EP0024307B1 - Dispositif pour la compensation du champ magnétique parasite d'un objet à l'aide d'une installation d'auto-protection magnétique - Google Patents

Dispositif pour la compensation du champ magnétique parasite d'un objet à l'aide d'une installation d'auto-protection magnétique Download PDF

Info

Publication number
EP0024307B1
EP0024307B1 EP19800104270 EP80104270A EP0024307B1 EP 0024307 B1 EP0024307 B1 EP 0024307B1 EP 19800104270 EP19800104270 EP 19800104270 EP 80104270 A EP80104270 A EP 80104270A EP 0024307 B1 EP0024307 B1 EP 0024307B1
Authority
EP
European Patent Office
Prior art keywords
probe
arrangement according
field
compensation
probes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19800104270
Other languages
German (de)
English (en)
Other versions
EP0024307A1 (fr
Inventor
Walter Dr. Nissen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Licentia Patent Verwaltungs GmbH
Original Assignee
Licentia Patent Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6076631&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0024307(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Licentia Patent Verwaltungs GmbH filed Critical Licentia Patent Verwaltungs GmbH
Publication of EP0024307A1 publication Critical patent/EP0024307A1/fr
Application granted granted Critical
Publication of EP0024307B1 publication Critical patent/EP0024307B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G9/00Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines
    • B63G9/06Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines for degaussing vessels

Definitions

  • the invention relates to a device according to the preamble of claim 1.
  • a magnetometer is known from US-A-2752564, in which two cores provided with cores for detecting the magnetic field and two halves of the secondary winding of a transformer fed by an oscillator each form a bridge arm. In the absence of an external magnetic field, the bridge provides no output signal. In the other case, the bridge output via an amplifier, a rectifier and an output amplifier in a coil will generate such a current that the field it produces is of the same size and opposite to the field to be measured.
  • a measuring device in the coil feed line can display the coil current or the field strength directly.
  • a magnetic self-protection system is not dealt with here.
  • MES magnetic self-protection systems
  • three field measuring probes are provided outside the magnetic interference range of the ship, preferably on a non-magnetic mast tip, which control the excitation of power amplifiers via a field measuring device, which in turn supply currents for the compensation windings of the system.
  • the three field measuring probes should be arranged individually or preferably together rotatably and the field measuring devices and power amplifiers should be equipped with special devices for negative feedback and thus for uninterrupted self-monitoring of the entire system.
  • DE-C-977 846 shows that the geometrical interference field gradients arising from the ship and occurring in the associated probe pairs are used to control the MES windings. This method should enable automatic self-compensation in the manner of a closed control loop.
  • the polarity of the measurement effect can be used to determine the direction of the magnetic field strength of an inhomogeneous magnetic field, e.g. B. the own field of a ship, if it is known to which side of the probe the absolute amounts of the magnetic field strength decrease or increase.
  • an inhomogeneous magnetic field e.g. B. the own field of a ship
  • a differential field probe can be used to compensate for the magnetic self-field 1 of an object 2 according to FIG. 1.
  • the arrangement of a differential field probe 3 is shown in this example.
  • the probe is located away from object 2 to be compensated. It is attached approximately in the radial direction to object 2. This «being away» from the magnetic center of gravity already fulfills the condition mentioned above due to the distance law for the magnetic field of the object.
  • a polarity reversal of the stray field results in a clear polarity reversal of the probe effect at the deflection of the magnetometer display instrument 4, as shown in FIG. 2, even if the probe can only detect components of the object's own field.
  • the invention is therefore based on the object of providing a device with which automatic compensation of interference fields is ensured.
  • Probes of this type are known as so-called Forester probes are known and described, for example, in DE-B-1 182 739.
  • the gradients here are particularly large due to the magnetic distance laws, which means that the accuracy requirements do not have to be very great.
  • the influence of magnetic inhomogeneities of the object is particularly disruptive, e.g. B. in ships, the structures, frames, devices, etc.
  • FIGS. 1 and 2 show the arrangement of a differential field probe in the magnetic earth field
  • FIGS. 3 and 4 show the coupling of the probe to the compensation winding
  • FIG. 5 shows a rotatable differential field probe
  • 6 shows a possibility of reducing the number of probes
  • FIGS. 7 to 9 show further examples for reducing the number of probes.
  • the probe and the compensation winding are coupled to one another in such a way that the measuring effect of the probe 3 at the output of a magnetometer 5 is integrated via an integration element 6, for example an electronic integration element, an integration amplifier or a computer.
  • the output signal of the integration element is then supplied to a power element 7 as electrical voltage.
  • a DC power amplifier can be used for this.
  • the power element 7 supplies the current for a compensation winding 8 (MES winding) with which the magnetometer electronics 5 to 7 are permanently connected in such a way that the magnetic field generated, or a component thereof, is directed opposite the measured field.
  • MES winding compensation winding 8
  • Such a combination can be used to compensate for an object 2 and / or parts of an object wherever the compensation of a specific stray field component is considered necessary.
  • components 9, 10 and 1'1 are provided for the X, Y and Z directions.
  • a device for the practical design of the device is improved in such a way that the features of the A10 are used.
  • two non-magnetic ball bearings 13 and 14 and a hydraulic, pneumatic or electric motor, preferably a synchronous motor, are provided.
  • the probe can also be rotated by hand, with wind power or by means of the travel current. Because of the inevitable misalignment of the two antiparallel sensors 15 and 16, which are shown exaggeratedly crooked in the figure, both sensors produce a more or less large reciprocal effect.
  • the two interference effects are usually of different sizes and are out of phase with one another. Both alternating effects subtract after the usual switching of magnetometers.
  • Slip rings 17 (mercury slip rings), inductive or capacitive transmitters or radio transmitters can be used to forward the measurement signals from the rotating probe. In this case it is advisable to use the entire electronics 18 of the magnetometer or parts thereof, e.g. miniaturized form to circulate together with the probe.
  • Torsional vibrations have the advantage that the sensors can be connected to the downstream links using cables.
  • the number of probes required to compensate for an object can be reduced. Instead of using three probes, one for each of the V, L and H windings According to the Z, X and Y directions, a single probe 19 according to FIG. 6 is sufficient if it is arranged skewed to the coil directions X, Y and Z.
  • This probe can be a fixed or rotating probe. If a component of the object to be demagnetized is of particular importance, the angular position of the probe should be approximated in this direction more than another, less important one.
  • the measurement effect resulting in this way contains the measurement effects of the X, Y and Z components as one variable.
  • Another way of making the measurement effect zero and thus the self-field of the object to be compensated is to transfer the control of the current direction for the compensation windings to special field probes which detect the direction of the self-field of the object. If e.g. B. a V, L and H winding are provided, a triple probe for the X, Y and Z directions is to be used.
  • the rotating probe is to consciously rotate a sensor in a certain direction deviating from an ideal position, and preferably by an angle that lies outside the angular tolerance of the sensors. Since the direction of the misalignment of the sensor is thus known, the resulting measurement effect of this sensor can be used to infer the field direction at the location of the sensor. The greatest measuring effect occurs with the rotating position of the probe, where the measuring direction of the sensor and the field direction come closest. However, both sensors can also be tilted in the manner described.
  • probe 20 measures the gradient of the X component, probe 21 that of the Y component, and probe 22 that of the Z component.
  • the probe base then receives exactly or only approximately a radial direction (gradient direction) to the object.
  • gradient direction a radial direction
  • the sensors in the probes in a different way. Although they are always to be installed anti-parallel, the sensors receive the direction of the corresponding field direction to be measured. All sensors can also be combined in one probe (FIG. 8), or one sensor each takes over, crooked, the function of more than one sensor (FIG.
  • the probes should be set up in a known manner, if possible, where probe zero coincides with the object's own field zero.
  • the compensation principle according to the invention only requires that the effect measured by the probe and the compensation effect caused by the compensation winding go together towards zero. A linear relationship or other established relationship need not be fulfilled.
  • the gain between the measuring effect and the compensation current is also adjustable. This can compensate for unavoidable, annoying induction effects in the vicinity of the probe.
  • a special auxiliary compensation winding can also be attached for the inductive impurity that affects the probe. Their exposure is to be determined and set by means of a magnetic measurement.
  • the magnetometer can also be equipped with a signal display in order to make it possible to detect extreme loads or faults.
  • a measuring instrument or an optical or acoustic display device can be used for this purpose. This is particularly necessary when an effect that can no longer be compensated occurs.
  • the sensor and the electronics are advantageously to be manufactured according to the modular principle.
  • the compensation described using the measurement method is predestined to protect ships from gradient mines. It can also be used for devices, engines, land vehicles, armored vehicles and for controlling the compensation of interference-free spaces and rooms or for measuring purposes.
  • the rotating probe makes it possible to dispense with the precision required in the manufacture of the probes currently customary.
  • a Hall sensor can also be used for the rotating probe.
  • the rotary probe is suitable for self-measurement, in particular it can be towed behind a ship or pulled longitudinally or transversely under the ship or attached freely or tensioned or carried out by a dinghy.
  • the measurement also benefits from the gyro effect of the rotating probe, which has to be deliberately amplified. It can be driven by the traction current via impellers. In a particularly advantageous manner the probe can be placed in the Sonardom under a ship.
  • the object's own field is created by permanent, inductive or magnetostrictive magnetism.
  • the compensation is also independent of the course and the longitude and latitude. It can be used for roll effects as well as for stamping and rolling effects. Alternating fields can also be compensated for. Any change in the own field can be compensated for independently.
  • the rotation probe can also be used to find magnetic objects, ships, submarines, etc. For this purpose, it can be used from ships, aircraft or land vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measuring Magnetic Variables (AREA)

Claims (19)

1. Dispositif pour compenser les champs magnétiques perturbateurs d'objets, de préférence de navires, au moyen d'installations magnétiques d'autoprotection réglées par le champ perturbateur, dans lesquelles des sondes de champ différentiel pour détecter le champ perturbateur non homogène, des amplificateurs de puissance et des enroulements de compensation de l'installation d'autoprotection forment des circuits de régulation qui sont utilisés pour régler les courants circulant dans les enroulements de compensation de l'installation, caractérisé en ce que les circuits de régulation (3, 5-8) sont dotés en plus d'éléments d'intégration (6), que des champs perturbateurs individuels sont pourvus de circuits de régulation individuels pour la compensation et que les circuits de régulation individuels sont utilisés parallèlement entre eux et à l'installation de compensation englobant tout l'objet (2).
2. Dispositif selon la revendication 1, caractérisé en ce que les sondes de champ différentiel (3) sont placées à des endroits où les intensités de champ différentiel sont toujours nulles lorsque les champs perturbateurs détectés sont compensés de façon optimale au moyen des enroulements de compensation (8).
3. Dispositif selon la revendication 1, caractérisé en ce que, en cas de présence de champs perturbateurs locaux, agissant seulement sur les sondes de champ différentiel (3) et ne pouvant pas être compensés au moyen des enroulements (8) de compensation ou d'autoprotection magnétique, des effets constants ou dépendant du champ magnétique sont superposés à l'effet à mesurer par la sonde.
4. Dispositif selon la revendication 3, caractérisé en ce que des champs perturbateurs à proximité des sondes de champ différentiel (3) sont compensés par des enroulements auxiliaires particuliers.
5. Dispositif selon la revendication 1, caractérisé en ce que les sondes de champ différentiel (3) sont disposées à distance de l'objet (2).
6. Dispositif selon la revendication 1, caractérisé en ce que les sondes (3) et/ou l'électronique sont de construction modulaire.
7. Dispositif selon la revendication 5, caractérisé en ce que les sondes (3) sont placées dans le dôme sonar d'un navire.
8. Dispositif selon les revendications 1 à 6, caractérisé par son utilisation sur des véhicules marins et terrestres ainsi que dans des lieux et des locaux.
9. Dispositif selon la revendication 1, caractérisé en ce que les sondes de champ différentiel (3) sont combinées avec un dispositif de signalisation pour l'indication du dépassement de valeurs admissibles ou pour l'indication d'une perturbation.
10. Dispositif selon la revendication 1, caractérisé en ce que les circuits de régulation (3, 5-8) comportent une sonde de champ différentiel (12) possédant deux capteurs (15, 16) espacés l'un de l'autre d'une distance préfixée (base) sur l'axe longitudinal de la sonde, dont la direction de mesure est la direction du champ magnétique, et que la sonde (12) est disposée rotative autour de son axe longitudinal (fig. 5).
11. Dispositif selon la revendication 10, caractérisé en ce que la sonde (12) est entraînée en rotation par un moteur hydraulique, pneumatique ou électrique.
12. Dispositif selon la revendication 10, caractérisé en ce que la sonde (12) est tournée manuellement au moyen d'un volant, d'une poignée ou d'une manivelle.
13. Dispositif selon la revendication 10, caractérisé en ce que la sonde (12) est entraînée en rotation par un dispositif, tel qu'une hélice ou des coquilles en croix, mû par le vent.
14. Dispositif selon la revendication 10, caractérisé en ce que la sonde (12) est entraînée en rotation par un moteur mû par un courant d'eau.
15. Dispositif selon la revendication 10, caractérisé par la prévision d'éléments d'amortissement, de filtres ou d'étages de comptage pour éliminer des effets de mesure sinusoïdaux provoqués par des erreurs d'ajustement.
16. Dispositif selon la revendication 10, caractérisé par un dispositif de réglage pour changer la vitesse de rotation de la sonde de champ différentiel.
17. Dispositif selon la revendication 10, caractérisé en ce que la sonde de champ différentiel (12) effectue des oscillations tournantes.
18. Dispositif selon la revendication 10, caractérisé en ce qu'un capteur (15, 16) de la sonde de champ différentiel (12) est disposé en biais par rapport à l'axe longitudinal de la sonde.
19. Dispositif selon les revendications 10 à 17, caractérisé en ce que des transmetteurs inductifs ou capacitifs ou des émetteurs radio sont prévus pour transmettre les valeurs mesurées à partir de la sonde (12) tournante.
EP19800104270 1979-07-24 1980-07-19 Dispositif pour la compensation du champ magnétique parasite d'un objet à l'aide d'une installation d'auto-protection magnétique Expired EP0024307B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792929964 DE2929964C2 (de) 1979-07-24 1979-07-24 Verfahren zur Kompensation von magnetischen Störfeldern von Objekten mittels magnetischer Eigenschutzanlagen
DE2929964 1979-07-24

Publications (2)

Publication Number Publication Date
EP0024307A1 EP0024307A1 (fr) 1981-03-04
EP0024307B1 true EP0024307B1 (fr) 1984-03-28

Family

ID=6076631

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19800104270 Expired EP0024307B1 (fr) 1979-07-24 1980-07-19 Dispositif pour la compensation du champ magnétique parasite d'un objet à l'aide d'une installation d'auto-protection magnétique

Country Status (2)

Country Link
EP (1) EP0024307B1 (fr)
DE (1) DE2929964C2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3403982A1 (de) * 1984-02-04 1985-08-08 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren fuer eine stoerfeldgeregelte magnetische eigenschutzanlage (smes-anlage)
SE8404402L (sv) * 1984-09-04 1986-03-05 Bofors Ab Sett och anordning for reducering av magnetsignaturen for rorliga fartygsdetaljer
DE3614527A1 (de) * 1986-04-29 1987-11-05 Bundesrep Deutschland Verfahren zur einstellung einer magnetischen eigenschutz (mes) - anlage zur kompensation des magnetischen stoerfeldes eines fahrzeuges, insbesondere schiffes
GB2222026B (en) * 1988-08-19 1991-09-25 Marconi Co Ltd Magnet assembly
DE3936985C2 (de) * 1989-11-07 1994-12-22 Bundesrep Deutschland Verfahren und Vorrichtung zur Kompensation von objekteigenen magnetischen Störfeldern, insbesondere bei Schiffen, mittels feldgeregelter magnetischer Eigenschutzanlage
DE9013208U1 (de) * 1990-09-18 1991-01-10 Bundesamt für Wehrtechnik u. Beschaffung, 5400 Koblenz Vorrichtung zur Kompensation des von Schiffseinbaugruppen verursachten magnetischen Störfeldes
RU2119690C1 (ru) * 1997-08-22 1998-09-27 Закрытое акционерное общество Научно-производственный центр "Технология и эффективность" Многофункциональная система размагничивания ферромагнитных объектов

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2752564A (en) * 1947-01-14 1956-06-26 Clifford M Ryerson Apparatus for detecting a magnetic field
US2832041A (en) * 1952-12-31 1958-04-22 Trachtenberg Murray Automatic system for degaussing control
DE977727C (de) * 1958-09-14 1968-11-14 Friedrich Dr Foerster Einrichtung zur Steuerung von magnetischen Eigenschutzanlagen gegen die Wirkung des induzierten Anteiles des magnetischen Momentes von Schiffen
DE977881C (de) * 1958-09-17 1972-01-20 Friedrich Dr Foerster Verfahren zur Kompensation des magnetischen Stoerfeldes von aus ferromagnetischen Bauteilen bestehenden Einheiten, insbesondere auf Schiffen mit unmagnetischer Aussenhaut
DE977914C (de) * 1958-09-21 1972-11-23 Foerster Inst Dr Friedrich Verfahren zum Schutze von Schiffen vor Sprengkoerpern, z. B. Minen oder Torpedos, mit magnetischer Zuendung
DE977817C (de) * 1959-04-16 1971-01-28 Friedrich Dr Foerster Einrichtung zur Kompensation des magnetischen Wirbelstromstoerfeldes, das durch einen metallischen Hohlkoerper bei dessen Bewegung im Erdfeld entsteht
DE977788C (de) * 1959-06-06 1970-04-16 Foerster Inst Dr Friedrich Verfahren zur Steuerung magnetischer Eigenschutzanlagen von Schiffen
DE977906C (de) * 1959-07-29 1972-09-07 Friedrich Dr Phil Foerster Verfahren zur Kompensation des magnetischen Stoerfeldes von aus ferromagnetischen Bauteilen (Stoerkoerpern) bestehenden Einheiten, insbesondere auf Schiffen mit unmagnetischer Aussenhaut
DE977846C (de) * 1960-06-05 1971-09-02 Friedrich Dr Foerster Verfahren zur Kompensation der magnetischen Erdfeldstoerung durch Schiffe
US3063422A (en) * 1960-06-13 1962-11-13 Joel H Gregowski Electromechanical device
DE977836C (de) * 1960-07-23 1971-06-16 Siemens Ag Einrichtung zur Kompensation von Wechselfeldern auf Fahrzeugen, insbesondere Schiffen
US3110282A (en) * 1960-08-24 1963-11-12 Friedrich M O Foerster Degaussing control

Also Published As

Publication number Publication date
DE2929964A1 (de) 1981-01-29
EP0024307A1 (fr) 1981-03-04
DE2929964C2 (de) 1984-08-09

Similar Documents

Publication Publication Date Title
EP1797463B1 (fr) Dispositif pour la localisation d'objets metalliques et procede d'ajustement dudit dispositif
EP0945736B1 (fr) Magnétomètre
DE69125497T2 (de) Vorrichtung zur erzeugung eines magnetfeldes
DE4101481A1 (de) Anordnung zum kompensieren externer magnetfeldstoerungen bei einem kernresonanzspektrometer mit supraleitender magnetspule
DE3403982C2 (fr)
EP0024307B1 (fr) Dispositif pour la compensation du champ magnétique parasite d'un objet à l'aide d'une installation d'auto-protection magnétique
EP0294590A2 (fr) Capteur de courant selon le principe de la compensation
DE3131394C2 (de) Verfahren zur Bestimmung der Rollage eines rotierenden Flugkörpers mit Hilfe des erdmagnetischen Feldes
EP3314310B1 (fr) Dispositif et procédé de détection d'un objet
DE2929504C2 (de) Richtungsweiservorrichtung
DE2217097C2 (de) Vorrichtung zur Kompensation des gyromagnetischen Fehlers der Anzeige eines Gesamtfeldmagnetometers
DE69401092T2 (de) Vorrichtung zur Messung der Winkellage eines Rotors
DE4000018C2 (de) Sensorsysteme mit starrem Verbund von rechteckigen Sender- und Empfängerspulen zur Durchführung elektromagnetischer Sondierungen über der Oberfläche eines dreidimensionalen Körpers, Aufhängevorrichtung für solche Sensorsysteme sowie Verfahren zur Bestimmung der Leitfähigkeitsverteilung im Inneren eines Körpers
DE102005045774A1 (de) Messvorrichtung und Verfahren zur berührungslosen Bestimmung der Lage zweier relativ zueinander verstellbarer Bauteile
DE2929404C2 (de) Differenzfeldsonde
DE68903925T2 (de) Magnetisches minenraeumungssystem.
DE102010010045A1 (de) Elektromagnetischer Durchflussmesser
EP1189076A2 (fr) Méthode de localisation d'objets et dispositif de détection
EP3884506B1 (fr) Encodeur à aimant permanent pour un capteur, capteur et dispositif de commande pour piloter un véhicule
DE570916C (de) Selbsttaetige Steuervorrichtung fuer Schiffe u. dgl.
DE1516190B1 (de) Verfahren und Vorrichtung zur Messung von Magnetfeldern
DE1275772B (de) Anordnung zur Ermittlung des aus fahrzeugeigenen magnetischen Stoerfeldern resultierenden Kursfehlers in kompassgefuehrten Kurskreiselanlagen
DE1956001A1 (de) Magnetfeldabhaengige Vorrichtung und Kompasssystem,das eine derartige Vorrichtung verwendet
DE1056972B (de) Elektromagnetische Vorrichtung
DE3904936B3 (de) Verfahren zur magnetischen Immunisierung, insbesondere für Schiffsaufbauten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): FR GB IT SE

17P Request for examination filed

Effective date: 19810904

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): FR GB IT SE

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840731

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840930

Year of fee payment: 5

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: INSTITUT DR. FOERSTER PRUEFGERAETEBAU GMBH & CO. K

Effective date: 19841117

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19841221

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19870710

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
EUG Se: european patent has lapsed

Ref document number: 80104270.6

Effective date: 19890510