EP0026260B1 - Vorrichtung zum Regeln der Spannung zwischen zwei Leitern eines Wechselstromversorgungsnetzes für rasch wechselnde Last - Google Patents

Vorrichtung zum Regeln der Spannung zwischen zwei Leitern eines Wechselstromversorgungsnetzes für rasch wechselnde Last Download PDF

Info

Publication number
EP0026260B1
EP0026260B1 EP80103430A EP80103430A EP0026260B1 EP 0026260 B1 EP0026260 B1 EP 0026260B1 EP 80103430 A EP80103430 A EP 80103430A EP 80103430 A EP80103430 A EP 80103430A EP 0026260 B1 EP0026260 B1 EP 0026260B1
Authority
EP
European Patent Office
Prior art keywords
voltage
integrator
value
rectifier
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80103430A
Other languages
English (en)
French (fr)
Other versions
EP0026260A1 (de
Inventor
Eberhard Dipl.-Ing. Schmid
Wolfgang Dipl.-Ing. Kaufhold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to CA000361047A priority Critical patent/CA1163323A/en
Priority to BR8006182A priority patent/BR8006182A/pt
Publication of EP0026260A1 publication Critical patent/EP0026260A1/de
Application granted granted Critical
Publication of EP0026260B1 publication Critical patent/EP0026260B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/40Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices
    • G05F1/44Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only

Definitions

  • the invention relates to a device for keeping the voltage constant between two conductors of an alternating current supply network for a rapidly changing load on a predeterminable half-vibration mean value (target mean value), with an alternating current controller containing two antiparallel controllable valves between the conductors and a valve control, which within a Half voltage oscillation as a function of the voltage detected by means of a measuring element arranged on at least one conductor (voltage converter) emits an ignition pulse for the valve lying in the forward direction.
  • target mean value target mean value
  • Such a device is known from US-A-3 435 248 and serves to keep the amplitude of the alternating voltage to be supplied to a consumer by an inverter via a filter.
  • the filter output voltage is rectified and as soon as the rectified voltage reaches the breakdown voltage of a Zener diode, an ignition pulse is emitted with which an inductor arranged between the conductors is switched via an AC power controller.
  • it is a comparison of the actual voltage amplitude with a predetermined target value.
  • the difference between the square of a setpoint and the square of the actual value is fed to an integral controller.
  • the regulator output voltage generally a DC voltage
  • the subordinate tax rate is necessary because the integral controller output voltage only indicates after a completed half-period due to the simultaneous integration of the actual and target values (which are recorded by their squares as RMS values) whether the RMS actual value averaged over this half-period is equal to the corresponding mean target value, or whether the modulation of the actuator has to be changed for the next half period.
  • Another device is known from “Siemens Research and Development Report”, Volume 6 (1977), pages 29 to 38 and is used on a supply network for electric furnaces which are used in steel production for melting scrap.
  • the arc occurring in such a furnace between the electrodes and the melting material breaks off at irregular intervals when the material melts.
  • the current intensity fluctuates irregularly between zero and short-circuit current.
  • the supply network may have a negligible ohmic internal resistance, but it may have a considerable impedance, the reactive current components of the load fluctuations in particular cause considerable voltage fluctuations that can disturb other consumers. Similar irregular or regular drops in the voltage level of a supply network also occur with other consumers, e.g. Pulse power supplies for synchrotrons or converter drives in rolling mills. Because e.g.
  • a battery of capacitors is connected in parallel with the consumer connected to a three-phase supply network, which is dimensioned such that it can deliver as much reactive current as the furnace can absorb at maximum.
  • the valves of a three-phase controller with a delta connection which is also connected to the supply network, are ignited.
  • the three-phase controller consists of a series connection of a choke between two phases and an AC controller formed by two antiparallel controllable valves. To ignite the three-phase control valves, these are controlled by a control system which contains measuring elements for both the current flowing through the furnace and the current flowing through the three-phase current control and consists of a large number of computing units for coordinate transformation, vector identification and vector rotation. This regulation is complex.
  • the invention is based on the object of specifying a simpler and very fast-acting control device which keeps the voltage level between the individual conductors of a single-phase, three-phase or multi-phase supply network constant, at least for a short time.
  • the voltage between two conductors e.g. one phase and the neutral conductor or between two phases of a multiphase network
  • This mean need not be the arithmetic mean of the voltage, rather it may be advantageous to determine the mean for a particular function, e.g. a power to specify the voltage, e.g. to influence the rms voltage value.
  • This mean value can be kept constant, or it can fluctuate in the long term within such low frequencies that these fluctuations no longer have a disturbing effect.
  • the object is achieved by a device of the type mentioned in the introduction, in which an integrator is connected downstream of the measuring element, the output signal of which is compared with a value corresponding to the predetermined target mean value, and the valve control is designed so that it generates the ignition pulse the time when the output signal reaches this value. If, for example, a constant arithmetic mean value is to be maintained for each voltage half-oscillation, an AC control valve is fired in each voltage half-wave as soon as the span voltage time area of this voltage half-wave reaches the predetermined target mean value.
  • the valve control preferably contains a limit detector with a pulse generator as a triggering pulse generator downstream of the integrator downstream of the measuring element for each of the anti-parallel valves.
  • the difference between the output variable of the integrator and a variable that corresponds to the target mean value for the voltage half-oscillation positive in the forward direction of the assigned valve is applied to each limit value detector; That is, the limit value detector, whose assigned valve can be conductive in the event of a positive half-oscillation, uses the difference between the integrator output variable and a positive setpoint as the target mean value of the voltage half-oscillation, and the sum of the integrator output variable and the setpoint (forming the difference with the negative one) for the other valve Setpoint).
  • the valve control can also be built from another integration and comparator circuit.
  • the output signal of an AC voltage integrator can be rectified and connected to a single limit indicator for comparison with the target mean value, the output signals of the limit indicator being used for alternating firing of the AC control valves.
  • a choke coil is advantageously connected in series with the AC power controller, which together with the line inductance forms a voltage divider. As a result, the current flowing through the AC controller is limited and the mains voltage is no longer short-circuited when the AC controller valves are ignited.
  • the integrator is advantageously preceded by a function generator, which generates an output variable ⁇
  • from the voltage measurement value U supplied a (a> 1) forms.
  • the mean voltage value can be regulated to a value related to the effective value.
  • the setpoint / actual value comparison takes place earlier in time, which enables corrective intervention by the AC power controller earlier.
  • the device according to the invention regulates short-term voltage changes, e.g. within a second, very quickly.
  • fluctuations in the range of several seconds are not caused by the load, are less disruptive and do not need to be compensated for. Therefore, the target mean value for the voltage can advantageously be tracked such that the device is always in the middle of its control range, seen over several periods. This is achieved by a series connection from a rectifier for the measured value. of the current flowing through the AC power controller, a smoothing element and a PI controller.
  • a setpoint value for the current flowing through the alternating current regulator, averaged over several periods is negatively applied to the input of the PI controller.
  • the output variable of the controller is used as the variable corresponding to the target mean value and is fed to the limit indicator.
  • valves are fired by an additional ignition signal each time their blocking time would exceed a predetermined maximum time.
  • This additional ignition signal can advantageously be formed by a network-synchronized tax rate, wherein the constant maximum blocking time can be predetermined by constant control of the tax rate.
  • the lowest possible zero point drift of the first integrator connected upstream of the limit value detector is required.
  • Usual measures to suppress this drift are complex, mean a mostly undesired phase shift for the integrator and can impair the transient behavior of the integrator.
  • each with its own limit indicator for controlling the anti-parallel valves there are often certain asymmetries in the two branches, which, like a drift of the integrator, can lead to an undesirable DC component in the network.
  • a can lead to difficulties if, particularly in the case of weak networks, multiple zero crossings of the network voltage occur.
  • a value corresponding to the target mean value is connected to the integrator output at the input of a limit value detector.
  • the limit value detector output signal is input to a pulse shaper, the pulses of which are fed via a pulse distributor to the valve which is currently in current flow.
  • the first integrator itself is after the delivery of an ignition pulse and before resettable at the next zero crossing of the voltage. In particular, the integrator can be reset by the additional ignition signal.
  • This embodiment is preferably further developed in that a switch is arranged between the potentiator and the connection of the target mean value, which is always open when the polarity of the voltage half-wave belonging to the last valve ignition matches the instantaneous polarity of the voltage. So if e.g. If the valve in the positive direction to influence the positive voltage half-wave has been ignited, the switch is opened until the voltage becomes negative. The integrator is now also set to zero. After the zero crossing, negative voltages are entered into the integrator by closing the switch; However, if multiple zero crossings occur due to the often unavoidable network fluctuations, all positive voltages are still hidden by opening the switch.
  • a choke coil is advantageously connected in series with the AC power controller.
  • the current through the AC power controller can be detected by means of a measuring element.
  • a second rectifier and a second integrator are then connected downstream of the measuring element.
  • This second integrator can be reset approximately at the same time as the first integrator.
  • a further switch, which can be opened and closed simultaneously with the first switch, is arranged between the rectifier and the integrator.
  • the output of this second integrator is connected to the input of the first integrator with a negative sign in addition to the output signal of the potentiator.
  • the control of the switches and the distribution of the ignition pulses and the additional ignition signals to the valves can be achieved with a simple logic circuit.
  • the second integrator can advantageously always be set to zero at the same time as the first integrator and can be kept at zero until the next zero crossing of the voltage.
  • FIGS. 1 to 3 show the principle of the invention using the example of a single-phase supply network
  • FIGS. 4 and 5 using the example of a three-phase supply network
  • FIGS. 6 and 7 show a further embodiment and its development
  • FIGS. 8 and 9 illustrate the pulse diagrams and the construction of a logic circuit for the exemplary embodiments according to FIGS. 6 and 7.
  • 1 and 2 denote the conductors of a single-phase AC network, the impedance of this supply network being indicated symbolically by a coil 3, while the conductor 2 is at ground potential.
  • the load 4 is connected to the conductor, the rapidly changing impedance of which causes repercussions in front of which further consumers 5, e.g. Incandescent lamps to be protected.
  • Parallel to the load 4 there is usually a capacitor bank 5 made up of many capacitors with an upstream choke 6.
  • the capacitor bank is dimensioned such that it can compensate for the reactive currents that occur at maximum load current. This capacitor bank makes it possible to maintain a favorable power factor for the system, but it is not absolutely necessary for the operation of the device.
  • an AC power controller 7 is arranged between the conductors 1 and 2, which consists of two anti-parallel thyristor valves 8 and 9.
  • the advantageous coil 10 arranged in series with the alternating current regulator 7 should not be considered for the time being.
  • a measuring element 11 is also provided.
  • Figure 1 corresponds to the known device mentioned at the outset for the case of a single-phase network.
  • the measuring element 11 detects the voltage U to be kept constant between the conductors and feeds it to the input of an integrator 13 via a function generator 12, which has likewise not been considered for the time being.
  • An integrator is used, the zero point of which does not drift and which automatically adjusts the DC voltage components present at the output (seen over several periods).
  • the output variable of the integrator 13 is fed to the comparison points 14 and 15, which have a positive variable M * applied to them, which corresponds to the nominal value of the voltage level, ie the nominal mean value of a half voltage oscillation.
  • the valve 8 of the AC power controller 7 is polarized in the forward direction.
  • the size M is therefore applied negatively to the comparison point 14 associated with this valve.
  • the difference signal is fed to a limit value detector 16, from the output signal of which an ignition pulse for the valve 8 is formed in the pulse shaper 17.
  • the positive quantity M * is added to the corresponding comparison point 15.
  • the comparison point 15 thus provides a target / actual value comparison between the voltage time area of the voltage U and the (negative) target value for the negative voltage half-oscillation.
  • the size obtained is again used to ignite the valve 9 via a limit indicator 18 with a pulse shaper 19 connected downstream.
  • a positive semi-oscillation is considered first.
  • the integrator 13 which is initially at a negative initial value at the beginning of this half-wave, integrates the measured values (actual voltage values) U until the value M * is reached.
  • the valve 8 is ignited via the limit indicator.
  • the voltage is short-circuited as soon as the voltage-time area has reached a value determined by M * within a half oscillation.
  • the valve 8 goes out and the negative half oscillation is indicated by de control of the valve 9 regulated to the negative mean.
  • M * is specified as the target value for the voltage time area fU dt of a half oscillation.
  • M * can be specified as a setpoint for + ⁇ U a dt for the positive half-wave, -M * as a setpoint for - f 1 U 1 "dt for the negative half-wave.
  • the voltage can be increased by suitable selection of the parameter a> 1
  • the current Ib flowing through the alternating current controller is measured by means of a current transformer 20, the measured values of which are integrated in a second integrator 21.
  • the output voltage proportional to the value ⁇ lb dt is applied negatively to the measured values of the mains voltage measured via the measuring element 11 on a summing element 22.
  • the integral of the voltage U a - ⁇ lb dt is now used, whereby the ignition timing is brought forward to such an extent that the voltage still present after the ignition timing and integrated in the first integrator 13 is approximately compensated.
  • this device can be expanded by a series circuit branching off at the output of the measuring element 20, comprising a rectifier 30, a smoothing element 31 (time constant T 2 for several seconds) and a PI regulator 32.
  • the rectified and smoothed output voltage of the current measuring element 20 becomes compared at the input of the controller 32 with a target value for the corresponding longer-term mean current value.
  • the controller output signal is fed to the comparison points 15 and 16 instead of the input variable which corresponds directly to the short-term nominal voltage value M *. Seen over several periods, the reactive current fluctuations of the rapidly changing load 4 are averaged to an approximately constant reactive current, so that a fixed relationship between the setpoint M * and the average current flowing through the AC power controller lb results.
  • the target value for the half-vibration mean value for example the effective voltage
  • the target value for the half-vibration mean value continues longer-term fluctuations in the amplitude of the mains voltage.
  • the effects of short-term load fluctuations on the mains voltage, which lead to the annoying flicker, are still compensated for by the rapid regulation via the integrator 13 and the limit indicators 16 and 18.
  • the AC power controller 7 can be connected to the supply network via a transformer 33. If its leakage inductance is higher than normal, it may a separate choke coil 10 can be dispensed with.
  • the device according to the invention which has so far been described for the case of an AC network with two conductors, can also be applied analogously to an N-phase AC network.
  • one of the devices shown in FIGS. 1 to 3 can each be arranged between one of the conductors and the neutral conductor.
  • the phases of this network are with 1 R, 1 S and 1 T, the three-phase load with 40, each between one phase and the star point or in pairs between two phases capacitor banks and upstream chokes with 50 and 60 and each also between one Phase and the neutral conductor or between two phases arranged AC power controller and the upstream chokes designated 70 and 30 respectively.
  • the phase voltages are measured via measuring elements 11 R, 11 S, 11 T and the currents flowing through the alternating current regulators 70 via measuring elements 20 ', 20 ", 20"'.
  • the measured values are fed to the control units 80 ', 80 ", 80'", which are constructed in accordance with FIGS.
  • a commercially available control set in this case a two-pulse control set 110, is provided which is based on the voltage U tapped by the voltage converter 11 is synchronized and its modulation is set by specifying a constant control vector such that a fixed period of time before the end of each half oscillation, an additional ignition signal L or M is applied to the ignition pulse F or G for the valve located in the respective half oscillation in the forward direction.
  • a circuit is known, for example, from Tietze-Schenk “semiconductor circuit technology”, Berlin, Heidelberg, New York, 4th ed. 1978, page 212.
  • Multipliers can also be used for integer values of a. By choosing a you can influence the quality of the flicker control.
  • the output variable of the potentiator 102 is passed via a switch 103 to the first integrator 105, the reset input of which is indicated by the switch 104.
  • the switches 103 and 104 can be kept closed by a "high" pulse of the control signals K and H.
  • the integrator output variable, together with the negative target mean value M *, is fed to a summation point 106 at the input of a first limit value detector 107.
  • the logic circuit 100 distributes the ignition pulses A together with the additional ignition signals L, M to the ignition devices 111, 112.
  • FIG. 8 The diagrams of the previously mentioned pulses A, F, G, H, K, L, M are shown in Figure 8 together with the course of the voltage U.
  • the control angle of the network-synchronized headset 110 which supplies the additional ignition signals L, M to limit the maximum blocking time of the AC control valves, is designated by ⁇ o .
  • Arrows 70 indicate the times at which the integrator output signal reaches the target mean value.
  • the reset of the switch 104 by means of the signal H and thus the preparation of the integrator for the formation of the voltage time area of a half oscillation (e.g. the negative half oscillation) takes place at the earliest with the first ignition belonging to the previous (in the example of the positive) voltage half wave, i.e.
  • the reset should ideally be completed when the new (in the example the negative) voltage half-wave begins after the voltage U has passed zero.
  • the reset pulses occur simultaneously with the positive edges of the additional ignition signals L and M.
  • the voltage time areas are not formed at the ideal time, which would be given by the zero crossing of the fundamental voltage, but rather the integrator begins to integrate from zero, an error could arise. However, this error is kept small in that the integrator z. B. to determine the negative voltage time areas, only the sections of the voltage curve are supplied that have a negative polarity.
  • the voltage time area determined by the integrator 105 is shown hatched, which is monitored at the limit detector 107 for exceeding the target mean value M * .
  • the further pulse diagrams shown in FIG. 8 relate to the example of a logic circuit 100 shown in FIG. 9 and the embodiment according to FIG. 7.
  • a second integrator 116 is provided.
  • a second rectifier 114 is connected upstream of the integrator 116 via a switch 115, which can be opened by the pulses K like the switch 103.
  • This second integrator 117 like the first integrator 105, should ideally be reset with the zero crossing of the fundamental voltage oscillation. However, it is simpler in terms of circuitry and results in practically no error if the reset switch 117 is closed with the start of the additional ignition signal and remains closed until the first zero crossing of the actual voltage curve, as represented by the corresponding closing pulse I.
  • the elements 30, 31 and 32 are structurally identical to the elements already described in FIG. 3 and fulfill the same task.
  • the voltage curve U is set via a delay element 90, e.g. a second-order delay element, fed to a limit indicator 91.
  • the signal C at the output of this limit value detector provides information about the polarity of the last voltage half-wave for the time period in which both the ignition pulses A and the zero crossings of the actual voltage curve are to be expected. With this information, the ignition pulses A and the additional ignition signals L and M can be distributed to the lines to the ignition devices 111 and 112 of the corresponding AC control valves.
  • pulse C is fed to an AND gate 92 and negated to an AND gate 93.
  • the additional ignition signals L and N in turn are combined on an OR gate 94.
  • the signal H is formed from the positive edges of the combined signal by means of a pulse shaper 95, which signal is combined with the ignition pulses A at an OR gate 96 to form the ignition pulse sequence E, which is applied to the other inputs of the AND gates 92 and 93 .
  • the signal H is also led out of the logic circuit for actuating the reset switch 104 of the first integrator.
  • the additional ignition signals L, M taking into account the sign of U derived from a limit value indicator 97.
  • the negated outputs of these two AND gates become the signal of the K output via an AND gate 89.
  • the pulses E and K are fed to the corresponding I output via a memory 88.
  • the circuit according to FIGS. 6 and 7 can also be applied to a multi-phase network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Rectifiers (AREA)
  • Control Of Electrical Variables (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zum Konstanthalten der Spannung zwischen zwei Leitern eines Wechselstrom-Versorgungsnetzes für rasch wechselnde Last auf einem vorgebbaren Halbschwingungs-Mittelwert (Soll-Mittelwert), mit einem zwei antiparallele steuerbare Ventile enthaltenden Wechselstromsteller zwischen den Leitern und einer Ventilsteuerung, die innerhalb einer Spannungshalbschwingung in Abhängigkeit von der mittels eines an wenigstens einem Leiter angeordneten Messglieds (Spannungswandier) erfassten Spannung einen Zündimpuls für das in Durchlassrichtung liegende Ventil abgibt.
  • Eine derartige Vorrichtung ist aus der US-A-3 435 248 bekannt und dient dazu, die Amplitude der von einem Wechselrichter über ein Filter einem Verbraucher einzuspeisenden Wechselspannung konstant zu halten. Dabei wird die Filterausgangsspannung gleichgerichtet und sobald die gleichgerichtete Spannung die Durchbruchspannung einer Zener-Diode erreicht, wird ein Zündimpuls abgegeben, mit dem über einen Wechselstromsteller eine zwischen den Leitern angeordnete Drossel geschaltet wird. Es handelt sich also letztlich um einen Vergleich der tatsächlichen Spannungsamplitude mit einem vorgegebenen Sollwert.
  • Um den Effektivwert einer pulsierenden Regelgrösse zu regeln, wird nach der DE-C-2 334 040 die Differenz zwischen dem Quadrat eines Sollwertes und dem Quadrat des Istwertes einem Integralregler zugeführt. Die Regler-Ausgangsspannung, im allgemeinen eine Gleichspannung, kann dann als Steuerspannung einem Stellglied, z.B. dem Steuersatz eines eine Last speisenden Gleichstromstellers oder Umrichters zugeführt werden. Der nachgeordnete Steuersatz ist erforderlich, da die Integralregler-Ausgangsspannung wegen der gleichzeitigen Integration der (durch ihre Quadrate als Effektivwerte erfassten) Ist- und Sollwerte erst nach einer abgeschlossenen Halbperiode angibt, ob der über diese Halbperiode gemittelte Effektivistwert gleich dem entsprechenden mittleren Sollwert ist, oder ob die Aussteuerung des Stellgliedes für die nächste Halbperiode verändert werden muss.
  • Eine andere Vorrichtung ist aus «Siemens-Forschungs- und Entwicklungs-Bericht», Band 6 (1977), Seiten 29 bis 38 bekannt und wird eingesetzt an einem Versorgungsnetz für Elektroöfen, die in der Stahlerzeugung zum Schmelzen von Schrott verwendet werden. Der in einem derartigen Ofen auftretende Lichtbogen zwischen Elektroden und Schmelzgut reisst beim Abschmelzen des Gutes in unregelmässigen Abständen ab. Die Stromstärke schwankt also unregelmässig zwischen Null und Kurzschlussstromstärke. Da das speisende Netz zwar einen vernachlässigbaren ohmschen Innenwiderstand, jedoch eine erhebliche Impedanz aufweisen kann, bewirken vor allem die Blindstromanteile der Lastschwankungen erhebliche Spannungsschwankungen, die andere Verbraucher stören können. Ähnliche unregelmässige oder auch regelmässige Einbrüche im Spannungsniveau eines Versorgungsnetzes treten auch bei anderen Verbrauchern, z.B. Pulsstromversorgungen für Synchrotrons oder Stromrichterantrieben in Walzwerken auf. Da z.B. bei ebenfalls an das Versorgungsnetz angeschlossenen Glühlampen das menschliche Auge im Frequenzbereich von 3 bis 10 Hz Helligkeitsschwankungen, die von Schwankungen der Versorgungsspannung um 0,5% hervorgerufen werden, bereits als störend empfindet (sog. «Flicker»), ist es erforderlich, die Rückwirkung derartiger Verbraucher auf das Versorgungsnetz zu unterdrücken bzw. konstant zu halten.
  • Bei dieser Vorrichtung ist parallel zu dem an ein dreiphasiges Versorgungsnetz gelegten Verbraucher eine Batterie aus Kondensatoren geschaltet, die so bemessen ist, dass sie soviel Blindstrom liefern kann, wie der Ofen maximal aufnimmt. Bei geringerem Verbraucher-Blindstrom werden die Ventile eines ebenfalls an das Versorgungsnetz angeschlossenen Drehstromstellers mit Dreiecksschaltung gezündet. Der Drehstromsteller besteht dabei jeweils aus einer zwischen zwei Phasen liegenden Reihenschaltung einer Drossel und eines von zwei antiparallelen steuerbaren Ventilen gebildeten Wechselstromstellers. Zur Zündung der Drehstromstellerventile werden diese von einer Regelung angesteuert, die Messglieder sowohl für den durch den Ofen fliessenden Strom wie den durch die Drehstromsteller fliessenden Strom enthält und aus einer Vielzahl von Recheneinheiten zur Koordinatentransformation, Vektoridentifizierung und Vektordrehung besteht. Diese Regelung ist aufwendig.
  • Der Erfindung liegt die Aufgabe zugrunde, eine einfachere und sehr schnell wirkende Regeleinrichtung anzugeben, die das Spannungsniveau zwischen den einzelnen Leitern eines ein-, drei- oder mehrphasigen Versorgungsnetzes zumindest kurzfristig konstant hält. Innerhalb jeder Halbschwingung soll also die zwischen zwei Leitern (z.B. einer Phase und dem Nulleiter oder zwischen zwei Phasen eines Mehrphasennetzes) liegende Spannung auf einem vorgebbaren Mittelwert gehalten werden. Dieser Mittelwert muss nicht der arithmetische Mittelwert der Spannung sein, vielmehr kann es vorteilhaft sein, den Mittelwert für eine bestimmte Funktion, z.B. eine Potenz, der Spannung vorzugeben, um damit z.B. den Spannungseffektivwert zu beeinflussen. Dieser Mittelwert kann konstant gehalten werden, oder er kann auch langfristig innerhalb derart niedriger Frequenzen schwanken, dass diese Schwankungen nicht mehr störend wirken.
  • Gemäss der Erfindung wird die Aufgabe gelöst durch eine Vorrichtung der eingangs genannten Art, bei der dem Messglied ein Integrator nachgeschaltet ist, dessen Ausgangssignal mit einem dem vorgegebenen Soll-Mittelwert entsprechenden Wert verglichen wird, und die Ventilsteuerung so ausgelegt ist, dass sie den Zündimpuls in dem Zeitpunkt abgibt, in dem das Ausgangssignal diesen Wert erreicht. Soll also z.B. ein konstanter arithmetischer Mittelwert für jede Spannungshalbschwingung eingehalten werden, so wird in jeder Spannungshalbwelle ein Wechselstromstellerventil gezündet, sobald die Spannungszeitfläche dieser Spannungshalbwelle den vorgegebenen Soll-Mittelwert erreicht.
  • Hierzu enthält die Ventilsteuerung vorzugsweise hinter dem dem Messglied nachgeschalteten Integrator für jedes der antiparallelen Ventile einen Grenzwertmelder mit nachgeschaltetem Impulsformer als Zündimpulsgeber. Dabei ist jedem Grenzwertmelder die Differenz aus der Ausgangsgrösse des Integrators und einer Grösse aufgeschaltet, die dem Soll-Mittelwert für die in Durchlassrichtung des zugeordneten Ventils positive Spannungshalbschwingung entspricht; d.h., dem Grenzwertmelder, dessen zugeordnetes Ventil bei einer positiven Halbschwingung leitend sein kann, wird als Soll-Mittelwert der Spannungshalbschwingung die Differenz aus der Integratorausgangsgrösse und einem positiven Sollwert aufgeschaltet und dem anderen Ventil die Summe aus der Integratorausgangsgrösse und dem Sollwert (Differenzbildung mit dem negativen Sollwert). Um die Ventile immer dann zu zünden, wenn das Integral der konstant zu haltenden Spannung (d.h. die Spannungszeitfläche f Udt) bzw. einer vorgegebenen Funktion der Spannung (z.B. ∫ |U| 1 adt) den Soll-Mittelwert erreicht, kann die Ventilsteuerung auch aus einer anderen Integrations- und Vergleicherschaltung aufgebaut sein. Z.B. kann das Ausgangssignal eines Wechselspannungsintegrators gleichgerichtet und einem einzigen Grenzwertmelder zum Vergleich mit dem Soll-Mittelwert aufgeschaltet sein, wobei die Ausgangssignale des Grenzwertmelders zum alternierenden Zünden der Wechselstromstellerventile verwendet werden.
  • Vorteilhaft ist eine Drosselspule in Reihe zum Wechselstromsteller geschaltet, die zusammen mit der Netzinduktivität einen Spannungsteiler bildet. Dadurch wird der durch den Wechselstromsteller fliessende Strom begrenzt und die Netzspannung beim Zünden der Wechselstromstellerventile nicht mehr kurzgeschlossen.
  • Vorteilhaft ist ferner dem Integrator ein Funktionsbildner vorgeschaltet, der aus dem zugeführten Spannungsmesswert U eine Ausgangsgrösse ± |U| a(a>1) bildet. Dadurch kann der Spannungsmittelwert auf einen dem Effektivwert verwandte Grösse geregelt werden. Ausserdem findet dadurch der Soll-Istwertvergleich zeitlich früher statt, wodurch ein korrigierender Eingriff durch den Wechselstromsteller früher ermöglicht ist.
  • Bei Verwendung einer Drosselspule ergibt sich auch nach dem Zünden der Ventile noch ein Beitrag zur Spannung am Ausgangs des Integrators, der in manchen Fällen zu einer unerwünschten Abweichung vom Soll-Mittelwert führt. Dies kann jedoch korrigiert werden, wenn der Strom durch den Wechselstromsteller durch ein Messglied erfasst wird, dem ein Integrator nachgeschaltet ist. Die Ausgangsgrösse des Integrators wird dem Spannungsmesswert aufgeschaltet. Durch geeignetes Einstellen der Integrierzeit dieses weiteren Integrators lässt sich erreichen, dass der Zündzeitpunkt des entsprechenden Ventils soweit verschoben wird; dass die nach der Zündung noch auftretende Spannungszeitfläche kompensiert wird und die innerhalb einer Halbschwingung auftretende Spannungszeitfläche dem Sollwert entspricht.
  • Die Vorrichtung nach der Erfindung regelt kurzfristige Spannungsänderungen, z.B. im Bereich einer Sekunde, sehr schnell aus. Schwankungen im Bereich mehrerer Sekunden sind jedoch nicht durch die Last verursacht, wirken weniger störend und brauchen nicht kompensiert zu werden. Daher kann vorteilhaft der Soll-Mittelwert für die Spannung so nachgeführt werden, dass die Vorrichtung über mehrere Perioden gesehen immer in der Mitte ihres Steuerbereiches steht. Dies wird erreicht durch eine Reihenschaltung aus einem Gleichrichter für den Messwert. des durch den Wechselstromsteller fliessenden Stromes, einem Glättungsglied und einem PI-Regler. Dem Eingang des PI-Reglers ist zusätzlich zur Ausgangsgrösse des Glättungsgliedes ein Sollwert für den über mehrere Perioden gemittelten, durch den Wechselstromsteller fliessenden Strom negativ aufgeschaltet. Die Ausgangsgrösse des Reglers wird als dem Soll-Mittelwert entsprechende Grösse verwendet und dem Grenzwertmelder zugeführt.
  • Es ist wünschenswert, die Wechselstromstellerventile so zu steuern, dass unabhängig von der Regeleinrichtung ein gewisser Mindestrom im Wechselstromsteller und in der vorgeschalteten Drosselspule nicht unterschritten wird.
  • Hierzu werden die Ventile durch jeweils ein Zusatzzündsignal gezündet, wenn ihre Sperrzeit eine vorgegebene Maximalzeit überschreiten würde. Dieses Zusatzzündsignal kann vorteilhaft von einem netzsynchronisierten Steuersatz gebildet werden, wobei die konstante Maximalsperrzeit durch eine konstante Aussteuerung des Steuersatzes vorgegeben werden kann.
  • Für ein exaktes Arbeiten der Vorrichtung ist eine möglichst geringe Nullpunktdrift des dem Grenzwertmelder vorgeschalteten ersten Integrators erforderlich. Übliche Massnahmen zur Unterdrückung dieser Drift sind aufwendig, bedeuten für den Integrator eine meist unerwünschte Phasendrehung und können das transiente Verhalten des Integrators beeinträchtigen. Bei Verwendung getrennter Zweige mit je einem eigenen Grenzwertmelder für die Ansteuerung der antiparallelen Ventile ergeben sich ferner häufig gewisse Unsymmetrien der beiden Zweige, die ebenso wie eine Drift des Integrators zu einem unerwünschten Gleichstromanteil im Netz führen können. Auch die Verwendung des erwähnten Funktionsbildners für die Funktion ± |U|a kann zu Schwierigkeiten führen, wenn insbesondere bei schwachem Netz Mehrfach-Nulldurchgänge der Netzspannung auftreten.
  • Gemäss einer Weiterbildung der Erfindung werden diese Schwierigkeiten dadurch vermieden, dass in der Ventilsteuerung zwischen dem Messglied und dem ersten Integrator ein Gleichrichter mit einem anschliessender Potenzierer zur Bildung der Funktion y = xa mit x ≥ 0 und beliebigem a angeordnet ist. Dem Integratorausgang ist am Eingang eines Grenzwertmelders ein dem Soll-Mittelwert entsprechender Wert aufgeschaltet. Das Grenzwertmelder-Ausgangssignal ist einem Impulsformer eingegeben, dessen Impulse über einen Impulsverteiler dem jeweils gerade in Stromführung liegenden Ventil zugeführt werden. Der erste Integrator selbst ist jeweils nach Abgabe eines Zündimpulses und noch vor dem nächsten Nulldurchgang der Spannung rücksetzbar. Insbesondere kann der Integrator durch das Zusatzzündsignal rückgesetzt werden.
  • Bei dieser Ausführungsform wird also nur ein einziger Grenzwertmelder für beide antiparallelen Ventile verwendet. Ferner fängt der Integrator bei jeder Spannungshalbwelle erneut von Null zu integrieren an, so dass eine Nullpunktdrift die Ventilzündungen stets in gleicher Richtung verschiebt und keinen Gleichanteil bewirken kann.
  • Diese Ausführungsform wird bevorzugt weitergebildet, indem zwischen dem Potenzierer und der Aufschaltung des Soll-Mittelwertes ein Schalter angeordnet ist, der immer dann geöffnet ist, wenn die Polarität der zur letzten Ventilzündung gehörenden Spannungshalbwelle mit der augenblicklichen Polarität der Spannung übereinstimmt. Wenn also z.B. das in positiver Richtung liegende Ventil zur Beeinflussung der positiven Spannungshalbwelle gezündet worden ist, so wird der Schalter geöffnet, bis die Spannung negativ wird. Inzwischen wird auch der Integrator auf Null gesetzt. Nach dem Nulldurchgang werden durch Schliessen des Schalters negative Spannungen dem Integrator eingegeben; treten jedoch infolge der häufig unvermeidlichen Netzschwankungen Mehrfach-Nulldurchgänge auf, so werden nach wie vor alle positiven Spannungen durch Öffnen des Schalters ausgeblendet.
  • Vorteilhaft ist auch bei dieser Ausführungsform eine Drosselspule in Reihe mit dem Wechselstromsteller geschaltet. Auch in diesem Fall kann der Strom durch den Wechselstromsteller mittels eines Messgliedes erfasst werden. Dem Messglied ist dann ein zweiter Gleichrichter und ein zweiter Integrator nachgeschaltet. Dieser zweite Integrator ist unge- .fähr gleichzeitig mit dem ersten Integrator rücksetzbar. Zwischen Gleichrichter und Integrator ist ein weiterer, gleichzeitig mit dem ersten Schalter zu öffnender und schliessender Schalter angeordnet. Der Ausgang dieses zweiten Integrators ist mit negativem Vorzeichen zusätzlich zu dem Ausgangssignal des Potenzierers dem Eingang des ersten Integrators aufgeschaltet. Die Ansteuerung der Schalter sowie die Verteilung der Zündimpulse und der Zusatzzündsignale auf die Ventile lassen sich mit einer einfachen Logikschaltung erreichen. Dabei kann vorteilhaft der zweite Integrator stets gleichzeitig mit dem ersten Integrator auf Null gesetzt werden und bis zum nächsten Nulldurchgang der Spannung auf Null gehalten bleiben.
  • Anhand von 7 Ausführungsbeispielen und 9 Figuren wird die Erfindung näher erläutert. Die Figuren 1 bis 3 zeigen das Prinzip der Erfindung am Beispiel eines einphasigen Versorgungsnetzes, die Figuren 4 und 5 am Beispiel eines dreiphasigen Versorgungsnetzes, in den Figuren 6 und 7 ist eine weitere Ausführungsform und deren Weiterbildung dargestellt, und Figur 8 und 9 verdeutlichen die Impulsdiagramme und den Aufbau einer Logikschaltung für die Ausführungsbeispiele nach den Figuren 6 und 7.
  • In den Figuren 1 bis 3 sind mit 1 und 2 die Leiter eines einphasigen Wechselstromnetzes bezeichnet, wobei die Impedanz dieses Versorgungsnetzes symbolisch durch eine Spule 3 angedeutet ist, während der Leiter 2 auf Massepotential liegt. An die Leiter ist die Last 4 angeschlossen, deren rasch wechselnde Impedanz Rückwirkungen hervorruft, vor der weitere Verbraucher 5, z.B. Glühlampen, geschützt werden sollen. Parallel zur Last 4 liegt üblicherweise eine aus vielen Kondensatoren aufgebaute Kondensatorbatterie 5 mit einer vorgeschalteten Drossel 6. Die Kondensatorbatterie ist so dimensioniert, dass sie bei maximalem Laststrom die auftretenden Blindströme kompensieren kann. Diese Kondensatorbatterie ermöglicht es, für die Anlage einen günstigen Leistungsfaktor einzuhalten, sie ist aber für die Wirkungsweise der Vorrichtung nicht unbedingt erforderlich. Ferner ist zwischen den Leitern 1 und 2 ein Wechselstromsteller 7 angeordnet, der aus zwei antiparallelen Thyristorventilen 8 und 9 besteht. Die in Reihe zum Wechselstromsteller 7 angeordnete, vorteilhafte Spule 10 soll vorerst nicht betrachtet werden. Ferner ist ein Messglied 11 vorgesehen. Insoweit entspricht Figur 1 der eingangs genannten bekannten Vorrichtung für den Fall eines einphasigen Netzes.
  • Um die Ventile 8 und 9 mit Zündimpulsen anzusteuern, erfasst das Messglied 11 die konstant zu haltende Spannung U zwischen den Leitern und führt sie über einen vorerst ebenfalls nicht weiter betrachteten Funktionsgeber 12 dem Eingang eines Integrators 13 zu. Verwendet wird ein Integrator, dessen Nullpunkt nicht driftet und der gegebenenfalls am Ausgang anstehende Gleichspannungsanteile (über mehrere Perioden gesehen) selbsttätig ausregelt. Die Ausgangsgrösse des Integrators 13 wird den Vergleichsstellen 14 und 15 zugeführt, die mit einer positiven Grösse M* beaufschlagt sind, die dem Sollwert des Spannungsniveaus, d.h. dem Soll-Mittelwert einer Spannungshalbschwingung entspricht.
  • Bei U > 0 ist das Ventil 8 des Wechselstromstellers 7 in Durchlassrichtung gepolt. Der diesem Ventil zugeordneten Vergleichsstelle 14 wird daher die Grösse M negativ aufgeschaltet. Das Differenzsignal wird einem Grenzwertmelder 16 zugeführt, aus dessen Ausgangssignal im Impulsformer 17 ein Zündimpuls für das Ventil 8 gebildet wird. Für die Zündimpulse des Ventils 9, das nur bei U < 0 stromführend sein kann, wird die positive Grösse M* der entsprechenden Vergleichsstelle 15 additiv zugeführt. Die Vergleichsstelle 15 liefert also einen Soll/lstwertvergleich zwischen der Spannungszeitfläche der Spannung U und dem (negativen) Sollwert für die negative Spannungshalbschwingung. Die erhaltene Sdmmengrösse wird wiederum über einen Grenzwertmelder 18 mit nachgeschaltetem Impulsformer 19 zur Zündung des Ventils 9 herangezogen.
  • Zur Erläuterung der Arbeitsweise wird zunächst eine positive Halbschwingung betrachtet. Der zu Beginn dieser Halbwelle zunächst auf einem negativen Anfangswert stehende Integrator 13 integriert die Messwerte (Spannungsistwerte) U, bis der Wert M * erreicht ist. Sodann erfolgt über den Grenzwertmelder die Zündung des Ventiles 8. Dadurch wird die Spannung kurzgeschlossen, sobald die Spannungszeitfläche innerhalb einer Halbschwingung einen durch M* bestimmten Wert erreicht hat. In der negativen Halbschwingung erlischt das Ventil 8 und die negative Halbschwingung wird durch entsprechende Steuerung des Ventiles 9 auf den negativen Mittelwert geregelt.
  • Bei dieser Regelung ist M* als Sollwert für die Spannungszeitfläche fU dt einer Halbschwingung vorgegeben. Es ist aber auch möglich, M* nicht direkt als Halbschwingungsmittelwert, sondern als einen Mittelwert für eine andere, vorgegebene Funktion der Spannung U zu wählen. Insbesondere kann M* als Sollwert für + ∫Uadt für die positive Halbwelle, -M * als Sollwert für - f 1 U 1 "dt für die negative Halbwelle vorgegeben werden. Durch geeignete Wahl des Parameters a > 1 kann dadurch die Spannung auf eine dem Effektivwert verwandte Grösse geregelt werden. Hierzu dient der potenzierende, dem Wechseispannungsintegrator 13 vorgeschaltete Funktionsgeber 12. Dieser Funktionsgeber 12 kann so geschaltet sein, dass sein Ausgangssignal ± |U| a positiv ist, wenn sein Eingangssignal positiv ist, bzw. negativ, wenn das Eingangssignal negativ ist.
  • Um die Verzerrung der Netzspannung und die hohen Kurzschlussströme zu reduzieren, ist es vorteilhaft, die Drosselspule 10 einzufügen. Dadurch werden Kurzschlüsse der Netzspannung beim Zünden des Wechselstromstellers 7 vermieden.
  • Bei dem Ausführungsbeispiel nach Figur 2 wird mittels eines Stromwandlers 20 der durch den Wechselstromsteller fliessende Strom lb gemessen, dessen Messwerte an einem zweiten Integrator 21 integriert werden. Die dem Wert ∫lb dt proportionale Ausgangsspannung wird den über das Messglied 11 gemessenen Messwerten der Netzspannung an einem Summierglied 22 negativ aufgeschaltet. Durch Verwendung der Drosselspule 10 tritt auch nach Kurzschliessen der Spannung noch eine Netzspannung auf, die vom ersten Integrator 13 erfasst wird und dazu führen würde, dass das Integral den vorgegebenen Wert M* überschreitet. Durch geeignete Wahl der Zeitkonstante T1 des Integrators kann nun erreicht werden, dass zumindest im eingeschwungenen Zustand die Eingangsgrösse für den Integrator 13 so verstellt wird, dass in jeder Halbschwingung tatsächlich die Bedingung M* =∫Uadt eingehalten wird. Zum Vergleich mit dem Sollwert M wird nämlich nunmehr das Integral der Spannung Ua― ∫ lb dt herangezogen, wodurch der Zündzeitpunkt soweit vorverlegt wird, dass die nach dem Zündzeitpunkt noch anliegende und im ersten Integrator 13 aufintegrierte Spannung ungefähr kompensiert wird.
  • Gemäss Figur 3 kann diese Vorrichtung erweitert werden durch eine am Ausgang des Messgliedes 20 abzweigende Reihenschaltung aus einem Gleichrichter 30, einem Glättungsglied 31 (Zeitkonstante T2 mehrere Sekunden) und einem PI-Regler 32. Die gleichgerichtete und geglättete Ausgangsspannung des Strom-Messgliedes 20 wird am Eingang des Reglers 32 mit einem Sollwert für den entsprechenden längerfristigen Strommittelwert verglichen. Das Reglerausgangssignal wird den Vergleichsstellen 15 und 16 anstelle der dem kurzfristigen Spannungs-Sollmittelwert M* direkt entsprechenden Eingangsgrösse zugeführt. Über mehrere Perioden gesehen mitteln sich die Blindstromschwankungen der raschveränderlichen Last 4 zu einem ungefähr konstanten Blindstrom, so dass eine feste Beziehung zwischen dem Sollwert M * und dem durch den Wechselstromsteller fliessenden mittleren Strom lb ergibt. Durch Vorgabe des Sollwertes lb* für das langfristige Mittel dieses Stromes wird also erreicht, dass der Sollwert für den Halbschwingungsmittelwert, z.B. die Effektivspannung, längerfristigen Schwankungen in der Amplitude der Netzspannung forlgt. Die Auswirkungen kurzfristiger- Lastschwankungen auf die Netzspannung, die zu dem störenden Flickerführen, werden nach wie vor durch die schnelle Regelung über den Integrator 13 und die Grenzwertmelder 16 und 18 ausgeregelt.
  • Ferner kann, wie in Figur 3 gezeigt ist, der Wechselstromsteller 7 über einen Transformator 33 an das Versorgungsnetz angeschlossen werden. Ist dessen Streuinduktivität höher als normal, so kann u.U. auf eine eigene Drosselspule 10 verzichtet werden.
  • Die erfindungsgemässe Vorrichtung, die bisher für den Fall eines Wechselstromnetzes mit zwei Leitern beschrieben wurde, lässt sich analog auch auf ein N-phasiges Wechselstromnetz anwenden. Dazu kann z.B. eine der in den Figuren 1 bis 3 gezeigten Vorrichtungen jeweils zwischen einem der Leiter und dem Nulleiter angeordnet sein. Für Schaltungen ohne Nulleiter ist es auch möglich, jeweils zwischen zwei in der Drehrichtung der Wechselspannung aufeinander folgenden Leitern eine derartige Vorrichtung anzuordnen. Derartige Möglichkeiten für ein dreiphasiges Drehstromnetz sind in Figuren 4 (Sternschaltung) und 5 (Dreieckschaltung) gezeigt.
  • Die Phasen dieses Netzes sind mit 1 R, 1 S und 1 T, die dreiphasige Last mit 40, die jeweils zwischen einer Phase und dem Sternpunkt bzw. paarweise zwischen zwei Phasen angeordneten Kondensatorbatterien und vorgeschalteten Drosseln mit 50 und 60 und die ebenfalls jeweils zwischen einer Phase und dem Nulleiter bzw. zwischen zwei Phasen paarweise angeordneten Wechselstromsteller und die diesen vorgeschalteten Drosseln mit 70 bzw. 30 bezeichnet. Zur Steuerung der Wechselstromstellerthyristoren werden die Phasenspannungen über Messglieder 11 R, 11 S, 11 T und die durch die Wechselstromsteller 70 fliessenden Ströme über Messglieder 20', 20", 20"' erfasst. Die Messwerte werden den Steuereinheiten 80', 80", 80'" zugeführt, die entsprechend den Figuren 1 bis 3 aus Wechselstromintegratoren, Grenzwertmeldern, Impulsformen, Funktionsgebern, Gleichrichtern, Glättungsgliedern und Reglern aufgebaut sind. Diesen Steuereinheiten wird auch der Sollwert für den langfristigen Mittelwert lb * der durch die Wechselstromsteller fliessenden Ströme über eine gemeinsame Leitung 90 vorgegeben.
  • Die Anordnung nach Bild 6, bei der die Elemente 1 bis 11 mit den Elementen der Figuren 1 bis 5 übereinstimmen, unterscheidet sich von den bisherigen Ausführungsbeispielen vor allem in der Verwendung einer zentralen Logikschaltung 100, die die Zündimpulse F und G für die Zündgeräte 111 und 112 der Ventile 8 und 9 des Wechselstromstellers 7 liefert. Um im Wechselstromsteller 7 und in der Drosselspule 10 einen Minimalstrom aufrecht zu erhalten, ist ein handelsüblicher Steuersatz, in diesem Fall ein zweipulsiger Steuersatz 110 vorgesehen, der auf die vom Spannungswandler 11 abgegriffene Spannung U synchronisiert ist und dessen Aussteuerung durch Vorgabe eines konstanten Steuervektors so eingestellt ist, dass eine feste Zeitspanne vor Ende jeder Halbschwingung ein Zusatzzündsignal L bzw. M dem Zündimpuls F bzw. G für das in der jeweiligen Halbschwingung in Durchlassrichtung liegende Ventil aufgeschaltet ist.
  • Dem Funktionsgeber 12 in den Figuren 1 bis 3 entsprechen bei dieser bevorzugten Ausführungsform der Gleichrichter 101 und der nachgeschaltete Potenzierer 102, der die Funktion y = xa (x > 0, a beliebig, vorzugsweise a > 1.) liefert. Eine derartige Schaltung ist z.B. aus Tietze-Schenk «Halbleiterschaltungstechnik», Berlin, Heidelberg, New York, 4. Aufl. 1978, Seite 212, bekannt. Für ganzzahlige Werte von a können auch Multiplizierer eingesetzt werden. Mit der Wahl von a lässt sich die Qualität der Flickerregelung beeinflussen.
  • Die Ausgangsgrösse des Potenzierers 102 wird über einen Schalter 103 auf den ersten Integrator 105, dessen Rücksetzeingang durch den Schalter 104 angedeutet ist, gegeben. Die Schalter 103 und 104 können durch einen «high»-Impuls der Steuersignale K und H geschlossen gehalten werden. Die Integratorausgangsgrösse ist zusammen mit dem negativen Soll-Mittelwert M* einem Summationspunkt 106 am Eingang eines ersten Grenzwertmelders 107 zugeführt. Mittels eines Impulsformers 108 wird der Logikschaltung 100 jeweils dann ein Zündimpuls eingegeben, wenn die Integratorausgangs= grösse den Wert M* überschreitet. Die Logikschaltung 100 verteilt die Zündimpulse A zusammen mit den Zusatzzündsignalen L, M auf die Zündgeräte 111,112.
  • Die Diagramme der bisher erwähnten Impulse A, F, G, H, K, L, M sind in Firgur 8 zusammen mit dem Verlauf der Spannung U dargestellt. Mit αo ist der Steuerwinkel des netzsynchronisierten Steuersatzes 110 bezeichnet, der die Zusatzzündsignale L, M zur Begrenzung der maximalen Sperrzeit der Wechselstromstellerventile liefert. Die Pfeile 70 kennzeichnen die Zeitpunkte, bei denen das Integratorausgangssignal den Sollmittelwert erreicht. Das Rücksetzen des Schalters 104 mittels des Signales H und damit die Vorbereitung des Integrators zur Bildung der Spannungszeitfläche einer Halbschwingung (z.B. der negativen Halbschwingung) erfolgt frühestens mit der ersten zur vorangegangenen (im Beispiel der positiven) Spannungshalbwelle gehörenden Zündung, also mit dem Signal A oder der positiven Flanke des Zusatzzündsignales L, wenn diese Flanke zeitlich vor dem Impuls A liegt. Das Rücksetzen soll im Idealfall beendet sein, wenn nach einem Nulldurchgang der Spannung U die neue (im Beispiel die negative) Spannungshalbwelle beginnt. Da bei einem schwachen Netz jedoch meist, wie in Firgur 8 dargestellt ist, mehrere Nulldurchgänge kurz hintereinander folgen, können dadurch Schwierigkeiten auftreten. Daher erfolgen bei diesem Ausführungsbeispiel die Rücksetzimpulse gleichzeitig mit den positiven Flanken der Zusatzzündsignale L und M. Im Spannungsverlauf der Figur 8 ist mit der gestrichelten Linie 71 das Eingangssignal des ersten Integrators 105 für a = 1 eingezeichnet. Da für die Beeinflussung z.B. der negativen Spannungshalbwellen die Bildung der Spannungszeitflächen nicht zu dem idealen Zeitpunkt, der durch den Nulldurchgang der Spannungs-Grundschwingung gegeben wäre, erfolgt, sondern der Integrator bereits vorher von Null an zu integrieren beginnt, könnte ein Fehler entstehen. Dieser Fehler wird jedoch dadurch klein gehalten, dass durch Schliessen und Öffnen des Schalters 103 dem Integrator z. B. zur Ermittlung der negativen Spannungszeitflächen nur die Abschnitte des Spannungsverlaufes zugeleitet werden, die eine negative Polarität aufweisen. In Figur 8 ist die vom Integrator 105 ermittelte Spannungszeitfläche schraffiert dargestellt, die am Grenzwertmelder 107 auf Überschreiten des Soll-Mittelwertes M * überwacht wird.
  • Die weiteren in Figur 8 dargezeigten Pulsdiagramme beziehen sich auf das in Figur 9 dargestellte Beispiel einer Logikschaltung 100 und das Ausführungsbeispiel nach Figur 7. Aus den bereits im Zusammenhang mit Figur 2 erläuterten Gründen, ist auch nach Figur 7 ein Strommessglied 20 in der Wechselstromsteller-Zuleitung sowie ein zweiter Integrator 116 vorgesehen. Dem Integrator 116 ist über einen Schalter 115, der wie der Schalter 103 durch die Impulse K geöffnet werden kann, ein zweiter Gleichrichter 114 vorgeschaltet. Auch dieser zweite Integrator 117 soll wie der erste Integrator 105 im Idealfall mit dem Nulldurchgang der Spannungsgrundschwingung rückgesetzt werden. Es ist jedoch schaltungstechnisch einfacher und ergibt praktisch keinen Fehler, wenn der Rücksetzschalter 117 mit dem Beginn des Zusatzzündsignales geschlossen und bis zum ersten Nulldurchgang des tatsächlichen Spannungsverlaufes geschlossen bleibt, wie durch den entsprechenden Schliessimpuls I dargestellt ist.
  • Die Elemente 30, 31 und 32 sind baugleich mit den bereits in Figur 3 beschriebenen Elementen und erfüllen die gleiche Aufgabe.
  • In der Logikschaltung nach Figur 9 wird der Spannungsverlauf U über ein Verzögerungsglied 90, z.B. ein Verzögerungsglied zweiter Ordnung, einem Grenzwertmelder 91 zugeführt. Das Signal C am Ausgang dieses Grenzwertmelders liefert für den Zeitabschnitt, in dem sowohl die Zündimpulse A wie die Nulldurchgänge des tatsächlichen Spannungsverlaufes zu erwarten sind, eine Information über die Polarität der letzten Spannungshalbwelle. Mit dieser Information können die Zündimpulse A und die Zusatzzündsignale L und M auf die Leitungen zu den Zündgeräten 111 und 112 der entsprechenden Wechselstromstellerventile verteilt werden. Hierzu wird der Impuls C einem UND-Gatter 92 und negiert einem UND-Gatter 93 zugeführt. Die Zusatzzündsignale L und N ihrerseits werden an einem ODER-Gatter 94 vereinigt. Aus den positiven Flanken des kombinierten Signals wird mittels eines Impulsformers 95 das Signal H gebildet, das zusammen mit den Zündimpulsen A an einem ODER-Gatter 96 zu der Zündimpulsfolge E vereinigt wird, die auf die anderen Eingänge der UND-Gatter 92 und 93 gegeben ist. Das Signal H wird ferner zur Betätigung des Rücksetzschalters 104 des ersten Integrators aus der Logikschaltung herausgeführt.
  • Um den Impuls K zum Schliessen der Schalter 103 und 115 zu erhalten, werden die Zusatzzündsignale L, M unter Berücksichtigung des an einem Grenzwertmelder 97 abgeleiteten Vorzeichens von U gebildet. Hierzu wird das Zusatzzündsignal L bzw. M an den R- bis S-Eingang eines RS-Flip-Flops 98 gegeben, dessen Ausgang Q (Impuls B) zusammen mit dem negierten Grenzwertausgangssignal an ein UND-Gatter 99 und der Q-Ausgang zusammen mit dem Grenzwertmelderausgang an den Eingang eines UND-Gatters 99' gelegt sind. Die negierten Ausgänge dieser beiden UND-Gatter werden über ein UND-Gatter 89 das Signal des K-Ausganges.
  • Um den Rücksetzschalter 117 des zweiten Integrators jeweils mit der positiven Flanke des Zusatzzündsignales zu schliessen und bis zum ersten Nulldurchgang geschlossen zu halten (Impuls 1), werden die Impulse E und K über ein Gedächtnis 88 dem entsprechenden I-Ausgang zugeführt.
  • Analog zu den Figuren 4 und 5 kann auch die Schaltung nach den Figuren 6 und 7 auf ein mehrphasiges Netz angewendet werden.

Claims (14)

1. Vorrichtung zum Regeln der Spannung zwischen zwei Leitern (1,2) eines Wechselstromversorgungsnetzes für rasch wechselnde Last auf einen vorgebbaren Halbschwingungs-Mittelwert (Soll- Mittelwert), mit einem zwei antiparallele steuerbare Ventile (8, 9) enthaltenden Wechselstromsteller (7) zwischen den Leitern und einer Ventilsteuerung (12 bis 19), die innerhalb einer Spannungshalbschwingung in Abhängigkeit von der mittels eines an wenigstens einem Leiter angeordneten Messgliedes (11) erfassten Spannung (U) einen Zündimpuls für das in Durchlassrichtung liegende Ventil abgibt, dadurch gekennzeichnet, dass dem Messglied (11) ein Integrator (13) nachgeschaltet ist, dessen Ausgangssignal mit einem dem vorgegebenen Soll-Mittelwert (M*) entsprechenden Wert verglichen wird, und dass die Ventilsteuerung so ausgelegt ist, dass sie den Zündimpuls in dem Zeitpunkt abgibt, in dem das Ausgangssignal diesen Wert (M*) erreicht.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass durch ein Zusatzzündsignal (L, M) die Ventile jeweils gezündet werden, wenn ihre Sperrzeit eine vorgegebene Maximalzeit (αo) überschreitet (Fig. 8).
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass das Zusatzzündsignal (L, M) von einem netzsynchronisierten Steuersatz (110) gebildet und die konstante Maximalsperrzeit durch eine konstante Aussteuerung (ao) vorgegeben ist (Fig. 6).
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass für jedes der antiparallelen Ventile (9, 10) ein Grenzwertmelder (16, 18) mit nachgeschaltetem Impulsformer (17, 19) vorgesehen ist und dass jedem Grenzwertmelder (16 bzw. 18) die Differenz aus der Ausgangsgrösse des ersten Integrators (13) und einer dem Soll-Mittelwert für die in Durchlassrichtung des zugeordneten Ventils (9, 10) positive Spannungshalbschwingung entsprechenden Grösse (M*) aufgeschaltet ist (Fig. 2).
5. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein dem ersten Integrator nachgeordneter Gleichrichter und ein Grenzwertmelder mit nachgeschaltetem Impulsformer vorgesehen ist, dass dem Grenzwertmelder die Differenz aus der Ausgangsgrösse des Gleichrichters und einer dem Soll-Mittelwert der Spannungshalbwelle entsprechenden Grösse (M*) aufgeschaltet ist und dass mit den Ausgangssignalen des Grenzwertmelders die antiparallelen Ventile alternierend gezündet werden.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, gekennzeichnet durch einen dem ersten Integrator (13) vorgeschalteten Funktionsbildner (12), dessen Ausgangsgrösse (± y = ± |x|a) eine Potenz grösser als 1 des Spannungsmesswertes ist (Fig. 1).
7. Vorrichtung nach einem der Ansprüche 1 bis 6, gekennzeichnet durch eine in Reihe zum Wechselstromsteller (7) geschaltete Drosselspule (10) (Fig. 1
8. Vorrichtung nach Anspruch 7, gekennzeichnet durch ein Messglied (20) für den Strom durch den Wechselstromsteller (7) und einem nachgeschalteten zweiten Integrator (21), dessen Ausgangsgrösse dem Spannungsmesswert negativ aufgeschaltet ist (Figur 2).
9. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in der Ventilsteuerung zwischen dem Messglied (11) und dem ersten Integrator (105) ein Gleichrichter (101) mit anschliessendem Potenzierer (102) angeordnet ist, dass dem Integratorausgang am Eingang eines Grenzwertmelders (107) ein dem Soll-Mittelwert entsprechender Wert (M*) aufgeschaltet ist, dass das Ausgangssignal des Grenzwertmelders (107) einem Impulsformer (108) eingegeben ist, dessen Impulse in einem Impulsverteiler dem jeweils gerade in Stromführungsrichtung liegenden Ventil zugeführt werden, und dass der Integrator (105) jeweils nach Abgabe eines Zündimpulses und vor dem nächsten Nulldurchgang der Spannung rücksetzbar (Schalter 104) ist (Fig. 6).
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass der Integrator (105) durch ein Zusatzsignal (H), insbesondere das Zusatzzündsignal (L, M) nach Anspruch 2 oder 3, rücksetzbar ist (Fig. 6).
11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass dem Potenzierer ein Schalter (103) nachgeordnet ist, der geöffnet gehalten ist, wenn die Polarität der zur letzten Ventilzündung gehörenden Spannungshalbwelle mit der Polarität der augenblicklichen Istwerte (U) der Spannung übereinstimmt (Fig. 6).
12. Vorrichtung nach einem der Ansprüche 9 bis 11, gekennzeichnet durch eine in Reihe zum Wechselstromsteller (7) geschaltete Drosselspule (10), ein Messglied (20) für den Strom durch den Wechselstromsteller (7), einen nachgeschalteten zweiten Gleichrichter (114) und einen zweiten, ungefähr gleichzeitig mit dem ersten Integrator rücksetzbaren Integrator (117), dessen Eingang.über einen weiteren zum Öffnen und Schliessen gleichzeitig mit dem ersten Schalter (1.03) betätigten Schalter (115) mit dem Ausgang des zweiten Gleichrichters verbunden ist und dessen Ausgang dem Eingang des ersten Integrators zusätzlich negativ aufgeschaltet ist (Fig. 7).
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass der zweite Integrator gleichzeitig mit dem ersten Integrator auf Null gesetzt wird und bis zum nächsten Nulldurchgang der Spannung auf Null gehalten bleibt.
14. Vorrichtung nach einem der Ansprüche 1 bis 13, gekennzeichnet durch eine Reihenschaltung aus einem Gleichrichter (30) für den Messwert des durch den Wechselstromsteller fliessenden Stromes (Ib), einem Glättungsglied (31) und einem PI-Regler (32), wobei dem Eingang des Reglers zusätzlich ein Sollwert (lb*) für den über mehrere Perioden gemittelten, durch den Wechselstromsteller (7) fliessenden Strom negativ aufgeschaltet und die Reglerausgangsgrösse als dem Sollmittelwert entsprechende Grösse dem Grenzwertmelder zugeführt ist (Fig. 3, Fig. 7).
EP80103430A 1979-09-27 1980-06-19 Vorrichtung zum Regeln der Spannung zwischen zwei Leitern eines Wechselstromversorgungsnetzes für rasch wechselnde Last Expired EP0026260B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA000361047A CA1163323A (en) 1979-09-27 1980-09-25 Voltage compensation for an a-c network supplying a rapidly-changing load
BR8006182A BR8006182A (pt) 1979-09-27 1980-09-26 Dispositivo para manter constante a tensao entre dois conduores de uma rede de suprimento de corrente alternada, para uma carga que varia rapidamente

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2939251 1979-09-27
DE2939251 1979-09-27

Publications (2)

Publication Number Publication Date
EP0026260A1 EP0026260A1 (de) 1981-04-08
EP0026260B1 true EP0026260B1 (de) 1984-03-28

Family

ID=6082061

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80103430A Expired EP0026260B1 (de) 1979-09-27 1980-06-19 Vorrichtung zum Regeln der Spannung zwischen zwei Leitern eines Wechselstromversorgungsnetzes für rasch wechselnde Last

Country Status (4)

Country Link
US (1) US4357570A (de)
EP (1) EP0026260B1 (de)
JP (1) JPS5654527A (de)
DE (1) DE3067249D1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202824A (en) * 1981-06-05 1982-12-11 Tokyo Shibaura Electric Co Secondary arc extinguishing device for power system
DE3149706A1 (de) * 1981-12-15 1983-07-21 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zur konstanthaltung der spannung eines lastschwankungen unterworfenen, ein- oder mehrphasigen wechselstromnetzes
JPS61109426A (ja) * 1984-11-01 1986-05-27 三菱電機株式会社 静止形無効電力補償装置
SE450675B (sv) * 1984-11-19 1987-07-13 Klaus Winter Anordning for overvakning av netparametrarna dempning, osymmetrigrad och snedavstemningsgrad i impedansjordade kraftnet
US5032738A (en) * 1986-01-22 1991-07-16 Vithayathil John J Scheme for rapid adjustment of network impedance
US4954765A (en) * 1989-06-29 1990-09-04 Hu Long Hai Fully automatic phase controller for a non-coil armature type generator
KR940002742B1 (ko) * 1991-07-03 1994-03-31 삼성전자 주식회사 무효전력 제어방식의 자동전압 제어회로
US5818208A (en) * 1996-12-19 1998-10-06 Abb Power T&D Company Inc. Flicker controllers using voltage source converters

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3435248A (en) * 1966-12-27 1969-03-25 Borg Warner A-c voltage regulator
AT332940B (de) * 1973-04-05 1976-10-25 Bbc Brown Boveri & Cie Zwangsloschbare stromrichteranordnung fur einen aus einem ein- oder mehrphasigen wechselspannungsnetz gespeisten gleichstromverbraucher
DE2317067C2 (de) * 1973-04-05 1982-07-08 Brown, Boveri & Cie Ag, 6800 Mannheim Verfahren und Anordnung zur Steuerung einer Speiseschaltung für einen GLeichstromverbraucher
DE2317068C3 (de) * 1973-04-05 1981-10-29 Brown, Boveri & Cie Ag, 6800 Mannheim Speiseschaltung für einen von einer ein- oder mehrphasigen Wechselstromquelle gespeisten Gleichstromverbraucher
US3944909A (en) * 1973-06-11 1976-03-16 Reymond Welles K Voltage, current, or power controller utilizing a switched reactance A.C. shunt regulator
US3939396A (en) * 1974-02-06 1976-02-17 Ecc Corporation Shunt A.C. voltage regulator with modified full-wave bridge
US4001671A (en) * 1974-12-23 1977-01-04 Westinghouse Electric Corporation Apparatus for providing feedback to eliminate a dc component in the output of a static var generator
JPS51123939A (en) * 1975-04-22 1976-10-29 Hitachi Plant Eng & Constr Co Ltd Cooling tower
US4156176A (en) * 1977-06-30 1979-05-22 Electric Power Research Institute, Inc. Voltage regulator utilizing a static var generator
US4143315A (en) * 1977-10-25 1979-03-06 General Electric Company Rms transducer and voltage regulating system employing the same

Also Published As

Publication number Publication date
DE3067249D1 (en) 1984-05-03
EP0026260A1 (de) 1981-04-08
JPS5654527A (en) 1981-05-14
US4357570A (en) 1982-11-02

Similar Documents

Publication Publication Date Title
AT403865B (de) Spannungsumsetzungsvorrichtung für einen gleichspannungsverbraucher
DE2453583A1 (de) Steuerung bzw. regelung von leistungskonvertern mit einem parallelresonanz-kommutierungskreis
EP0026260B1 (de) Vorrichtung zum Regeln der Spannung zwischen zwei Leitern eines Wechselstromversorgungsnetzes für rasch wechselnde Last
DE69831666T2 (de) Niederspannungsbeleuchtungssystem
DE2246505C3 (de) Schaltungsanordnung zur unterbrechungsfreien Stromversorgung eines Gleichstromverbauchers mit konstanter Spannung
WO2011127906A2 (de) Steuerung / regelung der sekundärspannung von ortsnetztransformatoren durch den einsatz von netzgeführten wechselrichtern
DE1563930C3 (de) Schaltungsanordnung zur Regelung der Ausgangsspannung und des Ausgangs stromes eines Wechselrichters
DE2257264C3 (de) Schaltungsanordnung für eine Wechselrichteranordnung
DE2538493C3 (de) Gegen Überstrom geschützte Hochspannungsgleichstromübertragungsanlage
EP0037087B1 (de) Verfahren und Vorrichtung zum überschwingungsfreien Ein- und Abschalten eines Kondensators zwischen zwei Leitern eines Wechselspannungsnetzes
DE2019157A1 (de) Versorgungseinrichtung mit einem saettigbaren Transduktor
EP0306686B1 (de) Parallelschwingkreis-Umrichter mit Sicherheitsschaltung
EP0249083A2 (de) Einrichtung zur Stromversorgung
DE1638444B2 (de) Verfahren zur verzoegerungsfreien regelung der blindleistung in elektrischen netzen
DE677786C (de) Verfahren und Einrichtung zum Betrieb von mit gittergesteuerten Dampf- oder Gasentladungsstrecken arbeitenden Umrichtern
DE2730010C2 (de) Schaltungsanordnung zur Erzeugung nach Größe und Kurvenform schnell veränderbarer Blindströme
DE2643934B1 (de) Einrichtung zur kompensation der blindleistung eines verbrauchers, der aus einem mehrphasigen wechselspannungsnetz gespeist ist, und/oder zum vermindern der unsymmetrie in diesem wechselspannungsnetz
DE4033281C2 (de)
DE2643048C2 (de) Symmetrierungseinrichtung für ein von einem unsymmetrischen Verbraucher belastetes Drehstromnetz
CH617046A5 (en) Device for compensating the idle power of a consumer
DE4214918A1 (de) Verfahren zur Regelung der Ausgangsspannung eines Netzteiles
DE968994C (de) Umrichter-Schaltanordnung
DE949244C (de) Kontaktumformer
AT155747B (de) Verfahren zum Betrieb von Umrichtern, insbesondere bei beliebiger Belastung.
DE2401774C3 (de) Regeleinrichtung für die einem Drehstromverbraucher zugeführte Leistung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT SE

17P Request for examination filed

Effective date: 19810507

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 3067249

Country of ref document: DE

Date of ref document: 19840503

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840626

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840630

Year of fee payment: 5

Ref country code: BE

Payment date: 19840630

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840824

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840921

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19880630

Ref country code: CH

Effective date: 19880630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890630

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19890630

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80103430.7

Effective date: 19900412