DK175109B1 - Activating recombinant non-glycosylated tissue plasminogen activator - Google Patents

Activating recombinant non-glycosylated tissue plasminogen activator Download PDF

Info

Publication number
DK175109B1
DK175109B1 DK200001897A DKPA200001897A DK175109B1 DK 175109 B1 DK175109 B1 DK 175109B1 DK 200001897 A DK200001897 A DK 200001897A DK PA200001897 A DKPA200001897 A DK PA200001897A DK 175109 B1 DK175109 B1 DK 175109B1
Authority
DK
Denmark
Prior art keywords
mol
process according
mmol
denaturing
activation
Prior art date
Application number
DK200001897A
Other languages
Danish (da)
Inventor
Stephan Fischer
Ralf Mattes
Rudolph Rainer
Original Assignee
Roche Diagnostics Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Diagnostics Gmbh filed Critical Roche Diagnostics Gmbh
Publication of DK200001897A publication Critical patent/DK200001897A/en
Application granted granted Critical
Publication of DK175109B1 publication Critical patent/DK175109B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6456Plasminogen activators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6456Plasminogen activators
    • C12N9/6459Plasminogen activators t-plasminogen activator (3.4.21.68), i.e. tPA
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • C07K1/1133General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure by redox-reactions involving cystein/cystin side chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • C07K14/565IFN-beta
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21069Protein C activated (3.4.21.69)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Method for activating non-glycosylated tissue plasminogen activator (t-PA) after its expression in prokaryotic cells comprises cell lysis; solubilisation under denaturing and reducing conditions, and reactivation under oxidising conditions in presence of reduced and oxidised glutathione (G5H, G55G). The new feature is that in the last stage is at pH 9-12 (pref. 9.5-11) with G5H and G55G concns. 0.1-20, pref. 0.2-10, mM and 0.01-3, pref. 0.5-1, mM, respectively, and with a non-denaturing concn. of the denaturing agent. Esp. the method is applied to t-PA expressed in E.coli and P. putida. The denaturing agent is pref. arginine, guanidine hydrochloride (both at 0.1-1, esp. 0.25-0.75, mM) or urea, at 0.5-4 (esp. 1-3.5) M in the last stage.

Description

DK 175109 B1 iDK 175109 B1 i

Opfindelsen angår en fremgangsmåde til aktivering af genteknologisk fremstillede, disulfidbroer indeholdende eukaryotiske proteiner efter ekspression i prokaryotiske celler.The invention relates to a method for activating gene-technologically prepared disulfide bridges containing eukaryotic proteins after expression in prokaryotic cells.

ee

Ved ekspressionen af heterologe proteiner i prokaryote celler danner disse proteiner i 5 værtscellerne ofte inaktive, tungtopløselige aggregater (såkaldte "refractile bodies"), som desuden er forurenede med værtscellernes proteiner. Man antager, at dannelsen af sådanne "refractile bodies" er en følge af den ved ekspressionen opståede høje proteinkoncentration i cellen. Det vides, at dannelsen af store enzymmængder i cellen fører til enzymernes sammenklumpning til uopløselige, højmolekylære, for det meste inaktive 10 partikler. Før sådanne proteiner kan anvendes til f.eks. terapeutiske formål, skal disse derfor oprenses og overføres til deres aktive form.In the expression of heterologous proteins in prokaryotic cells, these proteins in the host cells often form inactive, highly soluble aggregates (so-called "refractile bodies") which are additionally contaminated with the proteins of the host cells. It is believed that the formation of such "refractile bodies" is a consequence of the high protein concentration caused by expression in the cell. It is known that the formation of large amounts of enzymes in the cell leads to the clumping of the enzymes into insoluble, high molecular weight, mostly inactive particles. Before such proteins can be used for e.g. for therapeutic purposes, these must therefore be purified and transferred to their active form.

Ifølge kendte fremgangsmåder kan en reaktivering af sådanne, som aggregater foreliggende proteiner gennemføres i flere trin (sammenlign f.eks. R. Jaenicke, FEBS Federation of European Biochemical Societies, bind 52 (1979) 187 til 198; R. Rudolph et al., 15 Biochemistry 18 (1979) 5572 til 5575); I det første trin opnås en solubilisering ved tilsætning af kraftigt virkende denatureringsmidler, eksempelsvis guanidin- hydrochlorid eller urinstof i høj koncentration eller ved til- sætning af stærkt sure agentier, eksempelvis glycin/phosphor- syre-blandinger. Som yderligere hjælpestoffer har reducerende SH-reagentier (f.eks. dithioerythritol, DTE) og ’ 20 EDTA vist sig som egnede, f.eks. ved renaturering af LDH. Såfremt proteinet er forure net med proteiner fra værtscellen følger som næste trin en oprensning ved i og for sig , kendte og gængse metoder, f.eks. gel- eller ionudbytterchromatografi. Derefter fortyndes kraftigt, for at nedsætte denatureringsmidlets koncentration. Ved anvendelse af guanidin-hydrochlorid fortyndes herved til koncentrationer under 0,5 mol/1. Ved enzy-25 mer med frie SH-grupper viste det sig at være fordelagtigt at tilsætte SH-gruppe- beskyttende agentier (sammenlign f.eks. R. Jaenicke, Journal Polymer Science, Part C 16 (1967) 2143 til 2160).According to known methods, reactivation of such proteins as aggregates of present proteins can be carried out in several steps (compare, e.g., R. Jaenicke, FEBS Federation of European Biochemical Societies, Vol. 52 (1979) 187 to 198; R. Rudolph et al. Biochemistry 18 (1979) 5572 to 5575); In the first step, solubilization is achieved by the addition of potent denaturants, for example guanidine hydrochloride or high concentration urea or by the addition of highly acidic agents, for example glycine / phosphoric acid mixtures. As additional adjuvants, reducing SH reagents (e.g., dithioerythritol, DTE) and 'EDTA have been found to be suitable, e.g. by renaturating LDH. If the protein is contaminated with proteins from the host cell, the next step is purification by itself, known and common methods, e.g. gel or ion exchange chromatography. Then vigorously dilute to reduce the denaturant concentration. Using guanidine hydrochloride is thereby diluted to concentrations below 0.5 mol / l. In enzymes with free SH groups, it was found to be advantageous to add SH group protecting agents (compare, e.g., R. Jaenicke, Journal Polymer Science, Part C 16 (1967) 2143 to 2160).

2 DK 175109 B1 I den europæiske patentansøgning EP-A-0114506 beskrives fremgangsmåder til isolering, oprensning og reaktivering af nogle heterologe ekspressionsprodukter fra bakteriekulturer; til reaktiveringen overføres opløsninger af "refractile bodies" i et kraftigt virkende denatureringsmiddel a) direkte til en opløsning i et svagere denatureringsmid-5 del, som herefter udsættes for oxiderende betingelser for at gendanne disulfidbroer; b) proteinet sulfoneres, overføres herefter til en opløsning i et svagere denatureringsmiddel, og S-sulfonatgrupperne omdannes ved behandling med et sulfhydrylreagens i dets reducerede og oxiderede form, f.eks. med GSH/GSSG, til -S-S-grupper; eller c) opløsningen behandles i et svagt denatureringsmiddel direkte med sulfhydryl-reagenset, f.eks. med 10 GSH/GSSG. Et typisk eksempel, hvorved de oven for anførte problemer forekommer, er t-PA.2 DK 175109 B1 European patent application EP-A-0114506 discloses methods for isolating, purifying and reactivating some heterologous expression products from bacterial cultures; for the reactivation, solutions of "refractile bodies" in a powerful denaturing agent are transferred a) directly to a solution of a weaker denaturing agent, which is then subjected to oxidative conditions to restore disulfide bridges; b) the protein is sulfonated, then transferred to a solution in a weaker denaturing agent, and the S-sulfonate groups are converted by treatment with a sulfhydryl reagent in its reduced and oxidized form, e.g. with GSH / GSSG, for -S-S groups; or c) the solution is treated in a weak denaturant directly with the sulfhydryl reagent, e.g. with 10 GSH / GSSG. A typical example whereby the above problems occur is t-PA.

Proteinmatrixens hovedkomponent i koaguleret blod er polymert fibrin. Denne protein-matrix opløses ved hjælp af plasmin, som dannes ud fra plasminogen via aktivering gennem de såkaldte plasminogen-aktivatorer, f.eks. gennem t-PA (vævs-plasminogen-15 aktivator, tissue-type plasminogenaktivator). Den enzymatiske aktivitet af naturligt eller ud fra højkaryotiske celler genteknologisk indvundet t-PA (katalytisk aktivering af plasminogen til plasmin) er ved fraværelse af fibrin eller fibrinspaltningsprodukter (FSP) særdeles ringe, men kan ved disse stimulatorers tilstedeværelse forøges væsentligt (mere end faktoren 10). Denne såkaldte aktivitetstimulerbarhed er en af- gørende fordel af t-PA 20 i forhold til andre kendte plasminogenaktivatorer, såsom urokinase eller streptokinase (sammenlign f.eks. M. Hoylaerts et al., J. Biol. Chem. 257 (1982) 2912 til 2919; Nieuwenhiuzenetal., Biochemica et Biophysica Acta 755 (1983)531 til 533). Stimuler-barhedsfaktoren med BrCN-spaltningsprodukter angives derfor i litteraturen forskelligt, og der nævnes tal op til 35. 1The major component of the protein matrix in coagulated blood is polymeric fibrin. This protein matrix is dissolved by plasmin which is formed from plasminogen via activation through the so-called plasminogen activators, e.g. through t-PA (tissue plasminogen activator, tissue type plasminogen activator). The enzymatic activity of natural or from high-karyotic cells genetically recovered t-PA (catalytic activation of plasminogen to plasmin) is extremely low in the absence of fibrin or fibrin cleavage products (FSP), but can be significantly increased in the presence of these stimulators (more than factor 10). . This so-called activity stimulability is a crucial advantage of t-PA 20 over other known plasminogen activators such as urokinase or streptokinase (compare, e.g., M. Hoylaerts et al., J. Biol. Chem. 257 (1982) 2912 to 2919; Nieuwenhiuzenetal., Biochemica et Biophysica Acta 755 (1983) 531 to 533). Therefore, the stimulus-effectiveness factor with BrCN cleavage products is stated differently in the literature and numbers up to 35. 1

Et t-PA-agtigt, ikke-glycosyleret produkt dannes også i genetisk manipuleret prokaryoti-ske celler (efter indslusning af cDNA); et sådant produkt virker imidlertid ikke stimulerende på aktiviteten af en t-PA fra eukaryotiske celler. Dette kan eventuelt skyldes, at reaktionsbetingelserne i den prokaryotiske celle på en sådan måde er forskellige fra det DK 175109 B1 3 i den eukaryotiske celle, hvorfra genet stammer, at der allerede fra begyndelse af ikke dannes et aktivt produkt, som eksempelvis kunne skyldes, at de talrige SS-broer, som det naturlige aktive molekyle indeholder, på forkert måde er knyttet sammen eller slet ikke dannes. Ved den terapeutiske anvendelse af t-PA er imidlertid ikke kun alene den 5 enzymatiske aktivitet nødvendig, men desuden også dens stimulerbarhed. Til den kendsgerning, at den prokaryotiske celle formodentlig ikke skaber de rigtige betingelser for at tilvejebringe aktiviteten af eukaryotiske proteiner på en rigtig måde, henvises i sammenhæng med andre stoffer i EMBO Journal 4, nr. 3 (1985) 775 til 780.A t-PA-like, non-glycosylated product is also formed in genetically engineered prokaryotic cells (after cDNA entry); however, such a product does not stimulate the activity of a t-PA from eukaryotic cells. This may be due to the fact that the reaction conditions in the prokaryotic cell are in such a way different from that in the eukaryotic cell from which the gene originates, that from the beginning no active product is formed, which could be due, for example, to the numerous SS bridges containing the naturally active molecule are incorrectly linked or not formed at all. However, in the therapeutic use of t-PA, not only is the enzymatic activity necessary, but also its stimulability. The fact that the prokaryotic cell probably does not create the right conditions to provide the activity of eukaryotic proteins properly is referred to in the context of other substances in EMBO Journal 4, No. 3 (1985) 775 to 780.

Ifølge den europæiske patentansøgning EP-A-0093639 bliver de fra E. coli opnåede 10 cellepellets til reaktiveringen af t-PA opslæmt i 6 mol/1 guanidin-hydrochlorid, med ultralyd behandlet, inkuberet og herefter dialyseret i 4 timer mod en opløsning af Tris-HCl (pH = 8,0), natriumchlorid, EDTA og Tween 80. Efter dialyse centrifugeres, hvorhos plasminogenaktivatoraktiviteten findes i overstanden. Den på denne måde renaturerede t-PA er ganske vist proteolytisk aktiv, men udviser imidlertid ingen målelig 15 stimulerbarhed gennem BrCN-spaltningsprodukter (BrCN-FSP) af fibrin, ifølge den i J. H. Verheijen, Thromb. Haemostas., 48, (3), 260-269(1982)beskrevne fremgangsmåde.According to European patent application EP-A-0093639, the 10 cell pellets obtained from E. coli for the reactivation of t-PA are suspended in 6 mol / l guanidine hydrochloride, treated with ultrasound, incubated and then dialyzed for a solution of Tris -HCl (pH = 8.0), sodium chloride, EDTA and Tween 80. After dialysis, centrifuge the plasminogen activator activity in the supernatant. The t-PA thus renaturated is proteolytically active, but does not show any measurable stimulability through fibrin BrCN cleavage products (BrCN-FSP) according to that of J. H. Verheijen, Thromb. Haemostas., 48, (3), 260-269 (1982).

Til reaktiveringen af denaturerede proteiner findes der ifølge kendt teknik ingen generelt anvendelig fremgangsmåde; dette gælder især t-PA, idet det naturlige protein besidder 20 en særdeles kompleks struktur; det indeholder en fri diolgruppe og 17 SS-broer, som teoretisk kan sammenknyttes på 2,2 x 1020 forskellige måder, og kun en struktur svarer til den naturlige tilstand. Fremgangsmåder ifølge kendt teknik til reaktivering af t-PA fører godt nok til en proteolytisk aktiv t-PA, men udviser ingen målelig stimulerbarhed.For the reactivation of denatured proteins, there is no generally applicable method in the prior art; this is especially true for t-PA, since the natural protein has a highly complex structure; it contains a free diol group and 17 SS bridges, which theoretically can be linked in 2.2 x 1020 different ways, and only one structure corresponds to the natural state. Prior art methods for reactivating t-PA well lead to a proteolytically active t-PA, but do not show any measurable stimulability.

En aktiveringsfremgangsmåde, som fører til stimulerbart t-PA, kendes ikke. Den forelig-25 gende opfindelses formål er derfor at tilvejebringe en fremgangsmåde til fuldstændig aktivering af genteknologisk fremstillede, heterologe, disulfide broer indeholdende eukaryotiske proteiner efter ekspression i prokaryotiske celler.An activation method leading to stimulable t-PA is not known. The object of the present invention, therefore, is to provide a method for the complete activation of genetically engineered heterologous disulfide bridges containing eukaryotic proteins after expression in prokaryotic cells.

DK 175109 B1 4DK 175109 B1 4

Opfindelsen angår en fremgangsmåde til aktivering af genteknologisk fremstillede, heterologe, disulfide broer indeholdende eukaryotiske proteiner efter ekspression i prokaryotiske celler, som opnås i patentkrav 1 ved hjælp af celleoplukning, solubilise-ring under denaturerende og reducerende betingelser og aktivering (renaturering) under 5 oxiderende betingelser ved tilstedeværelse af GSH/GSSG. Det ejendommelige ved fremgangsmåden er, at man i aktiveringstrinnet arbejder ved en pH-værdi på 9 til 12, en GSH-koncentration på 0,1 til 20 mmol/1, en GSSG-koncentration på 0,01 til 3 mmol per liter og med en ikke-denaturerende koncentration af denatureringsmidlet.The invention relates to a method for activating gene-technologically prepared heterologous disulfide bridges containing eukaryotic proteins after expression in prokaryotic cells, which is obtained in claim 1 by means of cell pickup, solubilization under denaturing and reducing conditions, and activation (renaturation) under oxidizing conditions. in the presence of GSH / GSSG. The peculiarity of the process is that in the activation step one works at a pH of 9 to 12, a GSH concentration of 0.1 to 20 mmol / l, a GSSG concentration of 0.01 to 3 mmol per liter and with a non-denaturing concentration of the denaturing agent.

Foretrukne udførelsesformer for fremgangsmåden anføres i underkravene.Preferred embodiments of the method are set out in the subclaims.

10 Som denatureringsmiddel kan i reglen anvendes et til aktiveringen under oxiderende betingelser sædvanligvis anvendt denatureringsmiddel eller arginin; af de kendte denatureringsmidler foretrækkes guanidin-hydrochlorid eller urinstof eller derivater deraf.As a denaturant, a denaturant or arginine usually used for the activation under oxidizing conditions can usually be used; of the known denaturing agents, guanidine hydrochloride or urea or derivatives thereof are preferred.

Desuden har arginin vist sig som egnet. Endvidere kan blandinger af disse denatureringsmidler anvendes. Fortrinsvis udføres dette aktiveringstrin også ved tilstedeværelse af et 15 fremmed protein; som et sådant egner sig i reglen et hvilket som helst fremmedprotein, så længe dette ikke virker proteolytisk; fortrinsvis anvendes okseserumalbumin (BSA), f.eks. i en mængde på 1 til 3 mg/ml. BSA-tilsætningen tilvejebringer et let forhøjet udbytte og stabilisering af proteinet (dette skyldes sandsynligvis beskyttelse mod overfladedenaturering og/eller proteolytisk nedbrydning). 1 2 3 4 5 6Furthermore, arginine has proven to be suitable. Furthermore, mixtures of these denaturing agents can be used. Preferably, this activation step is also performed in the presence of a foreign protein; as such, as a rule, any foreign protein is suitable as long as it does not appear proteolytic; preferably, bovine serum albumin (BSA) is used, e.g. in an amount of 1 to 3 mg / ml. The BSA addition provides slightly elevated yield and stabilization of the protein (this is likely due to protection against surface denaturation and / or proteolytic degradation). 1 2 3 4 5 6

De øvrige fremgangsmådebetingelser kan svare til de for reaktiveringstrin fra teknikkens 2 stade kendte og sædvanlige betingelser. Aktiveringsvarighed (inkubation) andrager 3 fortrinsvis 20 til 48 timer ved stuetemperatur. Halveringstiden for aktiveringen ligger 4 ved tilstedeværelse af 0,5 mmol/1 reduceret (GSH) og oxideret (GSSG) glutathion ved 5 ca. 10 til 15 timer ved 20°C. Ved en længere inkubation (48 timer) under reoxidations- 6 betingelser aftager i reglen stimulerbarheden gennem CNBr-FSP. Aktiveringstrinnet gennemføres fortrinsvis ved tilstedeværelse af EDTA, hvorhos den mest egnede koncentration er ca. 1 mmol/1 EDTA.The other process conditions may correspond to the usual and usual conditions known for the reactivation steps of the prior art 2. Activation duration (incubation) is preferably 20 to 48 hours at room temperature. The half-life of activation is 4 in the presence of 0.5 mmol / l reduced (GSH) and oxidized (GSSG) glutathione at 5 ca. 10 to 15 hours at 20 ° C. As a rule, for longer incubation (48 hours) under reoxidation conditions, the stimulatability through CNBr-FSP decreases. The activation step is preferably carried out in the presence of EDTA, where the most suitable concentration is approx. 1 mmol / 1 EDTA.

DK 175109 B1 5DK 175109 B1 5

De af aktiveringstrinnet (reoxidation/aktivering) forudgående og efterfølgende fremgangsmådetrin, såsom celleoplukning, solubilisering (solubilisering/reduktion) og eventuelt et eller flere af de af aktiveringstrinnet forudgående og/eller efter- følgende oprensningsoperationer, kan ifølge kendt teknik, f.eks. EP-A-0114506 og EP-A-0093619, 5 gennemføres ved for sådanne fremgangsmåder kendte og gængse metoder; med henblik på et med hensyn til udbytte og aktivering optimalt resultat kan det imidlertid være nyttigt, at gennemføre enkelte eller alle fremgangstrin i overensstemmelse med en eller flere af de heri angivne udførelsesformer. Navnlig er det muligt at gennemføre trinnene til aktivering ifølge opfindelsen ved den efter oplukningen opnåede blanding uden forud-10 gående denaturering og/eller reduktion, dog med lavere udbytte. Ekspressionen gennemføres i prokaryote celler, fortrinsvis i P. putida, og især i E. coli. Fremgangsmåden ifølge opfindelsen er imidlertid lige så egnet, når ekspressionen foregår i andre prokaryote celler (f.eks. Bacilli).The prior and subsequent process steps of the activation step (reoxidation / activation), such as cell unlocking, solubilization (solubilization / reduction) and optionally one or more of the preceding and / or subsequent purification operations, may be known in the art, e.g. EP-A-0114506 and EP-A-0093619, 5 are carried out by methods known and known in the art; however, for optimum yield and activation results, it may be useful to carry out some or all of the steps in accordance with one or more of the embodiments set forth herein. In particular, it is possible to carry out the steps of activation according to the invention in the mixture obtained after the opening without prior denaturation and / or reduction, however with lower yield. Expression is carried out in prokaryotic cells, preferably in P. putida, and especially in E. coli. However, the method of the invention is equally suitable when the expression occurs in other prokaryotic cells (e.g., Bacilli).

Celleoplukningen kan gennemføres ved dertil gængse metoder, f.eks. ved hjælp af 15 ultralyd, højtryksdispersion eller lysozym; oplukningen sker fortrinsvis i en til indstilling afen neutral til svag sur pH-værdi egnet pufferopløsning som sus- pensionsmedium, som f.eks. i 0,1 mol/l Tris-HCl. Efter celle- oplukningen fraskilles de uopløselige bestanddele ("refractile bodies") på en hvilken som helst måde, fortrinsvis ved afcentr i fugering ved højere g-tal og længere centrifugeringstider eller ved filtrering. Efter vask med 20 agentier, som ikke indvirker på t-PA, men som så vidt muligt opløser fremmede celleproteiner, f.eks. vand, phosphat-pufferopløsning, underkastes bundfaldet (pellet) eventuelt under tilsætning af milde detergenter, såsom Triton, solubiliseringen (solubilisering/reduktion). Solubiliseringen sker fortrinsvis i alkalisk pH-område, navnlig ved pH = 8,6 ± 0,4 og ved tilstedeværelse af et reduktionsmiddel af mercaptangruppen og ICell harvesting can be accomplished by conventional methods, e.g. using 15 ultrasound, high pressure dispersion or lysozyme; The absorption is preferably carried out in a buffer solution suitable for neutralizing a weakly acidic pH value as a suspending medium, such as e.g. in 0.1 mol / l Tris-HCl. After cell opening, the insoluble components ("refractile bodies") are separated in any way, preferably by centrifugation in grouting at higher g-numbers and longer centrifugation times or by filtration. After washing with 20 agents that do not interfere with t-PA, but which dissolve as far as possible foreign cell proteins, e.g. water, phosphate buffer solution, is optionally subjected to the precipitate (pellet) with the addition of mild detergents such as Triton, the solubilization (solubilization / reduction). The solubilization is preferably in alkaline pH range, in particular at pH = 8.6 ± 0.4 and in the presence of a reducing agent of the mercaptan group and I.

25 et denatureringsmiddel.25 a denaturing agent.

Som denatureringsmiddel kan anvendes de for solubiliseringen fra teknikkens stade, f.eks. fra den europæiske patentansøgning EP-A-0114506, kendte og sædvanlige denatureringsmidler anvendes, navnlig guanidin-hydrochlorid eller urinstof. Koncentrationen DK 175109 B1 6 af guanidin-hydrochlorid andrager hensigtsmæssigt ca. 6 mol/l og for urinstof ca. 8 mol/I. Ligeledes kan forbindelser med den almene formel I anvendes.As denaturing agents, they can be used for the solubilization of the prior art, e.g. from European patent application EP-A-0114506, known and customary denaturing agents are used, in particular guanidine hydrochloride or urea. The concentration of DK 175109 B1 6 of guanidine hydrochloride suitably amounts to approx. 6 mol / l and for urea approx. 8 mol / l. Also, compounds of the general formula I may be used.

Som reduktionsmiddel af mercaptangruppen kan f.eks. anvendes reduceret glutathion (GSH) eller 2-mercaptoethanol, f.eks. i en koncentration på ca. 50 til 400 mmol per liter 5 og/eller navnlig DTE (dithioerythritol) eller DTT (dithiothreitol), f.eks. i en koncentration på ca. 80 til 400 mmol/l. Solubiliseringen sker passende ved stuetemperatur i løbet af en eller flere timer (inkubation), fortrinsvis i løbet af to timer. Til forhindring af reduktionsmidlets oxidation gennem luftens oxygen kan det desuden være nyttigt at tilsætte EDTA. Ved siden af solubilisering/reduktion har solubiliseringstrinnet også en 10 rensningseffekt, idet en stor del af det med t-PA immunologisk ikke-krydsreagerende materiale (fremmedprotein) ikke går i opløsning.As a reducing agent of the mercaptan group, e.g. reduced glutathione (GSH) or 2-mercaptoethanol, e.g. at a concentration of approx. 50 to 400 mmol per liter 5 and / or in particular DTE (dithioerythritol) or DTT (dithiothreitol), e.g. at a concentration of approx. 80 to 400 mmol / l. Suitably, the solubilization occurs at room temperature over one or more hours (incubation), preferably over two hours. Additionally, to prevent the oxidant oxidation through the oxygen of the air, it may be useful to add EDTA. In addition to solubilization / reduction, the solubilization step also has a purification effect, with a large proportion of the t-PA immunologically non-cross-reacting material (foreign protein) not dissolving.

Efter solubiliseringen og før aktiveringstrinnet kan de på i og for sig kendte og gængse rensningstrin skubbes ind; som rensningsmetoder kommer f.eks. sterisk udelukkelses-chromatografi (SEC) (ved tilstedeværelse af guanidin-hydrochlorid eller urinstof) eller 15 ionbytter (f.eks. ved tilstedeværelse af urinstof eller derivater deraf) i betragtning; en uspecifik reoxidation kan forhindres ved tilsætning af et reduktionsmiddel (f.eks. 2-mercaptoethanol) eller ved pH-værdi 4,5 (sammenlign f.eks. R. Rudolph, Biochem.After the solubilization and before the activation step, the known and common purification steps can be pushed in; as cleaning methods come e.g. steric exclusion chromatography (SEC) (in the presence of guanidine hydrochloride or urea) or 15 ion exchangers (eg in the presence of urea or derivatives thereof) under consideration; a nonspecific reoxidation can be prevented by the addition of a reducing agent (e.g., 2-mercaptoethanol) or at pH 4.5 (compare, e.g., R. Rudolph, Biochem.

Soc. Transactions 13 (1985) 308 til 311). Anvendes i det forudgående solubiliseringstrin DTE, skal dette fraskilles i et rensningstrin. Rensningen kan f.eks. udføres ved SEC 20 over Sephadex G 100 ved tilstedeværelse af guanidin-hydrochlorid og et reduktionsmiddel, f.eks. GSH ved en pH på 1 til 4 (i dette trin kan en stor mængde fremmed- protein fraskilles); eller via fraskillelse af denaturerings/ reduktionsmidlet ved afsaltning over Sephadex G 25 i 0,01 mol/l HC1 eller 0,1 mol/l eddikesyre. Denaturerings-/reduk-tionsmidlets fraskillelse kan alternativt opnås ved dialyse mod de samme opløsninger. 1Soc. Transactions 13 (1985) 308 to 311). If used in the previous solubilization step DTE, this must be separated in a purification step. The purification may e.g. is carried out at SEC 20 over Sephadex G 100 in the presence of guanidine hydrochloride and a reducing agent, e.g. GSH at a pH of 1 to 4 (in this step a large amount of foreign protein can be separated); or via separation of the denaturant / reducing agent by desalting over Sephadex G 25 in 0.01 mol / l HCl or 0.1 mol / l acetic acid. Alternatively, the separation of the denaturing / reducing agent can be achieved by dialysis against the same solutions. 1

Et yderligere rensningstrin kan følge reaktiveringstrinnet; en sådan rensning sker i reglen ved hjælp af dialyse, eller også ved en efterfølgende isolering af den aktiverede tPA, eksempelvis ved hjælp af affinitetschromatografi, f.eks. over Lyssepharose. En anden DK 175109 B1 7 udførelsesform for opfindelsen beror på dannelsen af blandede disulfider ud fra genteknologisk fremstillede, heterologe, disulfidbroer indeholdende eukaryotiske proteiner og glutathion (i det følgende forkortet t-PASSG). Dette kan lette både adskillelsen af frem-medproteiner i denatureret tilstand og den videre rensning af de naturlige proteiner. En 5 rensning efter thiolgruppernes modificering har den fordel, at proteinet er beskyttet mod luftoxidation og hermed stabil et større pH-område, og at en forandring af nettoladnin-gen letter rensningen. Navnlig kan en adskillelse fra det ikke-modificerede protein fordelagtigt gennemføres ved ionbytterbehandling.A further purification step may follow the reactivation step; such purification is usually done by dialysis, or also by subsequent isolation of the activated tPA, for example by affinity chromatography, e.g. over Lyssepharose. Another embodiment of the invention depends on the formation of mixed disulfides from genetically engineered heterologous disulfide bridges containing eukaryotic proteins and glutathione (hereinafter abbreviated t-PASSG). This can facilitate both the separation of foreign proteins in the denatured state and the further purification of the natural proteins. A purification after modification of the thiol groups has the advantage that the protein is protected against air oxidation and thereby stable a larger pH range, and that a change in the net charge facilitates the purification. In particular, a separation from the unmodified protein can advantageously be effected by ion exchange treatment.

Til de blandede disulfiders dannelse blev det dialyserede, reducerede, fra denaturerings- 10 og reduktionsmidlet rensede protein inkuberet med fortyndede, f.eks. 0,2 mol/l GSSG-opløsninger, som indeholder et denatureringsmiddel. Aktiveringen skete efter fraskillelsen af denaturerings- og oxidationsmidlet ved en pH-værdi på 7 til 10,5, en GSH-koncentration på 0,5 til 5 mmol/1, og ved en ikke-denaturerende koncentration af denatureringsmidlet.For the formation of the mixed disulfides, the dialyzed, reduced, purified protein from the denaturing and reducing agent was incubated with diluted, e.g. 0.2 mol / l GSSG solutions containing a denaturing agent. The activation occurred after the separation of the denaturing and oxidizing agent at a pH of 7 to 10.5, a GSH concentration of 0.5 to 5 mmol / l, and at a non-denaturing concentration of the denaturing agent.

15 I alle andre reaktionstrin svarer proteinets aktivering via dannelsen af de blandede disulfider med GSSG til udførelsesformerne for aktiveringen ifølge den førnævnte del af opfindelsen. Ved denne udførelsesform ligger pH-optimumet ved 8,5, udbyttet er ca. dobbelt så højt, og det aktiverede protein er stabilt over længere tid i natureringspufferen.In all other reaction steps, the activation of the protein via the formation of the mixed disulfides with GSSG is similar to the embodiments of the activation of the aforementioned part of the invention. In this embodiment, the pH optimum is at 8.5, the yield is approx. twice as high, and the activated protein is stable over a longer period in the naturalization buffer.

20 Ifølge opfindelsen er det muligt at aktivere t-PA, der stammer fra prokaryote celler, således at man ikke kun opnår en aktivering af den normale biologiske aktivitet, men derudover også en stimulerbarhed, som defineret ovenfor, der i stort omfang overgår stimulerbarheden af den naturlige t-PA, og som kan være større end faktor 10, endog faktor 50. 1According to the invention, it is possible to activate t-PA derived from prokaryotic cells so that not only an activation of the normal biological activity is obtained, but also a stimulus, as defined above, which greatly exceeds the stimulability of the natural t-PA and which may be greater than factor 10, even factor 50. 1

Et yderligere eukaryotisk protein, som kan aktiveres ifølge opfindelsen efter ekspression i prokaryote celler, er B-interferon.A further eukaryotic protein that can be activated according to the invention after expression in prokaryotic cells is B-interferon.

DK 175109 B1 8DK 175109 B1 8

Opfindelsen belyses ved hjælp af de efterfølgende eksempler, uden dog at være begrænset dertil. Nåpr der ikke er anført andet, henviser procentangivelser til vægt% og temperaturangivelser til aC.The invention is illustrated by the following examples, but not limited thereto. Unless otherwise stated, percentages indicate wt% and temperature indications to aC.

EKSEMPEL 1 5 a) Fremstilling af "refractile bodies" 100 g E. coli fugtig cellemasse, optaget i 1,5 1, 0,1 mol/I Tris/HCl (pH 6,5) og 20 mmol/l EDTA homogeniseredes (Ultra- Turrax, 10 sek.), og der tilsattes 0,25 mg/ml lysozym. Efter 30 minuttes inkubation ved stuetemperatur homogeniseredes påny og nedkøledes til 3°C. Celleoplukningen opnåedes ved hjælp af højtryksdispersion (550 10 kg/cm2). Herefter efterspuledes med 300 ml 0,1 mol/1 Tris/HCl (pH 6,5) og 20 mmol/l EDTA. Efter centrifugering (2 timer ved 27.000 g, 4CC) optoges pelleten i 1,3 I 0,1 mol/1 Tris/HCl (pH 6,5), 20 mmol/l EDTA og 2,5 % Triton-x-100 og homogeniseredes.EXAMPLE 1 a) Preparation of "refractile bodies" 100 g of E. coli moist cell mass, taken up in 1.5 L, 0.1 mol / l Tris / HCl (pH 6.5) and 20 mmol / l EDTA were homogenized (Ultra - Turrax, 10 sec) and 0.25 mg / ml lysozyme was added. After 30 minutes of incubation at room temperature, the mixture was homogenized again and cooled to 3 ° C. Cell uptake was achieved by high pressure dispersion (550 10 kg / cm 2). Then, rinsed with 300 ml of 0.1 mol / l Tris / HCl (pH 6.5) and 20 mmol / l EDTA. After centrifugation (2 hours at 27,000 g, 4CC), the pellet was taken up in 1.3 I 0.1 mol / l Tris / HCl (pH 6.5), 20 mmol / l EDTA and 2.5% Triton-x-100 and homogenised.

Efter fornyet centrifugering (30 minutter ved 27.000 g, 4°C) optoges pelleten i 1,3 10,1 mol/I Tris/HCl (pH 6,5), 20 mmol/l EDTA og 0,5 % Triton-x-100 og homogeniseredes.After centrifugation again (30 minutes at 27,000 g, 4 ° C), the pellet was taken up in 1.3 10.1 mol / l Tris / HCl (pH 6.5), 20 mmol / l EDTA and 0.5% Triton-x 100 and homogenized.

15 Skiftevis centrifugering (30 minutter ved 27.000 g, 4°C) og homogenisering af pelleten i 1 1 0,1 mol/1 Tris/HCl (pH 6,5) og 20 mmol/l EDTA gennemførtes endnu tre gange.Alternately centrifugation (30 minutes at 27,000 g, 4 ° C) and homogenization of the pellet in 1 1 0.1 mol / l Tris / HCl (pH 6.5) and 20 mmol / l EDTA were performed three more times.

"Refractile bodies"-præparaternes t-PA-indhold kvantificeredes ved SDS-PAGE, identificering af t-PA-båndene ved "Western blotting" og ved densiometrisk analyse. De "refractile bodies" udviste ved SDS-PAGE og "Western blotting" et kraftigt t-PA-bånd med 20 en molekylvægt på ca. 60 kDa. t-PA-andelen af det totale proteinindhold i "refractile bodies" udgør ca. 21 %.The t-PA content of "refractile bodies" preparations was quantified by SDS-PAGE, identification of the t-PA bands by "Western blotting" and by densiometric analysis. The "refractile bodies" exhibited, by SDS-PAGE and "Western blotting, a strong t-PA band having a molecular weight of approx. 60 kDa. The t-PA proportion of the total protein content in "refractile bodies" is approx. 21%.

b) Solubilisering/reduktion af "refractile bodies" "Refractile bodies" inkuberedes ved en proteinkoncentration på 1 til 5 mg/ml i 0,1 mol/1 Tris/HCl (pH 8,6), 5 mol/1 guanidin- hydrochlorid, 0,15 til 0,4 mol/1 DTE og 1 mmol/l DK 175109 B1 9 EDTA i 2 til 3 timer ved stuetemperatur. Herefter fracentrifugeredes uopløseligt materiale (cellevægfragmenter osv.), f.eks. 30 minutter ved 35.000 til 50.000 g, 4°C. Overstandens pH-værdi indstilledes med kone. HC1 til pH 3. Denaturerings- og reduktionsmidlet fraskiltes derpå ved dialyse mod 0,01 mol/1 HC1 ved 4CC.b) Solubilization / reduction of "refractile bodies" "Refractile bodies" were incubated at a protein concentration of 1 to 5 mg / ml in 0.1 mol / 1 Tris / HCl (pH 8.6), 5 mol / 1 guanidine hydrochloride, 0.15 to 0.4 mol / L DTE and 1 mmol / l EDTA for 2 to 3 hours at room temperature. Subsequently, insoluble material (cell wall fragments, etc.) was centrifuged, e.g. 30 minutes at 35,000 to 50,000 g, 4 ° C. The pH of the supernatant was adjusted with the wife. HCl to pH 3. The denaturant and reducing agent were then separated by dialysis against 0.01 mol / l HCl at 4CC.

5 c) Reoxidation/aktiveringC) Reoxidation / activation

Reoxidation/aktivering gennemførtes ved en 1:50 til 1:200 fortynding i 0,1 mol/1 Tris/HCl (pH 10,5), 1 mmol/1 EDTA, 1 mg/ml BSA, 0,5 mol/1 L-arginin, 2 mmol/l GSH, 0,2 mmol/1 GSSG. Efter 17 til 24 timers aktivering ved ca. 20°C bestemtes aktiviteten, og udbyttet ved sammenligning med aktiviteten af naturlig glycosyleret t-PA, 10 der stammer fra eukaryote celler.Reoxidation / activation was performed at a 1:50 to 1: 200 dilution in 0.1 mol / l Tris / HCl (pH 10.5), 1 mmol / l EDTA, 1 mg / ml BSA, 0.5 mol / l L -arginine, 2 mmol / l GSH, 0.2 mmol / l GSSG. After 17 to 24 hours of activation at approx. 20 ° C, the activity was determined and the yield compared with the activity of natural glycosylated t-PA derived from eukaryotic cells.

Udbytte beregnet på det totale proteinindhold af "refractile bodies": 2,5 ± 0,5% stimulerbarhed: 10 ±5Yield calculated on the total protein content of "refractile bodies": 2.5 ± 0.5% stimulability: 10 ± 5

Udbytte beregnet på t-PA-andelen af 15 "refractile bodies": ca. 12% d) Reoxidation/aktivering uden denaturerings-/reduktionsmidlets fraskillelse "Refractile bodies" inkuberedes ved en proteinkoncentration på 1,25 mg/ml i 0,1 mol/1 Tris/HCl (9H 8,6), 6 mol/1 guanidin-hydrochlorid, 0,2 mol/1 DTE og 1 mmol/1 EDTA i 2 timer ved stuetemperatur. Herefter påbegyndtes straks reoxidation ved en 1:100 20 fortynding i 0,1 mol/1 Tris/HCl (pH 10,5), 1 mmol/1 EDTA, 1 mg/ml BSA, 0,3 mol/1 L-arginin, og de i tabellen an- førte mængder af GSSG. Derudover fandtes i aktiveringsportionen en restkoncentration på 0,06 mol/1 guanidin/hydrochlorid og 2 mmol/1 DTE.Yield calculated on the t-PA proportion of 15 "refractile bodies": approx. 12% d) Reoxidation / activation without separation of the denaturing / reducing agent "Refractile bodies" was incubated at a protein concentration of 1.25 mg / ml in 0.1 mol / 1 Tris / HCl (9H 8.6), 6 mol / 1 guanidine hydrochloride, 0.2 mol / 1 DTE and 1 mmol / 1 EDTA for 2 hours at room temperature. Thereafter, reoxidation was immediately initiated at a 1: 100 dilution in 0.1 mol / L Tris / HCl (pH 10.5), 1 mmol / L EDTA, 1 mg / ml BSA, 0.3 mol / L L-arginine, and the amounts of GSSG listed in the table. In addition, in the activation portion, a residual concentration of 0.06 mol / l guanidine / hydrochloride and 2 mmol / 1 DTE was found.

Aktiveringsudbyttets afhængighed af GSSG-koncentrationen ved aktivering uden dena-turerings-/reduktionsmidlets fraskillelse.Dependence of activation yield on GSSG concentration upon activation without separation of the denaturing / reducing agent.

DK 175109 B1 10 GSSG Udbytte' Stimulerbarhed (mmol/1)__(Faktor) 0,2 0 1 0,13 4,0 5 5 1,49 7,4 6 1,28 5,4 7 1,04 5,8 9 0,98 5,2 10 1,77 10,0 10 15 0 20 0 ’ = Udbytte af aktiv t-PA beregnet på det totale proteinindhold i "refractile bodies”.DK 175109 B1 10 GSSG Yield 'Stimulability (mmol / 1) __ (Factor) 0.2 0 1 0.13 4.0 5 5 1.49 7.4 6 1.28 5.4 7 1.04 5.8 9 0.98 5.2 10 1.77 10.0 10 15 0 20 0 '= Yield of active t-PA calculated on the total protein content of "refractile bodies".

EKSEMPEL 2 15 Et RB ("refractile bodies")-præparat (ca. 5 mg) inkuberedes i 1 ml 0,1 mol/1 Tris/HCl (pH = 8,6), 6 mol/1 guanidin-hydrochlorid og 0,15 - 0,2 mol/1 i DTE i 2 til 3 timer ved stuetemperatur. Uopløseligt materiale (cellevægfragmenter) fraskiltes herefter ved centrifugering (20 minutter ved 17.000 g). Dena- turerings- og reduktionsmidlet fjernedes ved gelfiltrering gennem Sephadex 25 (superfine) i 0,01 mol/1 HC1. Derved for-20 tyndedes prøven ca. med faktor 5 til 10. Det reducerede materiale opbevaredes i 0,01 mol/1 HC1 ved -20°C.EXAMPLE 2 A RB ("refractile bodies") preparation (about 5 mg) was incubated in 1 ml of 0.1 mol / l Tris / HCl (pH = 8.6), 6 mol / l guanidine hydrochloride and 0 15 - 0.2 mol / l in DTE for 2 to 3 hours at room temperature. Insoluble material (cell wall fragments) was then separated by centrifugation (20 minutes at 17,000 g). The denaturing and reducing agent was removed by gel filtration through Sephadex 25 (superfine) in 0.01 mol / l HCl. Thereby, the sample was diluted ca. by factor 5 to 10. The reduced material was stored in 0.01 mol / l HCl at -20 ° C.

EKSEMPEL 3 I de efterfølgende tabeller vises indflydelsen af forskellige parametre ifølge opfindelsen på t-PA's aktivering og stimulerbarhed. Ved denne reduktionsundersøgelse blev det 25 ifølge eksempel 2 solubiliserede, reducerede protein ikke yderligere foroprenset.EXAMPLE 3 The following tables show the influence of various parameters of the invention on the activation and stimulability of t-PA. In this reduction study the solubilized reduced protein of Example 2 was not further purified.

DK 175109 B1 11DK 175109 B1 11

Det reducerede protein (i 0,01 mol/1 HC1) aktiveredes ved fortynding til ffa 1:10 til 1:500 i "reoxidationspuffer". Aktive- ringen bestemtes efter 22 til 48 timers inkubation ved stuetemperatur. Det reoxiderede proteins aktivitet baseredes på en "stan-dard-reoxidation" (=100%) i:The reduced protein (in 0.01 mol / l HCl) was activated by dilution to ffa 1:10 to 1: 500 in "reoxidation buffer". Activation was determined after 22 to 48 hours of incubation at room temperature. The activity of the reoxidized protein was based on a "standard reoxidation" (= 100%) in:

5 0,1 mol/1 Tris/HCl (pH = 10,5) + 1 mmol/1 EDTA5 0.1 mol / l Tris / HCl (pH = 10.5) + 1 mmol / l EDTA

+ 0,5 mol/I L-arginin + 1 mg/ml BSA+ 0.5 mol / l L-arginine + 1 mg / ml BSA

+ 0,5 mmol/1 GSH (reduceret glutathion) + 0,5 mmol/1 GSSG (glutathiondisulfid).+ 0.5 mmol / 1 GSH (reduced glutathione) + 0.5 mmol / 1 GSSG (glutathione disulfide).

10 Stimulerbarheden beregnes ud fra AE+CNBrFSP/AE-CNBrFSP (sam- menlign W. Nieuwenhuizen et al., Biochimica et Biophysica Acta 755 (1983) 531 til 533). Aktiviteten (i procent) og stimulerbarheden (faktor) bestemtes ifølge J. H. Verheijen Thromb. Haemostas. 48(3), 266-269, (1982).Stimulability is calculated from AE + CNBrFSP / AE-CNBrFSP (cf. W. Nieuwenhuizen et al., Biochimica et Biophysica Acta 755 (1983) 531 to 533). Activity (as a percentage) and stimulability (factor) were determined according to J. H. Verheijen Thromb. Haemostas. 48 (3), 266-269, (1982).

De følgende resultater opnåedes: 15 1. Aktiveringsudbyttets afhængighed af L-arginin eller guanidin-hydrochloridtilsætning.The following results were obtained: 1. Dependence of activation yield on L-arginine or guanidine hydrochloride addition.

Reoxidation i 0,1 mol/1 Tris/HCl (pH 10,5)Reoxidation in 0.1 mol / l Tris / HCl (pH 10.5)

+ 1 mmol/1 EDTA + 1 mg/ml BSA + 0,5 mmol/1 GSH 20 + 0,5 mmol/1 GSSG+ 1 mmol / 1 EDTA + 1 mg / ml BSA + 0.5 mmol / 1 GSH 20 + 0.5 mmol / 1 GSSG

DK 175109 B1 12 a) L-arginin L-arginin Aktivitet Stimulerbarhed (mol/l) (%) (Faktor) 5 _ 0 4 2,5 0,25 98 7,5 0,5 100 21,9 0,75 27 16,3 10 1,0 23 3,5DK 175109 B1 12 a) L-arginine L-arginine Activity Stimulability (mol / l) (%) (Factor) 5 _ 0 4 2.5 0.25 98 7.5 0.5 100 21.9 0.75 27 16.3 10 1.0 23 3.5

Det skal bemærkes, at t-PA ved denne undersøgelse inhiberes af L-arginin. Nedgang i aktiveringsudbyttet ved højere L-argininkoncentrationer skal derfor korrigeres med 15 hensyn til inhiberingen.It should be noted that in this study, t-PA is inhibited by L-arginine. Decrease in the activation yield at higher L-arginine concentrations must therefore be corrected for the inhibition.

b) Guanidin-hydrochlorid (Gdn/HCl) (Gdn/HCl) Aktivitet (mol/I) (%) 20 _ 0 11 0,25 22 0,5 53 0,75 58 25 1,0 12 DK 175109 B1 13 2. Aktiveringsudbyttets afhængighed af urinstof og urinstofderivaters tilsætning.b) Guanidine hydrochloride (Gdn / HCl) (Gdn / HCl) Activity (mol / l) (%) 20 _ 0 11 0.25 22 0.5 53 0.75 58 25 1.0 12 DK 175109 B1 13 2 The dependence of the activation yield on the addition of urea and urea derivatives.

Reoxidation i 0,1 mol/1 Tris (pH 10,5), 1 mmol/1 EDTA, 1 mg/ml BSA, 5 mmol/1 GSH, 0,2 mmol/1 GSSGReoxidation in 0.1 mol / 1 Tris (pH 10.5), 1 mmol / 1 EDTA, 1 mg / ml BSA, 5 mmol / 1 GSH, 0.2 mmol / 1 GSSG

a) Urinstof 5 _a) Urea 5 _

Urinstof Aktivitet (mol/1) (%) 0 1 10 0,5 20 1 59 1.5 126 2 162 2.5 141 15 3 72 4 12 5 0 DK 175109 B1 14 b) MethylurinstofUrea Activity (mol / l) (%) 0 1 10 0.5 20 1 59 1.5 126 2 162 2.5 141 15 3 72 4 12 5 0 DK 175109 B1 14 b) Methylurea

Methylurinstof Aktivitet (mol/1) (%) 5 ___ 0,5 22 1 174 1.5 313 2 375 10 2,5 332 3 215 4 12 5 0 15 c) EthylurinstofMethylurea Activity (mol / l) (%) 5 ___ 0.5 22 1 174 1.5 313 2 375 10 2.5 332 3 215 4 12 5 0 15 c) Ethylurea

Ethylurinstof Aktivitet (mol/1) (%) 1 2 3 4 5 6 0,5 46 2 1 212 3 1.5 323 4 2 300 5 2.5 107 6 3 19 4 0 5 0 DK 175109 B1 15 d) DimethylurinstofEthylurea Activity (mol / l) (%) 1 2 3 4 5 6 0.5 46 2 1 212 3 1.5 323 4 2 300 5 2.5 107 6 3 19 4 0 5 0 DK 175109 B1 15 d) Dimethyl urea

Dimethylurinstof Aktivitet Stimulerbarhed (mol/I) (%) (Faktor) 5 _ 0,5 167 8,8 1 256 8,9 1,5 283 9,4 2 177 7,7 10 2,5 78 8,9 3 23 9,9 4 4 8,6 5 2 3,5 1 i 3. Aktiveringsudbyttets afhængighed af fedtsyreamiders tilsætning:Dimethylurea Activity Stimulability (mol / l) (%) (Factor) 5 _ 0.5 167 8.8 1 256 8.9 1.5 283 9.4 2 177 7.7 10 2.5 78 8.9 3 23 9.9 4 4 8.6 5 2 3.5 1 in 3. The activation yield's dependence on the addition of fatty acid amides:

Reoxidation i 0,1 mol/1 Tris (pH 10,5), 1 mmol/1 EDTA, 1 mg/ml BSA, 5 mmol/1 GSH, 0,2 mmol/1 GSSG.Reoxidation in 0.1 mol / 1 Tris (pH 10.5), 1 mmol / 1 EDTA, 1 mg / ml BSA, 5 mmol / 1 GSH, 0.2 mmol / 1 GSSG.

DK 175109 B1 16 a) FormamidDK 175109 B1 16 a) Formamide

Formamid Aktivitet (mol/1) (%) 5 0 42 0,5 59 1 175 1.5 245 2 325 10 2,5 423 3 444 4 416 5 341 15 b) MethylformamidFormamide Activity (mol / l) (%) 5 0 42 0.5 59 1 175 1.5 245 2 325 10 2.5 423 3 444 4 416 5 341 15 b) Methylformamide

Methylformamid Aktivitet (mol/1) (%) 0,5 100 20 1 135 1.5 304 2 389 2.5 466 3 452 25 4 425 5 121 DK 175109 B1 17 c) AcetamidMethylformamide Activity (mol / l) (%) 0.5 100 20 1 135 1.5 304 2 389 2.5 466 3 452 25 4 425 5 121 DK 175109 B1 17 c) Acetamide

Acetamid Aktivitet (mol/I) (%) 5 0,5 72 1 134 1.5 207 2 261 2.5 204 10 3 237 4 198 5 141 d) Propionamid 15 Propionamid Aktivitet (mol/1) (%) 0,5 95 1 99 20 1,5 197 2 150 2.5 101 3 39 4 2 25 5 0 DK 175109 B1 18 e) ButyramidAcetamide Activity (mol / l) (%) 0.5 0.5 72 1 134 1.5 207 2 261 2.5 204 10 3 237 4 198 5 141 d) Propionamide Propionamide Activity (mol / l) (%) 0.5 95 1 99 20 1.5 197 2 150 2.5 101 3 39 4 2 25 5 0 DK 175109 B1 18 e) Butyramide

Butyramid Aktivitet (mol/1) (%) 5 0,5 55 1 52 1,5 17 2 0 10 4. Aktiveringsudbyttes afhængighed af pH-værdienButyramide Activity (mol / l) (%) 5 0.5 55 1 52 1.5 17 2 0 10 4. Dependence of activation yield on pH

Reoxidation i 0,1 mol/1 Tris/HCl + 1 mmol/1 EDTA + 0,5 mol/1 L-arginin + 1 mg/ml BSA + 0,5 mmol/1 GSH 15 + 0,5 mmol/1 GSSGReoxidation in 0.1 mol / 1 Tris / HCl + 1 mmol / 1 EDTA + 0.5 mol / 1 L-arginine + 1 mg / ml BSA + 0.5 mmol / 1 GSH 15 + 0.5 mmol / 1 GSSG

pH Aktivitet Stimulerbarhed (%) (Faktor) 1 2 3 4 5 6 7 1 - 2 8 22 3,0 3 9 89 13,6 4 10 105 20,3 5 11 95 21,3 6 _ DK 175109 B1 19 5. Aktiveringsudbyttets afhængighed af GSH/GSSG-koncentratio-nenpH Activity Stimulability (%) (Factor) 1 2 3 4 5 6 7 1 - 2 8 22 3.0 3 9 89 13.6 4 10 105 20.3 5 11 95 21.3 6 _ DK 175109 B1 19 5. Dependence of activation yield on the GSH / GSSG concentration

Reoxidation i 0,1 mol/1 Tris/HCl, pH 10,5, + 1 mmol/1 EDTA 5 +0,5 mol/1 L-argininReoxidation in 0.1 mol / 1 Tris / HCl, pH 10.5, + 1 mmol / 1 EDTA 5 + 0.5 mol / 1 L-arginine

+ 1 mg/ml BSA+ 1 mg / ml BSA

a) + 1 mmol/1 GSHa) + 1 mmol / 1 GSH

(GSSG) Aktivitet Stimulerbarhed 10 (mmol/I) (%) (Faktor) 0,1 239 14,9 0,2 273 15,3 0,5 193 13,3 15 1 198 12,5 5 17 2,1 10 0 20 0 DK 175109 B1 20(GSSG) Activity Stimulability 10 (mmol / I) (%) (Factor) 0.1 239 14.9 0.2 273 15.3 0.5 193 13.3 15 1 198 12.5 5 17 2.1 10 0 20 0 DK 175109 B1 20

b) + 0,2 mmol/l GSSGb) + 0.2 mmol / l GSSG

(GSH) Aktivitet Stimulerbarhed (mmol/l) (%) (Faktor) 5___ 0,05 15 2,2 0,1 40 3,8 0,2 112 6,8 0,5 142 7,4 10 1 273 6,8 5 260 7,9 10 143 6,3 20 55 5,1 15 6. Aktiveringsudbyttets afhængighed af protein-koncentrationen ved reoxidationen (fortynding 1:20 - 1:500)(GSH) Activity Stimulability (mmol / l) (%) (Factor) 5___ 0.05 15 2.2 0.1 40 3.8 0.2 112 6.8 0.5 142 7.4 10 1 273 6, 8 5 260 7.9 10 143 6.3 20 55 5.1 15 6. Dependence of activation yield on protein concentration upon reoxidation (dilution 1:20 - 1: 500)

Reoxidation i 0,1 mol/1 Tris/HCl (pH 10,5)Reoxidation in 0.1 mol / l Tris / HCl (pH 10.5)

+ 1 mmol/l EDTA + 0,5 mol/1 L-arginin 20 + 1 mg/ml BSA+ 1 mmol / l EDTA + 0.5 mol / l L-arginine 20 + 1 mg / ml BSA

+ 0,5 mmol/l GSH + 0,5 mmol/I GSSG+ 0.5 mmol / l GSH + 0.5 mmol / l GSSG

DK 175109 B1 21DK 175109 B1 21

Fortynding Aktivitet Stimulerbarhed (%) (Faktor) 5 1:10 29 15,3 1:20 45 25,4 1:50 69 37,9 1:100 100 37,9 1:200 79 52,7 10 1:500 29 28,7 7. Aktiveringsudbyttets afhængighed af BSA-tilsætningDilution Activity Stimulability (%) (Factor) 5 1:10 29 15.3 1:20 45 25.4 1:50 69 37.9 1: 100 100 37.9 1: 200 79 52.7 10 1: 500 29 28.7 7. Dependence of Activation Yield on BSA Addition

Reoxidation i 0,1 mol/1 Tris/HCl (pH 10,5) + 1 mmol/1 EDTA 15 + 0,5 mol/1 L-argininReoxidation in 0.1 mol / 1 Tris / HCl (pH 10.5) + 1 mmol / 1 EDTA 15 + 0.5 mol / 1 L-arginine

+ 0,5 mmol/1 GSH + 0,5 mmol/1 GSSG+ 0.5 mmol / 1 GSH + 0.5 mmol / 1 GSSG

BSA Aktivitet 20 (mg/ml) (%) 0 47 0,5 83 1 100 25 3 102 5 52 DK 175109 B1 22BSA Activity 20 (mg / ml) (%) 0 47 0.5 83 1 100 25 3 102 5 52 DK 175109 B1 22

Figurerne 1 og 2 viser aktiviteten med og uden CNBr-FSP ved standardundersøgelsen efter 17 timers reoxidation ved stuetemperatur i 0,1 mol/l Tris/HCl (pH = 10,5) + 1 mmol/1 EDTA + 0,5 mol/I L-arginin + 1 mg/ml BSA + 0,5 mmol/1 GSH + 0,5 mmol/1 GSSG. I figurerne 1 og 2 henviser kurven (A) til aktiviteten ved tilstedeværelse 5 af CNBr-FSP, kurven (B) til aktiviteten uden CNBr-FSP.Figures 1 and 2 show the activity with and without CNBr-FSP in the standard study after 17 hours reoxidation at room temperature in 0.1 mol / l Tris / HCl (pH = 10.5) + 1 mmol / 1 EDTA + 0.5 mol / l L-arginine + 1 mg / ml BSA + 0.5 mmol / 1 GSH + 0.5 mmol / 1 GSSG. In Figures 1 and 2, curve (A) refers to the activity in the presence of CNBr-FSP, the curve (B) to activity without CNBr-FSP.

EKSEMPEL 4 t-PA-aktivering via de blandede disulfider af t-PA og gluta- thion.De anvendte "refracti-le bodies" opnåedes ifølge et af de førnævnte eksempler. Reduktionen af de "refractile bodies" gennemførtes ved 2 timers inkubation ved stuetemperatur i 0,1 mol/l Tris/HCl, 10 pH 8,6, 1 mmol/1 EDTA, 6 mol/l Gdn-HCl, 0,2 mol/l DTE ved en proteinkoncentration på ca. 1 mg/ml.Example 4 t-PA activation via the mixed disulfides of t-PA and glutathione. The "refractory bodies" used were obtained according to one of the aforementioned examples. The reduction of the "refractile bodies" was carried out by 2 hours incubation at room temperature in 0.1 mol / l Tris / HCl, pH 8.6, 1 mmol / 1 EDTA, 6 mol / l Gdn-HCl, 0.2 mol / l 1 DTE at a protein concentration of ca. 1 mg / ml.

Det mod 0,01 mol/l HC1 dialyserede, reducerede protein fortyn- dedes i forholdet 1:1 med 0,1 mol/l Tris, pH 9,3, 9 mol/l urinstof og 0,2 mol/l GSSG og inkuberedes i 5 timer ved stuetemperatur. 1 2 3 4 5 6The reduced protein dialyzed against 0.01 mol / l HCl was diluted in a 1: 1 ratio with 0.1 mol / l Tris, pH 9.3, 9 mol / l urea and 0.2 mol / l GSSG and incubated for 5 hours at room temperature. 1 2 3 4 5 6

Efter syrning med kone. HC1 til pH 3 fulgte dialyse mod 0,01 mol/l HC1 ved 4SC. Efter 2 dialysen androg den totale proteinkoncentration 0,33 mg/ml. Ved hjælp af den på denne 3 måde fremstillede t-PASSG bestemtes de optimale reaktiveringsbetingel- ser.After acidification with wife. HCl to pH 3 followed dialysis against 0.01 mol / l HCl at 4SC. After the 2 dialysis, the total protein concentration was 0.33 mg / ml. The optimum reactivation conditions were determined using the t-PASSG prepared in this way.

44

a) pH-optimum ved aktivering af t-PASSGa) pH optimum upon activation of t-PASSG

55

Her, som i de følgende optimeringsundersøgelser, anvendtes (1) ikke GSSG, og (2) 6 aktiveringen bestemtes efter 17 timers inkubation ved stuetemperatur. Aktiveringen gennemførtes ved en 1:100 fortynding i 0,1 mol/l Tris, 1 mmol/1 EDTA, 0,5 mol/l L-arginin, 1 mg/ml BSA og 2 mmol/1 GSH ved forskellige pH-værdi- er.Here, as in the following optimization studies, (1) GSSG was not used and (2) 6 activation was determined after 17 hours of incubation at room temperature. Activation was carried out at a 1: 100 dilution in 0.1 mol / l Tris, 1 mmol / l EDTA, 0.5 mol / l L-arginine, 1 mg / ml BSA and 2 mmol / l GSH at various pH values. is.

DK 175109 B1 23 pH Udbytte (%) Stimulerbarhed 6 0,04 3,3 6.5 0,37 9,5 5 7 1,35 11,4 7.5 5,66 7,1 8 7,32 8,2 8.5 8,65 7,0 9 8,59 8,7 10 9,5 8,32 11,7 10 6,15 12,5 10.5 3,07 11,2DK 175109 B1 23 pH Yield (%) Stimulability 6 0.04 3.3 6.5 0.37 9.5 5 7 1.35 11.4 7.5 5.66 7.1 8 7.32 8.2 8.5 8.65 7.0 9 8.59 8.7 10 9.5 8.32 11.7 10 6.15 12.5 10.5 3.07 11.2

Udbyttet bestemtes i % aktiv t-PA baseret på anvendt protein- mængde.The yield was determined in% active t-PA based on the amount of protein used.

15 b) resultaternes reproducerhed ved aktiveringen af t-PASSG15 b) the reproducibility of the results in the activation of t-PASSG

Ved identiske aktiveringsbetingelser observeredes ved forskellige målinger divergerende udbytter, som blandt andet skyldes standard-t-PA's svingninger. For at tydeliggøre denne fejlbredde er alle aktiveringsdata sammenfattet efter fortynding til 1:100 eller 1:200 i 0,1 mol/1 Tris/HCl, pH 8,5, 1 mmol/1 EDTA, 0,5 mol/1 L-arginin, 1 mg/ml 20 BSA og 2 mmol/1 GSH.At identical activation conditions, divergent yields were observed for different measurements, due in part to the fluctuations of standard t-PA. To clarify this error width, all activation data were summarized after dilution to 1: 100 or 1: 200 in 0.1 mol / 1 Tris / HCl, pH 8.5, 1 mmol / 1 EDTA, 0.5 mol / 1 L-arginine , 1 mg / ml 20 BSA and 2 mmol / 1 GSH.

DK 175109 B1 24DK 175109 B1 24

Forsøg Udbytte (%) Stimulerbarhed 1 8,65 7,0 2 4,47 9,3 5 3 4,49 9,7 4 8,50 6,5 5 3,45 17,2 6 4,32 8,3 7 3,29 14,0 10 8 3,54 13,4 9 5,07 16,4Experiment Yield (%) Stimulability 1 8.65 7.0 2 4.47 9.3 5 3 4.49 9.7 4 8.50 6.5 5 3.45 17.2 6 4.32 8.3 7 3.29 14.0 10 8 3.54 13.4 9 5.07 16.4

Middelværdi 5,1 ± 1,9 11,3 ± 3,8 15 c) Det aktiverede proteins stabilitetMean 5.1 ± 1.9 11.3 ± 3.8 15 c) Stability of the activated protein

Aktiveringen gennemføres i det nævnte eksempel ved en 1:200 fortynding i 0,1 mol/1 Tris/HCl, 1 mmol/1 EDTA, 0,5 mol/1 L- arginin, 1 mg/ml BSA og 2 mmol/1 GSH.The activation is carried out in the above example by a 1: 200 dilution in 0.1 mol / l Tris / HCl, 1 mmol / l EDTA, 0.5 mol / l L-arginine, 1 mg / ml BSA and 2 mmol / l GSH .

Tid pH 9,5 (h) Udbytte Stim.Time pH 9.5 (h) Yield Stim.

20 (%) 1 0 - 6 0,89 15,5 23 2,43 23,1 25 47 2,83 23,6 71 2,62 21,5 DK 175109 B1 25 215 2,21 22,6 239 2,28 14,3 EKSEMPEL 5 5 Aktivering af genteknologisk fremstillet Interferon-fi.20 (%) 1 0 - 6 0.89 15.5 23 2.43 23.1 25 47 2.83 23.6 71 2.62 21.5 DK 175109 B1 25 215 2.21 22.6 239 2, 28 14.3 EXAMPLE 5 5 Activation of genetically engineered Interferon-fi.

"Refractile bodies" fremstilledes i overensstemmelse med de førnævnte metoder. Reduk-tionen/solubiliseringen af de "refractile bodies” gennemførtes som følger: Pelleten inkuberedes i 3 timer ved 25=C i 10 ml 9,1 mol/1 Tris/HCl, pH 8,6, 6 mol/1 Gdn-HCl, 1 mmol/1 EDTA og 0,2 mol/1 DTE og efter 30 minutters centrifugering ved 4°C og 10 48.000 g indstilledes overstandens pH til ca. 3 med kone. HC1. Herefter gennemførtes en gelfiltrering over Sephadex G25 F i 0,01 mol/1 HC1."Refractile bodies" were prepared according to the aforementioned methods. The reduction / solubilization of the "refractile bodies" was carried out as follows: The pellet was incubated for 3 hours at 25 ° C in 10 ml of 9.1 mol / l Tris / HCl, pH 8.6, 6 mol / l Gdn-HCl, 1 mmol / 1 EDTA and 0.2 mol / 1 DTE and after 30 minutes centrifugation at 4 ° C and 10 48,000 g, the pH of the supernatant was adjusted to about 3 with wife HCl, then a gel filtration over Sephadex G25 F was performed in 0.01 mol / l HCl.

Eluatets ledningsevne, proteinkoncentration og reaktiverbarhed undersøgtes.The conductivity, protein concentration and reactivability of the eluate were investigated.

Det reoxiderede proteins aktivitet baseres på en "standardak- tivering" (=100%) i 0,1 mol/1 Tris/HCl, pH 10,5, 1 mmol/1 EDTA, 5 mmol/1 GSH, 0,5 mmol/1 GSSG og 0,25 15 mol/1 L-arginin.The activity of the reoxidized protein is based on a "standard activation" (= 100%) in 0.1 mol / l Tris / HCl, pH 10.5, 1 mmol / 1 EDTA, 5 mmol / 1 GSH, 0.5 mmol / 1 GSSG and 0.25 mol / l L-arginine.

a) Aktiveringsudbyttes afhængighed af L-arginintilsætninga) Dependence of activation yield on L-arginine addition

Eluatet fortyndedes 1:50 med 0,1 mol/1 Tris/HCl, pH 8,5, 1 mmol/I EDTA, 5 mmol/1 GSH, 9,5 mmol/1 GSSG og inkuberedes i 20 timer ved 0°C.The eluate was diluted 1:50 with 0.1 mol / l Tris / HCl, pH 8.5, 1 mmol / l EDTA, 5 mmol / l GSH, 9.5 mmol / l GSSG and incubated for 20 hours at 0 ° C.

Aktiveringens L-arginin-afhængighed DK 175109 B1 26 L-arginin (mol/l) Aktivitet (7c) O 8 0,25 8 5 0,5 15 0,75 15 b) Aktiveringsudbyttets afhængig af urinstoftilsætningL-arginine dependence of activation DK 175109 B1 26 L-arginine (mol / l) Activity (7c) O 8 0.25 8 5 0.5 15 0.75 15 b) Activation yield dependent on urea addition

Aktiveringsopløsningen svarer til den fra punkt a); dog aktiveredes i 17 timer ved 0°C.The activation solution is similar to that of point a); however, activated for 17 hours at 0 ° C.

10 Urinstof-afhængighed af aktiveringen Urinstof (mol/l) Aktivitet (%) 0 13 0,5 100 15 1 200 1,5 100 c) Aktiveringsudbyttets afhængighed af formamidtilsætning10 Urea dependence on activation Urea (mol / l) Activity (%) 0 13 0.5 100 15 1 200 1.5 100 c) Dependence of activation yield on formamide addition

Aktiveringen som i a); prøverne undersøgtes efter 17 timers aktivering ved 0°C.The activation as in a); the samples were examined after 17 hours of activation at 0 ° C.

20 Formamid-afhængighed af aktiveringen DK 175109 B1 2720 Formamide dependence on activation DK 175109 B1 27

Formamid (mol/I) Aktivitet 0 13 1 13 5 2 13 3 0 4 0 d) Aktiveringsudbyttets afhængighed af redoxpufferen 10 Eluatet fortyndedes 1:50 i 0,1 mol/1 Tris/HCl, pH 8,5, 1 mmol/1 EDTA og 0,25 mol/1 L-arginin, og prøverne undersøgtes efter 17 timers aktivering ved 0°C.Formamide (mol / l) Activity 0 13 1 13 5 2 13 3 0 4 0 d) Dependence of activation yield on redox buffer 10 The eluate was diluted 1:50 in 0.1 mol / l Tris / HCl, pH 8.5, 1 mmol / 1 EDTA and 0.25 mol / l L-arginine, and the samples were tested after 17 hours of activation at 0 ° C.

GSH/GSSG-afhængighed af aktiveringen GSH (mmol/1) GSSG (mmol/I) Aktivitet (%) 15 1 0,5 6 5 0,5 13 10 0,5 25 20 0,5 25 1 5 0,1 13 5 0,5 13 5 1,0 13 5 5 6 DK 175109 B1 28 e) Aktiveringsudbyttets afhængighed af BSA-tilsætningenGSH / GSSG Dependence on Activation GSH (mmol / 1) GSSG (mmol / I) Activity (%) 15 1 0.5 6 5 0.5 13 10 0.5 25 20 0.5 25 1 5 0.1 13 5 0.5 13 5 1.0 13 5 5 6 DK 175109 B1 28 e) Dependence of the activation yield on the BSA addition

Eluatet fortyndedes 1:50 i 0,1 mol/1 Tris/HCl, pH 8,5, 1 mmol/1 EDTA, 5 mmol/1 GSH, 0,5 mmol/1 GSSG og 0,25 mol/1 L- arginin og undersøgtes efter 17 timers aktivering ved 0°C.The eluate was diluted 1:50 in 0.1 mol / l Tris / HCl, pH 8.5, 1 mmol / l EDTA, 5 mmol / l GSH, 0.5 mmol / l GSSG and 0.25 mol / l L-arginine and tested after 17 hours of activation at 0 ° C.

5 BSA-afhængighed af aktiveringen BSA (mg/ml) Aktivitet (%) 0 13 1 13 10 2 25 5 135 BSA dependence on activation BSA (mg / ml) Activity (%) 0 13 1 13 10 2 25 5 13

f) Aktiveringsudbyttets afhængighed af pHf) Dependence of activation yield on pH

Eluatet fortyndedes 1:50 i 0,1 mol/1 Tris/HCl, 1 mmol/1 EDTA, 5 mmol/l GSH, 0,5 15 mmol/GSSG og 0,25 mol/1 L-arginin og undersøgtes efter 17 timers aktivering ved 0°C.The eluate was diluted 1:50 in 0.1 mol / L Tris / HCl, 1 mmol / L EDTA, 5 mmol / L GSH, 0.5 15 mmol / GSSG and 0.25 mol / L L-arginine and tested after 17 hours. activation at 0 ° C.

pH-afhængighed af aktiveringen pH Aktivet (%) 6.5 0 20 7,5 6 8.5 13 9.5 50 10.5 100pH dependence on activation pH Active (%) 6.5 0 20 7.5 6 8.5 13 9.5 50 10.5 100

Claims (18)

1. Fremgangsmåde til aktivering af heterologe, disulfidbro-holdigeeukaryotiske proteiner, fremstillet genteknologisk ved ekspression i prokaryotiske celler ved 5 a) oplukning af de prokaryotiske celler, b) opløsning af de eukaryotiske proteiner under denaturerende og reducerende betingelser, c) fraskillelse af de reducerende/denaturerende midler, d) reaktivering under oxiderende betingelser ved 10 e) omdannelse af de solubiliserede proteiners thiol-grupper til de blandede disulfider af protein og glutation ved tilsætning af GSSG under denaturerende betingelser, f) dannelse af aktivt protein ud fra de blandede disulfider ved en GSH-koncentration på 0,5 til 5 mmol/1, en pH-værdi på 7 til 10,5 og i nærværelse af en ikke-dena-turerende koncentration af et denatueringsmiddel.A method of activating heterologous, disulfide-bridged eukaryotic proteins made from gene technology by expression in prokaryotic cells by a) a) inclusion of the prokaryotic cells, b) dissolving the eukaryotic proteins under denaturing and reducing conditions, c) separating the reducing / d) reactivation under oxidizing conditions at 10 e) conversion of the thiol groups of the solubilized proteins to the mixed disulfides of protein and glutathione by addition of GSSG under denaturing conditions, f) formation of active protein from the mixed disulfides at a GSH concentration of 0.5 to 5 mmol / l, a pH of 7 to 10.5 and in the presence of a non-denaturing concentration of a denaturing agent. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at man gennemfører eks pressionen i E. coli eller P. putida.Method according to claim 1, characterized in that the expression is carried out in E. coli or P. putida. 3. Fremgangmåde ifølge krav 1 eller 2, kendetegnet ved, at man i reaktiveringstrinnet som denatureringsmiddel anvender arginin, guanidin-hydrochlorid og/eller mindst en forbindelse med den almene formel R2-CO-NRRj (I), hvor R og R, er H eller alkyl 20 med 1 til 4 C-atomer, og R, er H eller NHR, eller alkyl med 1 til 3 C-atomer. DK 175109 B1Process according to claim 1 or 2, characterized in that in the reactivation step, arginine, guanidine hydrochloride and / or at least one compound of the general formula R2-CO-NRRj (I) wherein R and R are H are used. or alkyl 20 having 1 to 4 C atoms, and R 1 is H or NHR, or alkyl having 1 to 3 C atoms. DK 175109 B1 4. Fremgangsmåde ifølge krav 3, kendetegnet ved, at koncentrationen af arginin og/eller guanidin-hydrochlorid andrager 0,1 til 1,0 mol/1, navnlig 0,25 til 0,8 mol/1.Process according to claim 3, characterized in that the concentration of arginine and / or guanidine hydrochloride is 0.1 to 1.0 mol / l, in particular 0.25 to 0.8 mol / l. 5. Fremgangsmåde ifølge krav 3, kendetegnet ved, at koncentrationen af forbin-5 delsen med den almene formel I andrager 0,5 til 4 mol/1, navnlig 1 til 3,5 mol/1.Process according to claim 3, characterized in that the concentration of the compound of the general formula I is 0.5 to 4 mol / l, in particular 1 to 3.5 mol / l. 6. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at der ved reaktiveringstrinnet arbejdes ved tilstedeværelse af et ikke-proteolytisk virksomt protein, navnlig ved tilstedeværelse af okseserumalbumin.Process according to any one of the preceding claims, characterized in that during the reactivation step, work is carried out in the presence of a non-proteolytically active protein, in particular in the presence of bovine serum albumin. 7. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at 10 man gennemfører celleoplukningen ved hjælp af ultralyd, højttryksdispersion eller lysozym.Method according to any one of the preceding claims, characterized in that the cell pickup is carried out by ultrasound, high pressure dispersion or lysozyme. 8. Fremgangsmåde ifølge krav 7, kendetegnet ved, at man gennemfører oplukningen i en fortyndet vandig pufferopløsning, navnlig i 0,1 mol/I Tris, ved en neutral til svagt sur pH-værdi.Process according to claim 7, characterized in that the digestion is carried out in a dilute aqueous buffer solution, in particular in 0.1 mol / l Tris, at a neutral to slightly acidic pH. 9. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at man efter celleoplukningen fraskiller de uopløselige bestanddele.Process according to any one of the preceding claims, characterized in that after the cell opening, the insoluble components are separated. 10. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at man gennemfører solubiliseringstrinnet ved alkalisk pH-værdi i nærværelse af et reduktionsmiddel fra mercaptogruppen og i nærværelse af et denatureringsmiddel. 1Process according to any one of the preceding claims, characterized in that the solubilization step is carried out at alkaline pH in the presence of a reducing agent from the mercapto group and in the presence of a denaturing agent. 1 11. Fremgangsmåde ifølge krav 10, kendetegnet ved, at man arbejder i nær værelse af guanidin-hydrochlorid og/eller forbindelser med den almene formel I som denatureringsmiddel. DK 175109 B1Process according to Claim 10, characterized in that one works in the near room of guanidine hydrochloride and / or compounds of the general formula I as denaturing agent. DK 175109 B1 12. Fremgangsmåde ifølge krav 11, kendetegnet ved, at koncentrationen af guanidindhydrochlorid andrager 6 mol/1, koncentration af forbindelser med den almene formel I andrager 8 mol/1. i·Process according to claim 11, characterized in that the concentration of guanide hydrochloride is 6 mol / l, the concentration of compounds of the general formula I is 8 mol / l. in· 13. Fremgangsmåde ifølge ethvert af kravene 10 til 12,kendetegnet ved, at man 5 arbejder ved tilstedeværelse af DTE, B-mercaptoethanol, cystein eller GSH.Process according to any one of claims 10 to 12, characterized in that 5 is operated in the presence of DTE, B-mercaptoethanol, cysteine or GSH. 14. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at man gennemfører rensning og fraskillelse af reduktions-, oxidations- eller denatureringsmidler ved hjælp af sterisk udelukkelseschromatografi eller dialyse.Process according to any one of the preceding claims, characterized in that purification and separation of reducing, oxidation or denaturing agents are carried out by steric exclusion chromatography or dialysis. 15. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at 10 man efter reaktiveringstrinnet gennemfører et rensningstrin ved hjælp af dialyse.Process according to any one of the preceding claims, characterized in that after the reactivation step a purification step is carried out by dialysis. 16. Fremgangsmåde ifølge ethvert af kravene 1 til 15, kendetegnet ved, at man som genteknologisk fremstillet eukaryotisk protein anvender t-PA.Method according to any one of claims 1 to 15, characterized in that t-PA is used as a genetically-engineered eukaryotic protein. 17. Stimulerbar, ikke-glycosyleret tPA, opnået i overensstemmelse med fremgangsmåden ifølge ethvert af kravene 1 til 16. 1A stimulable, non-glycosylated tPA, obtained according to the method of any one of claims 1 to 16. 1 18. Fremgangsmåde ifølge krav 6, kendetegnet ved, at man ved hjælp af ionbyt- terbehandling fraskiller det blandede disulfid af protein og glutathion fra ik-ke-modificeret protein.Process according to claim 6, characterized in that the mixed disulfide of protein and glutathione is separated from non-modified protein by means of ion exchange treatment.
DK200001897A 1985-10-23 2000-12-18 Activating recombinant non-glycosylated tissue plasminogen activator DK175109B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19853537708 DE3537708A1 (en) 1985-10-23 1985-10-23 METHOD FOR ACTIVATING T-PA AFTER EXPRESSION IN PROKARYONTS
DE3537708 1985-10-23
DK198703203A DK175091B1 (en) 1985-10-23 1987-06-23 Method for activating gene-technologically prepared, heterologous, disulfide-bridged eukaryotic proteins after expression in prokaryotic cells
DK320387 1987-06-23

Publications (2)

Publication Number Publication Date
DK200001897A DK200001897A (en) 2000-12-18
DK175109B1 true DK175109B1 (en) 2004-06-07

Family

ID=6284269

Family Applications (2)

Application Number Title Priority Date Filing Date
DK198703203A DK175091B1 (en) 1985-10-23 1987-06-23 Method for activating gene-technologically prepared, heterologous, disulfide-bridged eukaryotic proteins after expression in prokaryotic cells
DK200001897A DK175109B1 (en) 1985-10-23 2000-12-18 Activating recombinant non-glycosylated tissue plasminogen activator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DK198703203A DK175091B1 (en) 1985-10-23 1987-06-23 Method for activating gene-technologically prepared, heterologous, disulfide-bridged eukaryotic proteins after expression in prokaryotic cells

Country Status (26)

Country Link
EP (3) EP0393725B1 (en)
JP (2) JPH0728745B2 (en)
KR (1) KR900009139B1 (en)
AT (2) ATE98648T1 (en)
AU (2) AU590029B2 (en)
CA (1) CA1329157C (en)
CZ (1) CZ280727B6 (en)
DD (1) DD260517A5 (en)
DE (3) DE3537708A1 (en)
DK (2) DK175091B1 (en)
ES (2) ES2061434T3 (en)
FI (2) FI94050C (en)
GR (2) GR920300062T1 (en)
HK (2) HK153596A (en)
HR (1) HRP921075B1 (en)
HU (2) HU204855B (en)
IE (1) IE62634B1 (en)
IL (1) IL80325A (en)
PT (1) PT83609B (en)
SI (1) SI8611796B (en)
SK (1) SK278317B6 (en)
SU (1) SU1607689A3 (en)
UA (1) UA6023A1 (en)
WO (1) WO1987002673A2 (en)
YU (1) YU47185B (en)
ZA (1) ZA868012B (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766205A (en) * 1985-11-13 1988-08-23 Beatrice Companies, Inc. Method for isolation of recombinant polypeptides in biologically active forms
JP2581668B2 (en) * 1985-11-27 1997-02-12 三井東圧化学株式会社 Novel DNA sequence encoding human tissue plasminogen activator derived from normal human cells and vectors and cells containing the same
US4777043A (en) * 1985-12-17 1988-10-11 Genentech, Inc. Stabilized human tissue plasminogen activator compositions
AU621051B2 (en) 1987-04-28 1992-03-05 Amgen, Inc. Method for purifying granulocyte-macrophage colony stimulating factor
DE3722082A1 (en) * 1987-07-03 1989-01-12 Behringwerke Ag METHOD FOR DETERMINING THE ACTIVITY OF SERINE PROTEASES OR SERINE PROTEASE INHIBITORS
CA1340586C (en) * 1988-09-23 1999-06-08 Cetus Corporation Process for recovering microbially produced interferon-beta
DE3832898A1 (en) * 1988-09-28 1990-04-12 Boehringer Mannheim Gmbh PRAEPARATE OF EXPRESSED PLASMINOGEN ACTIVATOR IN PROKARYONS
DE3835350A1 (en) * 1988-10-17 1990-04-19 Boehringer Mannheim Gmbh ACTIVATION OF GENETICALLY MANUFACTURED ANTIBODY EXPRESSED IN PROKARYONS
DE3903581A1 (en) * 1989-02-07 1990-08-16 Boehringer Mannheim Gmbh FABRIC PLASMINOGEN ACTIVATOR DERIVATIVE
DE3942143A1 (en) * 1989-12-20 1991-06-27 Boehringer Mannheim Gmbh T-PA PRO STABILIZATION
DE69126434D1 (en) * 1990-08-20 1997-07-10 Novo Nordisk As Process for the production of biologically active IGF-1 by using amino-terminally extended IGF-1
AU664021B2 (en) * 1990-09-05 1995-11-02 Natinco Nv Solubilization of proteins in active forms
DE4037196A1 (en) * 1990-11-22 1992-05-27 Boehringer Mannheim Gmbh METHOD FOR REACTIVATING DENATURED PROTEIN
DE4113750A1 (en) * 1991-04-26 1992-10-29 Boehringer Mannheim Gmbh IMPROVEMENT OF RENATURATION IN THE SECRETION OF DISULFID-BRIDGED PROTEINS
DE4139000A1 (en) 1991-11-27 1993-06-03 Boehringer Mannheim Gmbh METHOD OF GENERATING BIOLOGICALLY ACTIVE SS-NGF
US5212091A (en) * 1992-03-02 1993-05-18 Monsanto Company Method of producing tissue factor pathway inhibitor
WO1993019084A1 (en) * 1992-03-24 1993-09-30 Synergen, Inc. Refolding and purification of insulin-like growth factor i
DK0600372T3 (en) 1992-12-02 1997-08-11 Hoechst Ag Process for the preparation of proinsulin with properly connected cystine bridges.
DE4405179A1 (en) * 1994-02-18 1995-08-24 Hoechst Ag Method of obtaining insulin with correctly connected cystine bridges
FR2729972B1 (en) * 1995-01-31 1997-04-18 Sanofi Sa PROCESS FOR THE EXTRACTION OF PERIPLASMIC PROTEINS FROM PROKARYOTIC MICROORGANISMS IN THE PRESENCE OF ARGININ
US5714371A (en) * 1995-05-12 1998-02-03 Schering Corporation Method for refolding insoluble aggregates of hepatitis C virus protease
US5728804A (en) * 1995-06-02 1998-03-17 Research Corporation Technologies, Inc. Use of cyclodextrins for protein renaturation
US6342585B1 (en) * 1996-06-11 2002-01-29 Roche Diagnostics Gmbh Method of activating denatured protein
WO2001087925A2 (en) 2000-05-16 2001-11-22 Bolder Biotechnology, Inc. Methods for refolding proteins containing free cysteine residues
US7153943B2 (en) 1997-07-14 2006-12-26 Bolder Biotechnology, Inc. Derivatives of growth hormone and related proteins, and methods of use thereof
US6653098B1 (en) * 1998-02-23 2003-11-25 G. D. Searle & Co. Method of producing mouse and human endostatin
DE19850429A1 (en) * 1998-10-27 2000-05-04 Andre Schrattenholz Fragments
EP1048732A1 (en) 1999-04-26 2000-11-02 F. Hoffmann-La Roche Ag Process for producing natural folded and secreted proteins
EP1077263A1 (en) * 1999-07-29 2001-02-21 F.Hoffmann-La Roche Ag Process for producing natural folded and secreted proteins by co-secretion of chaperones
DE10105912A1 (en) * 2001-02-09 2002-08-14 Roche Diagnostics Gmbh Recombinant Proteinase K
DE10105911A1 (en) 2001-02-09 2002-08-14 Roche Diagnostics Gmbh Expression of the recombinant proteinase K from Tritirachium album in yeast
DE102005033250A1 (en) 2005-07-15 2007-01-18 Bioceuticals Arzneimittel Ag Process for purifying G-CSF
DE102006009437A1 (en) 2006-03-01 2007-09-13 Bioceuticals Arzneimittel Ag G-CSF liquid formulation
AR062069A1 (en) 2006-07-14 2008-10-15 Genentech Inc REPLEGED OF RECOMBINANT PROTEINS
US8617531B2 (en) 2006-12-14 2013-12-31 Bolder Biotechnology, Inc. Methods of making proteins and peptides containing a single free cysteine
NZ601759A (en) 2010-03-17 2013-07-26 Biogenerix Gmbh Method for obtaining biologically active recombinant human g-csf
EP2630153A4 (en) * 2010-10-20 2015-06-03 Medimmune Llc Methods for processing inclusion bodies
HUP1200171A1 (en) 2012-03-19 2013-09-30 Richter Gedeon Nyrt Methods for the production of polypeptides
HUP1200172A2 (en) 2012-03-19 2013-10-28 Richter Gedeon Nyrt Methods for refolding g-csf from inclusion bodies
CN103852527B (en) * 2012-12-05 2015-05-13 中国科学院大连化学物理研究所 High-flux protein sample pre-treatment device
US10457716B2 (en) 2014-08-06 2019-10-29 University Of Notre Dame Du Lac Protein folding and methods of using same
CA3048735A1 (en) 2016-12-30 2018-07-05 Biogend Therapeutics Co., Ltd. Recombinant polypeptides, compositions, and methods thereof
WO2022129460A1 (en) 2020-12-18 2022-06-23 Richter Gedeon Nyrt. Methods for the purification of refolded fc-peptide fusion protein

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135481A (en) * 1974-09-18 1976-03-25 Fujiwa Kako Kk KOJUNDOHITOROKINAAZE NO SEIHO
US4468633A (en) 1982-04-28 1984-08-28 The Bendix Corporation Adjustable microwave power combiner for a plurality of coaxially mounted impatt diodes
IL68561A (en) 1982-05-05 1991-01-31 Genentech Inc Preparation of polypeptide with human tissue plasminogen activator function,processes for making it,and dna and transformed cell intermediates thereof
US4432895A (en) * 1982-11-24 1984-02-21 Hoffmann-La Roche Inc. Monomeric interferons
GR79124B (en) * 1982-12-22 1984-10-02 Genentech Inc
ATE107356T1 (en) * 1983-03-25 1994-07-15 Celltech Ltd METHOD OF PRODUCING A PROTEIN.
JPS6051119A (en) * 1983-08-30 1985-03-22 Green Cross Corp:The Dried pharmaceutical preparation of urokinase
US4530787A (en) * 1984-03-28 1985-07-23 Cetus Corporation Controlled oxidation of microbially produced cysteine-containing proteins
US4748234A (en) * 1985-06-26 1988-05-31 Cetus Corporation Process for recovering refractile bodies containing heterologous proteins from microbial hosts
US4766205A (en) * 1985-11-13 1988-08-23 Beatrice Companies, Inc. Method for isolation of recombinant polypeptides in biologically active forms
FR2596360B1 (en) * 1986-04-01 1989-02-17 Sotralentz Sa CONTAINER ON PALLET WITH FOLDED AND REINFORCED MESH PROTECTION DEVICE
JPH0651119A (en) * 1992-07-28 1994-02-25 Sekisui Chem Co Ltd Production of phase difference plate

Also Published As

Publication number Publication date
JPS62502895A (en) 1987-11-19
CA1329157C (en) 1994-05-03
FI872753A (en) 1987-06-22
EP0219874A2 (en) 1987-04-29
FI94050B (en) 1995-03-31
SK752686A3 (en) 1996-10-01
FI933868A (en) 1993-09-03
WO1987002673A2 (en) 1987-05-07
DK320387D0 (en) 1987-06-23
ES2020498T3 (en) 1996-04-01
IE62634B1 (en) 1995-02-22
AU590029B2 (en) 1989-10-26
AU4132189A (en) 1990-01-04
HK153496A (en) 1996-08-16
UA6023A1 (en) 1994-12-29
EP0393725A1 (en) 1990-10-24
AU607083B2 (en) 1991-02-21
FI94050C (en) 1995-07-10
YU179686A (en) 1988-06-30
DD260517A5 (en) 1988-09-28
SU1607689A3 (en) 1990-11-15
FI95578B (en) 1995-11-15
FI95578C (en) 1996-02-26
FI933868A0 (en) 1993-09-03
DE3689404D1 (en) 1994-01-27
YU47185B (en) 1995-01-31
ZA868012B (en) 1987-06-24
HRP921075B1 (en) 1999-02-28
CZ280727B6 (en) 1996-04-17
ES2061434T3 (en) 1994-12-16
JPH0728745B2 (en) 1995-04-05
ATE98648T1 (en) 1994-01-15
GR3018410T3 (en) 1996-03-31
HK153596A (en) 1996-08-16
DK175091B1 (en) 2004-05-24
EP0219874A3 (en) 1988-02-10
EP0253823A1 (en) 1988-01-27
AU6599386A (en) 1987-05-19
IE862683L (en) 1987-04-23
DE3650449D1 (en) 1996-01-25
DK200001897A (en) 2000-12-18
SI8611796B (en) 1998-06-30
SI8611796A (en) 1996-10-31
JPH0824594B2 (en) 1996-03-13
ES2020498A4 (en) 1991-08-16
HU204855B (en) 1992-02-28
FI872753A0 (en) 1987-06-22
IL80325A0 (en) 1987-01-30
JPH04218387A (en) 1992-08-07
PT83609A (en) 1986-11-01
DK320387A (en) 1987-06-23
EP0393725B1 (en) 1995-12-13
HRP921075A2 (en) 1995-06-30
EP0219874B1 (en) 1993-12-15
KR870700601A (en) 1987-12-30
KR900009139B1 (en) 1990-12-22
SK278317B6 (en) 1996-10-02
PT83609B (en) 1988-10-14
ATE131489T1 (en) 1995-12-15
CZ752686A3 (en) 1996-01-17
DE3537708C2 (en) 1993-07-08
WO1987002673A3 (en) 1987-10-22
DE3537708A1 (en) 1987-04-23
IL80325A (en) 1992-06-21
HUT43643A (en) 1987-11-30
GR920300062T1 (en) 1992-08-31

Similar Documents

Publication Publication Date Title
DK175109B1 (en) Activating recombinant non-glycosylated tissue plasminogen activator
US5453363A (en) Process for the activation of t-PA or Ing after genetic expression in prokaryotes
Marston et al. [20] Solubilization of protein aggregates
Matheson et al. Isolation and properties of human neutrophil myeloperoxidase
EP0364926B1 (en) Activation of recombinant antibodies expressed in prokaryotes
JPS6277332A (en) Collection of protein
JP3288720B2 (en) Method for activating denatured protein
EP0208539A2 (en) Folding disulfide-cross-linkable proteins
Owen et al. Evidence for an ester bond between thrombin and heparin cofactor
AU620927B2 (en) A preparation of plasminogen activator expressed in prokaryotes
Narindrasorasak et al. Regulation of cyclic adenosine 3'-5'-monophosphate phosphodiesterase
CZ46094A3 (en) Activation method of heterologous proteins obtained by genetic technology containing disulfide bridges of eukaryotic origin after expression in prokaryotic organisms
JP2004057064A (en) Method for preventing degradation of nucleic acid, method for extracting nucleic acid, and method for storing nucleic acid
Nohara et al. Media selection for refolding of thermolysin by use of immobilized preparation
JPS63145297A (en) Purification of protein
KR20010017096A (en) Human Serum Albumin with Increased Antioxidation Activity and Process for Preparing the Same

Legal Events

Date Code Title Description
PUP Patent expired