EP0010755A1 - Verwendung von Mangan-Nickel-Feinkornbaustahl - Google Patents

Verwendung von Mangan-Nickel-Feinkornbaustahl Download PDF

Info

Publication number
EP0010755A1
EP0010755A1 EP79104222A EP79104222A EP0010755A1 EP 0010755 A1 EP0010755 A1 EP 0010755A1 EP 79104222 A EP79104222 A EP 79104222A EP 79104222 A EP79104222 A EP 79104222A EP 0010755 A1 EP0010755 A1 EP 0010755A1
Authority
EP
European Patent Office
Prior art keywords
nickel
manganese
steel
structural steel
steel according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP79104222A
Other languages
English (en)
French (fr)
Other versions
EP0010755B2 (de
EP0010755B1 (de
Inventor
Constantin M. Dr. Ing. Vlad
Klaus Dipl.-Ing. Hulka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stahlwerke Pein Salzgitter AG
Preussag Stahl AG
Original Assignee
Stahlwerke Pein Salzgitter AG
Preussag Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6053669&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0010755(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Stahlwerke Pein Salzgitter AG, Preussag Stahl AG filed Critical Stahlwerke Pein Salzgitter AG
Priority to AT79104222T priority Critical patent/ATE4228T1/de
Publication of EP0010755A1 publication Critical patent/EP0010755A1/de
Application granted granted Critical
Publication of EP0010755B1 publication Critical patent/EP0010755B1/de
Publication of EP0010755B2 publication Critical patent/EP0010755B2/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Definitions

  • the invention relates to a manganese-nickel fine-grained structural steel with 0.04 to 0.09% carbon, 1.2 to 1.8% manganese, 0.1 to 0.4% silicon, 0.03 to 0.08% Niobium, up to 0.025% aluminum, up to 0.015% sulfur, 0.5 to 1.5% nickel and optionally 0.2 to 0.4% copper, balance iron including melting-related impurities.
  • An alloy steel of the aforementioned type is known from German Offenlegungsschrift 24 07 338; it contains 0.01 to 0.10% carbon, 0.5 to 2% manganese, 0.1 to 0.9% silicon, 0.001 to 0.10% niobium, 0.01 to 0.3% aluminum and 1, 4 to 3.5% nickel.
  • This steel has a certain cold strength if it has been hot rolled in a controlled manner depending on the nickel content.
  • hot rolling controlled as a function of the respective nickel content proves to be difficult and, in particular, complex in practice.
  • the cold toughness of this steel is not sufficient to use the steel at temperatures such as that of liquid methane and, in particular, liquid ethylene.
  • the invention is based on the object of proposing an alloy steel that can be welded, a high yield strength at room temperature and cold toughness, and resistance to hydrogen cracks sits and is therefore particularly suitable as a material for welded parts that, like pipes and containers, serve for the transport and storage of liquid gases even in the presence of hydrogen sulfide and water.
  • the steel is to liquid ethylene bestatiiund temperatures to -120 0 C grown in.
  • the steel Even in the hard-rolled and tempered condition, the steel has a high notched impact strength and a transition temperature that allows use at temperatures down to -70 ° C despite its very low nickel content.
  • the full material properties only develop when the proposed steel has been normalized and, if necessary, also tempered.
  • the steel After such a heat treatment, the steel has a room temperature yield point of at least 420 N / mm 2 and a transition temperature of the impact strength of 51 J / cm 2 transverse to the rolling direction of at least -120 0 C and a notched impact strength of at least 280 J / cm 2 at room temperature .
  • the steel contains 0.2 to 0.4% copper, its crack resistance is particularly high in the presence of traces of hydrogen sulfide. This is of considerable importance insofar as liquefied gases often contain traces of hydrogen sulfide, which has a corrosive effect when water is present and leads in particular to hydrogen-induced cracks.
  • the low carbon content of the steel on the one hand requires good welding behavior and promotes on the other hand the notched impact strength. Overall, the excellent properties of the proposed steel are explained in the synergistic interaction of nickel, niobium and manganese.
  • the steel is preferably annealed until the core temperature is 30 to 50 ° C above the AC 3 point and then annealed for 2 to 4 minutes at 550 to 650 ° C, in particular at 630 0 C, for 2 millimeters of material thickness in order to adjust the cold toughness .
  • the steels examined also each had a yield strength of at least 420 N / mm 2 and a notched impact strength of at least 280 J / cm 2 at room temperature .
  • FIG. 5 and 6 show that the crack sensitivity in the presence of hydrogen sulfide is particularly low at copper contents above about 0.02%, so that the proposed steel is particularly suitable for the transport and storage of contaminated liquid gas.
  • the high crack resistance can be explained by the fact that in operation under the influence of hydrogen sulfide and water a weak acid develops.
  • the resulting hydrogen ions migrate into the material and are molecularly separated at the grain boundaries. In conventional steels, this results in pressures which lead to cracking.
  • part of the copper dissolves in the acid.
  • the resulting ions migrate to the material surface through ion exchange and form a molecular protective layer made of copper. This copper layer acts as a barrier against further penetration of the hydrogen and explains the high hydrogen resistance of the steel to be used according to the invention, as can be seen in FIG. 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Laminated Bodies (AREA)
  • Catalysts (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Um eine gute Schweißbarkeit, eine hohe Streckgrenze bei Raumtemperatur und Kaltzähigkeit sowie Beständigkeit gegen Wasserstoffrisse zu gewährleisten, wird ein Stahl vorgeschlagen, der 0,04% bis 0,09% Kohlenstoff, 1,2 bis 1,8% Mangan, 0,1 bis 0,4% Silizium, 0,03 bis 0,08% Niob, bis 0,025% Aluminium, bis 0.015% Schwefel, 0,5 bis 1,5% Nickel und fakultativ 0,2 bis 0,4% Kupfer, Rest Eisen einschließlich erschmelzungsbedingter Verunreinigungen enthält und sich daher als Werkstoff für geschweißte Teile eignet, die wie Rohre und Behälter, dem Transport und der Lagerung von Flüssiggasen auch bei Anwesenheit von Schwefelwasserstoff und Wasser dienen. Insbesondere soll der Stahl gegenüber flüssigem Athylen beständig und Temperaturen bis -120° C gewachsen sein.

Description

  • Die Erfindung bezieht sich auf einez Mangan-Nickel-Feinkornbaustahl mit 0,04 bis 0,09% Kohlenstoff, 1,2 bis 1,8% Mangan, 0,1 bis 0,4% Silizium, 0,03 bis 0,08 % Niob, bis 0,025% Aluminium, bis 0,015% Schwefel, 0,5 bis 1,5% Nickel und fakultativ 0,2 bis 0,4% Kupfer, Rest Eisen einschließlich erschmelzungsbedingter Verunreinigungen.
  • Ein legierter Stahl der vorerwähnten Art ist aus der deutschen Offenlegungsschrift 24 07 338 bekannt; er enthält 0,01 bis 0,10% Kohlenstoff, 0,5 bis 2% Mangan, 0,1 bis 0,9% Silizium, 0,001 bis 0,10% Niob, 0,01 bis 0,3% Aluminium und 1,4 bis 3,5% Nickel. Dieser Stahl besitzt eine gewisse Kaltfestigkeit, wenn er in Abhängigkeit vom Nickelgehalt gesteuert warmgewalzt worden ist. Ein in Abhängigkeit vom jeweiligen Nickelgehalt gesteuertes Warmwalzen erweist sich jedoch in der Praxis als schwierig und insbesondere aufwendig. Hinzu kommt, daß die Kaltzähigkeit dieses Stahls nicht ausreicht, um den Stahl bei Temperaturen zu verwenden, wie sie flüssiges Methan und insbesondere flüssiges Äthylen mit sich bringen.
  • Für den Transport und die Lagerung von Flüssiggasen sind Werkstoffe erforderlich, die bei Temperaturen bis -1960C eine ausreichende Festigkeit und Zähigkeit besitzen. Außerdem müssen diese Werkstoffe schweißbar sein, um ein wirtschaftliches Fertigen von Rohren und Behältern zu ermöglichen.
  • Es ist bekannt, daß rostfreie Stähle Betriebstemperaturen bis unter -2700 C gewachsen sind. Träger der Kaltzähigkeit ist dabei insbesondere das Nickel. Der hohe Anteil teurer Legierungsbestandteile, setzt der Verwendung der rostfreien Stähle jedoch Grenzen, die nach preiswerteren legierten Stählen haben suchen lassen. Dies hat zur Entwicklung einer Reihe von Stählen mit etwa 9% Nickel, 0,1% Kohlenstoff, 0,80% Mangan und Q020% Phosphor geführt, die sich durch eine im Vergleich zu den rostfreien Stählen höhere Zugfestigkeit und eine bis etwa-2000C ausreichende Kaltzähigkeit auszeichnen. Voraussetzung für die hohe Kaltzähigkeit ist jedoch ein zweistufiges Normalglühen und Anlassen, das darauf abzielt, einen ausreichenden Austenitanteil in einem ferritischen Grundgefüge einzustellen. Dem liegt die Erkenntnis zugrunde, daß sich die Zähigkeit mit zunehmendem Austenitanteil erhöht.
  • Versuche haben in diesem Zusammenhang ergeben, daß sich die Kaltzähigkeit mit abnehmenden Gehalten an Kohlenstoff, Phosphor und Mangan erhöht. Des weiteren zeigte sich, daß eine stufenweise Verringerung des Nickelgehaltes auf 2,1% zu einer zunehmenden Beeinträchtigung der Kaltzähigkeit führt. So verringerten sich beispielsweise die Kerbschlagzähigkeiten normalisierter und angelassener, 8,5 bis 9,5% Nickel enthaltender Stähle von 34 J bei -196°C bei 3,25 bis 3,75% Nickel enthaltenden Stählen auf 20 J bei -100°C und bei 2,1 bis 2,5% Nickel enthaltenden Stählen auf 18 J bei -680C. Stähle mit Nickelgehalten unter 9% gelten demnach als nicht für Tiefsttemperaturen geeignet.
  • Der Erfindung liegt nun die Aufgabe zugrunde, einen legierteßStahl vorzuschlagen, der sich schweißen läßt, eine hohe Strec-kgrenze bei Raumtemperatur und Kaltzähigkeit sowie Beständigkeit gegen Wasserstoffrisse besitzt und sich demgemäß insbesondere als Werkstoff für geschweißte Teile eignet, die wie Rohre und Behälter dem Transport und der Lagerung von Flüssiggasen auch bei Anwesenheit von Schwefelwasserstoff und Wasser dienen. Insbesondere soll der Stahl gegenüber flüssigem Äthylen beständigund Temperaturen bis -1200C gewachsen sein.
  • Die Lösung dieser Aufgabe besteht in einem Stahl der eingangs erwähnten Zusammensetzung.
  • Der Stahl besitzt bereits im walzharten und angelassenen Zustand trotz seines sehr geringen Nickelgehalts eine hohe Kerbschlagzähigkeit und eine Übergangstemperatur, die eine Verwendung bei Temperaturen bis -70°C erlaubt. Die vollen Werkstoffeigenschaften entwickeln sich jedoch erst dann, wenn der vorgeschlagene Stahl normalgeglüht und gegebenenfalls auch noch angelassen worden ist. Nach einer derartigen Wärmebehandlung besitzt der Stahl eine Raumtemperatur-Streckgrenze von mindestens 420 N/mm2 und eine Übergangstemperatur der Kerbschlagzähigkeit von 51 J/cm2 quer zur Walzrichtung von mindestens -1200C sowie eine Kerbschlagzähigkeit von mindestens 280 J/cm2 bei Raumtemperatur.
  • Enthält der Stahl 0,2 bis 0,4% Kupfer, dann ist seine Rißbeständigkeit in Anwesenheit von Schwefelwasserstoffspuren besonders hoch. Dem kommt insofern eine erhebliche Bedeutung zu, als Flüssiggase häufig Spuren von Schwefelwasserstoff enthalten, der bei gleichzeitiger Anwesenheit von Wasser korrodierend wirkt und insbesondere zu wasserstoffinduzierten Rissen führt.
  • Der geringe Kohlenstoffgehalt des Stahls bedingt einerseits ein gutes Schweißverhalten und fördert andererseits die Kerbschlagzähigkeit. Insgesamt finden die ausgezeichneten Eigenschaften des vorgeschlagenen Stahls ihre Erklärung in dem synergistischen Zusammenwirken von Nickel, Niob und Mangan.
  • Der Stahl wird vorzugsweise solange normalgeglüht, bis die Kerntemperatur 30 bis 50°C über dem AC3-Punkt liegt und anschließend je 2 Millimeter Materialdicke zwei bis vier Minuten bei 550 bis 650°C, insbesondere bei 6300C angelassen, um die Kaltzähigkeit einzustellen.
  • Die Erfindung wird nachfolgend anhand von in der Zeichnung dargestellten Diagrammen und von Ausführungsbeispielen des näheren erläutert. In der Zeichnung zeigen:
    • Bild 1 die Abhängigkeit der Raumtemperatur-Kerbschlagzähigkeit vom Nickelgehalt und der Art der Wärmebehandlung.
    • Bild 2 die Abhängigkeit der Übergangstemperatur vom Nickelgehalt und der Wärmebehandlung.
    • Bild 3 Die Abhängigkeit der Kerbschlagzähigkeit und des Verformungsbruchs eines unter die Erfindung fallenden Stahls im Vergleich zu bekannten Stählen von der Prüftemperatur.
    • Bild 4 den Gehalt an gelöstem Wasserstoff in Abhängigkeit vom Kupfergehalt nach einem 96-stündigem Tauchen in ein mit Schwefelwasserstoff gesättigtes Seewasser und
    • Bild 5 die Länge der wasserstoffinduzierten Risse in Abhängigkeit vom Wasserstoffgehalt.
  • Die den Diagrammen der Bilder 1 und 2 zugrundeliegenden Versuche wurden an dem Stahl 1 bis 5 der aus der nachfolgenden Tabelle ersichtlichen Zusammensetzung durchgeführt. Von den angegebenen fallen die Stähle 2 und 3 unter die Erfindung.
    Figure imgb0001
  • Proben der Versuchsstähle wurden den aus den Diagrammen ersichtlichen Wärmebehandlungen unterworfen sowie hinsichtlich ihrer Kerbschlagzähigkeit und Kaltzähigkeit untersucht. Die Ergebnisse sind aus den Diagrammen der Bilder 1 und 2 ersichtlich und zeigen, daß sowohl die Kerbschlagzähigkeit bei Raumtemperatur als auch die Übergangstemperatur im Bereich von 0,5 bis 1,5% Nickel unabhängig von der jeweiligen Wärmebehandlung ein Optimum durchlaufen, ohne daß es dazu besonderer Maßnahmen bedarf. Das ist insofern überraschend, als nach herkömmlicher Auffassung ein abnehmender Nickelgehalt mit einer Verringerung der Kalt- und Kerbschlagzähigkeit einhergeht, sofern nicht besondere Maßnahmen wie ein gesteuertes Warmwalzen angewandt werden, um die Kaltzähigkeit einzustellen.
  • Aus den Diagrammen des Bildes 3 ergibt sich die Überlegenheit des erfindungsgemäß zu verwendenden Stahls im Vergleich zu herkömmlichen Normstählen, wobei zu beachten ist, daß es sich hei dem .erfindungsgemäß zu verwendenden Stahl um Querproben, in den anderen Fällen, mit einer Ausnahme, um Längsproben handelt.
  • Die untersuchten Stähle besaßen zudem jeweils bei Raumtemperatur eine Streckgrenze von mindestens 420 N/mm2 und eine Kerbschlagzähigkeit von mindestens 280 J/cm 2 .
  • Des weiteren zeigen die Diagramme der Bilder 5 und 6, daß die Rißempfindlichkeit in Anwesenheit von Schwefelwasserstoff bei Kupfergehalten über etwa 0,02% besonders gering ist, so daß sich der vorgeschlagene Stahl insbesondere auch zum Transport und zur Lagerung von verunreinigtem Flüssiggas eignet. Die hohe Rißbeständigkeit erklärt sich daraus, daß im Betrieb unter dem Einfluß von Schwefelwasserstoff und Wasser eine schwache Säure entsteht. Die dabei entstehenden Wasserstoffionen wandern in den Werkstoff und scheiden sich molekular an den Korngrenzen ab. Daraus resultieren bei herkömmlichen Stählen zu einer Rißbildung führende Drücke. Bei dem erfindungsgemäß zu verwendenden Stahl löst sich hingegen ein Teil des Kupfers in der Säure. Die dabei entstehenden Ionen wandern durch Ionenaustausch an die Werkstoffoberfläche und bilden dort eine molekulare Schutzschicht aus Kupfer. Diese Kupferschicht wirkt als Sperrschicht gegen ein weiteres Eindringen des Wasserstoffs und erklärt die aus Bild 4 ersichtliche hohe Wasserstoffbeständigkeit des erfindungsgemäß zu verwendenden Stahls.

Claims (6)

1. Mangan-Nickel Feinkornbaustahl mit 0,04 bis 0,09% Kohlenstoff, 1,2 bis 1,8% Mangan, 0,1 bis 0,4% Silizium, 0,03 bis 0,08% Niob, 0,5 bis 1,5% Nickel, bis 0,25% Aluminium, bis 0,015% Schwefel und fakultativ 0,2 bis 0,4% Kupfer, Rest Eisen, einschließlich erschmelzungsbedingter Verunreinigungen.
2. Stahl nach Anspruch 1, der jedoch angelassen worden ist.
3.Stahl nach Anspruch 2, der jedoch zwei bis vier Minuten je mm Materialdicke bei 550 bis 650°C angelassen worden ist.
4. Stahl nach Anspruch 2 oder 3, der jedoch normalgeglüht worden ist.
5. Stahl nach Anspruch 4, der jedoch zwei bis vier Minuten bei einer Kerntemperatur von 30 bis 50°C über dem AC3-Punkt normalgeglüht worden ist.
6. Verwendung eines Stahl nach einem oder mehreren der Ansprüche 1 bis 5 als Werkstoff für Teile, die wie Rohre und Behälter mit Flüssiggas bei Temperaturen bis -120°C in Berührung kommen.
EP79104222A 1978-11-02 1979-10-31 Verwendung von Mangan-Nickel-Feinkornbaustahl Expired EP0010755B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79104222T ATE4228T1 (de) 1978-11-02 1979-10-31 Verwendung von mangan-nickel-feinkornbaustahl.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2847506A DE2847506C2 (de) 1978-11-02 1978-11-02 Verwendung eines kaltzähen Mangan-Nickel-Feinkornbaustahls
DE2847506 1978-11-02

Publications (3)

Publication Number Publication Date
EP0010755A1 true EP0010755A1 (de) 1980-05-14
EP0010755B1 EP0010755B1 (de) 1983-07-20
EP0010755B2 EP0010755B2 (de) 1986-08-06

Family

ID=6053669

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79104222A Expired EP0010755B2 (de) 1978-11-02 1979-10-31 Verwendung von Mangan-Nickel-Feinkornbaustahl

Country Status (5)

Country Link
EP (1) EP0010755B2 (de)
AT (1) ATE4228T1 (de)
CA (1) CA1149647A (de)
DE (1) DE2847506C2 (de)
NO (1) NO151506C (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262281A1 (de) * 1986-09-25 1988-04-06 MANNESMANN Aktiengesellschaft Verfahren zum Herstellen von Zylinderrohren für den Gebrauch bei Temperaturen bis minus 40 Grad Celsius
FR2633208A1 (fr) * 1988-06-22 1989-12-29 Vizi Gyorgy Element d'angle pour conteneurs

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB974028A (en) * 1963-02-13 1964-11-04 South Durham Steel & Iron Comp Improvements in and relating to low alloy steels
DE2157305A1 (de) * 1970-11-18 1972-06-29 Nippon Kokan Kk Niedrig legierter Stahl hoher Zugfestigkeit
DE2039910B2 (de) * 1970-08-11 1973-08-02 Nippon Steel Corp , Tokio Waermebehandlungsverfahren fuer einen stahl
DE2323738A1 (de) * 1972-05-12 1973-11-22 Algoma Steel Corp Ltd Verfahren zur herstellung von hochfestem, kerbzaehem stahl
DE2407338A1 (de) * 1973-02-15 1974-09-05 Nippon Kokan Kk Gewalzter, niedriglegierter, hochzugfester stahl
US3834949A (en) * 1973-02-14 1974-09-10 Inland Steel Co Hot rolled flat steel article for cryogenic service and method for producing same
DE2411120A1 (de) * 1973-03-16 1974-09-19 Int Nickel Ltd Schweissbarer stahl mit hoher festigkeit
DE2461087A1 (de) * 1973-12-28 1975-07-03 Sumitomo Metal Ind Wasserstoffreissfester stahl fuer rohrleitungsrohre
DE2738250A1 (de) * 1976-08-27 1978-03-02 Nippon Steel Corp Verfahren zur herstellung von stahlblech mit ausgezeichneter zaehigkeit bei tiefen temperaturen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1758507B1 (de) * 1968-06-15 1970-12-10 Thyssen Roehrenwerke Ag Verwendung eines hochfesten manganlegierten Feinkornbaustahls als Werkstoff fuer geschweisste Gegenstaende mit guten Tieftemperatureigenschaften
US3619302A (en) * 1968-11-18 1971-11-09 Yawata Iron & Steel Co Method of heat-treating low temperature tough steel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB974028A (en) * 1963-02-13 1964-11-04 South Durham Steel & Iron Comp Improvements in and relating to low alloy steels
DE2039910B2 (de) * 1970-08-11 1973-08-02 Nippon Steel Corp , Tokio Waermebehandlungsverfahren fuer einen stahl
DE2157305A1 (de) * 1970-11-18 1972-06-29 Nippon Kokan Kk Niedrig legierter Stahl hoher Zugfestigkeit
DE2323738A1 (de) * 1972-05-12 1973-11-22 Algoma Steel Corp Ltd Verfahren zur herstellung von hochfestem, kerbzaehem stahl
US3834949A (en) * 1973-02-14 1974-09-10 Inland Steel Co Hot rolled flat steel article for cryogenic service and method for producing same
DE2407338A1 (de) * 1973-02-15 1974-09-05 Nippon Kokan Kk Gewalzter, niedriglegierter, hochzugfester stahl
DE2411120A1 (de) * 1973-03-16 1974-09-19 Int Nickel Ltd Schweissbarer stahl mit hoher festigkeit
DE2461087A1 (de) * 1973-12-28 1975-07-03 Sumitomo Metal Ind Wasserstoffreissfester stahl fuer rohrleitungsrohre
DE2738250A1 (de) * 1976-08-27 1978-03-02 Nippon Steel Corp Verfahren zur herstellung von stahlblech mit ausgezeichneter zaehigkeit bei tiefen temperaturen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262281A1 (de) * 1986-09-25 1988-04-06 MANNESMANN Aktiengesellschaft Verfahren zum Herstellen von Zylinderrohren für den Gebrauch bei Temperaturen bis minus 40 Grad Celsius
FR2633208A1 (fr) * 1988-06-22 1989-12-29 Vizi Gyorgy Element d'angle pour conteneurs
BE1004321A4 (fr) * 1988-06-22 1992-11-03 Vizi Gyoergy Element d'angle pour conteneurs.

Also Published As

Publication number Publication date
DE2847506C2 (de) 1986-04-17
EP0010755B2 (de) 1986-08-06
EP0010755B1 (de) 1983-07-20
DE2847506A1 (de) 1980-05-14
CA1149647A (en) 1983-07-12
NO151506C (no) 1985-04-24
ATE4228T1 (de) 1983-08-15
NO793516L (no) 1980-05-05
NO151506B (no) 1985-01-07

Similar Documents

Publication Publication Date Title
DE60003501T2 (de) Niedrig legierter, hochfester, hitzebeständiger Stahl
DE69916717T2 (de) Verfahren für die herstellung geschweisster behälter, bestimmt zur verwendung in gegenwart von schwefelwasserstoff
DE3002743A1 (de) Verbesserte invarlegierung
DE2606956A1 (de) Feuerfeste chrom-nickel-legierung mit hoher oxydations- und karburierungsbestaendigkeit und guter kriechfestigkeit bei sehr hoher temperatur
DE2525395C3 (de) Verwendung eines Stahles für Gegenstände, die mit einer Wärmezufuhr von mehr als 60000 J/cm geschweißt werden
DE69629552T2 (de) Verfahren zum herstellen von stahlröhren grosser durchmesser mit einer hochfestigkeit und einer hochbeständigkeit
DE69311839T2 (de) Rostfreier austenitischer Stahl mit guter Zerspanbarkeit und verbesserten Kaltverformungseigenschaften
DE3432337C2 (de)
DE2847506C2 (de) Verwendung eines kaltzähen Mangan-Nickel-Feinkornbaustahls
DE3541075C2 (de)
DE1758507B1 (de) Verwendung eines hochfesten manganlegierten Feinkornbaustahls als Werkstoff fuer geschweisste Gegenstaende mit guten Tieftemperatureigenschaften
DE1178609B (de) Fuer Druckgefaesse und analog benutzte Bauteile brauchbarer, niedriglegierter, gut schweissbarer Stahl
DE2051609C3 (de) Verwendung eines austenitischen rostfreien Stahls als Werkstoff für die Herstellung von geschweißten Druckkesseln für den kryogenen Betrieb und die Herstellung von kaltgezogenen drahtförmigen Formkörpern
DE1194587B (de) Verwendung von austenitischen Stahllegierungen als Werkstoff fuer geschweisste Bauteile, die dem Angriff von Seewasser und/oder Meeres-atmosphaere ausgesetzt sind
DE2304553A1 (de) Stahllegierung
EP0256429B1 (de) Spannungsrisskorrosionsbeständiger Baustahl
DE1558508A1 (de) Verwendung eines martensitaushaertbaren Chrom-Nickel-Stahls
DE3037954A1 (de) Verwendung eines austenitischen stahles im kaltverfestigten zustand bei extremen korrosionsbeanspruchungen
AT149554B (de) Stähle für Bleche, welche geschweißt werden.
EP0005199A2 (de) Manganstahl sowie Verfahren zum Schweissen dieses Manganstahles
DE3887036T2 (de) Austenitischer rostfreier Stahl mit hoher Beständigkeit gegen Korrosion durch heisses Wasser.
DE2655696C3 (de) Stahl
DE2621182C2 (de) Schweißnaht für längsnahtgeschweißte Rohre großer Durchmesser
DE897423C (de) Chromstahllegierung von hohem Korrosionswiderstand
DE1294680B (de) Verwendung einer Stahllegierung als Werkstoff fuer Gegenstaende hoher Zugfestigkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LU NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 4228

Country of ref document: AT

Date of ref document: 19830815

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19831019

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19831031

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HOESCH WERKE AG

Effective date: 19840407

26 Opposition filed

Opponent name: THYSSEN STAHL AG

Effective date: 19840420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841016

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19841122

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19841231

Year of fee payment: 6

Ref country code: BE

Payment date: 19841231

Year of fee payment: 6

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19860806

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH FR GB IT LU NL SE

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861008

Year of fee payment: 8

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19861031

Year of fee payment: 8

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
ET3 Fr: translation filed ** decision concerning opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19871031

Ref country code: BE

Effective date: 19871031

Ref country code: AT

Effective date: 19871031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19871101

BERE Be: lapsed

Owner name: STAHLWERKE PEINE-SALZGITTER A.G.

Effective date: 19871031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 79104222.9

Effective date: 19880912