RU2119690C1 - Многофункциональная система размагничивания ферромагнитных объектов - Google Patents

Многофункциональная система размагничивания ферромагнитных объектов Download PDF

Info

Publication number
RU2119690C1
RU2119690C1 RU97114630A RU97114630A RU2119690C1 RU 2119690 C1 RU2119690 C1 RU 2119690C1 RU 97114630 A RU97114630 A RU 97114630A RU 97114630 A RU97114630 A RU 97114630A RU 2119690 C1 RU2119690 C1 RU 2119690C1
Authority
RU
Russia
Prior art keywords
working
modules
magnetic field
possibility
demagnetization
Prior art date
Application number
RU97114630A
Other languages
English (en)
Inventor
Ю.В. Абрамов
В.Н. Пархоменко
В.Н. Шкодских
В.В. Харитонов
Н.В. Ветерков
Original Assignee
Закрытое акционерное общество Научно-производственный центр "Технология и эффективность"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество Научно-производственный центр "Технология и эффективность" filed Critical Закрытое акционерное общество Научно-производственный центр "Технология и эффективность"
Priority to RU97114630A priority Critical patent/RU2119690C1/ru
Priority to DE69807053T priority patent/DE69807053T2/de
Priority to PCT/RU1998/000165 priority patent/WO1999010900A1/ru
Priority to EP98932666A priority patent/EP0971376B1/en
Application granted granted Critical
Publication of RU2119690C1 publication Critical patent/RU2119690C1/ru
Priority to US09/355,271 priority patent/US6760210B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G9/00Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines
    • B63G9/06Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines for degaussing vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/006Methods and devices for demagnetising of magnetic bodies, e.g. workpieces, sheet material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

Изобретение относится к размагничиванию объектов, находящихся на плаву, объектов транспортного машиностроения, а также турбин, дизелей и прочей техники. Задача - обеспечение унифицированного, мобильного и экономичного исполнений. Предложенная система выполнена без кабеля из четырех прямолинейных рабочих проводников в виде шин, установленных по две с каждой боковой стороны и на всю длину обрабатываемого объекта одна над другой на расстоянии, определяемом высотой объекта. В качестве источника тока используется униполярный генератор. Система построена в модульном виде и содержит энергомодуль и боковые рабочие модули, несущие рабочие шины. Трансформация модулей позволяет обрабатывать объекты различной ширины, высоты и длины. Система может транспортироваться на грунте, а при выполнении корпусов модулей водонепроницаемыми обеспечивает обработку плавучих объектов и транспортируется водным путем. Предусмотренны датчики, обеспечивающие измерение магнитного поля в поперечном сечении по длине объекта. Система позволяет обрабатывать объект общим вертикальным, наклонным и горизонтальным полями (вращающимся полем), местным полем района концентрированной ферромагнитной массы, а также продольным полем. 11 з.п. ф-лы, 20 ил.

Description

Изобретение относится к технике размагничивания объектов, находящихся на плаву, объектов транспортного машиностроения и может быть использовано для осуществления размагничивания изделий - турбин, дизелей и т.д.
Наиболее распространенным техническим средством для размагничивания крупных объектов является запитываемая от внешнего источника тока многовитковая рабочая обмотка в виде соленоида, кольца, рамки и др., которая размещается в сооружении, куда вводится объект или временно накладываемая на объект.
Известен стенд размагничивания /1/, представляющий собой сооружение круглой формы - штольню, внутрь которой вводится объект для размагничивания. Стенд оборудован рабочими обмотками шпангоутного типа, представляющими собой соленоид протяженностью несколько более длины объекта. Недостатком стенда является необходимость значительных затрат на создание капитального сооружения, а также затрат на приобретение и монтаж кабеля. Протяженность кабеля при этом составляет десятки километров (для стенда диаметром 30 м и длиной 200 м длина кабеля рабочей обмотки достигает 30 x 3,14 x 200 = 18840 м).
Известен также стенд, в котором рабочие обмотки - соленоид выполнены в виде кольца. Размагничивание осуществляется путем протаскивания объекта через кольцо. Недостатки стенда определяются значительными затратами на создание глубоководной набережной, на кольцо с креплением на грунте, кабель. Такой стенд не обеспечивает размагничивание объектов, имеющих надстройки и мачты.
Известна система размагничивания судна /2/ с временно накладываемой вокруг судна в горизонтальной плоскости по ватерлинии кабельной рабочей обмоткой. Обмотка поддерживается на плаву плавучими элементами. Концы кабеля рабочей обмотки подключены к источнику тока. Недостаток системы связан с отсутствием фиксации рабочей обмотки на заданном расстоянии от обрабатываемого судна, что снижает качество размагничивания. Одновитковая система не позволяет сформировать однородное поле по высоте судна.
Известна система размагничивания крупных объектов - кораблей /3/, при реализации которой по обводам корабля выше ватерлинии закрепляют размагничивающую обмотку, состоящую из нескольких витков кабеля. Питание обмотки осуществляют постоянным током. Для измерения магнитного поля протаскивают штангу с измерительными датчиками под кораблем. При этом штангу устанавливают в поперечном сечении под днищем корабля и закрепляют по концам тросами, опущенными с блоков плавучести, находящихся на воде по правому и левому борту корабля Недостатками данной системы являются намотка кабеля вручную, а также невозможность обеспечения требуемой точности измерений магнитного поля корабля из-за колебаний датчика при незначительном волнении моря, качке корабля и блоков плавучести.
В мировой практике для создания рабочих обмоток используется электрический кабель с медной жилой, что приводит к высокой стоимости кабеля. При временном накладывании на объект рабочих обмоток такой кабель не может быть использован более 2 - 3 раз из-за изгиба и разрушения электроизоляции.
Из существенных недостатков рассмотренных выше систем размагничивания следует отметить необходимость создания стационарных капитальных сооружений, потребность большого количества медного кабеля. При ручной намотке кабельных рабочих обмоток на объект высока трудоемкость и продолжительность работ, что увеличивает цикл размагничивания. Для размагничивания изделий транспортного машиностроения, а также турбин и дизелей системы не предназначены. Устройства измерений магнитного поля обрабатываемых объектов требуют доработки.
Наиболее близкой к описываемой системе является система размагничивания ферромагнитных объектов, содержащая, в частности рабочие обмотки с прямолинейными шинами, установленными с возможностью размагничивания морского судна в трех направлениях, источник тока для питания рабочих обмоток, устройство измерения характеристик магнитного поля судна и несущее устройство, предназначенное для размещения составных элементов системы /4/.
Однако указанная система недостаточно унифицирована и мобильна, что существенно ограничивает область ее практического использования.
Задачей изобретения является создание системы размагничивания объектов, свободной от перечисленных выше недостатков.
Поставленная задача решается тем, что в системе размагничивания ферромагнитных объектов, содержащей рабочую обмотку, выполненную с четырьмя соединенными перемычками прямолинейными рабочими шинами, установленными по две с каждой боковой стороны и на всю длину обрабатываемого объекта одна над другой на расстоянии, определяемом его высотой, источник тока для питания рабочей обмотки, устройство измерения характеристик магнитного поля объекта, выполненное с возможностью представления исходных данных для обработки последнего, и несущее устройство, предназначенное для размещения составных элементов системы, - несущее устройство образовано из жестко состыкованных модулей с конструкцией из немагнитного материала, при этом источник тока размещен в энергомодуле, рабочая обмотка и устройство для измерения характеристик магнитного поля объекта - в паре боковых рабочих модулей, торцевые устройства выполнены с возможностью жесткого соединения энергомодуля и боковых рабочих модулей подвижно-фиксирующими замками, а упомянутые перемычки установлены в торцевых устройствах с возможностью переключения концов рабочих шин с учетом заданных для них направлений токов.
Решению поставленной задачи способствуют частные существенные признаки.
Источник тока для питания рабочей обмотки выполнен в виде сильноточного генератора, например униполярного генератора.
Рабочие шины каждого бокового модуля являются его конструктивными элементами.
Боковые рабочие модули установлены с возможностью изменения расстояния между ними путем механического перемещения и фиксации замками.
Рабочие шины в боковых рабочих модулях установлены с возможностью изменения расстояния между ними по высоте с помощью привода.
Боковые рабочие модули выполнены с возможностью попарного присоединения для увеличения протяженности рабочих шин.
Энергомодуль и боковые рабочие модули снабжены устройством для транспортировки их по грунту, например, колесами.
Энергомодуль и боковые рабочие модули выполнены водонепроницаемыми, с возможностью транспортировки на воде и размагничивания плавучих ферромагнитных объектов.
Перемычки установлены с возможностью переключения концов рабочих шин для создания вертикального, наклонного, горизонтального обрабатывающих объект магнитных полей и переключения контактов источника тока для изменения направления магнитных полей.
На боковых рабочих модулях размещена электромагнитная катушка, состоящая из двух рамок, установленных симметрично по обе стороны обрабатываемого объекта в вертикальных плоскостях, параллельных его оси, с возможностью обработки района концентрирования ферромагнитной массы сосредоточенным поперечным магнитным полем при перемещении объекта, при этом подвод тока от источника тока к рамкам катушки выполнен с помощью элементов рабочих шин и бифилярно проложенных проводников.
Сверху и снизу каждого бокового рабочего модуля установлены продольные направляющие с тележками подвижных органов, а датчики устройства измерения характеристик магнитного поля объекта размещены на указанных подвижных устройствах с возможностью объемного измерения магнитного поля по всей протяженности обрабатываемого объекта.
В плоскости, перпендикулярной продольной оси обрабатываемого объекта, расположена электромагнитная катушка с возможностью обработки плавучего объекта цилиндрической формы при его перемещении через катушку вдоль продольной оси, при этом подвод тока от источника тока к катушке выполнен с помощью элементов рабочих шин и бифилярно проложенных проводников, а датчики устройства измерения характеристик магнитного поля объекта размещены по периметру катушки.
На фиг. 1 представлена принципиальная схема описываемой системы размагничивания ферромагнитных объектов; на фиг. 2 - модульное исполнение (вид сверху) системы в сборе; на фиг. 3 - трансформирование системы в эксплуатационное состояние с введенным обрабатываемым объектом; на фиг. 4, а-а (здесь и далее буквами обозначен разрез) - подвижно-фиксирующие электрозамки 4' и 5' контактов 4 и 5 системы; на фиг. 5, б-б - трансформирование системы при обработке объекта увеличенной высоты; на фиг. 6 - трансформирование системы при обработке объекта увеличенной ширины; на фиг. 7 - трансформирование системы при обработке объекта увеличенной длины; на фиг. 8, в-в - оборудование системы устройством для транспортировки по грунту; на фиг. 9, г-г - водонепроницаемые модули и плавучий объект коробчатой формы; на фиг. 10 - продольные направляющие для тележек подвижных устройств; на фиг. 11, д-д - размещение датчиков на подвижных устройствах для измерений магнитного поля; на фиг. 12 - 14 - виды возможных соединений торцов рабочих шин перемычками; на фиг. 15 - принципиальная схема размагничивания ферромагнитной массы объекта; на фиг. 16 - схема перемещения объекта при обработке концентрированной ферромагнитной массы; на фиг. 17, е-е - размещение рамок ЭМК; на фиг. 18 - принципиальная схема размагничивания объекта цилиндрической формы; на фиг. 19 - схема перемещения объекта цилиндрической формы при обработке; на фиг. 10, ж-ж - размещение рамки ЭМК и датчиков на ней для измерения магнитного поля.
Рабочую обмотку (фиг. 1) выполняют из четырех прямолинейных рабочих проводников (1 - 2, 3 - 4, 5 - 6, 7 - 8) в виде шин произвольной формы сечения, расположенных парами с каждой боковой стороны и на всю длину обрабатываемого объекта (Об) параллельно друг другу, один над другим на расстоянии, определяемом высотой объекта, и соединяющих рабочие проводники перемычек (0 - 1, 8 - 9) и (2 - 3, 6 - 7), присоединяемых к концам рабочих проводников с учетом заданных направлений в них токов.
Эффективность работы системы при переходе от многовитковой кабельной из меди рабочей обмотки на рабочую обмотку в виде единичных рабочих проводников - шин из недефицитного материала, например из сплава АМГ, обеспечивают за счет большого тока в рабочей обмотке, применяя в качестве основного источника тока ударный униполярный генератор (УУГ) /5/.
Несущее устройство системы выполняют из самостоятельных модулей (фиг. 2) - энергомодуля (ЭМ), содержащего источник тока для питания рабочей обмотки, и несущих каждую пару рабочих проводников параллельно расположенных боковых рабочих модулей (РМ1 и РМ2), межу которыми в эксплуатационном состоянии (фиг. 3; фиг. 4, а-а) размещают обрабатываемый объект (Об1), и торцевых устройств (ТУ), несущих перемычки и соединяющих жестко энергомодуль и боковые рабочие модули подвижно-фиксирующими электрозамками (1', 2', ... 8').
Конструкции модулей изготавливают из немагнитного материала, например сплава АМГ. Прямолинейные рабочие проводники - шины (1 - 2, 3 - 4, 5 - 6, 7 - 8) при этом выполняют как силовые элементы конструкции модуля с электроизоляцией от корпуса модуля.
При использовании в качестве материала конструкции модуля стеклопластика рабочие проводники несут дополнительно функцию закладных деталей.
Подлежащие размагничиванию ферромагнитные объекты по своим габаритам могут отличаться друг от друга по высоте, ширине и длине.
При размагничивании (фиг. 5, б-б) объекта увеличенной высоты (Об2) рабочие проводники боковых рабочих модулей выполняют с возможностью изменения расстояния между ними по высоте с помощью привода (Пр).
При размагничивании (фиг. 6) объекта большей ширины (Об 3) боковые рабочие модули механически раздвигаются с фиксацией их электрозамками торцевых устройств.
При размагничивании (фиг. 7) объекта большей длины (Об 4) протяженность рабочих проводников обеспечивают за счет присоединения последующих боковых рабочих модулей (РМ1 + РМ1), (РМ2 + РМ2) и фиксацией электрозамками.
Упомянутые системы предусматривают размагничивание объектов транспортного машиностроения, а также турбин, дизелей и прочей техники. Для транспортировки систем по грунту (фиг. 8, в-в) энергомодуль и боковые рабочие модули снабжают, например, колесами (К).
Для обеспечения размагничивания объектов на плаву корпуса энергомодуль и боковые рабочие модули системы выполняют водопроницаемыми, что обеспечивает транспортировку системы на воде (фиг. 9, г-г).
Для измерения магнитного поля обрабатываемого объекта (Об) по длине корпусов для каждого бокового рабочего модуля (РМ1, РМ2) сверху и снизу (фиг. 10) предусматривают продольные направляющие (ПН), на которых (фиг. 11, д-д) устанавливают тележки (Т) с подвижными устройствами (ПУ), несущими датчики (Д) для измерения магнитного поля в поперечном сечении на расстоянии X, Y, Z от продольной оси объекта, что при перемещении устройств обеспечивает объемное измерение магнитного поля по всей протяженности объекта. При необходимости подвижные устройства с датчиками используют только снизу под объектом или сверху.
Необходимо отметить еще одну сторону описываемой системы.
Известно, что если ферромагнитную пластину подвергнуть воздействию электромагнитного поля, то эффективность намагничивания ее будет в значительной степени зависеть от положения пластины относительно направления магнитного поля. При установлении пластины вдоль поля эффект намагничивания пластины будет выше, чем при установлении ее поперек поля.
Рассмотрим с этих позиций обработку данной системой плавучего объекта, например, коробчатой формы.
Во-первых, (фиг. 12), соединим торцы рабочих проводников системы перемычками по схеме "2 - 3 и 6 - 7".
Система образует вертикальное обрабатывающее поле. При этом вертикальные конструкции объекта - борта (а), продольные (б) и поперечные (в) переборки будут обработаны лучше, чем конструкции - палубы и днища, лежащие горизонтально.
Во-вторых, (фиг. 13) соединим в данной системе торцы рабочих проводников по схеме "2 - 6 и 3 - 7".
Система образует горизонтальное - поперечное обрабатывающее поле. При этом будут более обработаны конструкции - палубы (г) и днища (д), лежащие в горизонтальной плоскости и менее обработаны конструкции - борта, продольные и поперечные переборки, расположенные вертикально.
В-третьих, (фиг. 14), соединим в системе торцы рабочих обмоток первоначально по схеме "2 - 7", а затем "3 - 6".
При этом система образует наклонные обрабатывающие поля, при которых практически равнозначно под одним и тем же углом будут обрабатываться как вертикальные, так и горизонтальные конструкции корпуса объекта.
Таким образом, за счет переключения перемычками торцевых концов рабочих проводников обеспечивают воздействие на объект вертикального (фиг. 12), наклонного (фиг. 14) и горизонтального (фиг. 13) и т.д., обрабатывающих полей, т. е. практически вращающимся полем, а при переключении рабочей обмотки на контактах источника тока "0 - 9" на "9 - 0" меняют направление поля. Такая многофункциональность позволяет выбрать наиболее оптимальный вариант качественного размагничивания объекта в целом.
В тех случаях (фиг. 15 - 17), когда ферромагнитная масса обрабатываемого объекта неравномерно распределена по длине, например с концентрацией ферромагнитной массы в виде главного двигателя (ГД) в машинном отделении объекта, обрабатывают этот район воздействием сосредоточенного поперечного поля, создаваемого электромагнитной катушкой (ЭМК), которая размещена на боковых рабочих модулях. Катушку выполняют в виде рамок (ЭМК' и ЭМК'') - элементов рабочих шин из нескольких витков, устанавливаемых симметрично по обе стороны объектов в вертикальных плоскостях рабочих модулей. Подвод тока к катушке на контакты (10 - 11 и 12 - 13) осуществляют рабочими шинами и бифилярно проложенными проводниками. Обработку требуемого района (ГД) или т.п. производят перемещением объекта относительно сосредоточенного поперечного поля, создаваемого катушкой.
Рассмотрим аналогично объекту коробчатой формы, обработку предлагаемой системной конструкций плавучего объекта цилиндрической формы.
Поскольку в таком объекте основная масса конструкций сосредоточена в цилиндрической части - обшивке корпуса, вытянутой вдоль продольной оси объекта, обработку такого объекта целесообразно осуществлять продольным полем.
Для создания продольного поля рабочие проводники выполняют в виде рамки (фиг. 18, 19) из нескольких витков - электромагнитной катушки (ЭМК), устанавливаемой в плоскости, перпендикулярной продольной оси объекта. Подвод тока к катушке на контакты 10 - 11 осуществляют рабочим (1 - 2) и бифилярно продолженным (9 - 11) проводниками. Обработку производят перемещением объекта через эту катушку. Измерительные датчики (Д) располагают по периметру конструкции рабочей рамки ЭМК (рис. 20, ж-ж). Измерение поля и обработку производят перемещением объекта через рамку ЭМК.
Рамку ЭМК, предназначенную для обработки объекта цилиндрической формы, в транспортном положении системы размещают на палубе энергомодуля (фиг. 18). Для приведения системы в рабочее положение энергомодуль первоначально заводят между рабочими модулями. Осуществляют подъем рамки с палубы энергомодуля специальным подъемником, находящимся на боковых поверхностях рабочих модулей в районе контактов 10 - 11. Затем, после вывода энергомодуля, рамку разворачивают вертикально - перпендикулярно продольной оси объекта.
Таким образом, система многофункциональна не только за счет возможности создания вращающегося обрабатывающего поля, но и за счет возможности обработки концентрированной ферромагнитной массы объекта а также возможности обработки объекта продольным полем.
При размагничивании ферромагнитных объектов транспортного машиностроения, турбин, дизелей и прочей техники систему (фиг. 1), находящуюся в транспортном положении (фиг. 2) ориентируют относительно стран света и, исходя из габаритов объекта, приводят в одно из рабочих положений (фиг. 3 - 7). При этом первоначально на энергомодуле разворачивают перемычки торцевых устройств (1 - 1, 8 - 8) вокруг контактов 1 и 8 до совмещения с контактами 1 и 8 боковых рабочих модулей и фиксируют замками (1', 8'). Одновременно замыкают (фиг. 4) контакты 4 и 5 и фиксируют замками 4' и 5'. Затем со стороны противоположного рабочего модуля заводят подлежащий обработке ферромагнитный объект, размещая его между боковыми модулями РМ1 и РМ2. Далее разворачивают вокруг контактов 2 и 6 перемычки торцевого устройства и фиксируют их замками 2' и 6' на контактах 3 и 7. Таким образом, объект заведен, рабочая обмотка системы сформирована.
Измерение магнитного поля обрабатываемого объекта в поперечном сечении обеспечивают (фиг. 11, д-д) съемом показаний с датчиков (Д), находящихся на подвижном устройстве (ПУ). Перемещая подвижное устройство вдоль объекта, получают данные о состоянии магнитного поля по всей протяженности объекта.
Исходя из полученных при замерах данных о состоянии магнитного поля объекта и требуемых норм, производят обработку ферромагнитного объекта путем подачи тока в рабочую обмотку от униполярного генератора.
По окончании обработки размыкают перемычки торцевого устройства и выводят обработанный объект.
При необходимости транспортировки системы модули приводят в транспортное положение (фиг. 2).
При размагничивании ферромагнитных объектов, находящихся наплаву, систему в виде водонепроницаемых плавучих модулей приводят в положение (например, фиг. 9). Акватория в данном месте должна иметь достаточную глубину и выставленные на якорях бочки, позволяющие фиксировать положение плавучей системы относительно сторон света. Операция ввода плавучего ферромагнитного объекта в систему, замеры магнитного поля, обработку и вывод обработанного объекта производят аналогично рассмотренному выше варианту, осуществляя обработку общим полем в пределах протяженности прямолинейных рабочих проводников.
При обработке ферромагнитного плавучего объекта коробчатой формы при необходимости осуществляют дополнительную обработку наклонным или горизонтальным полями, путем соответствующего переключения перемычек на торцевых устройствах системы.
Обработку концентрированной ферромагнитной массы объекта выполняют воздействием сосредоточенного поперечного поля, перемещая объект между боковыми рабочими модулями относительно ЭМК в пределах расположения массы.
Замеры магнитного поля и обработку ферромагнитного плавучего объекта цилиндрической формы осуществляют перемещением его между боковыми рабочими модулями через рамку ЭМК.
Предлагаемая система размагничивания по сравнению с существующими системами:
- экономична в изготовлении, за счет исключения кабеля для формирования рабочих обмоток и упрощения общей конструкции;
- модульное исполнение дает возможность трансформировать систему и производить обработку объектов различных габаритов;
- система позволяет производить обработку объектов как на грунте, так и объектов, находящихся на плаву;
- использование униполярного генератора в качестве источника тока позволяет повысить энергетику системы, что обеспечивает переход на более качественный уровень электромагнитной обработки объектов;
- наличие подвижной системы магнитного поля дает возможность совместить ее с системой управления источника тока и автоматизировать процесс обработки объектов, сократив его цикл.
Источники информации:
1. Navy International, V 9, N 6, 1989.
2. Патент США N 4993345, кл. B 63 G 9/00, 1990.
3. Ткаченко В. А. История размагничивания кораблей советского военно-морского флота. - Л.: "Наука", 1981.
4. Заявка Франции N 2587969, кл. B 63 G 9/06, 1987.
5. Глухих Б.А. и др. Ударные униполярные генераторы. - Л.: Энергоиздат. 1987.

Claims (12)

1. Система размагничивания ферромагнитных объектов, содержащая рабочую обмотку, выполненную с четырьмя соединенными перемычками прямолинейными рабочими шинами, установленными по две с каждой боковой стороны и на всю длину обрабатываемого объекта одна над другой на расстоянии, определяемом его высотой, источник тока для питания рабочей обмотки, устройство измерения характеристик магнитного поля объекта, выполненное с возможностью представления исходных данных для обработки последнего, и несущее устройство, предназначенное для размещения составных элементов системы, отличающаяся тем, что несущее устройство образовано из жестко состыкованных модулей с конструкцией из немагнитного материала, при этом источник тока размещен в энергомодуле, рабочая обмотка и устройство для измерения характеристик магнитного поля объекта - в паре боковых рабочих модулей, торцевые устройства выполнены с возможностью жесткого соединения энергомодуля и боковых рабочих модулей подвижно-фиксирующими замками, а упомянутые перемычки установлены в торцевых устройствах с возможностью переключения концов рабочих шин с учетом заданных для них направлений токов.
2. Система по п.1, отличающаяся тем, что источник тока для питания рабочей обмотки выполнен в виде сильноточного генератора, например униполярного генератора.
3. Система по п.1 или 2, отличающаяся тем, что рабочие шины каждого бокового рабочего модуля являются его конструктивными элементами.
4. Система по любому из пп.1 - 3, отличающаяся тем, что боковые рабочие модули установлены с возможностью изменения расстояния между ними путем механического перемещения и фиксации замками.
5. Система по любому из пп.1 - 4, отличающаяся тем, что рабочие шины в боковых рабочих модулях установлены с возможностью изменения расстояния между ними по высоте с помощью привода.
6. Система по любому из пп.1 - 5, отличающаяся тем, что боковые рабочие модули выполнены с возможностью попарного присоединения для увеличения протяженности рабочих шин.
7. Система по любому из пп.1 - 6, отличающаяся тем, что энергомодуль и боковые рабочие модули снабжены устройством для транспортировки их по грунту, например колесами.
8. Система по любому из пп.1 - 7, отличающаяся тем, что энергомодуль и боковые рабочие модули выполнены водонепроницаемыми с возможностью транспортировки на воде и размагничивания плавучих ферромагнитных объектов.
9. Система по любому из пп.1 - 8, отличающаяся тем, что перемычки установлены с возможностью переключения концов рабочих шин для создания вертикального, наклонного, горизонтального обрабатывающих объектов магнитных полей и переключения контактов источника тока для изменения направления магнитных полей.
10. Система по любому из пп.1 - 9, отличающаяся тем, что на боковых рабочих модулях размещена электромагнитная катушка, состоящая из двух рамок, установленных симметрично по обе стороны обрабатываемого объекта в вертикальных плоскостях, параллельных его оси, с возможностью обработки района концентрирования ферромагнитной массы состредоточенным поперечным магнитным полем при перемешивании объекта, при этом подвод тока от источника тока к рамкам катушки выполнен с помощью элементов рабочих шин и бифилярно проложенных проводников.
11. Система по любому из пп.1 - 10, отличающаяся тем, что сверху и снизу каждого бокового рабочего модуля установлены продольные направляющие с тележками подвижных органов, а датчики устройства измерения характеристик магнитного поля объекта размещены на указанных подвижных устройствах с возможностью объемного измерения магнитного поля по всей протяженности обрабатываемого объекта.
12. Система по любому из пп.1 - 9, отличающаяся тем, что в плоскости, перпендикулярной продольной оси обрабатываемого объекта, расположена электромагнитная катушка с возможностью обработки плавучего объекта цилиндрической формы при его перемещении через катушку вдоль продольной оси, при этом подвод тока от источника тока к катушке выполнен с помощью элементов рабочих шин и бифилярно проложенных проводников, а датчики устройства измерения характеристик магнитного поля объекта размещены по периметру катушки.
Приоритет по пунктам:
21.03.97 - по пп.1-8, 11;
18.04.97 - по пп.9, 10, 12.
RU97114630A 1997-08-22 1997-08-22 Многофункциональная система размагничивания ферромагнитных объектов RU2119690C1 (ru)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU97114630A RU2119690C1 (ru) 1997-08-22 1997-08-22 Многофункциональная система размагничивания ферромагнитных объектов
DE69807053T DE69807053T2 (de) 1997-08-22 1998-06-02 Multifunktionales system für entmagnetisierung von ferromagnetischen objekten
PCT/RU1998/000165 WO1999010900A1 (fr) 1997-08-22 1998-06-02 Systeme multi-fonctionnel de demagnetisation d'objets ferromagnetiques
EP98932666A EP0971376B1 (en) 1997-08-22 1998-06-02 Multi-functional system for demagnetising ferro-magnetic objects
US09/355,271 US6760210B1 (en) 1997-08-22 1999-09-08 Multi-functional system for demagnetizing ferromagnetic objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97114630A RU2119690C1 (ru) 1997-08-22 1997-08-22 Многофункциональная система размагничивания ферромагнитных объектов

Publications (1)

Publication Number Publication Date
RU2119690C1 true RU2119690C1 (ru) 1998-09-27

Family

ID=20196764

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97114630A RU2119690C1 (ru) 1997-08-22 1997-08-22 Многофункциональная система размагничивания ферромагнитных объектов

Country Status (5)

Country Link
US (1) US6760210B1 (ru)
EP (1) EP0971376B1 (ru)
DE (1) DE69807053T2 (ru)
RU (1) RU2119690C1 (ru)
WO (1) WO1999010900A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2489727C2 (ru) * 2011-08-08 2013-08-10 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" (ФГУП "Крыловский государственный научный центр") Способ измерения магнитного поля надводного или подводного объекта при наладке его системы электромагнитной компенсации
RU2583257C1 (ru) * 2014-12-05 2016-05-10 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" (ФГУП "Крыловский государственный научный центр") Способ размагничивания судна
RU169063U1 (ru) * 2016-10-17 2017-03-02 Акционерное общество "Центральное конструкторское бюро "Монолит" Корпус морского плавучего сооружения из немагнитных материалов

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6965505B1 (en) * 2003-05-30 2005-11-15 The United States Of America As Represented By The Secretary Of The Navy Ship degaussing system and algorithm
WO2013038377A1 (de) * 2011-09-16 2013-03-21 Stl Ag Schwimm- und tauchfähige mobile vorrichtung zur entmagnetisierung von grossen gegenständen, insbesondere von schiffen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2929964C2 (de) * 1979-07-24 1984-08-09 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur Kompensation von magnetischen Störfeldern von Objekten mittels magnetischer Eigenschutzanlagen
US4993345A (en) * 1981-02-17 1991-02-19 The United States Of America As Represented By The Secretary Of The Navy Floating degaussing cable system
FR2587969B1 (fr) * 1985-09-27 1991-10-11 Thomson Csf Dispositif de desaimantation, notamment pour batiments navals
SU1700612A1 (ru) * 1990-02-21 1991-12-23 Опытно-Конструкторское Бюро По Промышленному Роботостроению Устройство дл размагничивани
DE4243533A1 (de) * 1992-12-22 1994-06-23 Rudolf Ing Grad Kock Verfahren und Vorrichtung zur weltweiten Kompensation der Magnetfelder eines Objektes mit Hilfe eines optimierten Spulensystems und einer Rechner-gesteuerten Stromversorgung
US5952734A (en) * 1995-02-15 1999-09-14 Fonar Corporation Apparatus and method for magnetic systems
US5973606A (en) * 1997-12-08 1999-10-26 Sensormatic Electronics Corporation Activation/deactivation system and method for electronic article surveillance markers for use on a conveyor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2489727C2 (ru) * 2011-08-08 2013-08-10 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" (ФГУП "Крыловский государственный научный центр") Способ измерения магнитного поля надводного или подводного объекта при наладке его системы электромагнитной компенсации
RU2583257C1 (ru) * 2014-12-05 2016-05-10 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" (ФГУП "Крыловский государственный научный центр") Способ размагничивания судна
RU169063U1 (ru) * 2016-10-17 2017-03-02 Акционерное общество "Центральное конструкторское бюро "Монолит" Корпус морского плавучего сооружения из немагнитных материалов

Also Published As

Publication number Publication date
EP0971376A4 (en) 2001-01-03
EP0971376A1 (en) 2000-01-12
US6760210B1 (en) 2004-07-06
DE69807053T2 (de) 2003-04-24
EP0971376B1 (en) 2002-08-07
DE69807053D1 (de) 2002-09-12
WO1999010900A1 (fr) 1999-03-04

Similar Documents

Publication Publication Date Title
US20200284709A1 (en) Second-generation in-situ test device for strength of shallow water sediment
RU2119690C1 (ru) Многофункциональная система размагничивания ферромагнитных объектов
CN104361974B (zh) 移动式消磁装置
CN113195356B (zh) 一种退磁和特征测量装置
WO2020115069A1 (en) Inductive power transfer device and system for inductively charging a water-bound vehicle and method for operating an inductive power transfer device
RU2415050C2 (ru) Способ формирования сигналов управления токами в обмотках размагничивающего устройства судна с ферромагнитным корпусом и устройство для его осуществления
RU2510051C1 (ru) Донная станция для морских геофизических исследований
EP0242391B1 (en) A magnetic self-ranging system for use in the degaussing of ships
WO2009131485A1 (ru) Генераторное устройство для морских геофизических исследований
RU2011120483A (ru) Устройство и способ для сбора нефти
CN111009379B (zh) 一种磁约束方法及自消磁舰艇
US4587841A (en) Hydrodynamic test apparatus
AU2020331545A1 (en) Operating method for a mine-sweeping system, and mine-sweeping system for detonating sea mines
JPH0624381A (ja) 磁気掃海システム
CN112896455A (zh) 一种用于海上无人艇布放回收的新型艇架
JP4269311B2 (ja) 磁気掃海装置及び磁気掃海システム
KR101614041B1 (ko) 소자 장비 일체형 선박 탈자 시스템을 이용한 선박 탈자 방법
WO2018057548A1 (en) Downed aircraft location system and method
US10023280B2 (en) Device for winding and unwinding a cable around a drum
US11951848B2 (en) Power transfer device and mooring area for inductively charging a water-bound vehicle
SU1054204A1 (ru) Устройство дл подводной очистки корпуса судна
RU95112380A (ru) Способ прямого поиска локальных объектов на шельфе мирового океана и устройство для его осуществления в открытом море
SU1186549A1 (ru) Устройство дл сбора нефти с поверхности воды
RU169063U1 (ru) Корпус морского плавучего сооружения из немагнитных материалов
JP2001080576A (ja) 磁気機雷掃海具

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090823