Method of heat transfer and associated device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2311603A1 (fr) * 1975-05-22 1976-12-17 Kawasaki Heavy Ind Ltd Appareil pour refroidir des blooms, des brames d'acier et analogues

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1778747A (en) * 1925-02-21 1930-10-21 Oscar L Barnebey Tunnel kiln
US3285706A (en) * 1960-09-26 1966-11-15 Alliance Color And Chemical Co Continuous fusion apparatus
JPS4833849A (de) * 1971-09-02 1973-05-14
SU553939A3 (ru) * 1971-12-06 1977-04-05 Кавасаки Юкогио Кабусики Кайся (Фирма) Устройство дл охлаждени изделий
JPS5317965B2 (de) * 1972-11-30 1978-06-12
SU432057A1 (ru) * 1972-12-22 1974-06-15 Конвейерная установка для транспортирования горячих грузов
DE2809567A1 (de) * 1978-03-06 1979-09-20 Babcock Ag Verfahren und vorrichtung zum thermischen regenrieren von beladenem aktivkoks- oder aktivkohlegranulat
US4211187A (en) * 1978-04-10 1980-07-08 Farris William C Energy conservation system for hot water heaters and storage tanks

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2311603A1 (fr) * 1975-05-22 1976-12-17 Kawasaki Heavy Ind Ltd Appareil pour refroidir des blooms, des brames d'acier et analogues

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENTS ABSTRACTS OF JAPAN, Band 3, Nr. 59, 19 Mai 1979, Seite 119 C46 & JP-A-54 035 102 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3203016A1 (de) * 1982-01-29 1983-08-11 Oschatz Gmbh Anlage zur gewinnung der fuehlbaren waerme von heissen werkstuecken
DE4328301A1 (de) * 1993-08-23 1995-03-02 Fhw Brenntechnik Gmbh Verfahren zur Gewinnung von Energie aus einem keramischen Brennofen für den Brand von Keramik, insbesondere Tunnelofen für Ziegel sowie Anlage zur Durchführung dieses Verfahrens
EP0960670A1 (de) * 1998-05-28 1999-12-01 Kawasaki Steel Corporation Verfahren zum Kühlen von Brammen mit Wasser und Wasserkühlbecken
US6250370B1 (en) 1998-05-28 2001-06-26 Kawasaki Steel Corporation Method for water-cooling hot metal slabs
TWI404582B (zh) * 2009-03-02 2013-08-11 Sms Siemag Ag 金屬材料構成的金屬板或金屬帶的製造及/或加工的方法與設備
WO2010099929A1 (de) * 2009-03-02 2010-09-10 Sms Siemag Ag Verfahren und anlage zur herstellung und/oder zur verarbeitung einer bramme bzw. eines bandes aus metalischem werkstoff
EP2432601B2 (de) 2009-05-18 2017-10-25 Primetals Technologies Germany GmbH Verfahren und vorrichtung zur rückgewinnung von energie aus einem warmbandbund
EP2494272B1 (de) 2009-10-28 2015-07-01 SMS Siemag AG Verfahren zur energierückgewinnung in hüttentechnischen anlagen und hüttentechnische anlage auf basis von thermoelementen
WO2011051220A3 (de) * 2009-10-28 2012-01-12 Sms Siemag Ag Verfahren zur energierückgewinnung in hüttentechnischen anlagen und hüttentechnische anlage auf basis von thermoelementen
CN102341198A (zh) * 2009-11-21 2012-02-01 Sms西马格股份公司 用于铸造和轧制金属的设备和方法
WO2011138171A3 (de) * 2010-05-07 2011-12-29 Sms Siemag Ag VERFAHREN UND VORRICHTUNG ZUR RÜCKGEWINNUNG VON ENERGIE HINTER EINER STRANGGIEßANLAGE
EP2495068A3 (de) * 2011-03-01 2014-06-25 Deggendorfer Werkstätten e.V. Vorrichtung und Verfahren zur Kühlung eines erhitzten Materialstranges
WO2013113714A1 (fr) * 2012-01-31 2013-08-08 Centre de Recherches Métallurgiques asbl - Centrum voor Research in de Metallurgie vzw Installation et procédé de récupération d'énergie à l'aide de co2 supercritique
BE1020489A3 (fr) * 2012-01-31 2013-11-05 Centre Rech Metallurgique Installation et procede de recuperation d'energie a l'aide de co2 supercritique.
WO2016178641A1 (de) * 2015-05-06 2016-11-10 Topal Ömer Ali Abwärmetauscher für gefertigte warme metallteile
CN108788058A (zh) * 2018-06-21 2018-11-13 泽州县金秋铸造有限责任公司 一种余热收集装置
CN111272000A (zh) * 2020-01-21 2020-06-12 董荣华 板坯汽化冷却装置以及板坯显热回收发电系统
CN112170799A (zh) * 2020-09-30 2021-01-05 首钢集团有限公司 一种板坯连铸机扇形段冷却装置及控制方法

Also Published As

Publication number Publication date
EP0027787B1 (de) 1984-01-11
ES8206822A1 (es) 1982-08-16
ES8202940A1 (es) 1982-03-01
ES496055A0 (es) 1982-03-01
ES506477A0 (es) 1982-08-16
ATA679079A (de) 1980-12-15
JPS6318648B2 (de) 1988-04-19
CA1157223A (en) 1983-11-22
DE3066096D1 (en) 1984-02-16
US4351633A (en) 1982-09-28
JPS56154214A (en) 1981-11-28
AT363209B (de) 1981-07-27
BR8006693A (pt) 1981-04-22

Similar Documents

Publication Publication Date Title
EP0027787A1 (de) Anlage zur Gewinnung der fühlbaren Wärme von im Stranggiessverfahren gegossenen Brammen
DE1298505B (de) Verfahren zur Vorwaermung einer Fluessigkeit, die als Kondensat einer vielstufigen Entspannungsverdampfung erzeugt ist, und Vorrichtung zur Durchfuehrung dieses Verfahrens
DE1558020A1 (de) Durchlaufofen
EP0236666A2 (de) Arbeitsverfahren zum Aufheizen von in Stranggusseinrichtungen gegossenen oder in Umformeinrichtungen umgeformten Halbzeugen für deren Einbringen in Umform- und/oder Weiterverarbeitungseinrichtungen
DE2622722A1 (de) Vorrichtung zum abkuehlen von stahlbloecken, stahlplatten u.dgl.
CH645712A5 (de) Verfahren und vorrichtung zum kontinuierlichen waermebehandeln von vereinzelten, langgestreckten metallischen gegenstaenden.
DE2259639C3 (de) Mehrzonentunnel- Durchlaufofen
DE3019714A1 (de) Vorrichtung zur rueckgewinnung von waerme aus heissen stahlbrammen
DE2923160A1 (de) Anlage zum kuehlen von warmen gegenstaenden
DE2435830C3 (de) Verfahren und Vorrichtung zur Herstellung von Stahldraht
DE585318C (de) Verfahren zur Behandlung fester oder fluessiger Stoffe mit Gasen oder Daempfen
DE2412695C3 (de) Verfahren und Vorrichtung zum Kühlen von heißem Schüttgut
DE10038782C1 (de) Verfahren und Vorrichtung zum Abkühlen, insbesondere zum Abschrecken und Härten von metallischen Werkstücken
AT390322B (de) Vorrichtung zum durchwaermen von stahlteilen
EP0355361A2 (de) Verfahren zum Grafitieren von Rohlingen aus Kohlenstoff zu Graphitelektroden
DE3009481C2 (de) Anordnung für die Wärmebehandlung von Werkstücken
AT391880B (de) Verfahren und druckkuehlaggregat zum gefuehrten abkuehlen geformten, schweren bis leichten, durchlaufenden produktionsgut aus stahl und metall in druckwasser
EP0189759A1 (de) Verfahren und Vorrichtung zur Wärmebehandlung von Werkstücken
DE1508432A1 (de) Vorrichtung zur Schnellabschreckung von Metallblechen oder -streifen
DE3707562A1 (de) Walzenstrasse
DE2129704A1 (de) Verfahren zum Haerten von Tafelglas und Anlage zur Durchfuehrung des Verfahrens
DE1508364A1 (de) Verfahren und Vorrichtung zur Waermebehandlung von Stahlblech oder Bandstahl
DE2163858A1 (de) Verfahren und Vorrichtung zur Wärmebehandlung
DE593332C (de) Verfahren zum Beregnen von Feldern
DE2259357A1 (de) Vorrichtung zur vorerwaermung oder abkuehlung von durchlaufendem gut, insbesondere stahlbloecken, luppen und dgl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19810928

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 3066096

Country of ref document: DE

Date of ref document: 19840216

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19840930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19850401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19850921

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890818

Year of fee payment: 10

Ref country code: DE

Payment date: 19890818

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890821

Year of fee payment: 10

Ref country code: CH

Payment date: 19890821

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19890824

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890825

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890831

Year of fee payment: 10

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900930

Ref country code: CH

Effective date: 19900930

Ref country code: BE

Effective date: 19900930

BERE Be: lapsed

Owner name: VOEST-ALPINE A.G.

Effective date: 19900930

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910530

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80890104.5

Effective date: 19910527