EP0015873A1 - Oszillator mit einem Niederfrequenz-Quarzresonator - Google Patents

Oszillator mit einem Niederfrequenz-Quarzresonator Download PDF

Info

Publication number
EP0015873A1
EP0015873A1 EP80810066A EP80810066A EP0015873A1 EP 0015873 A1 EP0015873 A1 EP 0015873A1 EP 80810066 A EP80810066 A EP 80810066A EP 80810066 A EP80810066 A EP 80810066A EP 0015873 A1 EP0015873 A1 EP 0015873A1
Authority
EP
European Patent Office
Prior art keywords
frequency
quartz
resonator
oscillator
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80810066A
Other languages
English (en)
French (fr)
Other versions
EP0015873B2 (de
EP0015873B1 (de
Inventor
Alphonse Zumsteg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SSIH Management Services SA
Original Assignee
SSIH Management Services SA
Societe Suisse pour lIindustrie Horlogere Management Services SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SSIH Management Services SA, Societe Suisse pour lIindustrie Horlogere Management Services SA filed Critical SSIH Management Services SA
Publication of EP0015873A1 publication Critical patent/EP0015873A1/de
Application granted granted Critical
Publication of EP0015873B1 publication Critical patent/EP0015873B1/de
Publication of EP0015873B2 publication Critical patent/EP0015873B2/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G3/00Producing timing pulses
    • G04G3/02Circuits for deriving low frequency timing pulses from pulses of higher frequency
    • G04G3/022Circuits for deriving low frequency timing pulses from pulses of higher frequency the desired number of pulses per unit of time being obtained by adding to or substracting from a pulse train one or more pulses
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G3/00Producing timing pulses
    • G04G3/02Circuits for deriving low frequency timing pulses from pulses of higher frequency
    • G04G3/027Circuits for deriving low frequency timing pulses from pulses of higher frequency by combining pulse-trains of different frequencies, e.g. obtained from two independent oscillators or from a common oscillator by means of different frequency dividing ratios

Definitions

  • the present invention relates to an oscillator with a high-frequency quartz resonator, the primary thought being those resonators which are very precise on the one hand and which have a relatively high long-term stability on the other hand.
  • High-frequency quartz resonators with a frequency of 4.19 MHz are known and are used, among other things. used in wristwatches. While the frequency stability, the temperature stability and the long-term behavior (aging) are much cheaper than with the usual low-frequency quartz resonators with a frequency of 32 kHz, on the other hand the power consumption is much higher, so that the currently available batteries have to be replaced more frequently. Particularly with regard to long-term batteries under development with an expected lifespan of 5-10 years, it would be desirable to obtain an oscillator that has all the advantages of a high-frequency oscillator, but with a low power consumption that is essentially the same as that of a low-frequency Oscillator lies.
  • the oscillator which achieves this goal is characterized in that, in order to reduce the power consumption, it has a circuit containing a low-frequency quartz resonator with means for generating a correction signals, which goes to a programmable frequency divider and has an electronic switch for periodically switching the high-frequency quartz resonator.
  • the Mit a beat frequency generator for generating a correction signal.
  • the basic diagram of the oscillator circuit can be seen in FIG.
  • the frequency of 4.19 MHz, 8.38, for example M Hz or higher of the high-frequency resonator HF with a cut according to US Pat. No. 4,071,797 is reduced to 32 kHz in a frequency divider FT and given A to a beat frequency generator SFG.
  • the signal from the low-frequency resonator for example a common quartz resonator with 32 kHz, is also applied to the beat frequency generator at point B.
  • a correction signal is generated, which is sent to a programmable frequency divider PRFT, which is also fed by the low-frequency signal.
  • the low-frequency signal is corrected in this programmable frequency divider and sent to the output OFF, from where it reaches the known timer circuit, which is not explained in detail here.
  • An electronic switch ES powered by the supply voltage Vs, is controlled by a signal CP from the timer circuit to provide a periodic signal S which periodically switches the high frequency resonator, the frequency divider FT and the beat frequency generator SFG.
  • a switch-on time of at least 16 seconds is necessary in order to obtain a sufficiently precise correction signal each time, so that a resolution of 1. 10 -3 s / d is reached.
  • the switch-off time can be 15 minutes, for example, ie the signal CP is generated every 15 minutes for at least 16 seconds.
  • the power consumption of the high-frequency resonator is reduced to approximately 1/50.
  • a new learning cycle begins every 15 minutes and if the frequency of the LF generator has changed during this time, the programmable frequency divider PRFT is reset.
  • a temperature com compensation circuit TC are switched on in order to keep the influence of the temperature negligibly small. Since two quartz crystals are already used, digital temperature compensation by means of two quartz resonators is necessary in this case.
  • FIGS. 2 and 4 show two details of an exemplary embodiment for the generation of the correction signal.
  • the high frequency of 4.19 or 8.38 MHz is reduced to 32 kHz by the first frequency divider FT and then to a frequency of 1/16 Hz by a second frequency divider FT1.
  • the low frequency of 32 kHz is also reduced to 1 by a frequency divider FT2 / 16 Hz brought.
  • a high-frequency resonator with a frequency of 8.38 MHz, however, one could also choose one of 1/8 Hz.
  • FIG. 3 shows the circuit suitable for FIG. 3.
  • the two signals A 'and B' arrive at an EX-OR gate, which only responds when there is a difference between the two signals, ie as shown in FIG.
  • the logic LG sends a pulse to the flip-flop FF1, which then changes its sign and inputs this signal into the counter, whereupon the counter counts in the correct direction.
  • a second flip-flop FFR resets the bidirectional counter at the start of the measurement, the two flip-flops FF1 and FFR in turn being set to zero by the periodic signal S from the electronic switch ES when the high-frequency resonator is switched on.
  • the output from the counter reaches the programmable frequency divider via a decoder DC, as does a sign signal from the logic LG.
  • the programmable frequency divider always receives a correction signal that corresponds to the difference between the frequency response of the high-frequency and the low-frequency resonator, so that on average the output signal AUS changes over time in terms of accuracy, temperature behavior and aging in accordance with the behavior of the high-frequency quartz resonator behaves while the power consumption corresponds approximately to that of the continuously switched 32 kHz low-frequency quartz resonator.
  • the temperature compensation circuit TE mentioned in the discussion of FIG. 1 could expediently be connected between the bidirectional counter and the decoder.
  • the frequency difference always has the same sign, even when the temperature changes and the quartz ages, so that the circuit can be simplified considerably.
  • the invention is not limited to the values of 32 kHz on the one hand and 4.19 and 8.38 MHz on the other hand, but that other quartz resonators with other values can also be used.
  • the oscillator described here can wherever high accuracy and favorable temperature and long-term behavior are desired and where the available volume is small. This applies, for example, to a wristwatch or a film camera.
  • the period in which the frequency comparison takes place can also differ from the specified value; it depends on the highest available frequency and the desired resolution of the frequency setting. Another interval can also be selected within which the high-frequency resonator is switched off.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Electric Clocks (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

Der Oszillator mit einem Schwingquarz mit einer Frequenz von beispielsweise 4,19 MHz weist eine Schaltung auf, die einen Niederfrequenz-Quarzresonator (NF) mit einer Frequenz von 32 kHz enthält und einen Schwebungsfrequenz-Generator (SFG) zum Erzeugen eines Korrektursignals, das auf einen programmierbaren Frequenzteiler (PRFT) geht und einen elektronischen Schalter (ES) zum periodischen Schalten des Hochfrequenz-Quarzresonators (HF). Durch das periodische kurze Einschalten des Hochfrequenz-Quarzschwingers, dessen Frequenzgang mit demjenigen des Niederfrequenz-Quarzes verglichen wird, wird erreicht, dass man einerseits die Vorzüge bei Langzeitstabilität, Temperaturverhalten und Alterung eines Hochfrequenz-Schwingquarzes und andererseits den wesentlich niedrigeren Stromverbrauch eines Niederfrequenz-Quarzes erreicht, wodurch die Lebensdauer einer Batterie wesentlich verlängert werden kann. Ein solcher Quarzresonator ist bestens dazu geeignet, in Filmkameras oder Armbanduhren verwendet zu werden.

Description

  • Die vorliegende Erfindung bezieht sich auf einen Oszillator mit einem Hochfrequenz-Quarzresonator, wobei in erster Linie an solche Resonatoren gedacht ist, die einerseits sehr genau sind, und die andererseits eine relativ hohe Langzeitstabilität aufweisen.
  • Hochfrequenz-Quarzresonatoren mit einer Frequenz von 4,19 MHz sind bekannt und werden u.a. in Armbanduhren verwendet. Während die Frequenz-Stabilität, die Temperaturstabilität und das Langzeitverhalten (Alterung) wesentlich günstiger ist als bei den gebräuchlichen Niederfrequenz-Quarzresonatoren mit einer Frequenz von 32 kHz, ist andererseits der Stromverbrauch wesentlich höher, so dass die derzeit erhältlichen Batterien häufiger ausgewechselt werden müssen. Insbesondere im Hinblick auf in der Entwicklung stehende Langzeitbatterien mit einer voraussichtlichen Lebensdauer von 5-10 Jahren wäre es erwünscht, einen Oszillator zu erhalten, der sämliche Vorteile eines Hochfrequenz-Oszillators aufweist, aber mit einem niedrigen Stromverbrauch, der im wesentlichen bei demjenigen eines Niederfrequenz-Oszillators liegt.
  • Der Oszillator, der dieses Ziel erreicht, zeichnet sick dadurch aus, dass er zwecks Erniedrigung des Stromverbrauchs eine einen Niederfrequenz-Quarzresonator enthaltende Schaltung mit Mitteln zum Erzeugen eines Korrektursignals, das auf einen programmierbaren Frequenzteiler geht und einen elektronischen Schalter zum periodischen Schalten des Hochfrequenz-Quarzresonators aufweist. In einem bevorzugten Ausführungsbeispiel enthalten die Mit- ; tel zum Erzeugen eines Korrektursignals einen Schwebungsfrequenz-Generator.
  • Durch die Verwendung eines Niederfrequenz-Quarzresonators mit niedrigem Stromverbrauch und durch das periodische Einschalten des Hochfrequenz-Quarzresonators ist es sogar möglich, einen Hochfrequenz-Quarzresonator mit höherer als bis jetzt verwendeter Frequenz, beispielsweise mit 8,38 MHz zu verwenden, der bezüglich Temperaturverhalten und Volumen noch bessere Eigenschaften aufweist als der Quarzresonator mit einer Frequenz von 4,19 MHz, falls ein Quarz mit einem Schnitt gemäss US-PS 4,071,797 gewählt wird.
  • Die Erfindung wird nun anhand einer Zeichnung eines Ausführungsbeispiels einer Schaltung näher erläutert werden.
  • Es zeigen
    • Figur 1 eine Blockschaltung eines erfindungsgemässen Oszillators,
    • Figur 2 einen Ausschnitt aus einem Ausführungsbeispiel der Schaltung gemäss Figur 1,
    • Figur 3 schematisch ein Zeitdiagramm eines Impulses von beiden Quarzresonatoren, und
    • Figur 4 eine Blockschaltung des Schwebungsfrequenz-Generators.
  • In Figur 1 erkennt man das Prinzipschema der Oszillatorschaltung. Die Frequenz von beispielsweise 4,19 MHz, 8,38 MHz oder höher des Hochfrequenz-Resonators HF mit einem Schnitt gemäss US-PS 4,071,797 wird in einem Frequenzteiler FT auf 32 kHz heruntergesetzt und bei A auf einen Schwebungsfrequenz-Generator SFG gegeben. Das Signal des Niederfrequenz-Resonators, beispielsweise ein gebräuchlicher Quarzresonator mit 32 kHz wird bei Punkt B ebenfalls auf den Schwebungsfrequenz-Generator gegeben. In diesem wird, wie noch weiter unten näher erläutert werden wird, ein Korrektursignal erzeugt, das auf einen programmierbaren Frequenzteiler PRFT gegeben wird, der ebenfalls vom Niederfrequenzsignal gespeist wird. Falls notwendig, wird in diesem programmierbaren Frequenzteiler das Niederfrequenzsignal korrigiert und auf den Ausgang AUS gegeben, von wo es in die bekannte und hier nicht näher erläuterte Zeitgeberschaltung gelangt. Ein elektronischer Schalter ES, über die Speisespannung Vs gespeist, wird durch ein Signal CP aus der Zeitgeberschaltung gesteuert, um ein periodisches Signal S zu liefern, das den Hochfrequenz-Resonator, den Frequenzteiler FT und den Schwebungsfrequenz-Generator SFG periodisch schaltet. Bei der Verwendung eines 4,19 MHz Hochfrequenz-Quarzes haben Berechnungen gezeigt, dass eine Einschaltzeit von mindestens 16 Sekunden notwendig ist, um jedes Mal ein ausreichend genaues Korrektursignal zu erhalten, damit eine Auflösung von 1 . 10-3 s/d erreicht wird. Die Abschaltzeit kann beispielsweise 15 Minuten betragen, d.h. das Signal CP wird alle 15 Minuten während mindestens 16 Sekunden erzeugt. Dadurch wird die Herabsetzung des Stromverbrauchs des Hochfrequenz-Resonators auf etwa 1/50 erreicht.
  • Alle 15 Minuten beginnt ein neuer Lernzyklus und falls sich während dieser Zeit die Freqenz des NF-Generators geändert hat, wird der programmierbare Frequenzteiler PRFT neu eingestellt.
  • Falls eine noch weitergehende Genauigkeit erwünscht ist, kann, wie gestrichelt eingezeichnet, eine Temperaturkompensationsschaltung TC eingeschaltet werden um den Einfluss der Temperatur vernachlässigbar klein zu halten. Da bereits zwei Schwingquarze verwendet werden, drängt sich in diesem Falle eine digitale Temperaturkompensation mit- telt zweier Quarzresonatoren auf.
  • In den Figuren 2 -und 4 sind zwei Details eines Ausführungsbeispiels für die Erzeugung des Korrektursignals dargestellt. Die Hochfrequenz von 4,19 oder 8,38 MHz wird durch den ersten Frequenzteiler FT auf 32 kHz herabgesetzt und anschliessend durch einen zweiten Frequenzteiler FT1 auf eine Frequenz von 1/16 Hz. Die Niederfrequenz von 32 kHz wird durch einen Frequenzteiler FT2 ebenfalls auf 1/16 Hz gebracht. Bei einem Hochfrequenz-Resonator mit einer Frequenz von 8,38 MHz könnte man allerdings auch eine solche von 1/8 Hz wählen. Ein direkter Vergleich der beiden Frequenzen von 1/16 Hz wäre, wie sich leicht ausrechnen lässt, zu ungenau und es ist deshalb erforderlich, einen Vergleich anzustellen, bei welchem als Einheit ein Zeitintervall von 1:4,19 MHz = ungefähr 0,2 ps dient. Aus dem Diagramm von Figur 3 kann man entnehmen, dass die Differenz des Impulses bei A' und bei B' genommen wird, wobei die Differenz Δti der beiden Impulsanfänge und die Differenz Δte bei den Impulsenden subtrahiert oder aufsummiert werden, um ein Frequenzkorrektursignal zu geben. In Figur 4 ist die zu Figur 3 passende Schaltung gezeigt. Die beiden Signale A' und B' gelangen zu einem EX-ODER Tor, welches nur bei einer Differenz beider Signale anspricht, d.h. wie in Fig. 3 dargestellt, falls ein Ati und ein Δte existiert. Das Signal aus dem EX-ODER Tor gelangt zu einem UND Tor, an welchem das 4,19 MHz Signal anliegt und gelangt von dort auf einen Zweirichtungszähler ZRZ, dessen Vorzeichen durch einen Flip-Flop FF1 gegeben wird. Im Zweirichtungszähler wird der Unterschied von Δti und A te gebildet, wobei Δte auch grösser als Δ ti sein kann. Um auch in diesem Falle den Zähler richtig zu steuern, gelangt das Signal aus dem Zähler beim Null-Durchgang auf eine Logik LG, ebenso das Signal aus dem Flip-Flop FF1 über den Zustand. Im Falle eines Null-Durchganqs des Zählers gibt die Logik LG einen Impuls an den Flip-Flop FF1, der daraufhin das Vorzeichen wechselt, und dieses Signal in den Zähler eingibt, woraufhin der Zähler in der richtigen Richtung zählt. Ein zweiter Flip-Flop FFR bewirkt die Nullsetzung des Zweirichtungszählers bei Beginn der Messung, wobei die beiden Flip-Flöps FF1 und FFR ihrerseits durch das periodische Signal S vom elektronischen Schalter ES beim Einschalten des Hochfrequenz-Resonators auf Null gesetzt werden. Der Ausgang aus dem Zähler gelangt über einen Dekoder DC auf den programmierbaren Frequenzteiler, ebenso ein Vorzeichensignal von der Logik LG. Auf diese Weise erhält der programmierbare Frequenzteiler stets ein Korrektursignal, das dem Unterschied zwischen dem Frequenzgang des Hochfrequenz- und des Niederfrequenz-Resonators entspricht, so dass sich im Mittel das Ausgangssignal AUS im Langzeitverhalten bezüglich Genauigkeit, Temperaturverhalten und Alterung entsprechend dem Verhalten des Hochfrequenz-Quarzresonators verhält, während der Stromverbrauch in etwa demjenigen des dauernd angeschalteten 32 kHz Niederfrequenz-Quarzresonators entspricht. Die bei der Besprechung von Figur 1 erwähnte Temperaturkompensationsschaltung TE könnte zweckmässigerweise zwischen dem Zweirichtungszähler und dem Dekoder angeschaltet werden.
  • Man kann es auch einrichten, dass der Frequenzunterschied stets, auch bei Temperaturänderung und Alterung der Quarze, das gleiche Vorzeichen aufweist, so dass die Schaltung wesentlich vereinfacht werden kann.
  • Es ist selbstverständlich, dass sich die Erfindung nicht auf die hier angegebenen Werte von 32 kHz einerseits und 4,19 und 8,38 MHz andererseits beschränkt, sondern dass auch andere Quarzresonatoren mit anderen Werten verwendet werden können. Der vorliegend beschriebene Oszillator kann überall dort, wo eine hohe Ganggenauigkeit und ein günstiges Temperatur- und Langzeitverhalten erwünscht ist, und wo das dafür verfügbare Volumen klein ist, verwendet werden. Dies trifft beispielsweise bei einer Armbanduhr oder bei einer Filmkamera zu.
  • Auch kann die Periode, in welcher der Frequenzvergleicn stattfindet, vom angegebenen Wert verschieden sein; sie ist von der höchsten verfügbaren Frequenz und der gewünschten Auflösung der Einstellung der Frequenz abhängig. Es kann auch ein anderes Intervall gewählt werden, innerhalb welchem der Hochfrequenz-Resonator abgeschaltet ist.

Claims (5)

1. Oszillator mit einem Hochfrequenz-Quarzresonator, dadurch gekennzeichnet,
dass er zwecks Erniedrigung des Stromverbrauchs eine einen Niederfrequenz-Quarzresonator (NF) enthaltende Schaltung mit Mitteln (SFG) zur Erzeugung eines Korrektursignals, das der Steuerung eines programmierbaren Frequenzteilers (PRFT) dient und einen elektronischen Schalter (ES) zum periodischen Schalten des Höchfrequenz-Quarzresonators (HF) aufweist.
2. Oszillator nach Anspruch 1,
dadurch gekennzeichnet,
dass der Hochfrequenz-Resonator (HF) eine Schwingungsfrequenz von mindestens 4,19 MHz und der Niederfrequenz-Resonator (NF) eine Schwingungsfrequenz von 32 kHz aufweist.
3. Oszillator nach Anspruch 1,
dadurch gekennzeichnet,
dass die Mittel zur Erzeugung eines Korrektursignals einen Schwebungsfrequenz-Generator (SFG) enthalten.
4. Oszillator nach Anspruch 3,
dadurch gekennzeichnet,
dass der Schwebunqsfrequenz-Generator ein EX-ODER Tor, gefolgt von einem mit der Frequenz des Hochfrequenz-Resonators gesteuerten UND Tor, dessen Ausqanq mit einem Zweirichtungszähler (ZRZ) verbunden ist, aufweist, wobei eine logische Schaltung (LG, FF1, FFR) den Zweirichtungszähler in die geeignete Zählrichtung schaltet.
5. Oszillator nach einem der Ansprüche 1 - 4,
dadurch gekennzeichnet,
dass vor dem programmierbaren Frequenzteiler (PRFT) eine Temperaturkompensationsschaltung angeschaltet ist.
EP80810066A 1979-03-09 1980-02-22 Oszillator mit einem Niederfrequenz-Quarzresonator Expired EP0015873B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2267/79 1979-03-09
CH226779A CH620087B (de) 1979-03-09 1979-03-09 Oszillator mit einem hochfrequenz-quarzresonator.

Publications (3)

Publication Number Publication Date
EP0015873A1 true EP0015873A1 (de) 1980-09-17
EP0015873B1 EP0015873B1 (de) 1983-04-13
EP0015873B2 EP0015873B2 (de) 1986-06-11

Family

ID=4229764

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80810066A Expired EP0015873B2 (de) 1979-03-09 1980-02-22 Oszillator mit einem Niederfrequenz-Quarzresonator

Country Status (5)

Country Link
US (1) US4344046A (de)
EP (1) EP0015873B2 (de)
JP (1) JPS55124311A (de)
CH (1) CH620087B (de)
DE (1) DE3062665D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0032359B1 (de) * 1980-01-10 1984-08-08 Societe Suisse Pour L'industrie Horlogere Management Services S.A. Oszillator mit digitaler Temperaturkompensation

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH643106B (fr) * 1980-11-26 Suisse Horlogerie Garde-temps comprenant une chaine de diviseurs au rapport de division ajustable.
US4443116A (en) * 1981-01-09 1984-04-17 Citizen Watch Company Limited Electronic timepiece
JPS5843187A (ja) * 1981-09-03 1983-03-12 Fuji Electric Co Ltd 可変周波発振方式
US5428315A (en) * 1985-01-22 1995-06-27 The United States Of America As Represented By The Secreatry Of The Army Method of making radiation hardened quartz crystal oscillators
JPS6238605A (ja) * 1985-08-13 1987-02-19 Nec Corp 水晶発振器
US5179359A (en) * 1992-03-16 1993-01-12 Hughes Aircraft Company Digitally controlled frequency generator including a crystal oscillator
DE19618094C2 (de) * 1996-05-06 1999-06-02 Sgs Thomson Microelectronics Steuerschaltung mit nachstimmbarem Standby-Oszillator
JPH10190568A (ja) * 1996-12-27 1998-07-21 Matsushita Electric Ind Co Ltd 無線受信装置
US5844435A (en) * 1997-03-11 1998-12-01 Lucent Technologies Inc Low power, high accuracy clock circuit and method for integrated circuits
US5831485A (en) * 1997-09-04 1998-11-03 Tektronix, Inc. Method and apparatus for producing a temperature stable frequency using two oscillators
ATE442614T1 (de) * 2000-01-10 2009-09-15 Eta Sa Mft Horlogere Suisse Vorrichtung um ein signal zu erzeugen,dessen frequenz wesentlich temperatur unabhängig ist
DE60223051T2 (de) * 2001-08-29 2008-07-24 Analog Devices Inc., Norwood Anordnung und verfahren zum schnellen einschalten einer phase-locked loop
US7019680B2 (en) * 2003-04-25 2006-03-28 Jackson Gregory P Hand-held, continuously variable, remote controller
FR2854992B1 (fr) * 2003-05-15 2005-07-01 Suisse Electronique Microtech Architecture pour base de temps
EP2525265B1 (de) * 2011-05-14 2015-06-03 Johnson Controls Automotive Electronics GmbH Betriebsverfahren einer Uhrvorrichtung
CN104143961B (zh) * 2014-07-25 2018-01-19 广东大普通信技术有限公司 一种恒温晶体振荡器频率校准方法、装置及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3364439A (en) * 1966-10-07 1968-01-16 Tele Signal Corp Frequency corrected digital clock with memory in phase control loop
DE2342701A1 (de) * 1972-08-24 1974-03-14 Dynacore Sa Generator von isochronen perioden und dessen verwendung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071362A (de) * 1973-10-24 1975-06-13
JPS6035637B2 (ja) * 1975-06-05 1985-08-15 シチズン時計株式会社 電子時計
GB1570660A (en) * 1976-06-30 1980-07-02 Suwa Seikosha Kk Electronic timepiece
JPS5388762A (en) * 1976-12-27 1978-08-04 Seiko Epson Corp Electronic watch with temperature compensation
JPS5428178A (en) * 1977-08-04 1979-03-02 Seiko Epson Corp Electronic watch
JPS5428177A (en) * 1977-08-04 1979-03-02 Seiko Epson Corp Electronic watch
JPS5550191A (en) * 1978-10-06 1980-04-11 Citizen Watch Co Ltd Electronic timepiece

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3364439A (en) * 1966-10-07 1968-01-16 Tele Signal Corp Frequency corrected digital clock with memory in phase control loop
DE2342701A1 (de) * 1972-08-24 1974-03-14 Dynacore Sa Generator von isochronen perioden und dessen verwendung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAHRBUCH DER DEUTSCHEN GESELLSCHAFT FUR CHRONOMETRIE E.V., Band 28, 1977, Stuttgart, DE, H. EFFENBERGER: "Digitale Temperaturkonpensation von Schwingquarzoszillatoren mit automatischem Frequenzabgleich", Seiten 9-15 * Seite 10, Zeilen 47-50; Seite 11, Seite 12, Zeilen 1-6; Seite 15, Zeilen 3-10; Abbildung 1 * *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0032359B1 (de) * 1980-01-10 1984-08-08 Societe Suisse Pour L'industrie Horlogere Management Services S.A. Oszillator mit digitaler Temperaturkompensation

Also Published As

Publication number Publication date
US4344046A (en) 1982-08-10
JPS55124311A (en) 1980-09-25
JPS6347002B2 (de) 1988-09-20
DE3062665D1 (en) 1983-05-19
EP0015873B2 (de) 1986-06-11
CH620087GA3 (de) 1980-11-14
EP0015873B1 (de) 1983-04-13
CH620087B (de)

Similar Documents

Publication Publication Date Title
EP0015873A1 (de) Oszillator mit einem Niederfrequenz-Quarzresonator
DE3855081T2 (de) Analoger elektronischer Zeitgeber
DE1946166A1 (de) Zeithaltende Einrichtung mit einer Impulsuntersetzerschaltung
DE2253425C3 (de) Kapazitive Abstimmeinheit zur Frepenzkorrektur von quarzgesteuerten Oszillatoren
DE2528812B2 (de) Antiprellschaltkreis
DE2807214C3 (de) Zeitmeßeinrichtung
DE2233800A1 (de) Pulsgenerator mit einstellbarer frequenz
DE2621532A1 (de) Verfahren zur frequenzsteuerung von elektrischen schwingungssignalen und frequenznormal-schaltungen fuer elektrische uhren
DE2452687B2 (de) Schaltvorrichtung fuer eine elektronische uhr mit elektrooptischer anzeige
DE2222936A1 (de) Zeitmessgeraet
DE2723190C3 (de) Schaltung zum Stillsetzen einer elektronischen Uhr
DE2716387C3 (de) Elektronische Uhr
DE2537629A1 (de) Quarzuhr
DE2950948C2 (de) Energieversorgungsvorrichtung für ein elektronisches Gerät
DE2853627A1 (de) Elektronische uhr
DE69001009T2 (de) Elektronisches Uhrwerk.
DE2352422B2 (de) Schaltung zum Erzeugen einer Hilfsspannung in elektronischen Uhren
DE2305682A1 (de) Zeithaltendes geraet, insbesondere quarzarmbanduhr mit elektronisch geregeltem anzeigesystem
DE1946166C (de) Zeithaltende Einrichtung mit einer Impulsuntersetzerschaltung
DE2848675A1 (de) Elektronisches zeitmessgeraet mit weckeinrichtung
DE3726277C2 (de)
DE4414581A1 (de) Schaltungsanordnung zur Phasensynchronisation zweier periodischer Signale, insbesondere zur Anwendung in einer Funkuhr
DE2833653A1 (de) Frequenzeinstellschaltung
DE2848673B2 (de) Elektronisches Zeitmeßgerät, bei welchem ein Eingang der integrierten Schaltung als Ausgang verwendet wird
DE2350879A1 (de) Elektronische einrichtung zur steuerung eines uhrwerks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3062665

Country of ref document: DE

Date of ref document: 19830519

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840131

Year of fee payment: 5

26 Opposition filed

Opponent name: SIEMENS AG, BERLIN UND MUENCHEN

Effective date: 19840110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19850221

Year of fee payment: 6

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19860611

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB NL

NLR2 Nl: decision of opposition
ET3 Fr: translation filed ** decision concerning opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870228

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19891027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19891101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST