EP0008667B1 - Four pour le traitement thermique de matières en particules de grosseur étalée - Google Patents

Four pour le traitement thermique de matières en particules de grosseur étalée Download PDF

Info

Publication number
EP0008667B1
EP0008667B1 EP79102695A EP79102695A EP0008667B1 EP 0008667 B1 EP0008667 B1 EP 0008667B1 EP 79102695 A EP79102695 A EP 79102695A EP 79102695 A EP79102695 A EP 79102695A EP 0008667 B1 EP0008667 B1 EP 0008667B1
Authority
EP
European Patent Office
Prior art keywords
furnace
fan
cooling
furnace according
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79102695A
Other languages
German (de)
English (en)
Other versions
EP0008667A1 (fr
Inventor
Heinrich Buchner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kloeckner Humboldt Deutz AG
Original Assignee
Kloeckner Humboldt Deutz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kloeckner Humboldt Deutz AG filed Critical Kloeckner Humboldt Deutz AG
Priority to AT79102695T priority Critical patent/ATE67T1/de
Publication of EP0008667A1 publication Critical patent/EP0008667A1/fr
Application granted granted Critical
Publication of EP0008667B1 publication Critical patent/EP0008667B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/06Shaft or like vertical or substantially vertical furnaces of other than up-draught type

Definitions

  • the invention relates to a furnace for the heat treatment of lumpy to fine-grained material, in particular a shaft furnace, rotary hearth furnace or the like for burning or sintering limestone, dolomite or magnesite, in which the furnace passes through a preheating zone, a combustion zone and a cooling zone and the combustion zone has a gas supply. or gas extraction chamber, a combustion device and a gas delivery device for generating a hot gas circulation.
  • a cross-flow shaft furnace is known from DE-B-1034090, which has gas collection devices and heating devices.
  • the hot gases required for sintering the fuel are collected in the gas collection devices after flowing through the material layer and heated again in the heating devices by means of injectors for the gas circulation.
  • the funding required for the gas circulation is represented by the rigid injectors, which circulate an essentially constant throughput volume of hot gases. Faults occur in such a cross-flow shaft furnace in particular when the gas volume available to the respective injector is changed due to a changed bulk density in the shaft and thus a changed pressure resistance in the man-made column.
  • a cross-flow heated shaft kiln for limestone firing which has a preheating zone, two firing zones and a cooling zone in the direction of passage of the material, each firing zone containing a quasi-closed hot gas circuit.
  • the hot gas circuit is brought about by assigning at least one jet blower or injector to each combustion zone, which generates the kinetic energy required for the hot gas circulation.
  • the hot gases are circulated from the injector into a combustion chamber, a gas collection chamber, the assigned fuel bed, the exhausting gas collection chamber and a circulation channel back to the injector. Fuel and cooling air from the cooling zone are introduced into the combustion chamber.
  • the intense hot gas circulation results in a very even fire across the entire shaft cross-section.
  • a heat treatment furnace in particular a shaft furnace for burning or sintering limestone, dolomite or magnesite, in such a way that furnace units of up to 400 t throughput, low specific, can be used with structurally simple means Energy consumption and high thermal efficiency can be built.
  • the gas delivery device which is preferably arranged between the gas discharge chamber and the combustion device, is a delivery fan charged with coolant.
  • the cooled gas delivery fan is arranged in the hot circulation channel between the gas discharge chamber and the combustion chamber, which makes it particularly compact and achieve compact furnace construction.
  • the conveying fan is arranged on the outside of the shaft and is connected to a cooling device with a closed coolant guide.
  • This has the advantage that highly effective coolants are fed to the blower in a closed circuit, so that the temperatures on the blower can be set precisely and the blower parts are never exposed to undesirably high temperature ranges.
  • the volatile constituents in the hot gases which tend to cake, crystallize directly on the relatively cold blower parts and are returned as solid constituents to the bulk material without the blower even with a very high volatile content Harmful components in the hot gases have no caking. This ensures high operational reliability and availability of the blower and thus the entire furnace system.
  • the recooler of the fan cooling device serves as a heat exchanger for the fuels introduced into the combustion chamber.
  • the fan shaft and / or the fan wheel is hollow and in the fan shaft or in the fan ring gear coolant-carrying devices, preferably coolant lines, are arranged, whereby the fan parts are specifically cooled there where the thermal stress from the hot gases is strongest.
  • the coolant lines of the blower shaft are connected to the fixed coolant lines of the recooler via a stationary distributor head, which is preferably designed as an air-flowed honeycomb cooler or tube cooler. This constructive design is particularly advantageous when no fuel preheating is required with the recooler, such as with coal dust.
  • the coolant is then preferably recooled with the aid of a cooler through which air flows.
  • the coolant lines in the blower hollow shaft are formed from a hollow cylinder which is coaxially oriented at a distance from the hollow shaft, the coolant being supplied through the resulting outer annular space and the coolant being discharged through the hollow cylinder. In conjunction with the stationary distributor head, this results in optimal coolant flow with the lowest hydraulic resistance. It is furthermore expedient that the coolant line in the fan wheel preferably runs in a meandering fashion at the outer end of each wheel blade, which ensures that, particularly where high thermal loads on the fan blades are to be expected, optimal dissipation of the heat is achieved by an increased supply of coolant.
  • blower ring gear is connected to the hollow cylinder in the blower shaft via connecting lines in the wheel hub, so that an optimal coolant circulation, in particular on the thermally stressed parts of the blower, is achieved with simple constructional means.
  • the coolant for the conveying fan and / or the fan parts is a temperature-resistant organic or inorganic liquid with a boiling point of more than 100 ° C. This measure achieves high heat dissipation and thus improved cooling of the individual blower parts at a relatively low liquid temperature, as a result of which, in particular, heat peaks on the blower parts can be reduced.
  • the cross sections of the coolant lines can be chosen to be so small that coolant lines can also be laid in more complex fan parts. Due to the closed circuit of the coolant, expensive, highly effective coolants can also be used, since the coolant does not have to be added continuously.
  • the cooling liquid for the blower is a heat transfer oil, in particular a silicone oil, whereby it is advantageously achieved that the desired working temperature of more than 100 ° C. is achieved with a commercially available coolant. It is expedient that the working temperature of the cooling liquid is set between 200 and 270 ° C, preferably between 200 and 220 ° C.
  • one embodiment of the invention provides that the coolant circuit for the delivery fan is monitored by pressure monitors, thermostats, flow meters, etc.
  • a direct-acting, safe system for monitoring the cooling circuit is available, which immediately indicates a rise in temperature and / or a throughput fault in the cooling liquid, so that immediate countermeasures can be initiated. This ensures reliable cooling of the fan with regard to the material properties.
  • a cross-flow heated shaft furnace 1 is partially shown in section.
  • the furnace shaft 2 is divided into an upper preheating zone V, two firing zones B 1 / B 2 arranged underneath and a cooling zone K.
  • a device At the lower end of the shaft is a device, not shown, for the continuous removal of the fired material.
  • the rectangular shaft 2 consists of two gas collection chambers arranged on both sides of the shaft, one chamber representing the gas supply chamber 3 and the other the gas discharge chamber 4.
  • the shaft wall 6 provided with gas passage openings 5 runs between these two chambers.
  • the firing material 7 moves inside the shaft from top to bottom in a dense column of firing material.
  • the Gas supply chamber 3 is connected to a combustion chamber 8, into which a combustion device 9 and a fresh air line 13 are guided, through which hot air from the cooling zone K is conducted as combustion air into the combustion chamber 8.
  • the gas discharge chamber 4 has a discharge opening 10 in the upper region, to which a circulation channel 11 is connected, which in turn is guided into the combustion chamber 8.
  • a conveying fan 12 charged with coolants is arranged to maintain a closed hot gas circulation in the combustion zone B 2 .
  • a branch line from the fresh air line 13 can be connected to the circulation channel 11.
  • the combustion chamber 8, the combustion device 9 and the conveying fan 12 arranged in the circulation channel 11 are arranged outside the shaft and are therefore shown in broken lines.
  • the conveying fan 12 is connected to a cooling device 14 which is arranged outside the shaft and has a self-contained coolant guide.
  • the supply of the coolant to the hot gas blower 12 takes place through line 15 and the return to the air-cooled recooler 16 through line 17.
  • the lines 15, 17 contain the measuring and control devices required for monitoring the coolant circuit, in each case in each supply and return line 15, 17 a pressure switch 18 and a quick-closing thermostat valve 19. Furthermore, the lines 15 and 17 have flow meters 20 for the cooling liquid, which are designed as orifice measuring devices with differential pressure gauges.
  • a pneumatic valve 21 is arranged in line 15 for quick shutdown of the coolant supply.
  • an expansion tank 22 is arranged at the highest point of the circuit to compensate for the change in volume of the coolant, and in front of the coolant pump 23 there is a fill and refill tank 24 for the coolant.
  • the honeycomb cooler 16 is air-cooled and equipped with an adjustable cooling fan 25.
  • FIG. 2 shows, in section and in an enlarged view, the conveying fan 12 arranged on the outside of the shaft in the circulation channel 11, in particular the fan shaft 26 and the fan wheel 27. Both the fan shaft 26 and the fan wheel 27 are hollow.
  • a hollow cylinder 28 is arranged coaxially in the hollow blower shaft 26 at a distance from the hollow shaft itself, the coolant being supplied through the resulting outer annular space 32 and being discharged through the hollow cylinder 28.
  • the coolant annulus as well as the hollow cylinder are connected via a stationary distributor head 29 to the stationary coolant lines 15 and 17, which in turn form a closed coolant circuit with the honeycomb cooler 16 through which air flows.
  • the distributor head 29 is surrounded by a leakage housing known per se.
  • guide plates 31 are arranged at the outer end of each wheel blade 30 and meandering band-shaped, to which the coolant is supplied from the annular space 32 of the fan shaft 26 via a line 33 arranged in the fan wheel.
  • the interior of the blower ring gear 27 is connected to the hollow cylinder 28 via a connecting line 34 which are arranged in the wheel hub 35 of the blower wheel 27.
  • the hot gases generated in the combustion chamber 8 flow from the combustion chamber into the gas supply chamber 3 and from there through the gas passage openings 5 in the shaft wall 6 transversely to the throughput direction of the Fired goods enter the densely packed fired goods layer, enter the gas discharge chamber 4 on the other side of the bed through the gas passage openings 5 and are collected there.
  • the hot gas is sucked out of the gas discharge chamber 4 via the discharge opening 10 into the circulation channel 11 by means of the delivery fan 12, which is thus directly in a hot gas flow of approximately 800 ° C. to 1200 ° C.
  • the conveying fan 12 feeds the hot gas to the combustion chamber 8, into which fuels are introduced via the combustion device 9 and burn out there in the atmosphere enriched with preheated fresh air.
  • the hot gas circuit in each combustion zone B is supplied with the kinetic energy required for the multiple circulation of the hot gases in the combustion zone, the fan making it possible to set a precisely adjustable pressure drop of at least 350 mm / WS within each combustion zone.
  • each combustion zone B 1 / B In order to prevent the gases flowing through the shaft 2 in the vertical direction upwards, two sealing zones are arranged between each combustion zone B 1 / B and prevent the hot gases from flowing out into the overlying combustion zone or preheating zone.
  • the combustible material that descends from the combustion zone into the cooling zone K is cooled to the appropriate further processing temperature in the cooling air 36 and is further processed via extraction elements (not shown).
  • the cooling air heated in the cooling zone releases the amount of heat absorbed by the material to be burned into the combustion chamber 8 as combustion air.
  • a portion of the hot gases generated in the combustion zones B and B 2 is branched off from the combustion zones and is fed to the lumpy material in the preheating zone for preheating it via lines not shown in the furnace 1 headed.
  • the conveying fan 12 is connected via the distributor head 29 to a closed cooling circuit 14 which is designed as described above.
  • the cooling of the blower with the cooling device takes place by means of a temperature-resistant heat transfer oil, in particular a silicone oil, which is regulated to a working temperature between 200 and 220 ° C, for which purpose corresponding control devices, such as pressure switch 18, thermostatic valve 19 and flow meter 20, are located in the fixed coolant lines of the cooling device are arranged.
  • a temperature-resistant heat transfer oil in particular a silicone oil, which is regulated to a working temperature between 200 and 220 ° C, for which purpose corresponding control devices, such as pressure switch 18, thermostatic valve 19 and flow meter 20, are located in the fixed coolant lines of the cooling device are arranged.
  • blower parts in the hot gas stream heated to a maximum of 240 ° C, shock-cool the alkali or sulfur compounds that volatilize from the fired material and tend to cake and crystallize out of the hot gases, so that none on the blower or blower blades Can form approaches that either negatively affect the throughput characteristics of the blower or lead to increased bearing loads on the blower.
  • blower which is cooled with a heat transfer oil in a closed circuit, directly in the hot gas circulation of the combustion zone of a cross-flow-heated shaft furnace, it is possible to generate such a high pressure drop in each combustion zone and thus to provide such a high kinetic energy for the hot gas circulation that furnace units with double Throughput compared to crossflow furnaces equipped with injectors are possible.
  • the present invention which is only described for cross-flow heated shaft furnaces for burning or sintering limestone, dolomite or magnesite, can be used wherever blowers must be used directly in a hot gas stream in order to generate the kinetic energy required for gas production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Tunnel Furnaces (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Claims (16)

1. Four pour le traitement à la chaleur d'une matière en fragments allant généralement des morceaux aux grains fins, plus spécialement four à cuve, four à sole rotatif etc., pour la cuisson ou le frittage du calcaire, de la dolomite ou de la giobertite, dans lequel la matière à cuire traverse une zone de préchauffage, une zone de cuisson ainsi qu'une zone de refroidissement et la zone de cuisson comporte un dispositif d'adduction ou d'éduction de gaz, un dispositif de cuisson ainsi qu'un dispositif transporteur de gaz ayant pour fonction de créer un circuit de gaz chaud, four caractérisé en ce qu'il comporte comme dispositif transporteur de gaz, dans le circuit de gaz chaud, de préférence entre le dispositif d'éduction de gaz (4) et le dispositif de cuisson (8), une soufflerie transporteuse (12) alimentée en un agent de refroidissement.
2. Four selon la revendication 1, caractérisé en ce que, dans un four à cuve (1) chauffé par un courant transversal, four qui comporte au moins une zone de cuisson (B) et une chambre d'adduction ou d'éduction de gaz (3,4) placée latéralement par rapport à la cuve et affectée à chaque zone de cuisson, la soufflerie transporteuse refroidie (12) est montée dans le canal de circulation chaud (11) entre la chambre d'éduction de gaz (4) et la chambre de cuisson (8).
3. Four selon l'une des revendications 1 et 2, caractérisé en ce que la soufflerie transporteuse (12) est montée en dehors de la cuve (2) et est reliée à un dispositif de refroidissement (14) par un circuit fermé d'agent de refroidissement.
4. Four selon l'une quelconque des revendications 1, 2 et 3, caractérisé en ce que le réfrigérant en retour (16) du dispositif de refroidissement (14) de la soufflerie sert d'échangeur thermique pour les combustibles introduits dans la chambre de cuisson.
5. Four selon l'une quelconque des revendications 1, 2, 3 et 4, caractérisé en ce que, dans la soufflerie transporteuse (12), l'arbre (26) de la soufflerie et/ou la roue (27) de la soufflerie sont creux et, dans l'arbre creux ou la roue creuse, sont placés des dispositifs guidant l'agent de refroidissement, de préférence des conduites (32, 33) pour l'agent de refroidissement.
6. Four selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les conduites (32, 33) pour l'agent de refroidissement qui se trouvent dans l'arbre (26) de la soufflerie sont reliées, par un distributeur fixe (29), aux conduites fixes (15, 17) du réfrigérant (16), lequel est de préférence un radiateur à nid d'abeilles ou un réfri- géranttubulaire parcouru par un courant d'air.
7. Four selon l'une quelconque des revendications 1 à 6, caractérisé en ce que des régulateurs de pression (18), des thermostats (19) et des débitmètres (20) sont montés dans les conduites fixes (15,17) de l'agent de refroidissement.
8. Four selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les conduites (32) de l'agent de refroidissement dans l'arbre creux (26) de la soufflerie sont formées d'un cylindre creux (28) et montées coaxialement par rapport à l'arbre creux et à une certaine distance de celui-ci, l'agent de refroidissement étant amené par la chambre annulaire extérieure ainsi créée et étant évacué par le cylindre creux.
9. Four selon l'une quelconque des revendications précédentes, caractérisé en ce que les conduites (33) de l'agent de refroidissement dans la roue de la soufflerie ont de préférence la forme de rubans sinueux à l'extrémité extérieure de chacune des aubes de la roue.
10. Four selon l'une quelconque des revendications précédentes, caractérisé en ce que la roue creuse (27) de la soufflerie est munie d'organes déflecteurs (31) pour l'agent de refroidissement.
11. Four selon l'une quelconque des revendications précédentes, caractérisé en ce que la roue creuse (27) de la soufflerie est reliée, par des conduites (34) se trouvant dans le moyeu (35) de la roue, au cylindre creux (28) qui se trouve dans l'arbre (26) de la soufflerie.
12. Procédé pour refroidir une soufflerie transporteuse de gaz chauds, qui fait circuler en particulier des gaz chauds dans les zones de cuisson de fours utilisés pour le traitement à la chaleur de matières en fragments allant des morceaux à des grains fins et crée ainsi un circuit de gaz chaud, selon l'une quelconque des revendications 1 à 11, procédé caractérisé en ce que la soufflerie et/ou les parties de la soufflerie sont refroidies par un agent de refroidissement, de préférence par un liquide organique ou minéral résistant aux températures élevées et ayant un point d'ébullition supérieur à 100°C, qui circule en circuit fermé.
13. Procédé pour refroidir une soufflerie transporteuse de gaz chauds, selon la revendication 12, caractérisé en ce qu'on utilise comme liquide de refroidissement une huile caloporteuse, plus spécialement une huile de silicone.
14. Procédé pour refroidir une soufflerie transporteuse de gaz chauds, selon l'une des revendications 12 et 13, caractérisé en ce que la température de travail du liquide de refroidissement est réglée entre 100 et 270°C, mais plus particulièrement entre 200 et 220 °C.
15. Procédé pour refroidir une soufflerie transporteuse de gaz chauds, selon l'une quelconque des revendications 12, 13 et 14, caractérisé en ce que le liquide de refroidissement est refroidi en retour dans un réfrigérant par de l'air.
16. Procédé pour refroidir une soufflerie transporteuse de gaz chauds, selon l'une quelconque des revendications 12 à 15, caractérisé en ce que le circuit du liquide de refroidissement est réglé par des régulateurs de pression, des thermostats et des débitmètres.
EP79102695A 1978-08-18 1979-07-30 Four pour le traitement thermique de matières en particules de grosseur étalée Expired EP0008667B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79102695T ATE67T1 (de) 1978-08-18 1979-07-30 Ofen zur waermebehandlung von stueckigem bis feinkoernigem gut.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2836162 1978-08-18
DE19782836162 DE2836162A1 (de) 1978-08-18 1978-08-18 Ofen zur waermebehandlung von meist stueckigem bis feinkoernigem gut

Publications (2)

Publication Number Publication Date
EP0008667A1 EP0008667A1 (fr) 1980-03-19
EP0008667B1 true EP0008667B1 (fr) 1981-05-13

Family

ID=6047346

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79102695A Expired EP0008667B1 (fr) 1978-08-18 1979-07-30 Four pour le traitement thermique de matières en particules de grosseur étalée

Country Status (6)

Country Link
US (1) US4252521A (fr)
EP (1) EP0008667B1 (fr)
JP (1) JPS5531298A (fr)
AT (1) ATE67T1 (fr)
DE (2) DE2836162A1 (fr)
SU (1) SU932999A3 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3209836A1 (de) * 1982-03-18 1983-09-29 Dolomitwerke GmbH, 5603 Wülfrath Verfahren zur herstellung von sinterdolomit in einem schachtofen sowie schachtofen zur durchfuehrung des verfahrens
JPH0543227Y2 (fr) * 1987-12-21 1993-10-29
CN101745783B (zh) * 2009-12-14 2011-07-20 成都天保重型装备股份有限公司 煅烧炉炉体制作工艺
CN102092968B (zh) * 2011-01-07 2012-06-27 重庆京庆重型机械股份有限公司 石灰焖烧炉
CN102627418B (zh) * 2012-04-26 2013-08-21 石家庄新华能源环保科技股份有限公司 一种复合式石灰窑

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1653217A (en) * 1927-12-20 Combustion turbine
US1713237A (en) * 1928-01-11 1929-05-14 Pacific Abrasive Supply Compan Drier
US2345067A (en) * 1939-08-17 1944-03-28 Osann Bernhard Method of and apparatus for operating shaft furnaces for roasting and the like
US2369795A (en) * 1941-11-17 1945-02-20 Andre P E Planiol Gaseous fluid turbine or the like
US2393963A (en) * 1944-09-22 1946-02-05 Adolph L Berger Turbine wheel
US2455313A (en) * 1945-02-19 1948-11-30 Irving B Osofsky Heat exchanging airplane propeller
US2778601A (en) * 1951-05-28 1957-01-22 Ernst R G Eckert Fluid cooled turbine blade construction
US2883151A (en) * 1954-01-26 1959-04-21 Curtiss Wright Corp Turbine cooling system
US2948521A (en) * 1956-07-14 1960-08-09 Roechlingsche Eisen & Stahl Process and apparatus for heating a cross stream shaft furnace in view of heating solid materials, particularly for the calcination of limestone
DE1034090B (de) * 1956-07-14 1958-07-10 Roechlingsche Eisen & Stahl Querstrombeheizter Schachtofen zum Erhitzen von Schuettgut, insbesondere zum Brennenvon Kalkstein
US2952441A (en) * 1956-12-10 1960-09-13 Int Harvester Co Cooling construction for gas turbine blades
DE1241041B (de) * 1961-12-27 1967-05-24 Kloeckner Humboldt Deutz Ag Querstromofen zum Brennen von Kalk, Dolomit od. dgl.
DE1197798B (de) * 1963-10-12 1965-07-29 Sofim Saar Saarofenbau Fuer In Verfahren zum Brennen von Kalkstein und Vorrichtung zur Durchfuehrung des Verfahrens
US3311344A (en) * 1964-12-08 1967-03-28 John V Yost Turbine wheel
FR1440786A (fr) * 1965-04-21 1966-06-03 Sofim Saar Saarofenbau Fuer In Procédé pour la cuisson de calcaire et dispositif pour effectuer ce procédé
GB1187251A (en) * 1967-09-08 1970-04-08 Gas Council Improvements in or relating to Cooling Systems for Rotary Machines
US3544096A (en) * 1968-05-22 1970-12-01 Kloeckner Humboldt Deutz Ag Cross-current blast furnace
US3936220A (en) * 1974-08-26 1976-02-03 Controls Southeast, Inc. Jacket construction for fluid-circulating pumps

Also Published As

Publication number Publication date
ATE67T1 (de) 1981-05-15
SU932999A3 (ru) 1982-05-30
US4252521A (en) 1981-02-24
EP0008667A1 (fr) 1980-03-19
JPS5531298A (en) 1980-03-05
DE2836162A1 (de) 1980-02-28
DE2960351D1 (en) 1981-08-20

Similar Documents

Publication Publication Date Title
DE2150191C3 (de) Durchlauftunnelofen für Back- und/ oder Trockenzwecke
DE2952065C2 (de) Verfahren zur Trockenkühlung von Koks und Kokskühleinrichtung zur Durchführung des Verfahrens
DE2420322A1 (de) Anlage zum brennen von koernigem oder pulverfoermigem material
DE2705710C3 (de) Gegenstrombrennverfahren zur Erzeugung von Branntkalk und Schachtofen zur Durchfuhrung des Verfahrens
CH496220A (de) Verfahren zum Vorwärmen der Verbrennungsluft eines Ofens und Ofen zur Durchführung des Verfahrens
DE1063579B (de) Wirbelschichtanlage mit kontinuierlichem Durchfluss der Feststoffe
EP0071804B1 (fr) Procédé et dispositif de refroidissement de produits en vrac
DE2360580B2 (de) Drehrohrofenanlage fuer feinkoerniges gut, insbesondere portlandzementklinker
EP0008667B1 (fr) Four pour le traitement thermique de matières en particules de grosseur étalée
DE2501457A1 (de) Drehofenanlage
DE2657238A1 (de) Verfahren zur kuehlung eines schachtofens zum brennen von kalk, dolomit oder magnesit
DE2149536A1 (de) Verfahren zum Erhitzen einer Waermeuebertragungsfluessigkeit
DE1433339B2 (de) Verfahren und vorrichtung zum hartbrennen von pellets
DE2338147A1 (de) Rotierender schachtofen mit gekuehltem brennerrohr
DE69505016T2 (de) Brennstoffverbrennungs- und förderrost für verbrennungsanlagen, insbesondere müllverbrennungsanlagen
DE1225673B (de) Verfahren zur trockenen Reduktion von Eisenerz
EP0081779B1 (fr) Grille mécanique à mouvement continu d'un appareil à combustion
DE2442054C3 (de) Kühlturm
CH662405A5 (de) Wirbelbettfeuerung.
DE873462C (de) Roehrengaserhitzer
EP0369556B1 (fr) Procédé et dispositif de chauffage indirect d'un courant de gaz dans un espace de réaction pour une réaction endothermique
DE919006C (de) Rostfeuerung fuer Dampferzeuger mit aus wassergekuehlten Rohren gebildeter Rostflaeche
DE840571C (de) Verfahren und Vorrichtung zum Spuelgasschwelen und Vergasen aschereicher Brennstoffe in stetig betriebenen Querstromoefen
DE1796057C3 (de) Mit vergastem öl beheizter SHACHTOFEN
CH610647A5 (en) Shaft furnace installation for burning lumpy, in particular endothermally reacting material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

ITCL It: translation for ep claims filed

Representative=s name: SOCIETA' ITALIANA BREVETTI S.P.A.

17P Request for examination filed
ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19810513

REF Corresponds to:

Ref document number: 67

Country of ref document: AT

Date of ref document: 19810515

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19810730

Ref country code: AT

Effective date: 19810730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19810731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19810731

Year of fee payment: 3

REF Corresponds to:

Ref document number: 2960351

Country of ref document: DE

Date of ref document: 19810820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19820201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19820201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19820331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19820731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19830201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 79102695.8

Effective date: 19850612

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT