EP0008699B1 - Verfahren zur Herstellung von Arylglyoxylsäuren - Google Patents

Verfahren zur Herstellung von Arylglyoxylsäuren Download PDF

Info

Publication number
EP0008699B1
EP0008699B1 EP79102897A EP79102897A EP0008699B1 EP 0008699 B1 EP0008699 B1 EP 0008699B1 EP 79102897 A EP79102897 A EP 79102897A EP 79102897 A EP79102897 A EP 79102897A EP 0008699 B1 EP0008699 B1 EP 0008699B1
Authority
EP
European Patent Office
Prior art keywords
process according
arylethane
diol
platinum
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79102897A
Other languages
English (en)
French (fr)
Other versions
EP0008699A1 (de
Inventor
Helmut Dr. Fiege
Karlfried Dr. Wedemeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0008699A1 publication Critical patent/EP0008699A1/de
Application granted granted Critical
Publication of EP0008699B1 publication Critical patent/EP0008699B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting

Definitions

  • the present invention relates to a process for the preparation of arylglyoxyacids by oxidation of arylethane-1,2-diol compounds with gases containing oxygen or oxygen in aqueous alkaline media at temperatures up to the boiling point of the reaction mixture in the presence of platinum metal catalysts.
  • Arylglyoxyacids are valuable intermediates in organic synthesis, e.g. in the production of crop protection products.
  • phenylglyoxylic acid could only be obtained in minor amounts (in addition to mandelic acid, benzoic acid, formic acid and CO 2 ) (see Ann. Acad. Sci. Fenn. [ A] 39 No. 11 (1934), p. 63).
  • Ar represents an optionally substituted aryl radical, oxidized with oxygen or gases containing molecular oxygen in an aqueous alkaline medium in the presence of platinum metal catalysts in the presence of lead and / or bismuth and / or their compounds as activators at temperatures up to the boiling point of the reaction mixture .
  • the arylethane-1,2-diols (I) can be in the R, S or ( ⁇ ) form. Mixtures of different arylethane-1,2-diols can also be used for the oxidation.
  • the process according to the invention has a number of further advantages:
  • the oxidizing agent used is oxygen, which is generally available, is cheap and does not lead to oxidizing agent secondary products which are harmful to the environment.
  • the high selectivity fewer by-products are formed which have to be separated off and removed; this also means that valuable raw materials are not wasted.
  • Technical advantages also lie in the fact that the reaction conditions permit good heat dissipation, the pH of the reaction medium enables the reaction to be carried out even in steel apparatuses, and the oxidation can be controlled well via the oxygen uptake.
  • Formula (1) provides a general definition of the arylethane-1,2-diols to be used according to the invention as starting materials.
  • Ar is preferably phenyl.
  • the radical Ar also stands for substituted aryl, the following substituents being preferred: alkyl, preferably having 1 to 6 C atoms, cycloalkyl, preferably having 3 to 6 C atoms; Aryl, preferably phenyl; Aralkyl, preferably benzyl; Alkoxy, preferably with 1 to 6 carbon atoms; Cycloalkoxy, preferably with 3 to 6 carbon atoms; Aryloxy, preferably phenoxy; Hydroxy; Carboxy and / or halogen (especially fluorine, chlorine and / or bromine) and the methylenedioxy group.
  • the aryl radical is phenyl, the substituents are preferably in the 3--, 4- and / or 5-position.
  • arylethane -1,2-diols of the formula (1) required as starting compounds are known or can be prepared by known processes.
  • phenylethylene-1,2-glycol can be prepared by hydroxylation of styrene with hydrogen peroxide (see Helv. Chim. Acta 50 (1967), pp. 319-321) or by hydrolysis of styrene oxide (for further processes see Rodd's Chemistry of Carbon Compoundes, Vol. 111 Part E, 2nd edition (1974), p. 72 ff).
  • aqueous alkaline medium is meant that the reaction mixture reacts alkaline, that is, has a pH> 7.
  • the alkali is advantageously dimensioned such that 0.3 to 5, preferably 0.5 to 3, equivalents of alkali come to 1 mol of arylethane-1,2-diol to be oxidized.
  • About 0.9 to 2 equivalents of alkali per mole of arylethane 1,2-diol to be oxidized are particularly preferably used.
  • the alkali can be added to the solution or suspension of the arylethane-1,2-diol in water, or the arylethane, 2-diol can be dissolved or suspended in the alkali solution.
  • Hydroxides or carbonates of sodium or potassium are preferably used as alkali.
  • the concentration of the organic compounds in the aqueous alkaline reaction solution is generally chosen so that both the arylethane-1,2-diol and the arylglyoxy acid formed are dissolved under the reaction conditions. If necessary, the arylethane is -1,2-diol to the oxidation mixture. together with part of the alkali - in portions. Final concentrations of organic compounds in the reaction mixture of 5 to 30% by weight have proven successful.
  • the possible reaction temperature ranges from the freezing point to the boiling point of the reaction mixture. Is preferably carried out in the temperature range from 10 ° to 100 ° C.
  • Platinum metals which are used as catalysts in the process according to the invention, are understood to mean the chemically closely related metals platinum, palladium, rhodium, iridium, ruthenium and osmium, which mostly occur together in nature.
  • the platinum metals platinum and palladium are preferably used, in particular platinum.
  • platinum metals used as catalysts can be added to the reaction components in various forms, for example in elemental, i.e. metallic, shape, e.g. as so-called Mohr, in combination with other platinum metals or in the form of compounds, e.g. as oxides or in the form of other compounds.
  • the platinum metals can also be applied to carriers.
  • Suitable carriers are, for example, activated carbon, graphite, diatomaceous earth, silica gel, spinels, aluminum oxide, asbestos, calcium carbonate, magnesium carbonate, barium sulfate or else organic carrier materials.
  • Activated carbons have proven particularly useful, for example cheap powdered activated carbons made from wood, which are often used for decolorization purposes.
  • platinum metal content of these carrier catalysts can vary within wide limits.
  • the amounts in which the platinum metal catalysts are used can vary within wide limits. The amounts depend on the desired rate of oxidation, the shape of the catalyst, the type and amount of activator, etc. and can be easily determined in special cases by preliminary tests.
  • the amount of platinum metal required per mole of arylethane-1,2-diol is less than 1000 mg. in most cases sufficiently high reaction rates are achieved with 20 to 400 mg of platinum per mole of aryfethane-1,2-diol.
  • the catalysts can be used repeatedly. Through this reuse, the consumption of platinum metal catalyst per mole of arylethane-1,2-diol can be reduced to 5 mg and below before a reprocessing of the platinum metal catalyst is necessary.
  • activators to be used according to the invention can vary within further limits.
  • the activator effect is already noticeable with the addition of 1 x 10- 5 moles of metal or metal compound per mole of arylethane-1,2-diol.
  • 0.1 mole or more activator per mole of arylethane-1,2-diol can also be used, but these high additives generally offer no advantage.
  • additions of 5 ⁇ 10 5 to 1 ⁇ 10 1 mol, preferably 1 ⁇ 10 4 to 1 ⁇ 10 2 mol, of metal per mol of arylethane-1,2-diol to be oxidized have proven successful.
  • the metals to be used as activators according to the invention can be used as such, i.e. in elemental form and / or in the form of their compounds, e.g. as oxides or salts of hydrogen acids, such as chlorides, bromides, iodides, sulfides, selenides, tellurides, or as salts of inorganic oxygen acids, such as nitrates, nitrites, phosphites, phosphates, carbonates, perchlorates, antimonates, arsenates, selenites, sulfates, selenates, Borates, or as salts of oxygen acids derived from transition metals, such as Vanadates, niobates, tantalates, chromates, molybdates, tungstates, permanganates, or as salts of organic aliphatic or aromatic acids such as e.g.
  • Formates acetates, propionates, benzoates, salicylates, lactates, mandelates, glyoxylates, arylglyoxylates, citrates or as phenolates etc. are used.
  • the activators can each be soluble, partially soluble or insoluble in the reaction mixture.
  • Combinations of these activators with one another and / or with other elements or compounds not claimed as an activator can also be used.
  • the activators according to the invention can exist in different and also mixed valence levels; changes in the value can also occur during the reaction. If the activators are not already added as oxides and / or hydroxides, it is possible for them to be wholly or partly converted into them in the alkaline medium. After the reaction, the platinum metal catalyst can be filtered off with the poorly soluble activator and reused in further oxidations. Losses of platinum metal catalysts and / or activator may have to be replaced.
  • the activator can be added to the reaction components as a solid, preferably in finely divided form, or in dissolved form.
  • the activator can also be added during the production of the platinum metal catalyst or the platinum metal catalyst can be impregnated with the activator.
  • the activator can also serve as a carrier material for the platinum metal.
  • the process according to the invention is usually carried out in such a way that oxygen or molecular oxygen-containing gases such as air are brought into good contact with the solution of the arylethane-1,2-diol containing the alkaline agent, the platinum metal catalyst and the activator according to the invention.
  • oxygen or molecular oxygen-containing gases such as air are brought into good contact with the solution of the arylethane-1,2-diol containing the alkaline agent, the platinum metal catalyst and the activator according to the invention.
  • oxygen or molecular oxygen-containing gases such as air are brought into good contact with the solution of the arylethane-1,2-diol containing the alkaline agent, the platinum metal catalyst and the activator according to the invention.
  • the course of the reaction can be followed via the amount of oxygen taken up and is stopped when the amount of oxygen theoretically required for the desired
  • platinum metal catalyst and undissolved activator are separated from the reaction mixture, for example by filtration.
  • the arylglyoxy acid is released from the alkaline reaction solution by acidification to a pH below 6 and separated by known methods such as decanting, filtering and / or extracting and, if necessary, e.g. further purified by recrystallization, distillation or extraction.
  • platinum metal catalyst, activator, alkali and arylethane-1,2-diol are combined is arbitrary.
  • platinum metal catalyst and activator can be added to the aqueous alkaline arylethane-1,2-diol solution; platinum metal catalyst and activator can also be introduced and aqueous alkaline arylethane-1,2-diol solution added; finally, it is also possible to provide platinum metal catalyst, part of the aqueous alkali and the activator and to add the arylethane-1,2-diol together with the remaining alkali. It is also possible to: Add vator to the mixture of the reaction components.
  • arylglyoxylic acids which can be prepared by the process according to the invention are important organic intermediates and are of great importance e.g. for the production of crop protection products, light-curing paints and pharmaceuticals.
  • the herbicidal active ingredient 3-methyl-4-amino-6-phenyl-1,2,4-triazin-5 (4H) -one can be prepared (cf. DE-OS 2 224 161).
  • the content of phenylglyoxylic acid in the filtrate is determined by differential pulse polarography. 1N LiOH was used as the base electrolyte. The determination was made against the known content of phenylglyoxylic acid solution, which was added as an internal standard in a repeat measurement. The determination showed a phenylglyoxylic acid yield of 93% of theory
  • the phenylglyoxy acid can also be released by acidification with sulfuric acid and - if necessary after filtering off the benzoic acid (0.6 g % d. Th). - Extracted from the solution with ether, for example, and contained in free form after the ether has evaporated. The filtered contact can be reused.
  • Example 2 The procedure is as in Example 1, but with the difference that not lead, but 3 x 10- 4 mol bismuth in the form of its finely powdered nitrate [Bi (NO 3 ) 3 . 5 H 2 O] are added to the reaction mixture as an activator. After an oxidation time of 60 minutes, the stoichiometrically required amount of oxygen has been absorbed and the polarographic determination gives a phenylglyoxylic acid yield of 90% of theory. Th. The contact can be reused after filtering.
  • Example 1 A solution of 13.8 g (0.1 mol) ( ⁇ ) phenylethylene-1,2-glycol in 100 ml of 2N sodium hydroxide solution is used. 1.5 g of activated carbon (medicinal carbon) with a 5% palladium content and 2 x 10- 4 mol Bi (No 3 ) 3 are used as the solution. 5 H 2 0 given. Then is oxidized at 70 ° C and 1 bar O 2 pressure. After 140 minutes, 0.15 mol of O 2 are taken up and the phenylglyoxylic acid yield is 45% of theory.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Arylglyoxysäuren durch Oxidation von Aryläthan-1,2-diol-Verbindungen mit Sauerstoff oder Sauerstoff enthaltenden Gasen in wäßrig-alkalischen Medien bei Temperaturen bis zum Siedepunkt des Reaktionsgemisches in Gegenwart von Platinmetall-Katalysatoren. Arylglyoxysäuren sind wertvolle Zwischenprodukte in der organischen Synthese, z.B. bei der Herstellung von Pflanzenschutzmitteln.
  • Die Oxidation von Phenyläthan-1,2-diol zu Phenylglyoxylsäure kann formal über folgende Zwischenstufen verlaufen (s. Rodd's Chemistry of Carbon Compounds, Vol. III Part E, 2. Auflage (1974) S. 71 ff.):
  • Figure imgb0001
    Jede dieser Verbindungen ist strukturell für zahlreiche Nebenreaktionen, insbesondere für oxidative Spaltungen (zu Benzaldehyd, Benzoesäure, Formaldehyd, Ameisensäure und/oder CO2), prädestiniert. Die Chance, in einem Schritt durch Oxidation von Phenyläthan-1,2-diol selektiv zur Phenylglyoxylsäure zu kommen, ist somit äußerst gering. Dies bestätigen die literaturbekannten Ergebnisse: Während Mandelsäure - wenn auch nur in schlechter Ausbeute - zu Phenylglyoxylsäure oxidiert werden kann (vgl. Organic Synthesis, Coll. Vol. I, 2. Aufl. 1956, S.241 bis 245), führt die Oxidation von Phenyläthan-1,2-diol mit Kaliumpermanganat nahezu vollständig zu Benzoesäure (vgl. J. Am. Chem. Soc. 35 (1913) S. 54-68). Im wesentlichen oxidative spaltung tritt auch bei Oxidation von Phenyläthan-1,2-diol mit Chromsäure, Kalium-hexacyanoferrat (III), Silberoxid, Brom (s. vorstehendes Zitat) oder bei der Oxidation mit Nickelperoxid (vgl. Chem. Pharm. Bull. (Tokyo) 12 (1964) 403-7), mit Kaliumperjodat (vgl. Talanta 23 (1976), S. 237--9) oder mit Blei-tetra-acetat (s. Rodd's Chemistry of Carbon Compounds, Vol. III Part E, 2. Auflage (1974), S. 74) ein. Mit Salpetersäure bleibt die Oxidation unter milden Bedingungen auf der Stufe des Benzoylmethanols stehen; unter verschärften, technisch wenig attraktiven Bedingungen wurde qualitativ Benzoylameisensäure neben Benzoesäure festgestellt, (Liebigs Annalen der Chemie 216 (1883), S. 313; Ber. Dtsch. Chem. Ges. 10 (1877) S. 1488). Durch elektrochemische Oxidation von Phenyläthan-1,2-diol konnte selbst unter gunstigsten Bedingungen (platinierte Platinanoden) Phenylglyoxylsäure nur in untergeordneten Mengen (neben Mandelsäure, Benzoesäure, Ameisensaure und CO2) erhalten werden (vgl. Ann. Acad. Sci. fenn. [A] 39 Nr. 11 (1934), S. 63).
  • Es ist mithin kein Verfahren bekannt, das eine selektive Oxidation von Phenyläthylen-1,2-glycoi zu Phenylglyoxylsäure unter technisch interessanten Bedingungen gestattet.
  • Es wurde nun gefunden, daß man Arylglyoxyisäuren in sehr hoher Ausbeute und ausgezeichneter Reinheit erhält, wenn man Aryläthan-1,2-diole der Formel
    Figure imgb0002
    in der
  • Ar für einen gegebenenfalls substituierten Arylrest steht, mit Sauerstoff oder molekularen Sauerstoff enthaltenden Gasen in wäßrig-alkalischem Medium in Gegenwart von Platinmetall-Kätalysatoren bei gleichzeitiger Anwesenheit von Blei und/oder Wismut und/oder deren Verbindungen als Aktivatoren bei Temperaturen bis zum Siedepunkt des Reaktionsgemisches oxidiert.
  • Die Aryläthan-1,2-diole (I) können in der R-, der S- oder der (±)-Form vorliegen. Auch Gemische verschiedener Aryläthan-1,2-diole können zur Oxidation eingesetzt werden.
  • Es ist im Hinblick auf den Stand der Technik als ausgesprochen überraschend zu bezeichnen, daß die sonst übliche oxidative Spaltung unter den Bedingungen des erfindungsgemäßen Verfahrens weitgehend unterbleibt und es in technisch einfacher Weise gelingt, Aryläthan-1,2-diole, wie z.B. Phenyläthan-1 ,2-diol (Phenyläthylen-1,2-glycol), mit sehr hoher Ausbeute und Reinheit, also hochselek- tiv, in Arylglyoxylsäuren wie z.B. Phenylglyoxylsäure, zu überführen.
  • Darüber hinaus weist das erfindungsgemäße Verfahren eine Reihe weiterer Vorteile, auf: So wird als Oxidationsmittel Sauerstoff verwendet, der allgemein zur Verfügung steht, billig ist und nicht zu umweltbelastenden Oxidationsmittel - Folgeprodukten führt. Infolge der hohen Selektivität entstehen weniger Nebenprodukte, die abgetrennt und beseitigt werden müssen; dies bedeutet zugleich, daß die Vergeudung wertvoller Rohstoffe vermieden wird. Technische Vorteile leigen ferner darin, daß die Reaktionsbedingungen eine gute Wärmeabfuhr gestatten, der pH-Wert des Reaktionsmediums die Durchführung der Reaktion auch in Stahlapparaturen ermöglicht und die Oxidation über die Sauerstoffaufnahme gut gesteuert werden kann.
  • Verwendet man Phenyläthylen-1,2-glycoi als Ausgangs-Verbindung, so kann der Reaktionsablauf summarisch durch das folgende Formelschema wiedergegeben werden:
    Figure imgb0003
  • Die erfindungsgemäß als Ausgangsstoffe zu verwendenden Aryläthan-1,2-diole sind durch die Formel (1) allgemein definiert. In dieser Formel steht Ar vorzugsweise für Phenyl. Der Rest Ar steht ferner für substituiertes Aryl, wobei bevorzugt folgende Substituenten in Frage kommen: Alkyl, vorzugsweise mit 1 bis 6 C-Atomen, Cycloalkyl, vorzugsweise mit 3 bis 6 C-Atomen; Aryl, vorzugsweise Phenyl; Aralkyl, vorzugsweise Benzyl; Alkoxy, vorzugsweise mit 1 bis 6 C-Atomen; Cycloalkoxy, vorzugsweise mit 3 bis 6 C-Atomen; Aryloxy, vorzugsweise Phenoxy; Hydroxy; Carboxy und/oder Halogen (insbesondere Fluor, Chlor und/oder Brom) sowie die Methylendioxy-Gruppe. Wenn der Arylrest Phenyl bedeutet, stehen die Substituenten vorzugsweise in der 3--, 4- und/oder 5-Stellung.
  • Die als Ausgangsverbindungen benötigten Aryläthan -1,2-diole der Formel (1) sind bekannt oder können nach bekannten Verfahren hergestellt werden. So kann das Phenyläthylen-1,2-glycol beispielsweise durch Hydroxylierung von Styrol mit Wasserstoffperoxid (vgl. Helv. chim. Acta 50 (1967), S. 319-321) oder durch Hydrolyse von Styroloxid hergestellt werden (Weitere Verfahren vgl. Rodd's Chemistry of Carbon Compoundes, Vol. 111 Part E, 2. Auflage (1974), S. 72 ff).
  • Unter "wäßrig-alkalischem Medium" ist zu verstehen, daß das Reaktionsgemisch alkalisch reagiert, also einen pH-Wert >7 aufweist. Vorteilhafterweise wird das Alkali so bemessen, daß auf 1 Mol zu oxidierendes Aryläthan-1,2-diol 0,3 bis 5, vorzugsweise 0,5 bis 3 Äquivalente Alkali kommen. Insbesondere bevorzugt werden etwa 0,9 bis 2 Äquivalente Alkali je Mol zu oxidierendes Aryläthan 1,2-diol angewendet.
  • Das Alkali kann zur Lösung bzw. Suspension des Aryläthan-1,2-diols in Wasser gegeben werden, oder das Aryläthanl,2-diol kann in der Alkali-Lösung gelöst bzw. suspendiert werden.
  • Als Alkali werden bevorzugt Hydroxide oder Carbonate des Natriums oder Kaliums eingesetzt.
  • Die Konzentration der organischen Verbindungen in der wäßrig-alkalischen Reaktionslösung wird im allgemeinen so gewählt, daß sowohl das Aryläthan-1,2-diol als auch die gebildete Arylglyoxysäure unter den Reaktionsbedingungen gelöst vorliegen. Gegebenenfalls ist das Aryläthan -1,2-diol dem Oxidationsgemisch-evtl. zusammen mit einem Teil des Alkalis - portionsweise zuzuführen. Bewährt haben sich Endkonzentrationen an organischen Verbindungen im Reaktionsgemisch von 5 bis 30 Gew.%.
  • Unter den erfindungsgemäßen Bedingungen kann eine Oxidationswirkung bei allen Temperaturen beobachtet werden, bei denen eine flüssige Phase vorliegt. Dementsprechend reicht die mögliche Reaktionstemperatur vom Erstarrungspunkt bis zum Siedepunkt des Reaktionsgemisches. Bevorzugt wird im Temperaturbereich von 10° bis 100°C gearbeitet.
  • Unter "Platinmetallen", die in dem erfindungsgemäßen Verfahren als Katalysatoren eingesetzt werden, sind die chemisch nahe verwandten in der Natur meist gemeinsam auftretenden Metalle Platin, Palladium, Rhodium, Iridium, Ruthenium und Osmium zu verstehen. Bevorzugt werden die Platinmetalle Platin und Palladium eingesetzt, insbesondere Platin.
  • Die als Katalysatoren verwendeten Platinmetalle können den Reaktionskomponenten in verschiedenster Form zugegeben werden, beispielsweise in elementarer, d.h. metallischer, Form, z.B. als sogenanntes Mohr, in Kombination mit anderen Platinmetallen oder in Form von Verbindungen, z.B. als Oxide oder auch in Form anderer Verbindungen.
  • Die Platinmetalle können auch auf Träger aufgebracht sein. Als Träger geeignet sind beispielsweise Aktivkohle, Graphit, Kieselgur, Kieselgel, Spinelle, Aluminiumoxid, Asbest, Calciumcarbonat, Magnesiumcarbonat, Bariumsulfat oder auch organische Trägermaterialen. Besonders bewährt haben sich Aktivkohlen, beispielsweise aus Holz hergestellte billige pulverförmige Aktivkohlen, die vielfach für Entfärbungszwecke verwendet werden.
  • Der Platinmetall-Gehalt dieser Trägerkataysatoren kann in weiten Grenzen schwanken. Besonders bewährt haben sich Trägerkatalysatoren mit einem Platinmetall-Gehalt unter 10 Gew.%, insbesondere solche mit Gehalten von 0,1 bis 5 Gew.% Platinmetall.
  • Die Mengen, in denen die Platinmetall-Katalysatoren verwendet werden, können in weiten Grenzen schwanken. Die Mengen hängen von der gewünschten Oxidationsgeschwindigkeit, der Katalysatorform, der Aktivator-Art und -Menge usw. ab und lassen sich im speziellen Fall durch Vorversuche leicht ermitteln.
  • Im allgemeinen liegt die je Mol Aryläthan-1,2-diol erforderliche Platinmetall-Menge unter 1000 mg. in den meisten Fällen werden mit 20 bis 400 mg Platinmenge je Mol Aryfäthan-1,2-diol ausreichend hohe Reaktionsgeschwindigkeiten erreicht.
  • Da bei Verwendung der erfindungsgemäßen Aktivatoren eine Teerbildung fast vollständig vermieden wird, können die Katalysatoren wiederholt eingesetzt werden. Durch diese Wiederverwendung kann der Verbrauch an Platinmetall-Katalysator je Mol Aryläthan-1,2-diol auf 5 mg und darunter gesenkt werden, bevor eine Wiederaufarbeitung des Platinmetall-Katalysators erforderlich wird.
  • Als Aktivatoren haben sich vor allem Blei und/oder Wismut bewährt. Die Mengen, in denen die erfindungsgemäß zu verwendenden Aktivatoren eingesetzt werden, können in weiteren Grenzen schwanken. Die Aktivatorwirkung macht sich bereits bei Zusätzen von 1 x 10-5 Mol Metall bzw. Metallverbindung je Mol Aryläthan-1,2-diol deutlich bemerkbar. Es können auch 0,1 Mol oder mehr Aktivator je Mol Aryläthan-1 ,2-diol eingesetzt werden, jedoch bieten diese hohen Zusätze im allgemeinen keinen Vorteil. Im allgemeinen haben sich Zusätze von 5 x 10-5 bis 1 x 10-1 Mol, vorzugsweise 1 x 10-4 bis 1 x 10-2 Mol Metall je Mol zu oxidierendes Aryläthan-1,2-diol bewährt.
  • Die erfindungsgemäß als Aktivatoren zu verwendenden Metalle können als solche, d.h. in elementarer Form und/oder in Form ihrer Verbindungen, z.B. als Oxide oder Salze von Wasserstoffsäuren, wie Chloride, Bromide, Jodide, Sulfide, Selenide, Telluride, oder als Salze von anorganischen Sauerstoffsäuren, wie Nitrate, Nitrite, Phospite, Phosphate, Carbonate, Perchlorate, Antimonate, Arseniate, Selenite, Sulfate, Seleniate, Borate, oder als Salze von Sauerstoffsäuren, die von Übergangsmetallen abstammen, wie z.B. Vanadate, Niobate, Tantalate, Chromate, Molybdate, Wolframate, Permanganate, oder als Salze organischer aliphatischer oder aromatischer Säuren wie z.B. Formiate, Acetate, Propionate, Benzoate, Salicylate, Lactate, Mandelate, Glyoxylate, Arylglyoxylate, Citrate oder als Phenolate usw. eingesetzt werden. Die Aktivatoren können im Reaktionsgemisch jeweils löslich, teilweise löslich oder unlöslich sein.
  • Auch Kombinationen dieser Aktivatoren untereinander und/oder mit anderen, nicht als Aktivator beanspruchten Elementen oder Verbindungen können verwendet werden. Die erfindungsgemäßen Aktivatoren können in unterschiedlichen und auch gemischten Wertigkeitsstuffen vorliegen; auch können Änderungen in der Wertigkeit während der Reaktion eintreten. Sofern die Aktivatoren nicht bereits als Oxide und/oder Hydroxide zugegeben werden, ist es möglich, daß sie sich im alkalischen Medium ganz oder teilsweise in diese umwandeln. Nach der Reaktion kann der Platinmetall-Katalysator mit dem schwerlölichen Aktivator abfiltriert und in weiteren Oxidationen wiederverwendet werden. Verluste an Platinmetall-Katalysatoren und/oder Aktivator sind gegebenenfalls zu ersetzen.
  • Der Aktivator kann als Feststoff, vorzugsweise in fein verteilter Form, oder in gelöster Form den Reaktionskomponenten zugesetzt werden. Man kann den Aktivator auch schon bei der Herstellung des Platinmetall-Katalysators zugeben oder den Platinmetall-Katalysator mit dem Aktivator imprägnieren. Der Aktivator kann auch als Trägermaterial für das Platinmetall dienen.
  • Besonders bewährt hat sich die Kombination von Platin mit Blei und/oder Wismut.
  • Das erfindungsgemäße Verfahren wird üblicherweise so durchgeführt, daß man Sauerstoff oder molekularen Sauerstoff enthaltende Gase wie Luft mit der das alkalische Mittel, den Platinmetall-Katalysator und den erfindungsgemäßen Aktivator enthaltenden Lösung des Aryläthan-1,2-diols in guten Kontakt bringt. Gewöhnlich arbeitet man bei Atmosphärendruck (1 bar), jedoch kann auch bei höheren oder niedrigeren Drucken oxidiert werden, beispielsweise im Bereich von 0,5 bis 10 bar. Der Verlauf der Reaktion kann über die aufgenommene Sauerstoffmenge verfolgt werden und wird abgebrochen, wenn die für die gewünschte Arylglyoxylsäure theoretisch erforderliche Sauerstoffmenge aufgenommen ist. Meistens hört die Sauerstoffaufnahme in diesem Stadium von selbst auf oder sie verlangsamt sich. Der Fortgang der Reaktion kann auch auf andere Weise, z.B. durch Bestimmung der gebildeten Arytgtyoxytsäure verfolgt werden.
  • Zur Aufarbeitung werden Platinmetall-Katalysator nebst ungelöstem Aktivator vom Reaktionsgemisch abgetrennt, beispielsweise durch Filtrieren. Aus der alkalischen Reaktionslösung wird die Arylglyoxysäure durch Ansäueren auf einen pH-Wert unterhalb von 6 freigesetzt und nach bekannten Verfahren wie Dekantieren, Abfiltrieren und/oder Extrahieren abgetrennt und erforderlichenfalls z.B. durch Umkristallisieren, Destillieren oder Extrahieren weiter gereinigt.
  • Die Reihenfolge, in der Platinmetall-Katalysator, Aktivator, Alkali und Aryläthan-1,2-diol zusammengegeben werden, ist beliebig. So können Platinmetall-Katalysator und Aktivator der wäßrig-alkalischen Aryläthan-1,2-diol-Lösung zugesetzt werden; man kann auch Platinmetall-Katalysator und Aktivator vorlegen und wäßrigalkalische Aryläthan-1,2-diol-Lösung zusetzen; schließlich ist es auch möglich, Platinmetall-Katalysator, einen Teil des wäßrigen Alkalis und den Aktivator vorzulgegen und das Aryläthan-1,2-diol zusammen mit dem restlichen Alkali zuzusetzen. Ferner ist es möglich, den Akti-: vator der Mischung der Reaktionskomponenten zuzugeben.
  • Die nach dem erfindungsgemäßen Verfahren herstellbaren Arylglyoxylsäuren sind wichtige organische Zwischenprodukte und von großer Bedeutung z.B. für die Herstellung von Pflanzenschutzmitteln, ferner von lichthärtenden Lacken sowie von Arzneimitteln.
  • So läßt sich beispielsweise ausgehend von Phenylglyoxylsäure der herbidzide Wirkstoff 3-Methyl-4-amino-6-phenyl-1,2,4-triazin-5 (4H)-on (vgl. DE-OS 2 224 161) herstellen.
  • Das erfindungsgemäße Verfahren wird durch die nachfolgenden Herstellungsbeispiele veranschaulicht:
  • Herstellungsbeispiele Beispiel 1
  • Figure imgb0004
  • In einem mit Rührer, Thermometer und Gaszuleitung versehenen Reaktionsgefäß werden 2 g platinhaltige Aktivkohle (Platingehalt: 1 Gew.%), 1,5 ml 0,1-molare Pb(N03)2-Lösung (entsprechend einer Blei-Menge von 1,5 x 10-4 Mol) und eine Lösung von 13,8 g (0,1 Mol) (±)-Phenyläthylen-1,2-glycol in in 100 ml 1,3 n Natronlauge eingebracht.
  • Nach Verdrängen der Luft aus dem Reaktionsgefäß durch Sauerstoff wird der Rührer angestellt und bei 70°Cunter kräftigem Rühren reiner Sauerstoff unter Normaldruck in die Mischung eingeleitet. Nach 45 Minuten sind 0,15 Mol O2 aufgenommen und die Sauerstoffaufnahme kommt nahezu zum Stillstand.
  • Nach Abfiltrieren des Kontaktes wird im Filtrat der Gehalt an Phenylglyoxylsäure durch Differential-Puls-Polarographie bestimmt. Als Grundelektrolyt diente 1 n LiOH. Die Bestimmung erfolgte gegen Phenylglyoxylsäure-Lösung bekannten Gehaltes, die bei einer Wiederholungsmessung als interner Standard zugegeben Wurde. Die Bestimmung ergab eine Phenylglyoxylsäure-Ausbeute von 93% d.Th.
  • Die Phenylglyoxysäüre kann auch durch Ansäuren mit Schwefelsäure freigsetzt und - ggf. nach Abfiltrieren der in geringer Menge mitentstandenen Benzoesäure (0,6 g
    Figure imgb0005
    % d. Th). - z.B. mit Äther, aus der Lösung extrahiert und nach Verdampfen des Äthers in freier Form enthalten werden. Der abfiltrierte Kontakt kann wiederverwendet werden.
  • Beispiel 2
  • Es wird wie in Beispiel 1 gearbeitet, jedoch mit dem Unterschied, daß nicht Blei-, sondern 3 x 10-4 Mol Wismut in Form seines feingepulverten Nitrats [Bi(NO3)3 . 5 H2O] als Aktivator zur Reaktionsmischung gegeben werden. Nach einer Oxidationszeit von 60 Minuten ist die stöchiometrisch erforderliche Sauerstoffmenge aufgenommen und die polarographische Bestimmung ergibt eine Phenylglyoxylsäureausbeute von 90% d. Th. Der Kontakt kann nach Abfiltrieren Wiederverwendet werden.
  • Beispiele 3 bis 15
  • Es wird wie in Beispiel 1 gearbeitet, jedoch mit dem Unterschied, daß bei 75°C und mit unterschiedlichen Aktivatoren und Aktrivatormengen gearbeitet wird:
    Figure imgb0006
    • a) 100% d. Th.=1,5 Mol O2/Mol (±)-Phenyläthylen-1,2-glycol
    • b) Reaktion kommt nach Aufnahme dieser O2-Menge praktisch zum Stillstand
    • c) Vergleichsbeispiel
  • Wie das (Vergleichs-) Beispiel 3 zeigt, verläuft die Oxidation ohne Aktivatorzugabe erheblich langsamer. Die Sauerstoffaufnahme kommt vorzeitig zum Stillstand, und die Phenylglyoxylsäureausbeute beträgt nur 10% d. Th.
  • Beispiel 16
  • Es wird wie in Beispiel 1 gearbeitet. Eingesetzt wird eine Lösung von 13,8 g (0,1 Mol) (±)Phenyläthylen-1,2-glycol in 100 ml 2 n Natronlauge. Zur Lösung werden 1,5 g Aktivkohle (Medicinalkohle) mit 5% Palladium-Gehalt sowie 2 x 10-4 Mol Bi (No3)3. 5 H20 gegeben. Dann wird bei 70°C und 1 bar O2-Druck oxidiert. Nach 140 Minuten sind 0,15 Mol O2 aufgenommen und die Phenylglyoxylsäure-Ausbeute beträgt 45% der Theorie.
  • Ohne Zusatz von Wismut beträgt die Ausbeute unter sonst gleichen Bedingungen nach Aufnahme von 0,15 Mol O2 nur 10% der Theorie.
  • Beispiel 17
  • Es wird wie in Beispiel 16 gearbeitet, jedoch mit dem Unterschied, daß an Stelle von Wismut 1,5 x 10-3 Mol Blei-(II)-nitrat zur Lösung gegeben werden. Die Reaktionszeit beträgt in diesem Fall 110 Minuten und die Phenylglyoxylsäure-Ausbeute 40% der Theorie.
  • Ohne Zusatz von Blei beträgt die Ausbeute unter sonst gleichen Bedingungen nur 10% der Theorie.

Claims (10)

1. Verfahren zur Herstellung von Arylglyoxylsäuren durch Oxidation von Aryläthan-1,2-diole der Formel
Figure imgb0007
in der
Ar für einen gegebenenfalls substituierten Arylrest steht, dadurch gekennzeichnet, daß man die Oxidation mit Sauerstoff oder molekularen Sauerstoff enthaltenden Gasen in wäßrig-alkalischen Medium in Gegenwart von Platinmetall-Katalysatoren bei gleichzeitiger Anwesenheit vom Blei und/ oder Wismut und/oder deren Verbindungen als Aktivatoren bei Temperaturen bis zum Siedepunkt des Reaktionsgemisches durchführt.
2. Verfahren gemäß'Anspruch 1, dadurch gekennzeichnet, daß man Blei und/oder Wismut in Mengen von 5 x 10-5 bis 1 x 10-1 Mol je Mol Aryläthan-1,2-diol einsetzt.
3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man als Platinmetall-Katalysator Platin verwendet.
4. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man Blei und/oder Wismut in Kombination mit Platinmetall-Katalysatoren verwendet.
5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man als Träger für das Platinmetall Aktivkohle verwendet.
6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der Platinmetallgehalt der Trägerkatalysatoren unter 10 Gew.-% liegt.
7. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß als Alkali Natrium- oder Kaliumhydroxid in Mengen von 0,3 bis 5 Äquivalenten, vorzugsweise von 0,5 bis 3 Äquivalenten, insbesondere von 0,9 bis 2 Äquivalenten pro Mol Aryläthan-1,2-diol eingesetzt werden.
8. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man bei Temperaturen von 10°C bis 100°C arbeitet.
9. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man mit Sauerstoff oder Sauerstoff enthaltenden Gasen bei einem Druck von 0,5 - 10 bar arbeitet.
10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Aryläthan-1,2-diol Phenyl- äthylen-1,2-glycol einsetzt.
EP79102897A 1978-08-19 1979-08-10 Verfahren zur Herstellung von Arylglyoxylsäuren Expired EP0008699B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2836327 1978-08-19
DE19782836327 DE2836327A1 (de) 1978-08-19 1978-08-19 Verfahren zur herstellung von arylglyoxylsaeuren

Publications (2)

Publication Number Publication Date
EP0008699A1 EP0008699A1 (de) 1980-03-19
EP0008699B1 true EP0008699B1 (de) 1981-01-07

Family

ID=6047422

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79102897A Expired EP0008699B1 (de) 1978-08-19 1979-08-10 Verfahren zur Herstellung von Arylglyoxylsäuren

Country Status (9)

Country Link
US (1) US4221719A (de)
EP (1) EP0008699B1 (de)
JP (1) JPS5528989A (de)
BR (1) BR7905306A (de)
CS (1) CS209932B2 (de)
DE (2) DE2836327A1 (de)
DK (1) DK160485C (de)
HU (1) HU181655B (de)
IL (1) IL58061A (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2527600A1 (fr) * 1982-05-28 1983-12-02 Rhone Poulenc Spec Chim Procede de preparation d'acide pyruvique
KR890015993A (ko) * 1988-04-04 1989-11-27 노구찌 데루오 피루베이트 제조 방법
US5225593A (en) * 1988-04-04 1993-07-06 Research Association For Utilization Of Light Oil Process for preparing pyruvate
JPH01311045A (ja) * 1988-06-06 1989-12-15 Mitsubishi Petrochem Co Ltd α―ケト酪酸の製造方法
DE3823301C1 (de) * 1988-07-09 1989-11-02 Degussa Ag, 6000 Frankfurt, De
WO2004012290A2 (en) * 2002-07-29 2004-02-05 Cornell Research Foundation, Inc. Intermetallic compounds for use as catalysts and catalytic systems
FR2880345A1 (fr) * 2004-12-30 2006-07-07 Adisseo Ireland Ltd Synthese et applications de l'acide 2-oxo-4-methylthiobutyrique, ses tels et ses derives
WO2014010752A1 (ja) * 2012-07-13 2014-01-16 住友化学株式会社 α-ヒドロキシカルボン酸エステルの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1618589A1 (de) * 1967-04-01 1971-02-25 Knapsack Ag Verfahren zur Herstellung von Carbonsaeuren
US3649565A (en) * 1969-10-20 1972-03-14 Universal Oil Prod Co Dehydrogenation method and catalytic composite for use therein
US3711523A (en) * 1970-09-04 1973-01-16 Procter & Gamble Oxidation of vicinal glycols in the presence of organic peroxides and cobaltous compounds
US3840566A (en) * 1972-06-15 1974-10-08 Ventron Corp Oxidation of primary alcohols
JPS5373532A (en) * 1976-12-10 1978-06-30 Sumitomo Chem Co Ltd Preparation of aromatic hydroxyaldehydes

Also Published As

Publication number Publication date
DK344679A (da) 1980-02-20
JPS636538B2 (de) 1988-02-10
DK160485B (da) 1991-03-18
DK160485C (da) 1991-08-26
US4221719A (en) 1980-09-09
IL58061A0 (en) 1979-12-30
CS209932B2 (en) 1981-12-31
DE2836327A1 (de) 1980-02-28
BR7905306A (pt) 1980-05-13
IL58061A (en) 1982-12-31
EP0008699A1 (de) 1980-03-19
HU181655B (en) 1983-10-28
DE2960129D1 (en) 1981-02-26
JPS5528989A (en) 1980-02-29

Similar Documents

Publication Publication Date Title
DE3135946A1 (de) Verfahren zur herstellung von alkoxyessigsaeuren
EP0011793B1 (de) Verfahren zur Herstellung von Aryloxyessigsäuren
EP0008699B1 (de) Verfahren zur Herstellung von Arylglyoxylsäuren
EP0028714B1 (de) Verfahren zur Herstellung von 3-Phenoxy-benzaldehyden
DE3030463A1 (de) Verfahren zur herstellung von aromatischen polycarbonsaeuren
EP0005779B1 (de) Verfahren zur Herstellung von Arylglyoxylsäuren
DE2116212B2 (de) Verfahren zur herstellung von terephthalsaeure
DE2521324C2 (de) Verfahren zur Herstellung eines Hydroperoxids
DE269937C (de)
DE3602180C2 (de)
EP0645358B1 (de) Verfahren zur selektiven katalytischen Oxidation organischer Verbindungen
DE2548384A1 (de) Verfahren zur herstellung von hydroxyphenylaethern
DE2022818B2 (de) Verfahren zur herstellung von formaldehyd
EP0247485B1 (de) Verfahren zur Herstellung von Oxetan-3-carbonsäuren
DE3643206C1 (de) Verfahren zur Herstellung von substituierten Dihydroxybenzolen
DE1273537B (de) Verfahren zur Herstellung von Azoamiden
DE2642672A1 (de) Selektive oxidation von chrysanthemylalkohol
DE1768854A1 (de) Verfahren zur Herstellung von organischen Hydroperoxyden
EP0241664B1 (de) Verfahren zur Herstellung substituierter Trihydroxybenzole
EP1398308A1 (de) Verfahren zur Herstellung von 3,3 Dimethyl-2-oxobuttersäure
DE2657477C2 (de) Verfahren zur Herstellung von Canthaxanthin
DE2936652A1 (de) Verfahren zur herstellung von gluconsaeure- delta -lacton
EP0247472B1 (de) Verfahren zur Herstellung von Carbonsäure-Derivaten
DE1543151C (de) Verfahren zur Herstellung von Car bonylverbindungen
EP0247481A1 (de) Verfahren zur Herstellung von 2,2-Bis-chlormethylalkan-carbonsäurechloriden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL

REF Corresponds to:

Ref document number: 2960129

Country of ref document: DE

Date of ref document: 19810226

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950717

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950731

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950804

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950816

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950823

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950830

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19960831

Ref country code: BE

Effective date: 19960831

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19960831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960810

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT