EP0000866B1 - Verfahren zum Herstellen eines Analysatorsystems für ein Multipol-Massenfilter - Google Patents

Verfahren zum Herstellen eines Analysatorsystems für ein Multipol-Massenfilter Download PDF

Info

Publication number
EP0000866B1
EP0000866B1 EP78100260A EP78100260A EP0000866B1 EP 0000866 B1 EP0000866 B1 EP 0000866B1 EP 78100260 A EP78100260 A EP 78100260A EP 78100260 A EP78100260 A EP 78100260A EP 0000866 B1 EP0000866 B1 EP 0000866B1
Authority
EP
European Patent Office
Prior art keywords
tube
core
metal
grooves
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100260A
Other languages
English (en)
French (fr)
Other versions
EP0000866A1 (de
Inventor
Jochen Dr.Rer.Nat. Franzen
Gerhard Dipl.-Phys. Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Daltonics GmbH and Co KG
Original Assignee
Bruken Franzen Analytik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19772737903 external-priority patent/DE2737903C2/de
Priority claimed from DE19772752674 external-priority patent/DE2752674A1/de
Application filed by Bruken Franzen Analytik GmbH filed Critical Bruken Franzen Analytik GmbH
Publication of EP0000866A1 publication Critical patent/EP0000866A1/de
Application granted granted Critical
Publication of EP0000866B1 publication Critical patent/EP0000866B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping
    • H01J49/4215Quadrupole mass filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/4255Device types with particular constructional features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S228/00Metal fusion bonding
    • Y10S228/903Metal to nonmetal

Definitions

  • the invention relates to a method according to the first part of patent claim 1.
  • a multipole usually consists of the number of poles corresponding to electrically conductive round or hyperbole rods;
  • a quadrupole consists of four parallel, electrically conductive round or hyperbole rods.
  • the rods are held parallel to one another by one or more electrically insulating mounting parts that surround them on the outside in the form of rings or cages, the rod centers being arranged square in section.
  • the requirements for parallelism, freedom from torsion, the equality of the spacing of diagonally opposite rods and the right angle of these diagonals are used in particular for those mass filters that are used in higher mass ranges with masses greater than 500 atomic mass units (m > 500 u) should be extremely high.
  • GB-B-13 67 638 has therefore described a filter which consists of a tubular, torsion-free and low-deflection insulator with conductive surface coverings, this filter being produced from an extruded ceramic tube by subsequent firing and partial covering of the inner surfaces with a conductive layer becomes.
  • the firing causes the pipe to shrink by about 10% and therefore does not permit the dimensional accuracy requirements described above; therefore the use of such quadrupole filters as residual gas analyzers is only in the lower mass range.
  • DE-B-12 97 360 describes a method according to the first part of claim 1, which allows the production of high-precision glass tubes on a mandrel with subsequent metallization of the indented inner surfaces for use as a quadrupole system.
  • the structure of the mandrel, especially a quadrupole structure, is impressed on the softenable tube material, whereupon the mass filter is produced by subsequent metallization of the indentations.
  • FR-A-22 75 877 describes an analyzer system for a multipole mass filter, in which a carrier is produced from dimensionally stable material, in particular glass, according to the known KPG method, which then receives ground pole rods.
  • a sufficiently high precision of the quadrupole spacing cannot be achieved.
  • the invention has for its object to improve the method according to the first part of claim 1 in such a way that a highly precise and extremely smooth surface of the metal layer is achieved with excellent adhesion of the same to the pipe material.
  • a particularly preferred embodiment of the invention is characterized in that metal foils are used as layers, which are inserted into the grooves of the mandrel. It can in particular be provided that glass is used as the tube material and a highly ductile material is used as the foil material. As an alternative to this, it can also be provided that glass is used as the tube material and a metal with a largely identical coefficient of thermal expansion as the tube material is used as the foil material.
  • Gold and platinum are suitable as film material.
  • the invention optionally further provides that the film surface is provided with a meltable coating, in particular made of glass, before being inserted into the grooves of the mandrel to facilitate melting. This will ver melting the metal foils with the pipe material facilitated.
  • the metal foils are provided with protrusions extending from the foil surface facing away from the mold core, in particular in the form of bent flanges, notches, ribs soldered or welded onto the foils or wires soldered to the foils, before introduction that dig into the soft pipe material when the layer material and pipe material merge.
  • a coating with a conductive metal composition in particular conductive varnish, is applied to the inside of the tube and then dried as metallic components, whereupon Gold, silver or copper can preferably be used as conductive metals.
  • a further modified embodiment of the invention provides that the metallic components are produced by means of reduction metallization, for example tin oxide applied in the dipping process.
  • An essential part of the idea of the invention lies in the fact that during the final shaping process of the tube from softenable material, the metal electrodes are shaped at the same time - in particular by the grooves of the mandrel resting thereon - and pressed there by the surrounding tube material, which results in a highly precise and extremely smooth surface of the metal layer results.
  • the metallization is carried out only after the analyzer tube has been formed on the mandrel, and, as explained, insufficient accuracy is not guaranteed.
  • a pre-machined mandrel which in the case shown is made of ground special steel and ground in the semicircular grooves 3, is provided with metal foils 5, in particular gold foils, by the metal foils 5 being inserted into the semicircular grooves 3 be inserted.
  • a glass tube 7 is then pulled over the mold core 1 provided with metal foils 5 and, if necessary, closed and evacuated.
  • the glass tube 7 filled with the mandrel 1 is then heated, for example in an oven, to a temperature slightly above the transformation point of the glass, the glass tube 7 laying on the metal foils 5 located in the grooves 3 and fusing with them (FIG. 3) .
  • the mandrel 1 contracts more than the shaped glass tube 7, so that the mandrel 1 can be easily pulled out of the shaped glass tube 7.
  • FIG. 4 shows the completely manufactured analyzer system for a quadrupole mass filter as a glass tube 7 provided with tube indentations 9, the metal foils 5 being melted onto the tube indentations 9 in the interior of the glass tube 7.
  • a pre-machined mandrel 1 in the exemplary embodiment shown consisting of ground special steel, is ground in be inserted into the semicircular grooves 2.
  • the metal foils 5 are provided on the side facing away from the mandrel 1 with longitudinally extending flanges 6 perpendicular to the metal surface.
  • a glass tube 7 is pulled over the mold core 1 provided with the metal foils 5 and optionally closed and evacuated. Then will the glass tube 7 filled with the mandrel 1 is heated, for example in an oven, to a temperature slightly above the transformation point of the glass, the glass tube 7 laying on the metal foils in the grooves 3.
  • the flanges 6 dig into the soft material of the glass tube (FIG. 6). When cooling, the mandrel 1 contracts more than the shaped glass tube 7, so that the mandrel 1 can be easily pulled out of the shaped glass tube 7.
  • the metal foils 5 remain firmly connected to the tube indentations 9 of the glass tube 7 formed over the grooves 3 of the mandrel 1, the hold being reinforced in particular by the flanges 6 of the metal foils 5 melted into the glass tube 7.
  • FIG. 7 shows the completely manufactured analyzer system for a quadrupole mass filter as a glass tube provided with the tube indentations 9, the metal foils 5 being applied to the tube indentations 9 in the interior of the glass tube 7 and fused to the tube material in particular by means of their flanges 6.
  • the mandrel 1 is then introduced into the tube 7 provided with the metal coatings in such a way that the metal coatings are located above the grooves 3 of the mandrel and rest on the tube indentations 9 formed in the interior of the glass tube 7 according to the method steps described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

  • Die Erfindung betrifft ein Verfahren nach dem ersten Teil des Patentanspruches 1.
  • Das Wirkungsprinzip eines hochpräzisen und formstabilen Analysatorsystems für ein Multipol-Massenfilter, das dem Fachmann allgemein als Multipol-Massenfilter nach Paul bekannt ist, ist in der DE-C 9 44 900 beschrieben.
  • Ein Multipol besteht überlicherweise aus der Anzahl der Pole entsprechenden elektrisch leitfähigen Rund- oder Hyperbolstäben; insbesondere besteht also ein Quadrupol aus vier parallelen, elektrisch leitfähigen Rund- oder Hyperbolstäben. Die Stäbe sind dabei durch ein oder mehrere, sie außen umfassende, elektrisch isolierende Montageteile in Form von Ringen oder Käfigen parallel zueinander gehalten, wobei die Stabmitten im Schnitt quadratisch angeordnet sind. Die Anforderungen an die Parallelität, die Verwindungsfreiheit, die Gleichheit der Abstände sich diagonal gegenuberliegender Stäbe und die Rechtwinkeligkeit dieser Diagonalen sind insbesondere für solche Massenfilter, die in höheren Massenbereichen bei Massen, die größer sind als 500 atomare Masseneinheiten (m > 500 u), verwendet werden sollen, außerordentlich hoch.
  • Die vom Quadrupol-Filter durchgelassene lonenmasse m hängt nach der Gleichung
    Figure imgb0001
    (q = const x 0,7) von der Amplitude V und der Kreisfrequenz w der angelegten Hochfrequenzspannung sowie vom Scheitelabstand der jeweiligen Stäbe 2 r ab. Damit bei einer eingestellten Durchlaßmasse m = 1.000 u an zwei beliebigen Stellen im Quadrupolfilter die Differenz der durchgelassenen Masse nicht größer als 0,1 u ist, darf die relative Abweichung des Scheitelabstands
    Figure imgb0002
    höchstens 1/20.000 betragen. Dies ergibt bei einem diagonalen Scheitelabstand 2ro von üblicherweise 8 mm eine Genauigkeitsforderung von 0,4 jum. Dieser Wert wird für zylindrische Stäbe bei einer Zweipunkt-Auflage bereits durch die natürliche Durchbiegung unter dem Einfluß der Schwerkraft überschritten. Eine derartige Anordnung eines Multipol-Filters mit Polstäben und getrennten isolierenden Haltern kann daher die erforderlichen Genauigkeitsbedingungen nur schwer erfüllen.
  • Daher wurde in der GB-B-13 67 638 ein Filter beschrieben, das aus einem rohrförmigen, verwindungsfreien und durchbiegungsarmen Isolator mit leitfähigen Oberflächenbelegungen besteht, wobei dieses Filter aus einem extrudierten Keramikrohr durch nachfolgendes Brennen und teilweises Belegen der inneren Oberflächen mit einer leitfähigen Schicht hergestellt wird. Das Brennen bewirkt jedoch eine Schrumpfung des Rohres von etwa 10% und läßt daher die oben beschriebenen Maßgenauigketis-Anforderungen nicht zu; daher liegt die Verwendung derartiger Quadrupol-Filter als Restgasanalysatoren nur im unteren Massenbereich.
  • In der DE-B-12 97 360 ist ein Verfahren nach dem ersten Teil des Patentanspruches 1 beschrieben, welches die Herstellung hochpräziser Glasrohre auf einem Formkern mit anschließender Metallisierung der eingebuchteten inneren Oberflächen zur Verwendung als Quadrupol-System gestattet. Dabei wird dem erweichungsfähigen Rohrmaterial die Struktur des Formkerns, speziell eine Quadrupol-Struktur, aufgeprägt, woraufhin durch anschließende Metallisierung der Einbuchtungen das Massenfilter hergestellt wird. In der FR-A-22 75 877 ist ein Analysatorsystem für ein Multipol-Massenfilter beschrieben, bei dem nach dem bekannten KPG-Verfahren ein Träger aus formstabilem Material, insbesondere Glas, hergestellt wird, der dann geschliffene Polstäbe aufnimmt. Auch hierbei läßt sich keine hinreichend hohe Präzision des Quadrupolabstandes erzielen.
  • Der Erfindung liegt die Aufgabe zugrunde, das Verfahren nach dem ersten Teil des Patentanspruchs 1 dahingehend zu verbessern, daß eine hochpräzise und äußerst glatte Oberfläche der Metallschicht unter ausgezeichneter Haftung derselben an dem Rohrmaterial erreicht wird.
  • Erfindungsgemäß wird diese Aufgabe bei dem gattungsgemäßen Verfahren durch die im Kennzeichen des Patentanspruches 1 aufgeführten Merkmale gelöst.
  • Eine besonders bevorzugte Ausführungsform der Erfindung zeichnet sich dadurch aus, daß als Lagen Metallfolien verwendet werden, die in die Nuten des Formkerns eingelegt werden. Dabei kann insbesondere vorgesehen sein, daß als Rohrmaterial Glas und als Folienmaterial ein hochduktiles Material verwendet wird. Alternativ hierzu kann auch vorgesehen sein, daß als Rohrmaterial Glas und als Folienmaterial ein Metall mit weitgehend gleichem thermischen Ausdehnungskoeffizienten wie das Rohrmaterial verwendet wird.
  • Als Folienmaterial eignen sich beispielsweise Gold und Platin. Die Erfindung sieht gegebenenfalls weiterhin vor, daß die Folienoberfläche vor Einlegen in die Nuten des Formkerns zur Erleichterung des Verschmelzens mit einem schmelzfähigen Überzug, insbesondere aus Glas, versehen wird. Hierdurch wird das Verschmelzen der Metallfolien mit dem Rohrmaterial erleichtert.
  • Bei dem erfindungsgemäßen Verfahren kann weiterhin vorgesehen sein, daß die Metallfolien vor dem Einbringen mit sich von der dem Formkern abgewandten Folienfläche forterstreckenden Vorsprüngen, insbesondfere in Form von umgebogenen Flanschen, Einkerbungen, auf den Folien aufgelöteten oder aufgeschweißten Rippen oder an die Folien angelöteten Drähten, versehen werden, die sich beim Verschmelzen von Lagenmaterial und Rohrmaterial in das weiche Rohrmaterial eingraben.
  • Alternativ zu den vorstehend beschriebenen Ausgestaltungen des erfindungsgemäßen Verfahrens, bei denen Metallfolien als Lagen verwendet werden, kann auch vorgesehen sein, daß als metallische Komponenten eine Beschichtung mit einer Leitmetall-Zusammensetzung, insbesondere Leitlack, auf die Innenseite des Rohres aufgebracht und anschließend getrocknet wird, wobei als Leitmetalle vorzugsweise Gold, Silber oder Kupfer verwendet werden können.
  • Eine wiederum abgewandelte Ausführungsform der Erfindung sieht vor, daß die metallischen Komponenten mittels Reduktionsmetallisierung, zum Beispiel von im Tauchverfahren aufgebrachtem Zinnoxid, hergestellt werden.
  • Ein wesentlicher Bestandteil des Erfindungsgedankens liegt also darin, daß beim abschließenden Formgebungsprozeß des Rohres aus erweichungsfähigem Material gleichzeitig die Metallelektroden mitgeformt - insbesondere durch Aufliegen der Nuten des Formkerns - und durch das umgebende Rohrmaterial dort aufgepreßt werden, wodurch sich eine hochpräzise und äußerst glatte Oberfläche der Metallschicht ergibt. Bei dem gattungsgemäßen Verfahren wird im Gegensatz hierzu die Metallisierung erst nach Formen des Analysatorrohres auf dem Formkern durchgeführt, wobei, wie dargelegt, keine ausreichende Genauigkeit gewährleistet ist.
  • Nachstehend sind Wege zur Ausführung der Erfindung anhand der Zeichnung im einzelnen. Dabei zeigt:
    • Fig. 1 ein herkömmliches Quadrupolsystem aus vier zylindrischen Stäben, die durch isolierende Ringe gehalten sind;
    • Fig. 2 einen Querschnitt durch einen bei einem Weg zur Ausführung der Erfindung verwendeten Formkern mit eingeschliffenen Nuten, eingelegten Metallfolien und übergezogenem Glasrohr;
    • Fig. 3 einen Querschnitt durch den Formkern mit angeschmiegtem Glasrohr und mit ihm verschmolzenen Folien;
    • Fig. 4 einen Querschnitt durch das abgezogene Quadrupolrohr mit aufgeschmolzenen Folien;
    • Fig. 5 in ähnlicher Darstellung wie bei dem in den Figuren 2 bis 4 gezeigten Weg zur Aufführung der Erfindung einen Querschnitt durch einen Formkern mit eingeformten Nuten bei einem abgewandelten Weg zur Ausführung der Erfindung mit eingelegten Folien und übergezogenem Glasrohr;
    • Fig. 6 den Querschnitt durch den Formkern von Fig. 5 mit angeschmiegtem Glasrohr und mit ihm verschmolzenen Folien; und
    • Fig. 7 einen Querschnitt durch das abgezogene Quadrupolrohr von Fig. 5 und 6 mit angeschmolzenen Folien.
  • Beim in Fig. 1 dargestellten herkömmlichen Quadrupolsystem werden vier zylindrische leitende Stäbe, insbesondere aus Metall, durch zwei oder mehr isolierende Ringe gehalten. Durch mechanisches Justieren ist bestenfalls eine Genauigkeit von etwa 3 bis 4 J.Lm zu erhalten. Durch die natürliche Schwerkraft, durch Erschütterungen, und beim Aufheizen des Systems besteht die Gefahr, daß sich die Stäbe verbiegen. Außerdem kann sich das System verwinden.
  • Bei einem Weg zur Ausführung der Erfindung wird entsprechend Fig. 2 ein vorbearbeiteter Formkern, der im dargestellten Fall aus geschliffenem Spezialstahl und in den halbkreisförmige Nuten 3 eingeschliffen sind, mit Metallfolien 5, insbesondere Goldfolien, versehen, indem die Metallfolien 5 in die halbkreisförmigen Nuten 3 eingelegt werden. Anschließend wird über den mit Metallfolien 5 versehenen Formkern 1 ein Glasrohr 7 gezogen und gegebenenfalls verschlossen und evakuiert. Daraufhin wird das mit dem Formkern 1 gefüllte Glasrohr 7 zum Beispiel in einem Ofen auf eine etwas oberhalb des Transformationspunktes des Glases liegende Temperatur erhitzt, wobei sich das Glasrohr 7 auf die den Nuten 3 befindlichen Metallfolien 5 legt und mit diesen verschmilzt (Fig. 3). Beim Abkühlen zieht sich der Formkern 1 stärker zusammen als das geformte Glasrohr 7, so daß der Formkern 1 leicht aus dem geformten Glasrohr 7 herausziehbar ist.
  • In Fig. 4 ist das vollständig hergestellte Analysatorsystem für ein Quadrupol-Massenfilter als mit Rohreinbuchtungen 9 versehenes Glasrohr 7 dargestellt, wobei im Inneren des Glasrohres 7 auf die Rohreinbuchtungen 9 die Metallfolien 5 aufgeschmolzen sind.
  • Bei dem in den Figuren 5 bis 7 wiedergegebenen, zweiten Weg zur Ausführung der Erfindung wird entsprechend Fig. 5 ein vorbearbeiteter Formkern 1, beim dargestellten Ausführungsbeispiel aus geschliffenem Spezialstahl bestehend, in .den halbkreisförmige Nuten 3 eingeschliffen sind, mit Metallfolien 5 versehen, indem diese in die halbkreisförmigen Nuten 2 eingelegt werden. Die Metallfolien 5 sind auf der dem Formkern 1 abgewandten Seite mit sich längs erstreckenden, senkrecht zur Metalloberfläche stehenden Flanschen 6 versehen. Über den mit den Metallfolien 5 versehenen Formkern 1 wird ein Glasrohr 7 gezogen und gegebenenfalls verschlossen und evakuiert. Anschließend wird das mit dem Formkern 1 gefüllte Glasrohr 7 zum Beispiel in einem Ofen, auf eine etwas oberhalb des Transformationspunktes des Glases liegende Temperatur erhitzt, wobei sich das Glasrohr 7 auf die in den Nuten 3 befindlichen Metallfolien legt. Dabei graben sich die Flansche 6 in das weiche Material des Glasrohres ein (Fig. 6). Beim Abkühlen zieht sich der Formkern 1 stärker zusammen als das geformte Glasrohr 7, so daß der Formkern 1 leicht aus dem geformten Glasrohr 7 herausziehbar ist.
  • Dabei bleiben die Metallfolien 5 fest mit über den Nuten 3 des Formkerns 1 gebildeten Rohreinbuchtungen 9 des Glasrohrs 7 verbunden, wobei der Halt insbesondere durch die in das Glasrohr 7 eingeschmolzenen Flansche 6 der Metallfolien 5 verstärkt wird.
  • In Fig. 7 ist das vollständig hergestellte Analysatorsystem für ein Quadrupol-Massenfilter als mit den Rohreinbuchtungen 9 versehenes Glasrohr dargestellt, wobei im Inneren des Glasrohres 7 auf die Rohreinbuchtungen 9 die Metallfolien 5 aufgebracht und insbesondere mittels ihrer Flansche 6 mit dem Rohrmaterial verschmolzen sind.
  • Die selben Verfahrensschritte werden durchgeführt, wenn statt der Metallfolien vor Einbringen des Formkerns in das Glasrohr an den Stellen der zu formenden Rohreinbuchtungen in bekannter Weise Glanzmetallpaste, Leitlack oder eine Leitschicht aufgebracht und anschließend in bekannter Weise metallisiert wird, wobei gegebenenfalls bei einer Leitschicht noch eine zusätzliche Metallschicht in herkömmlicher Weise aufgalvanisiert wird.
  • Der Formkern 1 wird dann in das mit den Metallbeschichtungen versehene Rohr 7 derart eingebracht, daß die Metallbeschichtungen sich über den Nuten 3 des Formkerns befinden und nach den oben beschriebenen Verfahrensschritten im Inneren des Glasrohres 7 auf den gebildeten Rohreinbuchtungen 9 aufliegen.

Claims (10)

1. Verfahren zum Herstellen eines hochpräzisen und formstabilen Analysatorsystems für ein Multipol-Massenfilter, bei dem ein Rohr (7) aus elektrisch schlecht leitendem, thermisch erweichungsfähigem Material über einen maßpräzisen Formkern (1) mit höherem Ausdehnungskoeffizienten als das Rohr und zueinander parallelen Nuten (3) gezogen wird, woraufhin das Rohr evakuiert und gemeinsam mit dem Formkern derart erhitzt wird, daß sich das Rohrmaterial den Nuten des Formkerns anschmiegt und anschießend nach verfestigender Abkühlung mit den eingeprägten Rohreinbuchtungen vom Formkern abgezogen wird und bei dem auf die Innenseite des Rohres im Bereich der Nuten Lagen aus elektrisch gut leitfähigen, metallischen Komponenten (5) aufgebracht werden, dadurch gekennzeichnet, daß die Lagen vor dem Erhitzen des Rohres zwischen Formkern und Rohr eingebracht werden, und daß das Lagenmaterial beim Erweichen und Anschmiegen des Rohres an die Nuten mit dem Rohrmaterial verschmolzen und durch das umgebende Rohrmaterial verformt und gegen die Nuten gepreßt wird, so daß beim Abziehen des so geformten verfestigten Rohres die mit den eingeprägten Rohreinbuchtungen verschmolzenen Lagen mit vom Formkern abziehbar sind.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Lagen Metallfolien verwendet werden, die in die Nuten des Formkerns eingelegt werden.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß als Rohrmaterial Glas und als Folienmaterial ein hochduktiles Metall verwendet wird.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß als Rohrmaterial glas und als Folienmaterial ein Metall mit weitgehend gleichem thermischen Ausdehnungskoeffizienten wie das Rohrmaterial verwendet wird.
5. Verfahren npch einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Folienoberfläche vor Eirtiegen in die Nuten des Formkerns zur Erleichterung des Verschmelzens mit einem schmelzfähigen Überzug, insbesondere aus Glas, versehen wird.
6. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Metallfolien vor dem Einbringen mit sich von der dem Formkern abgewandten Folienfläche forterstreckenden Vorsprüngen, insbesondere in Form von umgebogenen Flanschen, Einkerbungen, auf den Folien aufgelöteten oder auf- geschweißten Rippen oder an die Folien angelöteten Drähten, versehen werden, die sich beim Verschmelzen von Lagenmaterial und Rohrmaterial in das weiche Rohrmaterial eingraben.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als metallische Komponenten eine Beschichtung aus einer metallhaltigen Paste, insbesondere aus Gianzgold oder aus Glanzsilber, auf die Innenfläche des Rohres aufgebracht wird, die beim Erhitzen des Rohres in Metall umgewandelt wird.
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als metallische Komponenten eine Beschichtung mit einer Leitmetall-Zusammensetzung, insbesondere Leitlack, auf die Innenseite des Rohres aufgebracht und aschließend getrocknet wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß als Leitmetalle Gold, Silber oder Kupfer verwendet werden.
10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die metallischen Komponenten mittels Reduktionsmetallisierung, zum Beispiel von im Tauchverfahren aufgebrachtem Zinnoxid, hergestellt werden.
EP78100260A 1977-08-23 1978-06-28 Verfahren zum Herstellen eines Analysatorsystems für ein Multipol-Massenfilter Expired EP0000866B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19772737903 DE2737903C2 (de) 1977-08-23 1977-08-23 Verfahren zur Herstellung eines Analysatorsystems für ein Multipol-Massenfilter
DE2737903 1977-08-23
DE19772752674 DE2752674A1 (de) 1977-11-25 1977-11-25 Verfahren zum herstellen eines massenfilter-analysatorsystems sowie danach hergestelltes analysatorsystem
DE2752674 1977-11-25

Publications (2)

Publication Number Publication Date
EP0000866A1 EP0000866A1 (de) 1979-03-07
EP0000866B1 true EP0000866B1 (de) 1981-05-20

Family

ID=25772594

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100260A Expired EP0000866B1 (de) 1977-08-23 1978-06-28 Verfahren zum Herstellen eines Analysatorsystems für ein Multipol-Massenfilter

Country Status (2)

Country Link
US (1) US4213557A (de)
EP (1) EP0000866B1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3784138T2 (de) * 1986-11-19 1993-06-03 Hewlett Packard Co Quarz-quadrupol fuer massenfilter.
GB8707169D0 (en) * 1987-03-25 1987-04-29 Philips Nv Electron beam device
US4983195A (en) * 1990-01-04 1991-01-08 Corning Incorporated Method of making fiber optic coupler with longitudinal protrusions
GB2304991B (en) * 1992-12-02 1997-05-28 Hewlett Packard Co Multipole apparatus having integral interpole bridges
US5298745A (en) * 1992-12-02 1994-03-29 Hewlett-Packard Company Multilayer multipole
US5525084A (en) * 1994-03-25 1996-06-11 Hewlett Packard Company Universal quadrupole and method of manufacture
US5644131A (en) * 1996-05-22 1997-07-01 Hewlett-Packard Co. Hyperbolic ion trap and associated methods of manufacture
US5852270A (en) * 1996-07-16 1998-12-22 Leybold Inficon Inc. Method of manufacturing a miniature quadrupole using electrode-discharge machining
EP1137046A2 (de) * 2000-03-13 2001-09-26 Agilent Technologies Inc. a Delaware Corporation Herstellung von Hochpräzisionsmultipolen und -filtern
DE102004014582B4 (de) * 2004-03-25 2009-08-20 Bruker Daltonik Gmbh Ionenoptische Phasenvolumenkomprimierung
DE102004014584B4 (de) * 2004-03-25 2009-06-10 Bruker Daltonik Gmbh Hochfrequenz-Quadrupolsysteme mit Potentialgradienten
DE102004048496B4 (de) * 2004-10-05 2008-04-30 Bruker Daltonik Gmbh Ionenführung mit HF-Blendenstapeln
US10147595B2 (en) * 2016-12-19 2018-12-04 Agilent Technologies, Inc. Quadrupole rod assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2592614A (en) * 1946-01-08 1952-04-15 Champion Paper & Fibre Co Method of making tubular metallic wave guides
CH409463A (de) * 1962-07-21 1966-03-15 Siemens Ag Verfahren zum Herstellen des Analysatorsystems von Massenspektrometern
DE1297360B (de) * 1962-07-21 1969-06-12 Siemens Ag Verfahren zum Herstellen eines verwindungsfreien Analysatorsystems fuer ein Multipolmassenfilter
US3248788A (en) * 1962-11-21 1966-05-03 Martin Marietta Corp Application of flame-sprayed linings on the inside diameter of tubes
GB1468139A (en) * 1974-06-18 1977-03-23 Varian Mat Gmbh Monopole or multipole electrode system for a mass filter

Also Published As

Publication number Publication date
US4213557A (en) 1980-07-22
EP0000866A1 (de) 1979-03-07

Similar Documents

Publication Publication Date Title
EP0000866B1 (de) Verfahren zum Herstellen eines Analysatorsystems für ein Multipol-Massenfilter
DE2641866A1 (de) Luftdicht verschlossenes elektrisches einzelteil
DE10025588A1 (de) Einrichtung zur Verarbeitung von geschmolzenem Material, Verfahren und Vorrichtung zur Herstellung derselben
EP0205897A2 (de) Abbrandkontaktstück und Verfahren zur Herstellung eines solchen Abbrandkontaktstückes oder eines vergleichbaren Bauteils
DE2011215B2 (de) Elektrische Heizvorrichtung
EP1183697A1 (de) Balg für einen vakuumkondensator mit gleichmässiger elektrischer leitschicht
DE2408882A1 (de) Gehaeuse fuer ein elektronisches bauteil
DE2253915C2 (de) Verfahren zur Herstellung vakuumdichter Verbindungen zwischen einem Keramikteil und einem Aluminiumteil und nach diesem Verfahren erhaltene Vakuumkolben
DE3873599T2 (de) Kommutator fuer eine elektrische rotationsmaschine und herstellungsverfahren dieses kommutators.
DE1063774B (de) Verfahren zum Verbinden eines eine metallische Oberflaeche aufweisenden Gegenstandesmit einem aus glasartigem Werkstoff bestehenden Koerper und danach hergestellter Glasgegenstand
EP0258670B1 (de) Füllschichtbauteil
DE2752674A1 (de) Verfahren zum herstellen eines massenfilter-analysatorsystems sowie danach hergestelltes analysatorsystem
DE2737903C2 (de) Verfahren zur Herstellung eines Analysatorsystems für ein Multipol-Massenfilter
DE2554464C3 (de) Elektrischer Widerstand
DE1621258B2 (de) Kontaktstueck aus einem leitenden traeger aus einem unedlen metall und einem dreischichtigen verbundkontaktkoerper sowie dessen herstellungsverfahren
DE4029681C2 (de)
DE1218072B (de) Sekundaerelektronenvervielfacher und Verfahren zur Herstellung des Vervielfachers
EP3519785B1 (de) Kabel, temperaturvorrichtung und verfahren zum herstellen eines kabels
DE2333001C3 (de) Verfahren zum Anlöten von Stromanschlußdrähten an kappenlose elektrische Schichtwiderstände
WO1999052818A1 (de) Vorrichtung zur erzeugung von ozon aus sauerstoffhaltigen gasen
DE3906028A1 (de) Verfahren zum herstellen einer vakuumhuelle und nach diesem verfahren hergestellte vakuumhuelle
DE2404362B1 (de) Heizkörper für eine indirekt geheizte Kathode
DE2723363A1 (de) Kondensator mit einem zylinderfoermigen traegerkoerper
EP0553373B1 (de) Vakuumröhre
DE658557C (de) Verfahren zur Herstellung eines elektrischen Kondensators in Rohrform

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE FR GB NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE FR GB NL SE

EAL Se: european patent in force in sweden

Ref document number: 78100260.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970610

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970618

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970619

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970630

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970812

Year of fee payment: 20

BE20 Be: patent expired

Free format text: 980628 *BRUKER-FRANZEN ANALYTIK G.M.B.H.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980628

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 19980627

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 19980628

EUG Se: european patent has lapsed

Ref document number: 78100260.5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT