EP0024307B1 - Dispositif pour la compensation du champ magnétique parasite d'un objet à l'aide d'une installation d'auto-protection magnétique - Google Patents
Dispositif pour la compensation du champ magnétique parasite d'un objet à l'aide d'une installation d'auto-protection magnétique Download PDFInfo
- Publication number
- EP0024307B1 EP0024307B1 EP19800104270 EP80104270A EP0024307B1 EP 0024307 B1 EP0024307 B1 EP 0024307B1 EP 19800104270 EP19800104270 EP 19800104270 EP 80104270 A EP80104270 A EP 80104270A EP 0024307 B1 EP0024307 B1 EP 0024307B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- probe
- arrangement according
- field
- compensation
- probes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 33
- 239000000523 sample Substances 0.000 claims description 84
- 230000000694 effects Effects 0.000 claims description 40
- 238000004804 winding Methods 0.000 claims description 22
- 238000005259 measurement Methods 0.000 claims description 20
- 230000010354 integration Effects 0.000 claims description 5
- 230000001939 inductive effect Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 230000000712 assembly Effects 0.000 claims 1
- 238000000429 assembly Methods 0.000 claims 1
- 238000013016 damping Methods 0.000 claims 1
- 230000010355 oscillation Effects 0.000 claims 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- 241000251729 Elasmobranchii Species 0.000 description 1
- 241001415771 Torpedinidae Species 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F13/00—Apparatus or processes for magnetising or demagnetising
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G9/00—Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines
- B63G9/06—Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines for degaussing vessels
Definitions
- the invention relates to a device according to the preamble of claim 1.
- a magnetometer is known from US-A-2752564, in which two cores provided with cores for detecting the magnetic field and two halves of the secondary winding of a transformer fed by an oscillator each form a bridge arm. In the absence of an external magnetic field, the bridge provides no output signal. In the other case, the bridge output via an amplifier, a rectifier and an output amplifier in a coil will generate such a current that the field it produces is of the same size and opposite to the field to be measured.
- a measuring device in the coil feed line can display the coil current or the field strength directly.
- a magnetic self-protection system is not dealt with here.
- MES magnetic self-protection systems
- three field measuring probes are provided outside the magnetic interference range of the ship, preferably on a non-magnetic mast tip, which control the excitation of power amplifiers via a field measuring device, which in turn supply currents for the compensation windings of the system.
- the three field measuring probes should be arranged individually or preferably together rotatably and the field measuring devices and power amplifiers should be equipped with special devices for negative feedback and thus for uninterrupted self-monitoring of the entire system.
- DE-C-977 846 shows that the geometrical interference field gradients arising from the ship and occurring in the associated probe pairs are used to control the MES windings. This method should enable automatic self-compensation in the manner of a closed control loop.
- the polarity of the measurement effect can be used to determine the direction of the magnetic field strength of an inhomogeneous magnetic field, e.g. B. the own field of a ship, if it is known to which side of the probe the absolute amounts of the magnetic field strength decrease or increase.
- an inhomogeneous magnetic field e.g. B. the own field of a ship
- a differential field probe can be used to compensate for the magnetic self-field 1 of an object 2 according to FIG. 1.
- the arrangement of a differential field probe 3 is shown in this example.
- the probe is located away from object 2 to be compensated. It is attached approximately in the radial direction to object 2. This «being away» from the magnetic center of gravity already fulfills the condition mentioned above due to the distance law for the magnetic field of the object.
- a polarity reversal of the stray field results in a clear polarity reversal of the probe effect at the deflection of the magnetometer display instrument 4, as shown in FIG. 2, even if the probe can only detect components of the object's own field.
- the invention is therefore based on the object of providing a device with which automatic compensation of interference fields is ensured.
- Probes of this type are known as so-called Forester probes are known and described, for example, in DE-B-1 182 739.
- the gradients here are particularly large due to the magnetic distance laws, which means that the accuracy requirements do not have to be very great.
- the influence of magnetic inhomogeneities of the object is particularly disruptive, e.g. B. in ships, the structures, frames, devices, etc.
- FIGS. 1 and 2 show the arrangement of a differential field probe in the magnetic earth field
- FIGS. 3 and 4 show the coupling of the probe to the compensation winding
- FIG. 5 shows a rotatable differential field probe
- 6 shows a possibility of reducing the number of probes
- FIGS. 7 to 9 show further examples for reducing the number of probes.
- the probe and the compensation winding are coupled to one another in such a way that the measuring effect of the probe 3 at the output of a magnetometer 5 is integrated via an integration element 6, for example an electronic integration element, an integration amplifier or a computer.
- the output signal of the integration element is then supplied to a power element 7 as electrical voltage.
- a DC power amplifier can be used for this.
- the power element 7 supplies the current for a compensation winding 8 (MES winding) with which the magnetometer electronics 5 to 7 are permanently connected in such a way that the magnetic field generated, or a component thereof, is directed opposite the measured field.
- MES winding compensation winding 8
- Such a combination can be used to compensate for an object 2 and / or parts of an object wherever the compensation of a specific stray field component is considered necessary.
- components 9, 10 and 1'1 are provided for the X, Y and Z directions.
- a device for the practical design of the device is improved in such a way that the features of the A10 are used.
- two non-magnetic ball bearings 13 and 14 and a hydraulic, pneumatic or electric motor, preferably a synchronous motor, are provided.
- the probe can also be rotated by hand, with wind power or by means of the travel current. Because of the inevitable misalignment of the two antiparallel sensors 15 and 16, which are shown exaggeratedly crooked in the figure, both sensors produce a more or less large reciprocal effect.
- the two interference effects are usually of different sizes and are out of phase with one another. Both alternating effects subtract after the usual switching of magnetometers.
- Slip rings 17 (mercury slip rings), inductive or capacitive transmitters or radio transmitters can be used to forward the measurement signals from the rotating probe. In this case it is advisable to use the entire electronics 18 of the magnetometer or parts thereof, e.g. miniaturized form to circulate together with the probe.
- Torsional vibrations have the advantage that the sensors can be connected to the downstream links using cables.
- the number of probes required to compensate for an object can be reduced. Instead of using three probes, one for each of the V, L and H windings According to the Z, X and Y directions, a single probe 19 according to FIG. 6 is sufficient if it is arranged skewed to the coil directions X, Y and Z.
- This probe can be a fixed or rotating probe. If a component of the object to be demagnetized is of particular importance, the angular position of the probe should be approximated in this direction more than another, less important one.
- the measurement effect resulting in this way contains the measurement effects of the X, Y and Z components as one variable.
- Another way of making the measurement effect zero and thus the self-field of the object to be compensated is to transfer the control of the current direction for the compensation windings to special field probes which detect the direction of the self-field of the object. If e.g. B. a V, L and H winding are provided, a triple probe for the X, Y and Z directions is to be used.
- the rotating probe is to consciously rotate a sensor in a certain direction deviating from an ideal position, and preferably by an angle that lies outside the angular tolerance of the sensors. Since the direction of the misalignment of the sensor is thus known, the resulting measurement effect of this sensor can be used to infer the field direction at the location of the sensor. The greatest measuring effect occurs with the rotating position of the probe, where the measuring direction of the sensor and the field direction come closest. However, both sensors can also be tilted in the manner described.
- probe 20 measures the gradient of the X component, probe 21 that of the Y component, and probe 22 that of the Z component.
- the probe base then receives exactly or only approximately a radial direction (gradient direction) to the object.
- gradient direction a radial direction
- the sensors in the probes in a different way. Although they are always to be installed anti-parallel, the sensors receive the direction of the corresponding field direction to be measured. All sensors can also be combined in one probe (FIG. 8), or one sensor each takes over, crooked, the function of more than one sensor (FIG.
- the probes should be set up in a known manner, if possible, where probe zero coincides with the object's own field zero.
- the compensation principle according to the invention only requires that the effect measured by the probe and the compensation effect caused by the compensation winding go together towards zero. A linear relationship or other established relationship need not be fulfilled.
- the gain between the measuring effect and the compensation current is also adjustable. This can compensate for unavoidable, annoying induction effects in the vicinity of the probe.
- a special auxiliary compensation winding can also be attached for the inductive impurity that affects the probe. Their exposure is to be determined and set by means of a magnetic measurement.
- the magnetometer can also be equipped with a signal display in order to make it possible to detect extreme loads or faults.
- a measuring instrument or an optical or acoustic display device can be used for this purpose. This is particularly necessary when an effect that can no longer be compensated occurs.
- the sensor and the electronics are advantageously to be manufactured according to the modular principle.
- the compensation described using the measurement method is predestined to protect ships from gradient mines. It can also be used for devices, engines, land vehicles, armored vehicles and for controlling the compensation of interference-free spaces and rooms or for measuring purposes.
- the rotating probe makes it possible to dispense with the precision required in the manufacture of the probes currently customary.
- a Hall sensor can also be used for the rotating probe.
- the rotary probe is suitable for self-measurement, in particular it can be towed behind a ship or pulled longitudinally or transversely under the ship or attached freely or tensioned or carried out by a dinghy.
- the measurement also benefits from the gyro effect of the rotating probe, which has to be deliberately amplified. It can be driven by the traction current via impellers. In a particularly advantageous manner the probe can be placed in the Sonardom under a ship.
- the object's own field is created by permanent, inductive or magnetostrictive magnetism.
- the compensation is also independent of the course and the longitude and latitude. It can be used for roll effects as well as for stamping and rolling effects. Alternating fields can also be compensated for. Any change in the own field can be compensated for independently.
- the rotation probe can also be used to find magnetic objects, ships, submarines, etc. For this purpose, it can be used from ships, aircraft or land vehicles.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Geophysics And Detection Of Objects (AREA)
- Measuring Magnetic Variables (AREA)
Claims (19)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19792929964 DE2929964C2 (de) | 1979-07-24 | 1979-07-24 | Verfahren zur Kompensation von magnetischen Störfeldern von Objekten mittels magnetischer Eigenschutzanlagen |
DE2929964 | 1979-07-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0024307A1 EP0024307A1 (fr) | 1981-03-04 |
EP0024307B1 true EP0024307B1 (fr) | 1984-03-28 |
Family
ID=6076631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19800104270 Expired EP0024307B1 (fr) | 1979-07-24 | 1980-07-19 | Dispositif pour la compensation du champ magnétique parasite d'un objet à l'aide d'une installation d'auto-protection magnétique |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0024307B1 (fr) |
DE (1) | DE2929964C2 (fr) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3403982A1 (de) * | 1984-02-04 | 1985-08-08 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Verfahren fuer eine stoerfeldgeregelte magnetische eigenschutzanlage (smes-anlage) |
SE8404402L (sv) * | 1984-09-04 | 1986-03-05 | Bofors Ab | Sett och anordning for reducering av magnetsignaturen for rorliga fartygsdetaljer |
DE3614527A1 (de) * | 1986-04-29 | 1987-11-05 | Bundesrep Deutschland | Verfahren zur einstellung einer magnetischen eigenschutz (mes) - anlage zur kompensation des magnetischen stoerfeldes eines fahrzeuges, insbesondere schiffes |
GB2222026B (en) * | 1988-08-19 | 1991-09-25 | Marconi Co Ltd | Magnet assembly |
DE3936985C2 (de) * | 1989-11-07 | 1994-12-22 | Bundesrep Deutschland | Verfahren und Vorrichtung zur Kompensation von objekteigenen magnetischen Störfeldern, insbesondere bei Schiffen, mittels feldgeregelter magnetischer Eigenschutzanlage |
DE9013208U1 (de) * | 1990-09-18 | 1991-01-10 | Bundesamt für Wehrtechnik u. Beschaffung, 5400 Koblenz | Vorrichtung zur Kompensation des von Schiffseinbaugruppen verursachten magnetischen Störfeldes |
RU2119690C1 (ru) * | 1997-08-22 | 1998-09-27 | Закрытое акционерное общество Научно-производственный центр "Технология и эффективность" | Многофункциональная система размагничивания ферромагнитных объектов |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2752564A (en) * | 1947-01-14 | 1956-06-26 | Clifford M Ryerson | Apparatus for detecting a magnetic field |
US2832041A (en) * | 1952-12-31 | 1958-04-22 | Trachtenberg Murray | Automatic system for degaussing control |
DE977727C (de) * | 1958-09-14 | 1968-11-14 | Friedrich Dr Foerster | Einrichtung zur Steuerung von magnetischen Eigenschutzanlagen gegen die Wirkung des induzierten Anteiles des magnetischen Momentes von Schiffen |
DE977881C (de) * | 1958-09-17 | 1972-01-20 | Friedrich Dr Foerster | Verfahren zur Kompensation des magnetischen Stoerfeldes von aus ferromagnetischen Bauteilen bestehenden Einheiten, insbesondere auf Schiffen mit unmagnetischer Aussenhaut |
DE977914C (de) * | 1958-09-21 | 1972-11-23 | Foerster Inst Dr Friedrich | Verfahren zum Schutze von Schiffen vor Sprengkoerpern, z. B. Minen oder Torpedos, mit magnetischer Zuendung |
DE977817C (de) * | 1959-04-16 | 1971-01-28 | Friedrich Dr Foerster | Einrichtung zur Kompensation des magnetischen Wirbelstromstoerfeldes, das durch einen metallischen Hohlkoerper bei dessen Bewegung im Erdfeld entsteht |
DE977788C (de) * | 1959-06-06 | 1970-04-16 | Foerster Inst Dr Friedrich | Verfahren zur Steuerung magnetischer Eigenschutzanlagen von Schiffen |
DE977906C (de) * | 1959-07-29 | 1972-09-07 | Friedrich Dr Phil Foerster | Verfahren zur Kompensation des magnetischen Stoerfeldes von aus ferromagnetischen Bauteilen (Stoerkoerpern) bestehenden Einheiten, insbesondere auf Schiffen mit unmagnetischer Aussenhaut |
DE977846C (de) * | 1960-06-05 | 1971-09-02 | Friedrich Dr Foerster | Verfahren zur Kompensation der magnetischen Erdfeldstoerung durch Schiffe |
US3063422A (en) * | 1960-06-13 | 1962-11-13 | Joel H Gregowski | Electromechanical device |
DE977836C (de) * | 1960-07-23 | 1971-06-16 | Siemens Ag | Einrichtung zur Kompensation von Wechselfeldern auf Fahrzeugen, insbesondere Schiffen |
US3110282A (en) * | 1960-08-24 | 1963-11-12 | Friedrich M O Foerster | Degaussing control |
-
1979
- 1979-07-24 DE DE19792929964 patent/DE2929964C2/de not_active Expired
-
1980
- 1980-07-19 EP EP19800104270 patent/EP0024307B1/fr not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE2929964A1 (de) | 1981-01-29 |
EP0024307A1 (fr) | 1981-03-04 |
DE2929964C2 (de) | 1984-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1797463B1 (fr) | Dispositif pour la localisation d'objets metalliques et procede d'ajustement dudit dispositif | |
EP0945736B1 (fr) | Magnétomètre | |
DE69125497T2 (de) | Vorrichtung zur erzeugung eines magnetfeldes | |
DE4101481A1 (de) | Anordnung zum kompensieren externer magnetfeldstoerungen bei einem kernresonanzspektrometer mit supraleitender magnetspule | |
DE3403982C2 (fr) | ||
EP0024307B1 (fr) | Dispositif pour la compensation du champ magnétique parasite d'un objet à l'aide d'une installation d'auto-protection magnétique | |
EP0294590A2 (fr) | Capteur de courant selon le principe de la compensation | |
DE3131394C2 (de) | Verfahren zur Bestimmung der Rollage eines rotierenden Flugkörpers mit Hilfe des erdmagnetischen Feldes | |
EP3314310B1 (fr) | Dispositif et procédé de détection d'un objet | |
DE2929504C2 (de) | Richtungsweiservorrichtung | |
DE2217097C2 (de) | Vorrichtung zur Kompensation des gyromagnetischen Fehlers der Anzeige eines Gesamtfeldmagnetometers | |
DE69401092T2 (de) | Vorrichtung zur Messung der Winkellage eines Rotors | |
DE4000018C2 (de) | Sensorsysteme mit starrem Verbund von rechteckigen Sender- und Empfängerspulen zur Durchführung elektromagnetischer Sondierungen über der Oberfläche eines dreidimensionalen Körpers, Aufhängevorrichtung für solche Sensorsysteme sowie Verfahren zur Bestimmung der Leitfähigkeitsverteilung im Inneren eines Körpers | |
DE102005045774A1 (de) | Messvorrichtung und Verfahren zur berührungslosen Bestimmung der Lage zweier relativ zueinander verstellbarer Bauteile | |
DE2929404C2 (de) | Differenzfeldsonde | |
DE68903925T2 (de) | Magnetisches minenraeumungssystem. | |
DE102010010045A1 (de) | Elektromagnetischer Durchflussmesser | |
EP1189076A2 (fr) | Méthode de localisation d'objets et dispositif de détection | |
EP3884506B1 (fr) | Encodeur à aimant permanent pour un capteur, capteur et dispositif de commande pour piloter un véhicule | |
DE570916C (de) | Selbsttaetige Steuervorrichtung fuer Schiffe u. dgl. | |
DE1516190B1 (de) | Verfahren und Vorrichtung zur Messung von Magnetfeldern | |
DE1275772B (de) | Anordnung zur Ermittlung des aus fahrzeugeigenen magnetischen Stoerfeldern resultierenden Kursfehlers in kompassgefuehrten Kurskreiselanlagen | |
DE1956001A1 (de) | Magnetfeldabhaengige Vorrichtung und Kompasssystem,das eine derartige Vorrichtung verwendet | |
DE1056972B (de) | Elektromagnetische Vorrichtung | |
DE3904936B3 (de) | Verfahren zur magnetischen Immunisierung, insbesondere für Schiffsaufbauten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19810904 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): FR GB IT SE |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19840731 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19840930 Year of fee payment: 5 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: INSTITUT DR. FOERSTER PRUEFGERAETEBAU GMBH & CO. K Effective date: 19841117 |
|
26 | Opposition filed |
Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN Effective date: 19841221 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 19870710 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state | ||
EUG | Se: european patent has lapsed |
Ref document number: 80104270.6 Effective date: 19890510 |