EP0026260B1 - Dispositif de régulation de la tension entre deux conducteurs d'un réseau d'alimentation à courant alternatif pour une charge variant rapidement - Google Patents

Dispositif de régulation de la tension entre deux conducteurs d'un réseau d'alimentation à courant alternatif pour une charge variant rapidement Download PDF

Info

Publication number
EP0026260B1
EP0026260B1 EP80103430A EP80103430A EP0026260B1 EP 0026260 B1 EP0026260 B1 EP 0026260B1 EP 80103430 A EP80103430 A EP 80103430A EP 80103430 A EP80103430 A EP 80103430A EP 0026260 B1 EP0026260 B1 EP 0026260B1
Authority
EP
European Patent Office
Prior art keywords
voltage
integrator
value
rectifier
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80103430A
Other languages
German (de)
English (en)
Other versions
EP0026260A1 (fr
Inventor
Eberhard Dipl.-Ing. Schmid
Wolfgang Dipl.-Ing. Kaufhold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to CA000361047A priority Critical patent/CA1163323A/fr
Priority to BR8006182A priority patent/BR8006182A/pt
Publication of EP0026260A1 publication Critical patent/EP0026260A1/fr
Application granted granted Critical
Publication of EP0026260B1 publication Critical patent/EP0026260B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/40Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices
    • G05F1/44Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only

Definitions

  • the invention relates to a device for keeping the voltage constant between two conductors of an alternating current supply network for a rapidly changing load on a predeterminable half-vibration mean value (target mean value), with an alternating current controller containing two antiparallel controllable valves between the conductors and a valve control, which within a Half voltage oscillation as a function of the voltage detected by means of a measuring element arranged on at least one conductor (voltage converter) emits an ignition pulse for the valve lying in the forward direction.
  • target mean value target mean value
  • Such a device is known from US-A-3 435 248 and serves to keep the amplitude of the alternating voltage to be supplied to a consumer by an inverter via a filter.
  • the filter output voltage is rectified and as soon as the rectified voltage reaches the breakdown voltage of a Zener diode, an ignition pulse is emitted with which an inductor arranged between the conductors is switched via an AC power controller.
  • it is a comparison of the actual voltage amplitude with a predetermined target value.
  • the difference between the square of a setpoint and the square of the actual value is fed to an integral controller.
  • the regulator output voltage generally a DC voltage
  • the subordinate tax rate is necessary because the integral controller output voltage only indicates after a completed half-period due to the simultaneous integration of the actual and target values (which are recorded by their squares as RMS values) whether the RMS actual value averaged over this half-period is equal to the corresponding mean target value, or whether the modulation of the actuator has to be changed for the next half period.
  • Another device is known from “Siemens Research and Development Report”, Volume 6 (1977), pages 29 to 38 and is used on a supply network for electric furnaces which are used in steel production for melting scrap.
  • the arc occurring in such a furnace between the electrodes and the melting material breaks off at irregular intervals when the material melts.
  • the current intensity fluctuates irregularly between zero and short-circuit current.
  • the supply network may have a negligible ohmic internal resistance, but it may have a considerable impedance, the reactive current components of the load fluctuations in particular cause considerable voltage fluctuations that can disturb other consumers. Similar irregular or regular drops in the voltage level of a supply network also occur with other consumers, e.g. Pulse power supplies for synchrotrons or converter drives in rolling mills. Because e.g.
  • a battery of capacitors is connected in parallel with the consumer connected to a three-phase supply network, which is dimensioned such that it can deliver as much reactive current as the furnace can absorb at maximum.
  • the valves of a three-phase controller with a delta connection which is also connected to the supply network, are ignited.
  • the three-phase controller consists of a series connection of a choke between two phases and an AC controller formed by two antiparallel controllable valves. To ignite the three-phase control valves, these are controlled by a control system which contains measuring elements for both the current flowing through the furnace and the current flowing through the three-phase current control and consists of a large number of computing units for coordinate transformation, vector identification and vector rotation. This regulation is complex.
  • the invention is based on the object of specifying a simpler and very fast-acting control device which keeps the voltage level between the individual conductors of a single-phase, three-phase or multi-phase supply network constant, at least for a short time.
  • the voltage between two conductors e.g. one phase and the neutral conductor or between two phases of a multiphase network
  • This mean need not be the arithmetic mean of the voltage, rather it may be advantageous to determine the mean for a particular function, e.g. a power to specify the voltage, e.g. to influence the rms voltage value.
  • This mean value can be kept constant, or it can fluctuate in the long term within such low frequencies that these fluctuations no longer have a disturbing effect.
  • the object is achieved by a device of the type mentioned in the introduction, in which an integrator is connected downstream of the measuring element, the output signal of which is compared with a value corresponding to the predetermined target mean value, and the valve control is designed so that it generates the ignition pulse the time when the output signal reaches this value. If, for example, a constant arithmetic mean value is to be maintained for each voltage half-oscillation, an AC control valve is fired in each voltage half-wave as soon as the span voltage time area of this voltage half-wave reaches the predetermined target mean value.
  • the valve control preferably contains a limit detector with a pulse generator as a triggering pulse generator downstream of the integrator downstream of the measuring element for each of the anti-parallel valves.
  • the difference between the output variable of the integrator and a variable that corresponds to the target mean value for the voltage half-oscillation positive in the forward direction of the assigned valve is applied to each limit value detector; That is, the limit value detector, whose assigned valve can be conductive in the event of a positive half-oscillation, uses the difference between the integrator output variable and a positive setpoint as the target mean value of the voltage half-oscillation, and the sum of the integrator output variable and the setpoint (forming the difference with the negative one) for the other valve Setpoint).
  • the valve control can also be built from another integration and comparator circuit.
  • the output signal of an AC voltage integrator can be rectified and connected to a single limit indicator for comparison with the target mean value, the output signals of the limit indicator being used for alternating firing of the AC control valves.
  • a choke coil is advantageously connected in series with the AC power controller, which together with the line inductance forms a voltage divider. As a result, the current flowing through the AC controller is limited and the mains voltage is no longer short-circuited when the AC controller valves are ignited.
  • the integrator is advantageously preceded by a function generator, which generates an output variable ⁇
  • from the voltage measurement value U supplied a (a> 1) forms.
  • the mean voltage value can be regulated to a value related to the effective value.
  • the setpoint / actual value comparison takes place earlier in time, which enables corrective intervention by the AC power controller earlier.
  • the device according to the invention regulates short-term voltage changes, e.g. within a second, very quickly.
  • fluctuations in the range of several seconds are not caused by the load, are less disruptive and do not need to be compensated for. Therefore, the target mean value for the voltage can advantageously be tracked such that the device is always in the middle of its control range, seen over several periods. This is achieved by a series connection from a rectifier for the measured value. of the current flowing through the AC power controller, a smoothing element and a PI controller.
  • a setpoint value for the current flowing through the alternating current regulator, averaged over several periods is negatively applied to the input of the PI controller.
  • the output variable of the controller is used as the variable corresponding to the target mean value and is fed to the limit indicator.
  • valves are fired by an additional ignition signal each time their blocking time would exceed a predetermined maximum time.
  • This additional ignition signal can advantageously be formed by a network-synchronized tax rate, wherein the constant maximum blocking time can be predetermined by constant control of the tax rate.
  • the lowest possible zero point drift of the first integrator connected upstream of the limit value detector is required.
  • Usual measures to suppress this drift are complex, mean a mostly undesired phase shift for the integrator and can impair the transient behavior of the integrator.
  • each with its own limit indicator for controlling the anti-parallel valves there are often certain asymmetries in the two branches, which, like a drift of the integrator, can lead to an undesirable DC component in the network.
  • a can lead to difficulties if, particularly in the case of weak networks, multiple zero crossings of the network voltage occur.
  • a value corresponding to the target mean value is connected to the integrator output at the input of a limit value detector.
  • the limit value detector output signal is input to a pulse shaper, the pulses of which are fed via a pulse distributor to the valve which is currently in current flow.
  • the first integrator itself is after the delivery of an ignition pulse and before resettable at the next zero crossing of the voltage. In particular, the integrator can be reset by the additional ignition signal.
  • This embodiment is preferably further developed in that a switch is arranged between the potentiator and the connection of the target mean value, which is always open when the polarity of the voltage half-wave belonging to the last valve ignition matches the instantaneous polarity of the voltage. So if e.g. If the valve in the positive direction to influence the positive voltage half-wave has been ignited, the switch is opened until the voltage becomes negative. The integrator is now also set to zero. After the zero crossing, negative voltages are entered into the integrator by closing the switch; However, if multiple zero crossings occur due to the often unavoidable network fluctuations, all positive voltages are still hidden by opening the switch.
  • a choke coil is advantageously connected in series with the AC power controller.
  • the current through the AC power controller can be detected by means of a measuring element.
  • a second rectifier and a second integrator are then connected downstream of the measuring element.
  • This second integrator can be reset approximately at the same time as the first integrator.
  • a further switch, which can be opened and closed simultaneously with the first switch, is arranged between the rectifier and the integrator.
  • the output of this second integrator is connected to the input of the first integrator with a negative sign in addition to the output signal of the potentiator.
  • the control of the switches and the distribution of the ignition pulses and the additional ignition signals to the valves can be achieved with a simple logic circuit.
  • the second integrator can advantageously always be set to zero at the same time as the first integrator and can be kept at zero until the next zero crossing of the voltage.
  • FIGS. 1 to 3 show the principle of the invention using the example of a single-phase supply network
  • FIGS. 4 and 5 using the example of a three-phase supply network
  • FIGS. 6 and 7 show a further embodiment and its development
  • FIGS. 8 and 9 illustrate the pulse diagrams and the construction of a logic circuit for the exemplary embodiments according to FIGS. 6 and 7.
  • 1 and 2 denote the conductors of a single-phase AC network, the impedance of this supply network being indicated symbolically by a coil 3, while the conductor 2 is at ground potential.
  • the load 4 is connected to the conductor, the rapidly changing impedance of which causes repercussions in front of which further consumers 5, e.g. Incandescent lamps to be protected.
  • Parallel to the load 4 there is usually a capacitor bank 5 made up of many capacitors with an upstream choke 6.
  • the capacitor bank is dimensioned such that it can compensate for the reactive currents that occur at maximum load current. This capacitor bank makes it possible to maintain a favorable power factor for the system, but it is not absolutely necessary for the operation of the device.
  • an AC power controller 7 is arranged between the conductors 1 and 2, which consists of two anti-parallel thyristor valves 8 and 9.
  • the advantageous coil 10 arranged in series with the alternating current regulator 7 should not be considered for the time being.
  • a measuring element 11 is also provided.
  • Figure 1 corresponds to the known device mentioned at the outset for the case of a single-phase network.
  • the measuring element 11 detects the voltage U to be kept constant between the conductors and feeds it to the input of an integrator 13 via a function generator 12, which has likewise not been considered for the time being.
  • An integrator is used, the zero point of which does not drift and which automatically adjusts the DC voltage components present at the output (seen over several periods).
  • the output variable of the integrator 13 is fed to the comparison points 14 and 15, which have a positive variable M * applied to them, which corresponds to the nominal value of the voltage level, ie the nominal mean value of a half voltage oscillation.
  • the valve 8 of the AC power controller 7 is polarized in the forward direction.
  • the size M is therefore applied negatively to the comparison point 14 associated with this valve.
  • the difference signal is fed to a limit value detector 16, from the output signal of which an ignition pulse for the valve 8 is formed in the pulse shaper 17.
  • the positive quantity M * is added to the corresponding comparison point 15.
  • the comparison point 15 thus provides a target / actual value comparison between the voltage time area of the voltage U and the (negative) target value for the negative voltage half-oscillation.
  • the size obtained is again used to ignite the valve 9 via a limit indicator 18 with a pulse shaper 19 connected downstream.
  • a positive semi-oscillation is considered first.
  • the integrator 13 which is initially at a negative initial value at the beginning of this half-wave, integrates the measured values (actual voltage values) U until the value M * is reached.
  • the valve 8 is ignited via the limit indicator.
  • the voltage is short-circuited as soon as the voltage-time area has reached a value determined by M * within a half oscillation.
  • the valve 8 goes out and the negative half oscillation is indicated by de control of the valve 9 regulated to the negative mean.
  • M * is specified as the target value for the voltage time area fU dt of a half oscillation.
  • M * can be specified as a setpoint for + ⁇ U a dt for the positive half-wave, -M * as a setpoint for - f 1 U 1 "dt for the negative half-wave.
  • the voltage can be increased by suitable selection of the parameter a> 1
  • the current Ib flowing through the alternating current controller is measured by means of a current transformer 20, the measured values of which are integrated in a second integrator 21.
  • the output voltage proportional to the value ⁇ lb dt is applied negatively to the measured values of the mains voltage measured via the measuring element 11 on a summing element 22.
  • the integral of the voltage U a - ⁇ lb dt is now used, whereby the ignition timing is brought forward to such an extent that the voltage still present after the ignition timing and integrated in the first integrator 13 is approximately compensated.
  • this device can be expanded by a series circuit branching off at the output of the measuring element 20, comprising a rectifier 30, a smoothing element 31 (time constant T 2 for several seconds) and a PI regulator 32.
  • the rectified and smoothed output voltage of the current measuring element 20 becomes compared at the input of the controller 32 with a target value for the corresponding longer-term mean current value.
  • the controller output signal is fed to the comparison points 15 and 16 instead of the input variable which corresponds directly to the short-term nominal voltage value M *. Seen over several periods, the reactive current fluctuations of the rapidly changing load 4 are averaged to an approximately constant reactive current, so that a fixed relationship between the setpoint M * and the average current flowing through the AC power controller lb results.
  • the target value for the half-vibration mean value for example the effective voltage
  • the target value for the half-vibration mean value continues longer-term fluctuations in the amplitude of the mains voltage.
  • the effects of short-term load fluctuations on the mains voltage, which lead to the annoying flicker, are still compensated for by the rapid regulation via the integrator 13 and the limit indicators 16 and 18.
  • the AC power controller 7 can be connected to the supply network via a transformer 33. If its leakage inductance is higher than normal, it may a separate choke coil 10 can be dispensed with.
  • the device according to the invention which has so far been described for the case of an AC network with two conductors, can also be applied analogously to an N-phase AC network.
  • one of the devices shown in FIGS. 1 to 3 can each be arranged between one of the conductors and the neutral conductor.
  • the phases of this network are with 1 R, 1 S and 1 T, the three-phase load with 40, each between one phase and the star point or in pairs between two phases capacitor banks and upstream chokes with 50 and 60 and each also between one Phase and the neutral conductor or between two phases arranged AC power controller and the upstream chokes designated 70 and 30 respectively.
  • the phase voltages are measured via measuring elements 11 R, 11 S, 11 T and the currents flowing through the alternating current regulators 70 via measuring elements 20 ', 20 ", 20"'.
  • the measured values are fed to the control units 80 ', 80 ", 80'", which are constructed in accordance with FIGS.
  • a commercially available control set in this case a two-pulse control set 110, is provided which is based on the voltage U tapped by the voltage converter 11 is synchronized and its modulation is set by specifying a constant control vector such that a fixed period of time before the end of each half oscillation, an additional ignition signal L or M is applied to the ignition pulse F or G for the valve located in the respective half oscillation in the forward direction.
  • a circuit is known, for example, from Tietze-Schenk “semiconductor circuit technology”, Berlin, Heidelberg, New York, 4th ed. 1978, page 212.
  • Multipliers can also be used for integer values of a. By choosing a you can influence the quality of the flicker control.
  • the output variable of the potentiator 102 is passed via a switch 103 to the first integrator 105, the reset input of which is indicated by the switch 104.
  • the switches 103 and 104 can be kept closed by a "high" pulse of the control signals K and H.
  • the integrator output variable, together with the negative target mean value M *, is fed to a summation point 106 at the input of a first limit value detector 107.
  • the logic circuit 100 distributes the ignition pulses A together with the additional ignition signals L, M to the ignition devices 111, 112.
  • FIG. 8 The diagrams of the previously mentioned pulses A, F, G, H, K, L, M are shown in Figure 8 together with the course of the voltage U.
  • the control angle of the network-synchronized headset 110 which supplies the additional ignition signals L, M to limit the maximum blocking time of the AC control valves, is designated by ⁇ o .
  • Arrows 70 indicate the times at which the integrator output signal reaches the target mean value.
  • the reset of the switch 104 by means of the signal H and thus the preparation of the integrator for the formation of the voltage time area of a half oscillation (e.g. the negative half oscillation) takes place at the earliest with the first ignition belonging to the previous (in the example of the positive) voltage half wave, i.e.
  • the reset should ideally be completed when the new (in the example the negative) voltage half-wave begins after the voltage U has passed zero.
  • the reset pulses occur simultaneously with the positive edges of the additional ignition signals L and M.
  • the voltage time areas are not formed at the ideal time, which would be given by the zero crossing of the fundamental voltage, but rather the integrator begins to integrate from zero, an error could arise. However, this error is kept small in that the integrator z. B. to determine the negative voltage time areas, only the sections of the voltage curve are supplied that have a negative polarity.
  • the voltage time area determined by the integrator 105 is shown hatched, which is monitored at the limit detector 107 for exceeding the target mean value M * .
  • the further pulse diagrams shown in FIG. 8 relate to the example of a logic circuit 100 shown in FIG. 9 and the embodiment according to FIG. 7.
  • a second integrator 116 is provided.
  • a second rectifier 114 is connected upstream of the integrator 116 via a switch 115, which can be opened by the pulses K like the switch 103.
  • This second integrator 117 like the first integrator 105, should ideally be reset with the zero crossing of the fundamental voltage oscillation. However, it is simpler in terms of circuitry and results in practically no error if the reset switch 117 is closed with the start of the additional ignition signal and remains closed until the first zero crossing of the actual voltage curve, as represented by the corresponding closing pulse I.
  • the elements 30, 31 and 32 are structurally identical to the elements already described in FIG. 3 and fulfill the same task.
  • the voltage curve U is set via a delay element 90, e.g. a second-order delay element, fed to a limit indicator 91.
  • the signal C at the output of this limit value detector provides information about the polarity of the last voltage half-wave for the time period in which both the ignition pulses A and the zero crossings of the actual voltage curve are to be expected. With this information, the ignition pulses A and the additional ignition signals L and M can be distributed to the lines to the ignition devices 111 and 112 of the corresponding AC control valves.
  • pulse C is fed to an AND gate 92 and negated to an AND gate 93.
  • the additional ignition signals L and N in turn are combined on an OR gate 94.
  • the signal H is formed from the positive edges of the combined signal by means of a pulse shaper 95, which signal is combined with the ignition pulses A at an OR gate 96 to form the ignition pulse sequence E, which is applied to the other inputs of the AND gates 92 and 93 .
  • the signal H is also led out of the logic circuit for actuating the reset switch 104 of the first integrator.
  • the additional ignition signals L, M taking into account the sign of U derived from a limit value indicator 97.
  • the negated outputs of these two AND gates become the signal of the K output via an AND gate 89.
  • the pulses E and K are fed to the corresponding I output via a memory 88.
  • the circuit according to FIGS. 6 and 7 can also be applied to a multi-phase network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Rectifiers (AREA)
  • Control Of Electrical Variables (AREA)

Claims (14)

1. Dispositif de régulation de la tension entre deux conducteurs (1,2) d'un réseau d'alimentation à courant alternatif pour une charge variant rapidement à une valeur moyenne de demi-période prédéterminée (valeur moyenne de consigne), avec un régulateur du courant alternatif (7) comportant deux soupapes anti-parallèles et contrôlables (8, 9), disposé entre les conducteurs, et avec une commande des soupapes (12 à 19) qui fournit, à l'intérieur d'une demi-période de la tension et en fonction de la tension (U) saisie par un dispositif de mesure (11) associé au moins à l'un des conducteurs, une impulsion d'allumage pour la soupape qui est située dans le sens du passage, caractérisé par le fait qu'au dispositif de mesure (11) est relié en série aval un intégrateur (13) dont le signal de sortie est comparé à une valeur qui correspond à la valeur moyenne (M*) prédéterminée, et que la commande des soupapes est réalisée de telle manière qu'elle émet l'impulsion d'allumage à l'instant auquel le signal de sortie atteint cette valeur (M*).
2. Dispositif selon la revendication 1, caractérisé par le fait qu'à l'aide d'un signal d'allumage supplémentaire (L, M), les soupapes sont respectivement allumées lorsque leur durée de blocage dépasse une durée maximum prédéterminée (ao) (figure 8).
3. Dispositif selon la revendication 2, caractérisé par le fait que le signal d'allumage supplémentaire (L, M) est formé par un dispositif de commande (110) synchronisé avec le réseau, et que la durée de blocage maximale constante est donnée à l'avance par une valeur maximale de réglage (aD) (figure 6).
4. Dispositif selon l'une des revendications 1 à 3, caractérisé par le fait qu'est prévu un indicateur de valeur limite (16, 18) avec formateur d'impulsions (17, 19) monté en aval, et qu'à chaque indicateur de valeur limite (16 et 18) est appliquée la différence entre la grandeur de sortie du premier intégrateur (13) et une grandeur (M *) qui correspond à la valeur moyenne de consigne pour la demi-période de la tension qui est positive pour le sens de passage de la soupape associée (9, 10) (figure 2).
5. Dispositif selon l'une des revendications 1 à 3, caractérisé par le fait qu'il est prévu un redresseur monté en aval du premier intégrateur et un indicateur de valeur limite avec formateur d'impulsions aval, qu'à l'indicateur de valeur limite est appliquée la différence entre la grandeur de sortie du redresseur et une grandeur (M*) qui correspond à la valeur moyenne de consigne de la demi-onde de la tension, et qu'avec les signaux de sortie de l'indicateur de valeur limite sont allumées alternativement les soupapes anti-parallèles.
6. Dispositif selon l'une des revendications 1 à 5, caractérisé par un formateur de fonction (12) monté en amont du premier intégrateur (13), et dont la grandeur de sortie (± y = ± 1 x 1 a) est supérieure à une puissance plus grande que 1 de la valeur de mesure de la tension (figure 1).
7. Dispositif selon l'une des revendications 1 à 6, caractérisé par une self (10) qui est montée en série avec le régulateur de courant alternatif (7) (figure 1 ).
8. Dispositif selon la revendication 7, caractérisé par un dispositif de mesure (20) pour le courant passant par le régulateur de la tension alternative (7), et par un second intégrateur aval (21 ) dont la grandeur de sortie est appliquée négativement à la valeur de mesure de la tension (figure 2).
9. Dispositif selon l'une des revendications 1 à 3, caractérisé par le fait que dans le dispositif de commande des soupapes, entre le dispositif de mesure (11) et le premier intégrateur (15), est disposé un redresseur (101) auquel est relié en aval un dispositif d'élévation à une puissance (102), qu'à la sortie de l'intégrateur et à l'entrée d'un indicateur de valeur limite (107) est appliquée une valeur (M *) qui correspond à la valeur moyenne de consigne, que le signal de sortie de l'indicateur de valeur limite (107) est appliqué à un formateur d'impulsions (108) dont les impulsions sont appliquées, dans un distributeur d'impulsions, à la soupape qui est précisément située dans le sens du passage du courant, et que l'intégrateur (105) est susceptible d'être amené dans son état initial (commutateur 104), après l'émission d'une impulsion d'allumage et après le passage suivant par la valeur nulle de la tension (figure 6).
10. Dispositif selon la revendication 9, caractérisé par le fait que l'intégrateur (105) est susceptible d'être remis dans son état initial par un signal supplémentaire (H), en particulier par le signal d'allumage supplémentaire (L, M) selon la revendication 2 ou 3 (figure 6).
11. Dispositif selon la revendication 9 ou 10, caractérisé par le fait qu'en aval du dispositif d'élévation à une puissance est monté un commutateur (103) qui est maintenu dans sa position ouverte lorsque la polarité de la demi-onde de la tension qui appartient au dernier allumage de soupape, coïncide avec la polarité de la valeur instantanée du moment (U) de la tension (figure 6).
12. Dispositif selon l'une des revendications 9 à 11, caractérisé par un self (10) montée en série avec le régulateur du courant alternatif (7), par un dispositif de mesure (20) pour le courant passant par le régulateur du courant alternatif (7), par un second redresseur aval (114) et par un second intégrateur (17) susceptible d'être remis dans son état initial à peu près en même temps que le premier intégrateur, et dont l'entrée est reliée, par l'intermédiaire d'un commutateur supplémentaire ( 1 1 5) et commandé, pour l'ouverture et pour la fermeture, en même temps que le premier commutateur (103), à la sortie du second redresseur, et dont la sortie est de plus reliée négativement à l'entrée du premier intégrateur (figure 7).
13. Dispositif selon la revendication 12, caractérisé par le fait que le second intégrateur est placé dans sa position nulle en même temps que le premier intégrateur et est maintenu à la valeur nulle jusqu'au passage suivant par la valeur nulle de la tension.
14. Dispositif selon l'une des revendications 1 à 13, caractérisé par un circuit série constitué par un redresseur (30) pour la valeur de mesure du courant (Ib) qui passe par le régulateur du courant alternatif, par un élément de lissage (31) et par un régulateur proportionnel-intégral (32), la réalisation étant telle qu'on applique négativement à l'entrée du régulateur, en plus, une valeur de consigne (fb*) pour le courant qui passe par le régulateur de courant alternatif (7), et dont on a pris la moyenne sur plusieurs périodes, alors que la grandeur de sortie du régulateur est appliquée à l'indicateur de valeur limite sous la forme d'une grandeur qui correspond à la valeur moyenne de consigne (figure 3, figure 7).
EP80103430A 1979-09-27 1980-06-19 Dispositif de régulation de la tension entre deux conducteurs d'un réseau d'alimentation à courant alternatif pour une charge variant rapidement Expired EP0026260B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA000361047A CA1163323A (fr) 1979-09-27 1980-09-25 Compensation de tension pour reseau de courant alternatif alimentant une charge a variation rapide
BR8006182A BR8006182A (pt) 1979-09-27 1980-09-26 Dispositivo para manter constante a tensao entre dois conduores de uma rede de suprimento de corrente alternada, para uma carga que varia rapidamente

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2939251 1979-09-27
DE2939251 1979-09-27

Publications (2)

Publication Number Publication Date
EP0026260A1 EP0026260A1 (fr) 1981-04-08
EP0026260B1 true EP0026260B1 (fr) 1984-03-28

Family

ID=6082061

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80103430A Expired EP0026260B1 (fr) 1979-09-27 1980-06-19 Dispositif de régulation de la tension entre deux conducteurs d'un réseau d'alimentation à courant alternatif pour une charge variant rapidement

Country Status (4)

Country Link
US (1) US4357570A (fr)
EP (1) EP0026260B1 (fr)
JP (1) JPS5654527A (fr)
DE (1) DE3067249D1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202824A (en) * 1981-06-05 1982-12-11 Tokyo Shibaura Electric Co Secondary arc extinguishing device for power system
DE3149706A1 (de) * 1981-12-15 1983-07-21 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zur konstanthaltung der spannung eines lastschwankungen unterworfenen, ein- oder mehrphasigen wechselstromnetzes
JPS61109426A (ja) * 1984-11-01 1986-05-27 三菱電機株式会社 静止形無効電力補償装置
SE450675B (sv) * 1984-11-19 1987-07-13 Klaus Winter Anordning for overvakning av netparametrarna dempning, osymmetrigrad och snedavstemningsgrad i impedansjordade kraftnet
US5032738A (en) * 1986-01-22 1991-07-16 Vithayathil John J Scheme for rapid adjustment of network impedance
US4954765A (en) * 1989-06-29 1990-09-04 Hu Long Hai Fully automatic phase controller for a non-coil armature type generator
KR940002742B1 (ko) * 1991-07-03 1994-03-31 삼성전자 주식회사 무효전력 제어방식의 자동전압 제어회로
US5818208A (en) * 1996-12-19 1998-10-06 Abb Power T&D Company Inc. Flicker controllers using voltage source converters

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3435248A (en) * 1966-12-27 1969-03-25 Borg Warner A-c voltage regulator
DE2317067C2 (de) * 1973-04-05 1982-07-08 Brown, Boveri & Cie Ag, 6800 Mannheim Verfahren und Anordnung zur Steuerung einer Speiseschaltung für einen GLeichstromverbraucher
DE2317068C3 (de) * 1973-04-05 1981-10-29 Brown, Boveri & Cie Ag, 6800 Mannheim Speiseschaltung für einen von einer ein- oder mehrphasigen Wechselstromquelle gespeisten Gleichstromverbraucher
AT332940B (de) * 1973-04-05 1976-10-25 Bbc Brown Boveri & Cie Zwangsloschbare stromrichteranordnung fur einen aus einem ein- oder mehrphasigen wechselspannungsnetz gespeisten gleichstromverbraucher
US3944909A (en) * 1973-06-11 1976-03-16 Reymond Welles K Voltage, current, or power controller utilizing a switched reactance A.C. shunt regulator
US3939396A (en) * 1974-02-06 1976-02-17 Ecc Corporation Shunt A.C. voltage regulator with modified full-wave bridge
US4001671A (en) * 1974-12-23 1977-01-04 Westinghouse Electric Corporation Apparatus for providing feedback to eliminate a dc component in the output of a static var generator
JPS51123939A (en) * 1975-04-22 1976-10-29 Hitachi Plant Eng & Constr Co Ltd Cooling tower
US4156176A (en) * 1977-06-30 1979-05-22 Electric Power Research Institute, Inc. Voltage regulator utilizing a static var generator
US4143315A (en) * 1977-10-25 1979-03-06 General Electric Company Rms transducer and voltage regulating system employing the same

Also Published As

Publication number Publication date
DE3067249D1 (en) 1984-05-03
EP0026260A1 (fr) 1981-04-08
US4357570A (en) 1982-11-02
JPS5654527A (en) 1981-05-14

Similar Documents

Publication Publication Date Title
DE69020571T2 (de) Feldbeleuchtungsanlage.
DE4312084A1 (de) Leistungsversorgung
AT403865B (de) Spannungsumsetzungsvorrichtung für einen gleichspannungsverbraucher
DE2439990A1 (de) Blindleistungsschnellregelung zur spannungsstabilisierung in elektrischen leistungssystemen
DE2453583A1 (de) Steuerung bzw. regelung von leistungskonvertern mit einem parallelresonanz-kommutierungskreis
EP0026260B1 (fr) Dispositif de régulation de la tension entre deux conducteurs d'un réseau d'alimentation à courant alternatif pour une charge variant rapidement
DE69831666T2 (de) Niederspannungsbeleuchtungssystem
DE2246505C3 (de) Schaltungsanordnung zur unterbrechungsfreien Stromversorgung eines Gleichstromverbauchers mit konstanter Spannung
DE69423749T2 (de) Ofenausrüstung
DE1563930C3 (de) Schaltungsanordnung zur Regelung der Ausgangsspannung und des Ausgangs stromes eines Wechselrichters
DE2257264C3 (de) Schaltungsanordnung für eine Wechselrichteranordnung
DE2538493C3 (de) Gegen Überstrom geschützte Hochspannungsgleichstromübertragungsanlage
EP0037087B1 (fr) Procédé et dispositif pour brancher et débrancher sans suroscillation un condensateur entre deux conducteurs d'un réseau à tension alternative
EP0306686B1 (fr) Onduleur à circuit résonant parallèle avec circuit de sécurité
DE2019157A1 (de) Versorgungseinrichtung mit einem saettigbaren Transduktor
EP0249083A2 (fr) Dispositif pour alimentation de courant
DE1638444B2 (de) Verfahren zur verzoegerungsfreien regelung der blindleistung in elektrischen netzen
DE677786C (de) Verfahren und Einrichtung zum Betrieb von mit gittergesteuerten Dampf- oder Gasentladungsstrecken arbeitenden Umrichtern
DE2730010C2 (de) Schaltungsanordnung zur Erzeugung nach Größe und Kurvenform schnell veränderbarer Blindströme
DE2643934B1 (de) Einrichtung zur kompensation der blindleistung eines verbrauchers, der aus einem mehrphasigen wechselspannungsnetz gespeist ist, und/oder zum vermindern der unsymmetrie in diesem wechselspannungsnetz
DE4033281C2 (fr)
DE2643048C2 (de) Symmetrierungseinrichtung für ein von einem unsymmetrischen Verbraucher belastetes Drehstromnetz
CH617046A5 (en) Device for compensating the idle power of a consumer
DE949244C (de) Kontaktumformer
AT155747B (de) Verfahren zum Betrieb von Umrichtern, insbesondere bei beliebiger Belastung.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT SE

17P Request for examination filed

Effective date: 19810507

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 3067249

Country of ref document: DE

Date of ref document: 19840503

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840626

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840630

Year of fee payment: 5

Ref country code: BE

Payment date: 19840630

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840824

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840921

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19880630

Ref country code: CH

Effective date: 19880630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890630

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19890630

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80103430.7

Effective date: 19900412