EP0002430B1 - Massenspektrometer - Google Patents

Massenspektrometer Download PDF

Info

Publication number
EP0002430B1
EP0002430B1 EP78100261A EP78100261A EP0002430B1 EP 0002430 B1 EP0002430 B1 EP 0002430B1 EP 78100261 A EP78100261 A EP 78100261A EP 78100261 A EP78100261 A EP 78100261A EP 0002430 B1 EP0002430 B1 EP 0002430B1
Authority
EP
European Patent Office
Prior art keywords
mass filter
mass
mass spectrometer
axis
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100261A
Other languages
English (en)
French (fr)
Other versions
EP0002430A1 (de
Inventor
Jochen Dr. Franzen
Gerhard Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Daltonics GmbH and Co KG
Original Assignee
Bruken Franzen Analytik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruken Franzen Analytik GmbH filed Critical Bruken Franzen Analytik GmbH
Publication of EP0002430A1 publication Critical patent/EP0002430A1/de
Application granted granted Critical
Publication of EP0002430B1 publication Critical patent/EP0002430B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/062Ion guides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0095Particular arrangements for generating, introducing or analyzing both positive and negative analyte ions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/025Detectors specially adapted to particle spectrometers

Definitions

  • the invention relates to a mass spectrometer with an ion source, a mass filter and at least one ion detector, the mass filter and ion detector being arranged laterally offset from one another.
  • a mass spectrometer of the type considered here generally consists of an ion source of any type, for example an ionization chamber for chemical ionization, as described in DT-OS 27 37 852, a mass filter, in particular a quadrupole mass filter as described in DT-PS 444 900 described type, and an ion detector.
  • mass filters in particular quadrupole mass filters, and "off-axis" ion detector have to be coupled ion-optically.
  • this is mainly done by electrostatic deflection fields, which are generated by suitably shaped sheet metal electrodes.
  • Arrangements are also known which take advantage of the positive ion attraction of the high negative potential of the first dynode of a secondary electron multiplier, this potential typically being in the range from 2000 to 3000 V.
  • the invention has for its object to improve a mass spectrometer of the type mentioned while avoiding the disadvantages described above.
  • a mass spectrometer is to be created which ensures reliable guidance of the ions to be examined between the mass filter and the ion detector.
  • this object is achieved in a mass spectrometer of the type mentioned at the outset in that a substantially uniformly distributed, substantially radially extending guide field is arranged between the mass filter and the ion detector and converts ions into screw tracks with a speed component in the direction of the axis mentioned this axis leads to the input of the detector.
  • a preferred embodiment is characterized in that an electrode of the guide field is formed by an essentially rectilinear conductor which extends essentially between the mass filter and the ion detector and is charged opposite to the charge of the ions to be examined.
  • the conductor is a metal wire, a further embodiment providing that the conductor is insulated in an elongated housing.
  • An electrical voltage is applied between the wire and the housing, specifically in such a way that the wire is at a position opposite the sign of the ion charge, the wire being at a negative voltage, in particular for guiding positive ions.
  • a coaxial arrangement of electrical conductors has a potential distribution corresponding to the following equation:
  • the outer conductor in front lying case is a housing that has a circular cross section.
  • U o is the potential of the inner conductor relative to the outer conductor. If charged particles (charge q) reach the area of the guide field, they experience a force of the magnitude directed radially to the conductor arrangement under the effect of which they move on elliptical orbits around the central conductor. If the charged particles have an axial drift, the flat trajectories merge into elliptical, helical trajectories around the conductor. The movement of the ions is thus guided by the radial field in the axial direction of the guide field.
  • the housing has lateral openings for the entry or exit of the ions to be examined and any interfering neutral particles that may be present.
  • a pusher plate which repels the ions to be examined is arranged in the region of the entry point of the ions to be examined into the guide field substantially perpendicular to the axis of the guide field.
  • One embodiment of the invention provides that two ion detectors are staggered relative to the mass filter and that the mass filter is connected to each detector by an elongated guide field. It can preferably be provided that an electrically biased conductor is arranged between the mass filter and each of the two ion detectors, the conductors being insulated from one another. If the conductors are then provided with voltages of opposite signs, positive and negative ions can be measured simultaneously in this way.
  • the double design of the particle guide arrangement for two separate ion detectors, in particular secondary electron multipliers opens up the possibility of a quasi-simultaneous measurement of single ion currents and total ion currents through rapid switching of the voltage of the wires is achievable. Sensitive single-current measurements are carried out with the strongly amplifying detector, while the low-amplifying detector is provided for measuring the total ion current.
  • the respective ion currents are supplied to the assigned detectors.
  • the mass spectrometer shown in parts in FIG. 1 consists of a quadrupole mass filter 10 and a secondary electron multiplier (SEV) 12 offset as an ion detector to its axis 11, which is indicated by dash-dotted lines.
  • Quadrupole mass filter 10 and secondary electron multiplier 12 are ion-optically connected by a particle guide arrangement 13.
  • the particle guide arrangement 13 consists of a housing 14 which extends between the quadrupole mass filter 10 and the secondary electron multiplier 12 perpendicularly to the longitudinal axes thereof and in the longitudinal axis of which a metal wire 16 is stretched, which is fastened to the end faces 17 of the housing 14 by means of insulation 18.
  • the wire 16 is biased to an electrical potential which attracts the ions emerging from the quadrupole mass filter 10 which are detected by means of the secondary electron multiplier 12.
  • the housing 14 each has an opening 19 and 21, which is connected to the quadrupole mass filter 10 and the secondary electron multiplier 12, the openings 19, 21 being arranged such that the major part of the ions to be examined from the quadrupole mass filter 10 through the opening 19 enter the housing 14 and can exit the housing 14 through the opening 21 to the secondary electron multiplier 12.
  • the housing 14 In the direction of the axis 11 of the quadrupole mass filter, the housing 14 has an opening 22 for the exit of neutral particles which may be present or which are formed by discharging ions on the metal wire 16.
  • the opening 22 lies opposite the opening 19 for the entry of the particles from the quadrupole mass filter 10.
  • the electron multiplier 12 has a tubular extension 23 connected to the opening 21, which forms an ion-optical lens with the opening 21 for the ions to emerge from the particle guide arrangement 13.
  • the tubular extension 23 is electrically attractively biased for the ions to be examined and has the effect that the ions are withdrawn from their helical path about the axis 16 and fed to the ion detector.
  • the housing 14 is kept at a voltage which is opposite in sign to the voltage of the metal wire 16.
  • the metal wire 16 has an electrical voltage.
  • the housing 14 is also electrically biased. In this way, a cylindrical guide field is formed in the interior of the housing 14, which exerts a force on the ions in the housing 14 in the direction of the metal wire. This force forces the ions around the metal wire 16 on elliptical paths.
  • the metal wire 16 is clamped at only one end, namely in the vicinity of the secondary electron multiplier 12, insulated against the housing 14 on the end face 17 located there, while the metal wire 16 in the housing 14 at the opening 19 to the quadrupole -Mass filter 10 ends freely.
  • a pusher plate 27 Opposite the free end 26 of the metal wire 16 is a pusher plate 27 which is biased in the same direction as the charge of the ions to be examined, so that it repels them.
  • the mode of operation of the embodiment of the mass spectrometer or the particle guide arrangement 13 shown in FIG. 2 essentially corresponds to that of the one shown in FIG. 1, with only the particles being repelled by the pusher plate 27 and thus giving them an enlarged speed component along the metal wire 16 Secondary electron multiplier 12 is forced out.
  • the metal wire 16 clamped near the secondary electron multiplier 12 on the end face 17 located there is bent with its free end at the mass filter 10 into the opening 19 for the entry of the ions to be examined into the housing 14 that its free end 28 is substantially aligned with the axis of the quadrupole mass filter 10.
  • the ions emerging from the quadrupole mass filter 10 through the opening 19 can thus be taken up directly by the leading metal wire 16 and guided along it in elliptical screw paths up to the level of the outlet opening 21. Since the ions in the mass filter are not moved exactly on the mass filter axis 11, but e.g. in the case of a quadrupole mass filter, if they oscillate around the quadrupole axis, they have velocity components in the direction of the axis of the guide field when they exit the mass filter.
  • FIG. 4 shows a mass spectrometer with a double particle guidance arrangement, which is constructed symmetrically to the multipole axis.
  • the housing 14 has, in alignment with the axis 11 of the quadrupole mass filter 10, an opening 19 for the entry of the particles and a passage opening 22 for neutral particles which may be present.
  • a secondary electron multiplier 12, 12 ' is arranged on the side of the housing 14 opposite the quadrupole mass filter 10. The ions to be examined enter the secondary electron multiplier from the housing 14 through openings 21.
  • the ion-guiding metal wire 16, 16 ' is clamped to the two end faces 17 of the housing 14 by means of insulation 18 and divided in the middle between the openings 19 and 22 in two halves 16, 16', so that both wire halves 16, 16 'are stand in alignment in the center of the entrance opening without touching.
  • the wire ends facing each other are mechanically stable and at the same time electrically insulated by means of a small glass bead 29.
  • the mass spectrometer of the exemplary embodiment of FIG. 4 essentially functions like that of the exemplary embodiment of FIG. 1.
  • both wires can be brought to different electrical voltages, preferably one half of the wire having a positive potential, while the second half of the wire is at a negative potential.
  • the ion current to be investigated is then directed to separate detectors.
  • one secondary electron multiplier 12 is equipped with a high gain in order to be able to carry out sensitive single ion current measurements, while the second secondary electron multiplier 12 ′ has a correspondingly low gain for measuring the total ion current.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

  • Die Erfindung betrifft ein Massenspektrometer mit einer lonenquelle, einem Massen- filter und mindestens einem lonendetektor, wobei Massenfilter und lonendetektor seitlich zueinander versetzt angeordnet sind.
  • Ein Massenspektrometer der hier betrachteten Art besteht im allgemeinen aus einer lonenquelle beliebiger Bauart, beispielsweise einer lonisationskammer zur chemischen lonisierung, wie sie in der DT-OS 27 37 852 beschrieben ist, einem Massenfilter, insbesondere einem Quadrupol-Massenfilter der in der DT-PS 444 900 beschriebenen Art, und einem lonendetektor.
  • Es ist bekannt, lonenquellen, Massenfilter und Detektoren in der genannten Reihenfolge in einer Achse fluchtend anzuorden, wobei diese Anordnung allgemein als "in-axis"- Anordnung bezeichnet wird. Nachteilig bei der genannten Anordnung ist, daß aufgrund der derart angegebenen direkten "Sichtverbindung" von Quelle und lonendetektor alle Neutralteilchen, die aus der Quelle kommend das Massenfilter unbeeinflußt durchqueren, in den Detektor gelangen und dort je nach Art des Detektors einen unerwünschten Untergrundstrom erzeugen können; solche Neutralteilchen können insbesondere angeregte oder metastabile neutrale Moleküle und Photonen im UV- oder weichen Röntgen-Bereich sein. Üblicherweise wird ein Sekundärelektronenverveilfacher als Detektor verwendet.
  • Um diesen störenden Untergrundstrom zu reduzieren, der durch die direkte "Sichtverbindung" zwischen Quelle und Detektor auftritt, ist man dazu übergegangen, den Detektor gegen die Achse des Massenfilters seitlich zu versetzen. Diese Anordnung wird als "off-axis"-Anordnung bezeichnet. Insbesondere erzwingen lonenstrommessungen, die bis an die Nachweisgrenze eines Massenspektrometers gehen, eine solche "off-axis"-Anordnung des Detektors, um das Signal-Untergrund-Verhältnis des Detektors zu verbessern.
  • Hierzu müssen Massenfilter, insbesondere Quadrupol-Massenfilter, und "off-axis" -lonendetektor ionenoptisch gekoppelt werden. In bekannter Weise erfolgt dies hauptsächlich durch elektrostatische Ablenkfelder, die durch geeignet geformte Metallblech-Elektroden erzeugt werden. Auch sind Anordnungen bekannt, die allein die auf positive Ionen anziehende Wirkung des hohen negativen Potentials der ersten Dynode eines Sekundärelektronenvervielfachers ausnutzen, wobei dieses Potential typischerweise in Bereichen von 2000 bis 3000 V liegt.
  • Bei solchen Umlenkanordnungen wirkt sich allerdings nachteilig aus, daß alle bisher bekannten und in Massenspektrometern eingesetzten Multipol-Massen-filter die Eigenschaft besitzen, daß die zu untersuchenden Ionen bei ihrem Austritt aus dem Massenfilter eine von der lonenmasse und der Phase des Multipol-Hochfrequenzfeldes abhängige Energie- und Winkelverteilung aufweisen. Deswegen bewirken alle dem heutigen Stand der Technik entsprechenden und lediglich auf elektrostatische Abstoßungs- oder Anziehungsfelder zurückgreifende "off-axis"-Ablenk- anordnungen über die massenabhängigen Energie-und Winkel- verteilungen der Ionen eine mehr oder minder große Massenabhängigkeit der lonen-Umlenkung. Nachteilig ist insbesondere der von "off-axis"-Anordnungen der heute üblichen Bauart bewirkte Verlust an Nachweisempfindlichkeit.
  • Demgegenüber liegt der Erfindung die Aufgabe zugrunde, ein Massenspektrometer der eingangs genannten Art unter Vermeidung der oben beschrieben Nachteile zu verbessern. Insbesondere soll ein Massenspektrometer geschaffen werden, das eine zuverlässige Führung der zu untersuchenden Ionen zwischen Massen- filter und lonendetektor gewährleistet. Erfindungsgemäß wird diese Aufgabe bei einem Massenspektrometer der eingangs genannten Art dadurch gelöst, daß zwischen Massenfilter und lonendetektor ein längs einer Achse im wesentlichen gleichmäßig verteiltes, sich im wesentlichen radial erstreckendes Führungsfeld angeordnet ist, das Ionen mit einer Geschwindigkeitskomponente in Richtung der genannten Achse in Schraubenbahnen um diese Achse zum Eingang des Detektors führt.
  • Eine bevorzugte Ausführungsform zeichnet sich dadurch aus, daß eine Elektrode des Fuhrungsfeldes durch einen sich im wesentlichen zwischen Massenfilter und lonendetektor erstreckenden, entgegengesetzt zu Ladung der zu untersuchenden Ionen geladen, im wesentlichen geradlinigen Leiter gebildet wird.
  • Gemäß einer vorteilhaften Ausbildung ist der Leiter ein Metalldraht, wobei eine weitere Ausführungsform vorsieht, daß der Leiter in einem länglichen Gehäuse isoliert gespannt ist. Zwischen Draht und Gehäuse wird eine elektrische Spannung gelegt, und zwar derart, daß der Draht an einer dem Vorzeichen der lonenladung entgegengesetztem liegt, wobei der Draht insbesondere zur Führung positiver Ionen an einer negativen Spannung liegt.
  • Eine koaxiale Anordnung von elektrischen Leitern besitzt eine der folgenden Gleichung entsprechende Potential- verteilung:
    Figure imgb0001
  • Dabei sind r; bzw. ra die Radien von Innen- bzw. Außenleiter, wobei der Außenleiter im vorliegenden Fall ein Gehäuse ist, das einen kreisförmigen Querschnitt besitzt. Uo ist das Potential des Innenleiters relativ zum Außenleiter. Gelangen geladene Teilchen (Ladung q) in den Bereich des Führungsfeldes, so erfahren sie eine radial zur Leiteranordnung gerichtete Kraft vom Betrag
    Figure imgb0002
    unter deren Wirkung sie sich auf ellipsenartigen Bahnen um den Zentralleiter bewegen. Besitzen die geladenen Teilchen eine axiale Drift, so gehen die ebenen Bahnen in ellipsenart,ige Schraubenbahnen um den Leiter über. Die Bewegung der Ionen erfolgt damit vom Radialfeld geführt in axialer Richtung des Führungsfeldes.
  • Gemäß weiteren Ausgestaltungen der Erfindung ist vorgesehen, daß das Gehäuse seitliche Öffnungen für Eintritt bzw. Austritt der zu untersuchenden Ionen und gegebenenfalls vorhandener störender Neutralteilchen besitzt.
  • Vorteilhaft ist, den Leiter lediglich einseitig einzuspannen, wobei insbesondere das freie Ende des Leiters in die Richtung der Achse des Massenfilters zum Massenfilter hin gebogen ist.
  • In einer bevorzugten Ausgestaltung ist vorgesehen, daß im Bereich der Eintrittsstelle der zu untersuchenden Ionen in das Führungsfeld im wesentlichen senkrecht zur Achse des Führungsfeldes eine dei zu untersuchenden Ionen abstoßende Pusher-Platte angeordnet ist.
  • Eine Ausführungsform der Erfindung sieht vor, daß zwei lonendetektoren relativ zum Massenfilter gegeneinander versetzt angeordnet sind und daß das Massenfilter mit jedem Detektor durch jeweils ein langgestrecktes Führungsfeld verbunden ist. Vorzugsweise kann dabei vorgesehen sein, daß zwischen dem Massen- filter und jedem der beidem lonendetektoren jeweils ein elektrisch vorgespannter Leiter angeordnet ist, wobei die Leiter gegeneinander isoliert sind. Werden die Leiter dann mit Spannungen entgegengesetzter Vorzeichen versehen, so können auf dies Weise positive und negative Ionen simultan gemessen werden.
  • Bei einer Ausführungsform, die sich dadurch auszeichnet, daß einer der lonendetektoren hochverstärkend, der andere relativ wenig verstärkend ist, eröffnet die doppelte Auslegung der Teilchen-Führungsanordnung zu zwei getrennten lonendetektoren, insbesondere Sekundärelektronenvervielfacheren, die Möglichkeit einer quasisimultanen Messung von Einzelionenströmen und Totalionenstrom, die durch schnelles Umschalten der Spannung der Drähte erreichbar ist. Mit dem stark verstärkenden Detektor werden empfindlich Einzelstrommessungen durchgeführt , während der niederverstärkende Detektor für die Messung des totalen lonenstromsvorgesehen ist. Durch einfaches Umpolen der Spannungen der beiden voneinander isolierten Drähte und gleichzeitiges Umschalten des Einzelmassen-Filters zu einem Hochpass-Filter, das ab einer Grenzmasse alle höheren Massen durchläßt, werden die jeweiligen lonenströme den zugeordneten Detektoren zugeführt.
  • Weitere Vorteile der Erfindung ergeben sich aus den nachfolgenden Ausführungsbeispielen, die anhand der Zeichnung im einzelnen erläutert sind. Dabei zeigt:
    • Fig. 1 eine schematische Schnittdarstellung eines ersten Ausführungsbeispiels der Teilchen- führungsanordnung des erfindungsgemäßen Massenspektrometers mit einem durchgezogenen Führungsdraht;
    • Fig. 2 eine schematische Darstellung einer anderen Teilchenführungsanordnung des erfindungsgemäßen Massenspektrometers, wobei der Führungsdraht im Bereich des Massenfilters frei endet und ihm gegenüber eine Pusher-Platte angeordnet ist;
    • Fig. 3 die schematische Darstellung einer weiteren Teilchenführungsanordnung des erfindungsgemäßen Massenspektrometers mit zur Achse des Massenfilters hin gebogenem freien Ende des Führungsdrahtes; und
    • Fig. 4 die schematische Darstellung einer Teilchenführungsanordnung des Massenspektrometers mit zwei lonendetektoren.
  • Das in Fig. 1 in Teilen dargestellte Massenspektrometer besteht aus einem Quadrupol-Massenfilter 10 und einem zu dessen Achse 11, die strichpunktiert angedeutet ist, versetzten Sekundärelektronenvervielfacher (SEV) 12 als lonendetektor. Quadrupol-Massenfilter 10 und Sekundärelektronenvervielfacher 12 sind ionenoptisch durch eine Teilchen- führungsanordnung 13 verbunden. Die Teilchenführungsanordnung 13 besteht aus einem zwischen Quadrupol-Massenfilter 10 und Sekundärelektronenvervielfacher 12 senkrecht zu deren Längsachsen sich erstreckenden Gehäuse 14, in dessen Längsachse ein Metalldraht 16 gespannt ist, der an den Stirnflächen 17 des Gehäuses 14 mittels Isolierungen 18 befestigt ist. Der Draht 16 ist auf ein elektrisches Potential vorgespannt, das die aus dem Quadrupol-Massenfilter 10 austretenden Ionen anzieht, die mittels des Sekundärelektronenvervielfachers 12 detektiert werden. Das Gehäuse 14 besitzt jeweils eine mit dem Quadrupol Massenfilter 10 und dem Sekundärelektronenvervielfacher 12 in Verbindung stehende Öffnung 19 bzw. 21, wobei die Öffnungen 19, 21 so angeordnet sind, daß der wesentliche Teil der zu untersuchenden Ionen vom Quadrupol-Massenfilter 10 durch die Öffnung 19 in das Gehäuse 14 eintreten und aus dem Gehäuse 14 durch die Öffnung 21 zum Sekundärelektronenvervielfacher 12 austreten kann. In der Richtung der Achse 11 des Quadrupol-Massenfilters besitzt das Gehäuse 14 eine Öffnung 22 zum Austritt gegebenenfalls vorhandener oder durch Entladung von Ionen am Metalldraht 16 entstehender Neutralteilchen. Die Öffnung 22 liegt dabei der Öffnung 19 für den Eintritt der Teilchen aus dem Quadrupol-Massenfilter 10 gegenüber. Mit der ersten Dynode des Sekundärelektronenvervielfachers 12 ist bei der Öffnung 21 ein rohrförmiger Ansatz 23 verbunden, der mit der Öffnung 21 zum Heraustreten der Ionen aus der Teilchenführungsanordnung 13 eine ionenoptische Linse bildet. Der rohrförmige Ansatz 23 ist dabei für die zu untersuchenden Ionen elektrisch anziehend vorgespannt und bewirkt, daß die Ionen aus ihrer Schraubenbahn um die Achse 16 abgezogen und dem lonendetektor zugeführt werden. Das Gehäuse 14 wird auf einer Spannung gehalten, die der Spannung des Metalldrahtes 16 vorzeichenmäßig entgegengesetzt ist.
  • Um die Wirkungsweise des erfindungsgemäßen Massenfilters zu erläutern, ist es sinnvoll, vorauszuschicken, daß bei einem Massenspektrometer in einer lonenquelle (nicht gezeigt), die sich am Anfang des Quadrupol-Massenfilters 10 befindet, geladene Teilchen oder Ionen erzeugt werden, die durch das Quadrupol-Massenfilter 10 gefiltert, werden, so daß - den jeweiligen Durchlaßmassen entsprechend - nur ein bestimmter Teil-der Ionen aus dem Quadrupol-Massenfilter 10 durch die Öffnung 19 in das Gehäuse 14 der Teilchen- führungsanordnung 13 eingelassen wird.
  • Der Metalldraht 16 besitzt eine elektrische Spannung. Ebenfalls ist das Gehäuse 14 elektrisch vorgespannt. Derart wird im Inneren des Gehäuses 14 ein zylinderförmiges Führungsfeld gebildet, das auf die Ionen im Gehäuse 14 eine Kraft in Richtung des Metalldrahtes ausübt. Durch diese Kraft werden die Ionen auf ellipsenartige Bahnen um den Metalldraht 16 gezwungen.
  • Aus dem Quadrupol-Massenfilter 10 in das Gehäuse 14 eintretende Neutralteilchen sowie ein Teil der durch Entladung am Metalldraht 16 gebildete Neutralteilchen treten durch die Offnung 22 wieder aus dem Gehäuse 14 aus.
  • Bei den Ausführungsbeispielen der Fig. 2 bis 4 werden für gleiche Teile des Massenspektrometers gleiche Bezugszeichen verwendet.
  • Beim Ausführungsbeispiel der Fig. 2 ist der Metalldraht 16 lediglich an einem Ende, nämlich in der Nähe des Sekundarelektronvervielfachers 12, isoliert gegen das Gehäuse 14 an der dort befindlichen Stirnfläche 17 eingespannt, während der Metalldraht 16 im Gehäuse 14 in Höhe der Öffnung 19 zum Quadrupol-Massenfilter 10 frei endet. Dem freien Ende 26 des Metalldrahtes 16 gegenüber befindet sich eine Pusher-Platte 27, die gleichsinnig zur Ladung der zu untersuchenden Ionen vorgespannt ist, so daß sie diese abstößt.
  • Die Wirkungsweise des in Fig. 2 dargestellten Ausführungsbeispiels des Massenspektrometers bzw. der Teilchenführungsanordnung 13 entspricht im wesentlichen der des in Fig. 1 dargestellten, wobei lediglich die Teilchen durch die Pusher-Platte 27 abgestoßen werden und ihnen derart eine vergrößerte Geschwindigkeitskomponente entlang des Metalldrahtes 16 zum Sekundärelektronenvervielfacher 12 hin aufgezwungen wird.
  • Beim in Fig. 3 dargestellten Ausführungsbeispiel des erfindungsgemäßen Massenspektrometers ist der in der Nähe des Sekundärelektronenvervielfachers 12 an der dort befindlichen Stirnfläche 17 eingespannte Metalldraht 16 mit seinem freien Ende beim Massenfilter 10 in die Offnung 19 zum Eintritt der zu untersuchenden Ionen in das Gehäuse 14 derart hineingebogen, daß sein freies Ende 28 mit der Achse des Quadrupol-Massenfilters 10 im wesentlichen fluchtet. So können die aus dem Quadrupol-Massenfilter 10 durch die Offnung 19 austretenden Ionen direkt durch den führenden Metalldraht 16 aufgenommen und an ihm entlang in ellipsenartigen Schraubenbahnen bis in Höhe der Austrittsöffnung 21 geführt werden. Da die lonen im Massenfilter nicht exakt auf der Massenfilterachse 11 bewegt werden, sondern z.B. im Fall eines Quadrupol-Massenfilters Oszillationen um die Quadrupolachse ausführen, besitzen sie bei Austritt aus dem Massenfilter Geschwindigkeitskomponenten in Richtung der Achse des Führungsfeldes.
  • In Fig. 4 ist ein Massenspektrometer mit einer Doppel-Teilchenführungsanordnung dargestellt, die zur Multipolachse symmetrisch aufgebaut ist. Das Gehäuse 14 besitzt dabei in Flucht zur Achse 11 des Quadrupol-Massenfilters 10 eine Öffnung 19 für den Eintritt der Teilchen und eine Durchgangsöffnung 22 für gegebenenfalls vorhandene Neutralteilchen. An beiden Enden des Gehäuses 14 der Teilchen- führungsanordnung 13 sind auf der Seite des Gehäuses 14 die dem Quadrupol-Massenfilter 10 gegenüberliegt je ein Sekundärelektronenvervielfacher 12, 12' angeordnet. Die zu untersuchenden lonen treten aus dem Gehäuse 14 durch Öffnungen 21 in die Sekundärelektronenvervielfacher ein. Der die lonen führende Metalldraht 16, 16' ist an den beiden Stirnflächen 17 des Gehäuses 14 mittels Isolierungen 18 eingespannt und in der Mitte zwischen den Öffnungen 19 und 22 in zwei Hälften 16, 16' geteilt, so daß beide Drahthälften 16, 16' sich in ihrer Achse fluchtend im Zentrum der Eintrittsöffnung gegenüber stehen, ohne sich zu berühren. Im dargestellten Ausführungsbeispiel sind die sich dort gegenüberstehenden Drahtenden mittels einer kleinen Glasperle 29 mechanisch stabil und gleichzeitig elektrisch isoliert verbunden.
  • Bei Vorspannung mindestens eines der Drähte 16 auf eine die zu untersuchenden Teilchen anziehende Spannung arbeitet das Massenspektrometer des Ausführungsbeispiels der Fig. 4 im wesentlichen wie das des Ausführungsbeispiels der Fig. 1.
  • Insbesondere können aber beide Drähte auf verschiedene elektrische Spannungen gebracht werden, wobei vorzugsweise eine Drahthälfte ein positives Potential besitzt, während die zweite Drahthälfte auf einem negativen Potential liegt. Durch einfaches Umpolen der Drahtspannungen wird der zu untersuchende Ionenstrom dann auf getrennte Detektoren gelenkt.
  • Im dargestellten Ausführungsbeispiel ist der eine Sekundärelektronenvervielfacher 12 mit einer hohen Verstärkung ausgestattet, um empfindliche Einzelionenstrom-Messungen durchführen zu können, während der zweite Sekundärelektronenvervielfacher 12' für die Messung des Totalionenstroms eine entsprechend geringe Verstärkung aufweist. Durch einfaches Umpolen der Drahtspannungen und gleichzeitiges Umschalten des Quadrupols vom Einzelmassen-Filter zu einem Hochpass-Filter, das ab einer Grenzmasse alle höheren Massen durchläßt, wird die Möglichkeit eröffnet, sowohl den Einzelionenstrom als auch den Totalionenstrom sehr genau und ohne Zerstörung der Detektoren zu messen.
  • Bei der Ausstattung der Sekundärelektronenvervielfacher 12, 12' mit im wesentlichen der gleichen Verstärkung und entgegengesetzter Vorzeichenwahl der Vorspannungen der beiden Drähte 16, 16' ergibt sich die Möglichkeit, bei entsprechender Polung der ersten Dynoden in einem der Sekundärelektronenvervielfacher positive und im anderen Sekundärelektronenvervielfacher negative Ionen gleicher Masse nachzuweisen, da das Quadrupol-Massenfilter 10 sowohl auf positive als auch gleichermaßen auf negative Ionen massentrennend wirkt.

Claims (10)

1. Massenspektrometer mit einer lonenquelle, einem Massenfilter und mindestens einem lonendetektor, wobei Massenfilter und lonendetektor, wobei Massenfilter und lonendetektor zueinander seitlich versetzt angeordnet sind, dadurch gekennzeichnet, daß zwischen Massenfilter (10) und lonendetektor (12) ein längs einer Achse im wesentlichen gleichmäßig verteiltes, sich im wesentlichen radial erstreckendes Führungsfeld angeordnet ist, das Ionen mit einer Geschwindigkeitskomponente in Richtung der genannten Achse in Schraubenbahnen um diese Achse (16) zum Eingang des Detektors (12) führt.
2. Massenspektrometer nach Anspruch 1, dadurch gekennzeichnet, daß die genannte Achse im wesentlichen senkrecht zur Achse (11) des Massenfilters (10) und zur Längserstreckung des lonendetektors (12) verläuft.
3. Massenspektrometer nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine Elektrode des Führungsfeldes durch einen sich im wesentlichen zwischen Massenfilter (10) und lonendetektor (12) erstreckenden, entgegengesetzt zur Ladung der zu untersuchenden Ionen geladenen, im wesentlichen geradlinigen Leiter (16), insbesondere durch einen Metalldraht, gebildet wird, der vorzugsweise lediglich einseitig eingespannt und dessen freies Ende vorzugsweise in die Richtung der Achse (11) des Massenfilters (10) zum Massenfilter hin gebogen ist.
4. Massenspektrometer nach Anspruch 3, dadurch gekennzeichnet, daß der Leiter (16) in einem länglichen Gehäuse (14), vorzugsweise aus Metall, isoliert gespannt ist, das einen kreisförmigen, rechteckigen oder quadratischen Querschnitt sowie vorzugsweise seitliche Öffnungen (19, 21, 22) für Ein- bzw. Austritt der zu untersuchenden Ionen und gegebenenfalls vorhandener störender Neutralteilchen besitzt.
5. Massenspektrometer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß im Bereich der Eintrittsstelle der zu untersuchenden Ionen in das Führungsfeld im wesentlichen senkrecht zur Achse (16) des Führungsfeldes eine die zu untersuchenden Ionen abstoßende Pusher-Platte (27) angeordnet ist.
6. Massenspektrometer nach einem der vorangehenden Anspruhe, dadurch gekennzeichnet, daß mindestens zwei lonendetektoren (12, 12') relativ zum Massenfilter (10) gegeneinander versetzt angeordnet sind, daß das Massenfilter mit jedem Detektor (12, 12') durch jeweils ein Führungsfeld verbunden ist, das durch einen sich zwischen dem Massen- filter (10) und dem lonendetektor (12, 12') erstreckenden Leiter (16, 16') erzeugt wird, wobie die Leiter (16, 16') gegeneinander isoliert sind und unter unterschiedlichen, vorzugsweise entgegengesetztes Vorzeichen aufweisenden elektrischen Spannungen stehen.
7. Massenspektrometer nach Anspruch 6, dadurch gekennzeichnet, daß dei elektrisch voneinander isolierten Leiter (16, 16') mechanisch miteinander, verbunden sind, insbesondere durch eine Glasverbindung.
8. Massenspektrometer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß mit jedem lonendetektor (12, 12') ein rohrförmiger Ansatz (23) zum Auskuppeln der lonen aus dem Führungsfeld verbunden ist, der mit der Austrittsöffnung (21) des Führungsgehäuses (14) eine ionenoptische Linse für die zu untersuchenden lonen bildet.
9. Massenspektrometer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Massenfilter (10) ein Multipol-Massenfilter, insbesondere ein Quadropol-Massenfilter, ist.
10. Massenspektrometer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Inonendetektoren (12, 12') Sekundärelektronenvervielfacher (SEV) sind.
EP78100261A 1977-12-08 1978-06-28 Massenspektrometer Expired EP0002430B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2754685 1977-12-08
DE2754685A DE2754685C2 (de) 1977-12-08 1977-12-08 Vorrichtung zum Überführen von Ionen aus einem Massenfilter in einen Ionendetektor

Publications (2)

Publication Number Publication Date
EP0002430A1 EP0002430A1 (de) 1979-06-27
EP0002430B1 true EP0002430B1 (de) 1981-08-12

Family

ID=6025612

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100261A Expired EP0002430B1 (de) 1977-12-08 1978-06-28 Massenspektrometer

Country Status (3)

Country Link
US (1) US4230943A (de)
EP (1) EP0002430B1 (de)
DE (1) DE2754685C2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481415A (en) * 1982-10-27 1984-11-06 Shimadzu Corporation Quadrupole mass spectrometer
GB2147140A (en) * 1983-09-20 1985-05-01 Cambridge Mass Spectrometry Li Mass spectrometers
US4680468A (en) * 1985-08-05 1987-07-14 Canadian Patents And Development Limited-Societe Canadienne Des Brevets Et D'exploitation Limitee Particle detector
DE4019005C2 (de) * 1990-06-13 2000-03-09 Finnigan Mat Gmbh Vorrichtungen zur Analyse von Ionen hoher Masse
US5298745A (en) * 1992-12-02 1994-03-29 Hewlett-Packard Company Multilayer multipole
US6091068A (en) * 1998-05-04 2000-07-18 Leybold Inficon, Inc. Ion collector assembly
US11348779B2 (en) * 2017-05-17 2022-05-31 Shimadzu Corporation Ion detection device and mass spectrometer
EP3776627A4 (de) * 2018-04-13 2022-01-05 Adaptas Solutions Pty Ltd Probenanalysegerät mit verbesserter eingangsoptik und komponentenanordnung
WO2021248178A1 (en) * 2020-06-09 2021-12-16 Adaptas Solutions Pty Ltd Improved ion conversion plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2911532A (en) * 1956-03-26 1959-11-03 Beckman Instruments Inc Ion collector for mass spectrometry
US3244990A (en) * 1963-02-26 1966-04-05 Wisconsin Alumni Res Found Electron vacuum tube employing orbiting electrons
US3209147A (en) * 1963-03-05 1965-09-28 Centre Nat Rech Scient Electron lens spherical aberration correcting device comprising a current carrying wire section on the lens axis
US3410997A (en) * 1964-09-08 1968-11-12 Bell & Howell Co Multipole mass filter
DE7615493U1 (de) * 1976-05-15 1976-12-16 Balzers Hochvakuum Gmbh, 6201 Nordenstadt Vorrichtung zum massenspektrometrischen nachweis von negativen ionen

Also Published As

Publication number Publication date
DE2754685A1 (de) 1979-06-13
EP0002430A1 (de) 1979-06-27
US4230943A (en) 1980-10-28
DE2754685C2 (de) 1982-04-15

Similar Documents

Publication Publication Date Title
DE102007017055B4 (de) Messung der Mobilität massenselektierter Ionen
DE112011102323B4 (de) Ionendetektionsanordnung
EP1277221B1 (de) Strahlerzeugungssystem für elektronen oder ionenstrahlen hoher monochromasie oder hoher stromdichte
DE4134905A1 (de) Tandem-massenspektrometer basierend auf flugzeitanalyse
DE1598072A1 (de) Multipol-Massenfilter
DE112012005395T5 (de) Kollisionszellenmultipol
DE4041871C2 (de) Massenspektrometer mit Plasmaionenquelle
EP0002430B1 (de) Massenspektrometer
DE2628422C3 (de) Verfahren zur Massenspektroskopie
DE10324839B4 (de) Massenspektrometer
DE2255302A1 (de) Einrichtung fuer die sekundaer-ionenmassenspektroskopie
DE2439711B2 (de) Ionenquelle
DE19635645C2 (de) Verfahren für die hochauflösende Spektrenaufnahme von Analytionen in einem linearen Flugzeitmassenspektrometer
EP0613171A1 (de) Massenspektrometer zur flugzeitabhängigen Massentrennung
DE3522340A1 (de) Linsenanordnung zur fokussierung von elektrisch geladenen teilchen und massenspektrometer mit einer derartigen linsenanordnung
EP0633602B1 (de) Flugzeit-Massenspektrometer mit Gasphasen-Ionenquelle, mit hoher Empfindlichkeit und grossem dynamischem Bereich
DE1598392A1 (de) Vierpol-Massenspektrograph
EP0172477A2 (de) Verfahren und Vorrichtung zur Registrierung von Teilchen oder Quanten mit Hilfe eines Detektors
EP0000865A1 (de) Ionenquelle mit einer Ionisationskammer zur chemischen Ionisierung
DE19631161A1 (de) Flugzeit-Flugzeit-Massenspektrometer mit differentiell gepumpter Kollisionszelle
EP0632482B1 (de) Gasphasen-Ionenquelle für Flugzeit-Massenspektrometer mit hoher Massenauflösung und grossem Massenbereich
DE102016103292B4 (de) Massenspektrometer
DE102016009789B4 (de) Spiegellinse zum Richten eines Ionenstrahls
EP0087152A2 (de) Sekundärelektronen-Spektrometer und Verfahren zu seinem Betrieb
DE10362062B4 (de) Massenspektrometer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE FR GB NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE FR GB NL SE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840930

Year of fee payment: 7

BERE Be: lapsed

Owner name: BRUKER-FRANZEN ANALYTIK G.M.B.H.

Effective date: 19870630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890630

EAL Se: european patent in force in sweden

Ref document number: 78100261.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970610

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970618

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970619

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970630

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980628

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 19980627

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 19980628

EUG Se: european patent has lapsed

Ref document number: 78100261.3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT