HRP921075A2 - Process for activating heterologous, eucariotic proteins, genetically engineered and presenting disulphide bridges after their expression in procaryotic cells - Google Patents

Process for activating heterologous, eucariotic proteins, genetically engineered and presenting disulphide bridges after their expression in procaryotic cells Download PDF

Info

Publication number
HRP921075A2
HRP921075A2 HR921075A HRP921075A HRP921075A2 HR P921075 A2 HRP921075 A2 HR P921075A2 HR 921075 A HR921075 A HR 921075A HR P921075 A HRP921075 A HR P921075A HR P921075 A2 HRP921075 A2 HR P921075A2
Authority
HR
Croatia
Prior art keywords
activation
mol
denaturing
concentration
mmol
Prior art date
Application number
HR921075A
Other languages
Croatian (hr)
Inventor
Rudolph Rainer
Stephan Fischer
Ralf Mattes
Original Assignee
Boehringer Mannheim Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Mannheim Gmbh filed Critical Boehringer Mannheim Gmbh
Publication of HRP921075A2 publication Critical patent/HRP921075A2/en
Publication of HRP921075B1 publication Critical patent/HRP921075B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6456Plasminogen activators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6456Plasminogen activators
    • C12N9/6459Plasminogen activators t-plasminogen activator (3.4.21.68), i.e. tPA
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • C07K1/1133General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure by redox-reactions involving cystein/cystin side chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • C07K14/565IFN-beta
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21069Protein C activated (3.4.21.69)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Method for activating non-glycosylated tissue plasminogen activator (t-PA) after its expression in prokaryotic cells comprises cell lysis; solubilisation under denaturing and reducing conditions, and reactivation under oxidising conditions in presence of reduced and oxidised glutathione (G5H, G55G). The new feature is that in the last stage is at pH 9-12 (pref. 9.5-11) with G5H and G55G concns. 0.1-20, pref. 0.2-10, mM and 0.01-3, pref. 0.5-1, mM, respectively, and with a non-denaturing concn. of the denaturing agent. Esp. the method is applied to t-PA expressed in E.coli and P. putida. The denaturing agent is pref. arginine, guanidine hydrochloride (both at 0.1-1, esp. 0.25-0.75, mM) or urea, at 0.5-4 (esp. 1-3.5) M in the last stage.

Description

Predloženi izum se odnosi na postupak za aktiviranje gentehnoloških pripremljenih, eukariontskih proteina, koji sadrže disulfidne mostove, nakon ekspresije u prokariontama. The proposed invention relates to a procedure for activating genetically prepared, eukaryotic proteins, which contain disulfide bridges, after expression in prokaryotes.

Pri ekspresiji heterolognih proteina u prokariontama ti proteini tvore u stanicama domaćina često neaktivne, teško topive agregate (t.i. "refractile bodies"), koji su povrh toga još onečišćeni sa proteinima stanica domaćina. Pretpostavlja se da je tvorba takvih "refractile bodies" posljedica nastale visoke koncentracije proteina u stanici pri ekspresiji. Poznato je, da pri tvorbi velikih količina enzima u stanici dolazi do agregacije enzima u netopive, visokomolekularne, uglavnom neaktivne djeliće. Prije nego li upotrijebimo takve proteine, npr. u terapeutske svrhe, treba ih očistiti i prevesti u aktivan oblik. During the expression of heterologous proteins in prokaryotes, these proteins often form inactive, hard-to-dissolve aggregates (i.e. "refractile bodies") in host cells, which are also contaminated with host cell proteins. It is assumed that the formation of such "refractile bodies" is a consequence of the resulting high protein concentration in the cell during expression. It is known that when large amounts of enzymes are produced in the cell, enzymes aggregate into insoluble, high-molecular, mostly inactive particles. Before we use such proteins, for example for therapeutic purposes, they need to be purified and converted into an active form.

Prema poznatim postupcima aktiviranja takvih proteina, koji se javljaju kao agregati, može poteći u više stupnjeva (prim. npr. B. R. Jaenicke, FEBS Federation of European Biochemical Societies, Vol. 52 (1979) 187 do 198; R. Rudolph, Biochemistry 18 (1979) 5572 do 5575): According to known procedures, the activation of such proteins, which appear as aggregates, can proceed in several stages (cf. e.g. B. R. Jaenicke, FEBS Federation of European Biochemical Societies, Vol. 52 (1979) 187 to 198; R. Rudolph, Biochemistry 18 ( 1979) 5572 to 5575):

U prvom stupnju se postiže solubiliziranje dodatkom denaturirajućih sredstava, npr. gvanidin-hidroklorida ili uree u visokoj koncentraciji, ili dodatkom jako kiselih sredstava, npr. smjese glicina i fosforne kiseline. Kao daljnje pomoćne tvari dobrima su se pokazali reducirajući SH-reagensi (npr. ditioeritritol, DTE) i EDTA, npr. pri renaturiranju LDH. Ukoliko je protein onečišćen proteinima stanica domaćina, slijedi kao idući stupanj, čišćenje po metodama koje su same po sebi poznate i uobičajene, npr. gel ili ionska izmjenjivačka kromatografija. Zatim snažno razrijedimo da se smanji koncentracija denaturirajućih sredstava. Pri upotrebi gvanidin-hidroklorida, razrijedimo na vrijednost 0,5 mol/l. Pri enzimima sa jednostavnim SH-skupinama se prikladnim pokazao dodatak sredstava koja štite SH-skupine (prim. npr. B. R. Jaenicke, Journal Polymer Science, Part C (1967) 2143 do 2160). In the first stage, solubilization is achieved by the addition of denaturing agents, eg guanidine hydrochloride or urea in high concentration, or by the addition of strongly acidic agents, eg a mixture of glycine and phosphoric acid. Reducing SH-reagents (e.g. dithioerythritol, DTE) and EDTA have proven to be useful as additional auxiliary substances, e.g. when renaturing LDH. If the protein is contaminated with host cell proteins, the next step is purification by methods that are known and common in themselves, eg gel or ion exchange chromatography. Then we dilute strongly to reduce the concentration of denaturing agents. When using guanidine hydrochloride, dilute to a value of 0.5 mol/l. In the case of enzymes with simple SH-groups, the addition of agents that protect the SH-groups has proven to be suitable (see, e.g., B. R. Jaenicke, Journal Polymer Science, Part C (1967) 2143 to 2160).

U EP-A-0114506 opisuju postupke izolacije, čišćenje i aktiviranje nekih heterolognih produkata ekspresije iz bakterijskih kultura; za aktiviranje prevedu otopine "refractile bodies" u snažnom denaturirajućem sredstvu a) direktno u otopinu u slabijem denaturirajućem sredstvu, te zatim podvrgnu oksidirajućim uvjetima za ponovnu tvorbu disulfidnih mostova; b) protein sulfoniraju, te zatim prevedu u otopinu u slabijem denaturirajućem sredstvu i S-sulfonatne skupine obradom sa sulfhidrilnim reagensom prevedu u njegove reducirane i oksidirane oblike, npr. sa GSH/GSSG prevedu u -S-S-skupine; ili c) otopinu u slabijem denaturirajućem sredstvu direktno obrade sa sulfhidrilnim reagensom, npr. sa GSH/GSSG. Značajan primjer u kojem se javljaju ranije prikazani problemi je t-PA. In EP-A-0114506 they describe procedures for isolation, purification and activation of some heterologous expression products from bacterial cultures; for activation, they translate solutions of "refractile bodies" in a strong denaturing agent a) directly into a solution in a weaker denaturing agent, and then subject them to oxidizing conditions for the re-formation of disulfide bridges; b) the protein is sulfonated, and then converted into a solution in a weaker denaturing agent and the S-sulfonate groups are converted into their reduced and oxidized forms by treatment with a sulfhydryl reagent, for example with GSH/GSSG they are converted into -S-S-groups; or c) solution in a weaker denaturing agent directly treated with a sulfhydryl reagent, eg with GSH/GSSG. A notable example where the problems presented earlier occur is t-PA.

Glavna komponenta proteinske matrice zgrušane krvi je polimer fibrin. Tu proteinsku matricu rastapa plazmin koji se tvori iz plazminogena preko aktiviranja sa t.i. aktivatorima plazminogena, npr. sa t-PA (tkivni aktivator plazminogena, tissue-type plasminogen activator). Enzimatska akivnost prirodnog ili iz eukarionata gentehnološki pripremljenog t-PA (katalitičko aktiviranje plazminogena do plazmina) je u odsutnosti fibrina ili fibrinskih produkata razdvajanja (FSP) vrlo mala i može se u prisutnosti tih stimulatora znatno pojačati (za više nego li faktor 10). Ta t.i. stimularnost učinkovitosti je odlučujuća prednost t-PA u usporedbi sa ostalim poznatim aktivatorima plazminogena kao što su urokinaza ili streptokinaza (prim. npr. M. Hoylaerts i sur., J. Biol. Chem. 257 (1982) 2912 do 2919; Nieuwenhiuzen i sur., Biochimica et Biophysica Acta 755 (1983) 531 do 533). Faktor stimuliranosti sa BrCN-produktima razdvajanja je zato u literaturi različito naveden i označen sa do 35. The main component of the protein matrix of clotted blood is the polymer fibrin. That protein matrix is dissolved by plasmin, which is formed from plasminogen through activation with the so-called plasminogen activators, for example with t-PA (tissue-type plasminogen activator). The enzymatic activity of natural or eukaryotic prepared t-PA (catalytic activation of plasminogen to plasmin) is very low in the absence of fibrin or fibrin cleavage products (FSP) and can be significantly enhanced (by more than a factor of 10) in the presence of these stimulators. That so-called stimulatory efficacy is a decisive advantage of t-PA compared to other known plasminogen activators such as urokinase or streptokinase (see, e.g., M. Hoylaerts et al., J. Biol. Chem. 257 (1982) 2912 to 2919; Nieuwenhiuzen et al. ., Biochimica et Biophysica Acta 755 (1983) 531 to 533). The stimulation factor with BrCN-splitting products is therefore stated differently in the literature and marked with up to 35.

t-PA-nast, neglikozirani produkt se također tvori u genetski manipuliranim prokariontama (po uguravanju c-DNA); takvom produktu ne pripada stimuliranost učinkovitosti t-PA iz eukarionta. Moguće je da to izlazi iz toga što su redoks uvjeti u prokariontnim stanicama tako različiti od uvjeta od eukariontnim stanicama iz kojih izvire gen, da se na početku oblikuje neaktivni produkt, što lako objašnjavamo time da su npr. brojni S-S mostovi koje sadrži prirodna aktivna molekula, povezani na pogrešan način ili uopće nisu oblikovani. Za terapeutsku upotrebu t-PA nije potrebna samo enzimatska aktivnost kao takva, već povrh toga i njegova stimuliranost. Djelovanje, da prokariontna stanica vjerojatno ne ostvaruje prave uvjete za oblikovanje aktivnosti eukariontskih proteina na pravilan način je za druge tvari pokazano u The EMBO Journal 4, Nr. 3 (1985)775 do 780. t-PA-nast, a non-glycosylated product is also formed in genetically manipulated prokaryotes (after c-DNA insertion); such a product does not belong to the stimulation of the effectiveness of t-PA from eukaryotes. It is possible that this results from the fact that the redox conditions in prokaryotic cells are so different from the conditions in eukaryotic cells from which the gene originates, that an inactive product is initially formed, which is easily explained by the fact that, for example, the numerous S-S bridges that a natural active molecule contains , connected in the wrong way or not formed at all. The therapeutic use of t-PA requires not only enzymatic activity as such, but also its stimulation. The fact that the prokaryotic cell probably does not achieve the right conditions for shaping the activity of eukaryotic proteins in a proper way was shown for other substances in The EMBO Journal 4, Nr. 3 (1985) 775 to 780.

Po EP-A-0093639 za aktiviranje t-PA, suspendiraju iz E. coli dobivene stanične pelete u 6 mol/l gvanidin-hidroklorida, obrade ultrazvukom, inkubiraju i zatim dijaliziraju 4 sata protiv otopine Tris-HCl (pH=8,0), natrijev klorid EDTA i Tween 80. Nakon dijalize se centrifugira pri čemu se u gornjem sloju (supernatantu) nađe učinkovitost aktiviranja plazminogena. Na taj način naturiran t-PA je doduše proteolitički aktivan, premda ne pokazuje mjerljivu stimuliranost sa BrCN-produktima odvaja (BrCN-FSP) fibrina u smislu postupka opisanog u J. H. Verheijen, Thromb. Haemostas., 48, (3), 260-269 (1982). According to EP-A-0093639 to activate t-PA, cell pellets obtained from E. coli are suspended in 6 mol/l guanidine hydrochloride, treated with ultrasound, incubated and then dialyzed for 4 hours against Tris-HCl solution (pH=8.0) , sodium chloride, EDTA and Tween 80. After dialysis, it is centrifuged, and the effectiveness of plasminogen activation is found in the upper layer (supernatant). The t-PA thus naturated is indeed proteolytically active, although it does not show measurable stimulation with BrCN-products, it separates (BrCN-FSP) fibrin in the sense of the procedure described in J. H. Verheijen, Thromb. Haemostas., 48, (3), 260-269 (1982).

Za aktiviranje denaturiranih proteina, iz stanja tehnike nije poznat niti jedan općenito upotrebljiv postupak; to posebno vrijedi za t-PA koji ima nativni protein vrlo kompleksne strukture; sadrži jednostavnu tiolnu skupinu i 17 SS-mostova koji se teoretski mogu povezati na 2,2x1020 različitih načina, pri čemu samo jedna struktura odgovara nativnom stanju. Iz stanja tehnike poznati postupci za aktiviranje t-PA inače vode do proteolitički aktivnog t-PA koji ne pokazuje mjerljive stimuliranosti; postupak aktiviranja koji vode do stimuliranog t-PA još nije poznat. For activating denatured proteins, no generally applicable procedure is known from the state of the art; this is especially true for t-PA, which has a native protein with a very complex structure; contains a simple thiol group and 17 SS-bridges that can theoretically connect in 2.2x1020 different ways, with only one structure corresponding to the native state. From the state of the art, known procedures for activating t-PA otherwise lead to proteolytically active t-PA that does not show measurable stimulation; the activation process leading to stimulated t-PA is not yet known.

Zadatak predloženog izuma je zato da nam osigura postupak za potpuno aktiviranje genotehnološki pripremljenih, heterolognih, eukariontskih proteina koji sadrže disulfidne mostove, nakon ekspresije u prokariontama; taj zadatak rješavamo predmetom predloženog izuma. The task of the proposed invention is to provide us with a procedure for the complete activation of genetically prepared, heterologous, eukaryotic proteins containing disulfide bridges, after expression in prokaryotes; we solve this task with the object of the proposed invention.

Predmet izuma je postupak za aktiviranje gentehnološki pripremljenih, heterolognih, eukariontskih proteina koji sadrže disulfidne mostove, nakon ekspresije u prokariontama, nakon raspadanja stanice, pomoću solubiliziranja pri denaturirajućim i reducirajućim uvjetima, te aktiviranjem (renaturiranjem) pri oksidirajućim uvjetima u prisutnosti GSH/GSSG, naznačen time da pri stupnju aktiviranja radimo pri pH vrijednosti 9 do 12, GSH-koncentraciji 0,1 do 20 mmol/l, GSSG-koncentraciji 0,01 do 3 mmol/l, te sa ne-denaturirajućom koncentracijom denaturirajućeg sredstva. Kao denaturirajuće sredstvo u pravilu možemo upotrijebiti za aktiviranje pri oksidirajućim uvjetima, uobičajeno denaturirajuće sredstvo ili arginin; između poznatih denaturirajućih sredstava prednosno je upotrijebiti gvanidin-hidroklorid ili ureu ili njezine derivate. Povrh toga, se primjerenim pokazao i arginin. Nadalje, može se upotrebljavati smjesa tih denaturirajućih sredstava. Prednosno, taj stupanj aktiviranja izvedemo također u prisutnosti stranog proteina; primjeren je u pravilu svaki strani protein ukoliko je proteolitički aktivan; prednosno upotrebljavamo goveđi serumski albumin (BSA) npr. u količini 1 do 3 mg/ml. Dodatak BSA može izazvati malo povećanje dobitka i stabiliziranje proteina (vjerojatno zaštitom pred površinskim denaturirajućem i/ili proteolitičkom razgradnjom). The subject of the invention is a procedure for activating genetically prepared, heterologous, eukaryotic proteins containing disulfide bridges, after expression in prokaryotes, after cell disintegration, using solubilization under denaturing and reducing conditions, and activation (renaturation) under oxidizing conditions in the presence of GSH/GSSG, indicated with the fact that at the activation stage we work at a pH value of 9 to 12, GSH-concentration 0.1 to 20 mmol/l, GSSG-concentration 0.01 to 3 mmol/l, and with a non-denaturing concentration of the denaturing agent. As a denaturing agent, we can generally use a common denaturing agent or arginine for activation under oxidizing conditions; among the known denaturing agents, it is preferable to use guanidine hydrochloride or urea or its derivatives. In addition, arginine has also proven to be suitable. Furthermore, a mixture of these denaturing agents can be used. Preferably, we perform this stage of activation also in the presence of a foreign protein; as a rule, any foreign protein is suitable if it is proteolytically active; preferably we use bovine serum albumin (BSA), for example in the amount of 1 to 3 mg/ml. Addition of BSA may cause a small gain increase and protein stabilization (probably protection against surface denaturing and/or proteolytic degradation).

Ostali uvjeti postupka mogu odgovarati uvjetima koji su poznati i uobičajeni za reaktivirajuće stupnjeve iz stanja tehnike. Trajanje aktiviranja (inkubacije) iznosi prednosno 20 do 48 sati pri sobnoj temperaturi. Polovično vrijeme aktiviranja iznosi u prisutnosti 0,5 mmol/l reduciranog (GSH) i oksidiranog (GSSG) glutationa oko 10 do 15 sati pri 20°C. Pri daljnoj inkubaciji (48 sati) pri reoksidacijskim uvjetima, stimuliranost sa CNBr-FSB u pravilu opada. Stupanj aktiviranja prednosno izvedemo u prisutnosti EDTA, pri čemu najbolje planirana koncentracija iznosi oko 1 mmol/l EDTA. Other process conditions may correspond to conditions that are known and common for reactivating stages from the state of the art. The duration of activation (incubation) is preferably 20 to 48 hours at room temperature. The half-time of activation in the presence of 0.5 mmol/l of reduced (GSH) and oxidized (GSSG) glutathione is about 10 to 15 hours at 20°C. During further incubation (48 hours) under reoxidation conditions, stimulation with CNBr-FSB generally decreases. The activation stage is preferably carried out in the presence of EDTA, with the best planned concentration being around 1 mmol/l EDTA.

Stupnjevi postupka koje izvodimo prije ili nakon stupnja aktiviranja (reoksidacija/aktiviranje) kao raspadanje stanica, solubiliziranje (solubiliziranje/redukcija) i u danom primjeru jedna ili više operacija čišćenja, koje izvodimo prije ili/i nakon stupnja aktiviranja, mogu se izvesti tehnikom koja je poznata, odnosno uobičajena za postupke takve vrste, npr. iz EP-0114506, EP-A-0093619; za postizanje rezultata optimalnog s obzirom na dobitak i aktiviranje, može se razmotriti da izvedemo stupnjeve pojedinačno ili sve stupnjeve postupka upotrebom jednog ili više izvedbenih postupaka pojašnjenih u predloženom opisu. Tako je moguće izvesti stupanj aktiviranja u smislu izuma, u smjesi dobivenoj nakon raspadanja bez ranijeg denaturiranja i/ili redukcije, premda se niskim dobitkom. Ekspresiju izvedemo u prokariontama, prednosno u P. putida i naročito povoljno u E. coli. Postupak u smislu izuma je isto tako prikladan kada eksperimentiramo u drugim prokariontama (npr. u Bacilli). The stages of the process that we perform before or after the activation stage (reoxidation/activation) such as cell disintegration, solubilization (solubilization/reduction) and in the given example one or more cleaning operations, which we perform before and/or after the activation stage, can be performed using a technique that is known , that is, common for procedures of this type, e.g. from EP-0114506, EP-A-0093619; to achieve an optimal result with respect to gain and activation, it may be considered to perform the steps individually or all steps of the process using one or more of the implementation methods explained in the proposed description. Thus, it is possible to carry out the activation stage in terms of the invention, in the mixture obtained after decomposition without earlier denaturation and/or reduction, albeit with a low gain. The expression is carried out in prokaryotes, preferably in P. putida and particularly advantageously in E. coli. The method according to the invention is also suitable when we experiment in other prokaryotes (eg in Bacilla).

Raspadanje stanica pri tome možemo izvesti na uobičajen način i uobičajenim postupcima, npr. pomoću ultra zvuka, visokotlačne disperzije ili lizocimski; prednosno je to izvesti u puferskoj otopini, primjerenoj za nastajanje neutralne ili blago kisele pH vrijednosti, kao suspenzijskom mediju, npr. u 0,1 mol/l Tris-HCl. Nakon raspadanja stanice, odvojimo netopiv dio ("refractile bodies") na prikladan način, prednosno centrifugiranjem pri višim g-vrijednostima i duljim vremenom centrifugiranja ili pomoću filtracije. Nakon ispiranja sa sredstvima koja ne narušavaju t-PA strane stanične proteine po mogućnosti otope, npr. u vodi, fosfatnoj puferskoj otopini i u danom primjeru dodatkom blagih detergensa kao npr. tritona, podvrgnemo talog (peletu) solubiliziranju (solubiliziranje/redukcija). Solubiliziranje prednosno protječe u alkalnom pH području, naročito pri pH 8,6 + 0,4 te u prisutnosti redukcijskog sredstva iz merkaptanske skupine i denaturirajućeg sredstva. Cell disintegration can be carried out in the usual way and with usual procedures, for example using ultrasound, high-pressure dispersion or lysozyme; it is preferable to perform this in a buffer solution suitable for the formation of a neutral or slightly acidic pH value, as a suspension medium, for example in 0.1 mol/l Tris-HCl. After cell disintegration, we separate the insoluble part ("refractile bodies") in a suitable way, preferably by centrifugation at higher g-values and a longer centrifugation time or by filtration. After washing with agents that do not damage t-PA foreign cellular proteins, if possible dissolve them, for example in water, phosphate buffer solution and in the given example with the addition of mild detergents such as triton, subject the precipitate (pellet) to solubilization (solubilization/reduction). Solubilization preferably takes place in the alkaline pH range, especially at pH 8.6 + 0.4 and in the presence of a reducing agent from the mercaptan group and a denaturing agent.

Kao denaturirajuća sredstva možemo za solubiliziranje upotrijebiti poznata i uobičajena denaturirajuća sredstva poznata iz stanja tehnike, npr. iz EP-A-0114506, naročito gvanidin-hidroklorid ili ureu. Koncentracija gvanidin-hidroklorida iznosi oko 6 molova/l, uree oko 8 molova/l. Isto tako možemo upotrijebiti spojeve opće formule I. As denaturing agents for solubilization, we can use known and common denaturing agents known from the state of the art, for example from EP-A-0114506, especially guanidine hydrochloride or urea. The concentration of guanidine hydrochloride is about 6 moles/l, urea about 8 moles/l. We can also use compounds of the general formula I.

Kao reducente iz skupine merkaptana možemo upotrijebiti npr. reduciran glutation (GSH) ili 2-merkaptoetanol, npr. u koncentraciji oko 50 do 400 mmol/l ditiotreitola i/ili naročito DTE (ditiotreitol) odnosno DTT (ditiotreitol), npr. u koncentraciji oko 80 do 400 mmol/l. Solubiliziranje protječe pri sobnoj temperaturi u toku (inkubacija) 1 do više sati, prednosno je dva sata. Za sprečavanje oksidacija reducenta kisikom iz zraka, moguće je upotrijebiti EDTA. Pored solubiliziranja/redukcije, stupanj solubiliziranja ima također učinak čišćenja jer veći dio materijala koji ne reagira unakrižno imunološki sa t-PA (tuđih proteina) ne prelazi u otopinu. As reductants from the group of mercaptans, we can use, for example, reduced glutathione (GSH) or 2-mercaptoethanol, for example in a concentration of about 50 to 400 mmol/l dithiothreitol and/or especially DTE (dithiothreitol) or DTT (dithiothreitol), for example in a concentration of about 80 to 400 mmol/l. Solubilization takes place at room temperature during (incubation) 1 to several hours, preferably two hours. To prevent oxidation of the reductant by oxygen from the air, it is possible to use EDTA. In addition to solubilization/reduction, the solubilization step also has a cleaning effect because most of the material that does not immunologically cross-react with t-PA (foreign proteins) does not go into solution.

Nakon solubiliziranja i prije stupnja aktiviranja možemo provesti same po sebi poznate i uobičajene stupnjeve čišćenja; kao metode čišćenja dolaze u obzir npr. sterična rasklopna kromatografija (SEC) (u prisutnosti gvanidin-hidroklorida ili uree) ili ionski izmjenjivači (u prisutnosti uree ili njenih derivata); nespecifičnu reoksidaciju možemo spriječiti dodatkom reducenta (npr. 2-merkaptoetanola) ili pomoću pH-vrijednosti ≤ 4,5 (prim. npr. R. Rudolph, Biochem. Soc. Transactions 13 (1985) 308 do 311). Ako u ranijem stupnju solubiliziranja upotrijebimo DTE, treba ga u stupnju čišćenja ukloniti. Čišćenje se može provesti npr. sa SEC preko Sephadex G 100 u prisutnosti gvanidin-hidroklorida i reducenta npr. GSH pri pH 1 do 4 (pri tom stupnju možemo odvojiti veliku količinu stranog proteina); ili odvajanjem denaturirajućeg-edukcijskog sredstva razsoljavanjem preko Sephadex G 25 u 0,01 mol/l HCl odnosno 0,1 mol/l octene kiseline. Odvajanje denaturirajućeg-redukcijskog sredstva je alternativno moguće provesti dijalizom protiv iste otopine. Stupnju reaktiviranja se može priključiti idući stupanj čišćenja; takvo čišćenje u pravilu protječe pomoću dijalize ili slijedećim izoliranjem aktiviranog t-PA npr. afinitetskom kromatografijom npr. iznad Lys-Sepharose. After solubilization and before the activation step, we can carry out self-known and usual cleaning steps; as cleaning methods come into consideration, for example, steric separation chromatography (SEC) (in the presence of guanidine hydrochloride or urea) or ion exchangers (in the presence of urea or its derivatives); non-specific reoxidation can be prevented by adding a reductant (eg 2-mercaptoethanol) or by using a pH-value ≤ 4.5 (cf. eg R. Rudolph, Biochem. Soc. Transactions 13 (1985) 308 to 311). If we use DTE in the earlier stage of solubilization, it should be removed in the cleaning stage. Purification can be carried out, for example, with SEC over Sephadex G 100 in the presence of guanidine hydrochloride and a reductant, for example GSH, at pH 1 to 4 (at this level we can separate a large amount of foreign protein); or by separating the denaturing-educting agent by desalting over Sephadex G 25 in 0.01 mol/l HCl or 0.1 mol/l acetic acid. Separation of the denaturing-reducing agent can alternatively be carried out by dialysis against the same solution. The reactivation stage can be joined by the next stage of cleaning; as a rule, such purification proceeds by means of dialysis or by subsequent isolation of activated t-PA, for example by affinity chromatography, e.g. over Lys-Sepharose.

Idući izvedbeni oblik izuma se odnosi na tvorbu miješanih disulfida gentehnološki pripremljenih, heterolognih, eukariontskih proteina koji sadrže disulfidne mostove i glutationa The next embodiment of the invention relates to the formation of mixed disulfides of genetically prepared, heterologous, eukaryotic proteins containing disulfide bridges and glutathione

(u daljnjem tekstu skraćeno t-PASSG). To može olakšati odvajanje stranih proteina u denaturiranom stanju kao i daljnje čišćenje nativnog proteina. Čišćenje po modifikaciji tiolnih skupina ima tu prednost da je protein zaštićen od oksidacije iz zraka i time stabilan i širem pH-području, te promjena neto naboja olakšava čišćenje. Ionski izmjenjivačkom obradom se može naročito prikladno provesti odvajanje nemodificiranog proteina. (hereinafter abbreviated as t-PASSG). This can facilitate the separation of foreign proteins in the denatured state as well as further purification of the native protein. Cleaning by modification of thiol groups has the advantage that the protein is protected from oxidation from the air and is thus stable in a wider pH range, and the change in net charge facilitates cleaning. Separation of the unmodified protein can be carried out particularly conveniently by ion exchange treatment.

Za tvorbu miješanih disulfida, inkubiramo dijalizirani, reducirani protein iz kojega smo očistili denaturirajuća i redukcijska sredstva, sa razrijeđenom npr. 0,2M otopinom GSSG, koja sadrži denaturirajuće sredstvo. Aktiviranje počinje nakon odvajanja denaturirajućeg i oksidacijskog sredstva pri pH vrijdnosti 7 do 10,5, GSH koncentraciji 0,5 do 5 mmol/l, te sa ne-denaturirajućom koncentracijom denaturirajućeg sredstva. For the formation of mixed disulfides, we incubate the dialyzed, reduced protein from which the denaturing and reducing agents have been purified, with a diluted, for example, 0.2M solution of GSSG, which contains the denaturing agent. Activation begins after the separation of the denaturing and oxidizing agents at a pH value of 7 to 10.5, a GSH concentration of 0.5 to 5 mmol/l, and with a non-denaturing concentration of the denaturing agent.

Pri svim ostalim reakcijskim stupnjevima odgovara aktiviranje proteina preko tvorbe miješanih disulfida sa GSSG izvdbenim oblicima za aktiviranje ranijeg dijela izuma. Pri tom izvedbenom obliku optimalni pH je 8,5, dobitak je približno dva puta toliki i aktivirani protein je dulje vrijeme stabilan u renaturirajućem puferu. At all other reaction stages, the activation of the protein through the formation of mixed disulfides with GSSG derived forms corresponds to the activation of the earlier part of the invention. In this embodiment, the optimal pH is 8.5, the gain is approximately twice as much and the activated protein is stable for a long time in the renaturing buffer.

U smislu izuma nam se posrećilo tako aktivirati t-PA iz prokarionta da nije dostignuto samo aktiviranje normalne biološke aktivnosti, već povrh toga dostižemo i stimuliranost u ranije definiranom smislu koja daleko premašuje aktiviranost nativnog t-PA i već je od faktora 10, te može prekoračiti i faktor 50. Idući eukariontski protein kojega u smislu izuma možemo aktivirati nakon ekspresije u prokariontu je β-interferon. In terms of the invention, we were lucky enough to activate t-PA from prokaryotes in such a way that not only activation of normal biological activity was achieved, but on top of that we also achieved stimulation in the previously defined sense, which far exceeds the activation of native t-PA and is already by a factor of 10, and can exceed and factor 50. The next eukaryotic protein that can be activated in terms of the invention after expression in the prokaryote is β-interferon.

Idući primjeri pobliže pojašnjavju izum, a ne ograničavaju ga. The following examples further illustrate the invention and do not limit it.

Ako nije drugačije navedeno, podaci u postotcima se odnose na masene postotke, podaci o temperaturi u stupnjevima celzijusa. Unless otherwise stated, data in percentages refer to mass percentages, data on temperature in degrees Celsius.

PRIMJER 1 EXAMPLE 1

Priprema "refractile bodies" Preparation of "refractile bodies"

100g vlažne stanične mase E. coli uzete u 1,51 0,1 mol/l Tris/HCl (pH 6,5) u 20 mol/l EDTA smo homogenizirali (Ultra-Turax, 10 sek.) i dodali 0,25 mg/ml lizocima. Nakon 30 minuta inkubacije na sobnoj temperaturi smo ponovno homogenizirali i ohladili na 3°C. Stanično raspadanje smo dostigli visokotlačnom disperzijom (550 kg/cm2). Zatim smo još isplahnuli sa 300 ml 0,1 mol/l Tris/HCl 9pH 6,5 i 20 mmol/l EDTA. Nakon centrifugiranja (Sorvall GSA, 2 sata pri 13000 okr./min., 21000 g, 4°C) smo peletu preuzeli u 1,2 l 1,2 mol/l Tris/HCl (pH 6,5), 20 mmol/lEDTA i 2,5%Triton-x-100 i homogenizirali. Nakon ponovnog centrifugiranja, (Sorvall GSA, 30 min. pri 13000 U/min., 27000g, 4°C) smo peletu preuzeli u 1,3 l 0,1 tris/HCl (pH 6,5), 20 mmol/l EDTA i 0,5 Triton-x-l i homogenizirali. Još tri puta smo izveli izmjenična centrifugiranja (Sorvall GSA, 30 minuta pri 13000 okr./min., 27000 g, 4°C) i homogeniziranja peleta u 1 1 0,1 mol/l Tris/HCl (pH 6,5) i 20 mmol/l EDTA. We homogenized 100g of wet cell mass of E. coli taken in 1.51 0.1 mol/l Tris/HCl (pH 6.5) in 20 mol/l EDTA (Ultra-Turax, 10 sec.) and added 0.25 mg /ml lysosomes. After 30 minutes of incubation at room temperature, we homogenized again and cooled to 3°C. Cell disintegration was achieved by high-pressure dispersion (550 kg/cm2). Then we rinsed with 300 ml of 0.1 mol/l Tris/HCl 9pH 6.5 and 20 mmol/l EDTA. After centrifugation (Sorvall GSA, 2 hours at 13,000 rpm, 21,000 g, 4°C), the pellet was collected in 1.2 l of 1.2 mol/l Tris/HCl (pH 6.5), 20 mmol/ lEDTA and 2.5% Triton-x-100 and homogenized. After centrifugation again, (Sorvall GSA, 30 min. at 13000 U/min., 27000g, 4°C) we took the pellet in 1.3 l 0.1 tris/HCl (pH 6.5), 20 mmol/l EDTA and 0.5 Triton-x-l and homogenized. Three more times we performed alternate centrifugation (Sorvall GSA, 30 minutes at 13,000 rpm, 27,000 g, 4°C) and pellet homogenization in 1 1 0.1 mol/l Tris/HCl (pH 6.5) and 20 mmol/l EDTA.

Sadržaj "refractile bodies" t-PA traka u pripravcima smo kvantificirali sa SDS-PAGE, identificiranjem t-PA traka sa "Western-blotting" i denzitometričnom analizom. "Refractile bodies" pokazuju pri SDS-PAGE i "Western-blotting" snažan t-PA trak sa molekularnom masom oko 60 kDa. Udio t-PA u ukupnom sadržaju proteina "refractile bodies" iznosi oko 21%. We quantified the content of "refractile bodies" t-PA bands in the preparations with SDS-PAGE, identifying t-PA bands with "Western-blotting" and densitometric analysis. "Refractile bodies" show on SDS-PAGE and "Western-blotting" a strong t-PA band with a molecular mass of about 60 kDa. The share of t-PA in the total protein content of "refractile bodies" is about 21%.

Solubiliziranje/redukcija "refractile bodies" Solubilization/reduction of "refractile bodies"

"Refractile bodies" sa koncentracijom proteina 1 do 5 mg/ml smo inkubirali u 0,1 mol/l Tris/HCl (pH 8,6), 6 molova/l gvanidin-hidroklorida, 0,15 do 0,4 mol/l DTE i 1 mmol/l EDTA, 2 do 3 sata rpi sobnoj temperaturi. Zatim smo odcentrifugirali netopivi materijal (fragmente staničnih stijenki, itd.) (npr. Sorvall SS 34, 30 minuta pri 15000 do 20000 okr./min., 35000 do 50000 g, 4°C). pH vrijednost gornjeg sloja (supernatanta) smo pomoću koncentrirane solne kiseline namjestili na pH 3. Denantirajuće i redukcijsko sredstvo smo zatim odvojili dijalizom protiv 0,01 mol/l HCl pri 4°C. "Refractile bodies" with a protein concentration of 1 to 5 mg/ml were incubated in 0.1 mol/l Tris/HCl (pH 8.6), 6 mol/l guanidine hydrochloride, 0.15 to 0.4 mol/l DTE and 1 mmol/l EDTA, 2 to 3 hours rpi at room temperature. Then we centrifuged insoluble material (fragments of cell walls, etc.) (eg Sorvall SS 34, 30 minutes at 15,000 to 20,000 rpm, 35,000 to 50,000 g, 4°C). The pH value of the upper layer (supernatant) was adjusted to pH 3 using concentrated hydrochloric acid. The denaturing and reducing agents were then separated by dialysis against 0.01 mol/l HCl at 4°C.

Reoksidacija/aktiviranje Reoxidation/activation

Reoksidacija/aktiviranje je provedeno sa 1:50 do 1:200 razrijeđenjem u 0,1 mol/l Tris/HCl (pH 10,5), 1 mmol/l EDTA, 1 mg/ml BSA, 0,5 mol/l L-arginina, 2 mmol/l GSH, 0,2 mmol/l GSSG. Nakon 17 do 24 sata aktiviranja pri oko 20°C smo odredili aktivnost i u usporedbi sa aktivnosti nativnog glikoziliranog t-PA iz eukarionta smo ustanovili dobitak. Reoxidation/activation was performed with a 1:50 to 1:200 dilution in 0.1 mol/l Tris/HCl (pH 10.5), 1 mmol/l EDTA, 1 mg/ml BSA, 0.5 mol/l L -arginine, 2 mmol/l GSH, 0.2 mmol/l GSSG. After 17 to 24 hours of activation at around 20°C, we determined the activity and compared to the activity of native glycosylated t-PA from eukaryotes, we found a gain.

Dobitak s obzirom na ukupni sadržaj proteina u "refractile bodies": 2,5+/-0,5% Gain with respect to total protein content in "refractile bodies": 2.5+/-0.5%

stimuliranost: 10+/-5 stimulation: 10+/-5

Dobitak s obzirom na udio t-PA u "refractile bodies": Ca. 12%. Gain with regard to the share of t-PA in "refractile bodies": Ca. 12%.

Reoksidacija/aktiviranje bez odvajanja denaturirajuće/redukcijskog sredstva Reoxidation/activation without separation of the denaturing/reducing agent

"Refractile bodies" smo inkubirali pri koncentraciji proteina 1,25 mg/ml u 0,1 mol/l Tris/HCl (pH 8,6), 6 molova/l gvanidin-hidroklorida, 0,2 mola/l DTE i 1 mmol/l EDTA 2 sata pri sobnoj temperaturi. Zatim smo uveli reoksidaciju sa 1:100 razrijeđenjem u 0,1 mol/l Tris/HCl (pH 10,5), 1 mmol/l EDTA, 1 mg/ml BSA, 0,3 mola/l, L-arginina, te količinama GSSG navedenim u tabelama. Dodatno se u aktivirajućem nastavku nalazila preostala koncentracija 0,06 mola/l gvanidin-hidroklorida i mmola/1 DTE. "Refractile bodies" were incubated at a protein concentration of 1.25 mg/ml in 0.1 mol/l Tris/HCl (pH 8.6), 6 mol/l guanidine hydrochloride, 0.2 mol/l DTE and 1 mmol /l EDTA for 2 hours at room temperature. Then we introduced reoxidation with a 1:100 dilution in 0.1 mol/l Tris/HCl (pH 10.5), 1 mmol/l EDTA, 1 mg/ml BSA, 0.3 mol/l, L-arginine, and with the amounts of GSSG specified in the tables. Additionally, there was a remaining concentration of 0.06 mol/l guanidine hydrochloride and mmol/1 DTE in the activating residue.

Ovisnost dobitka aktiviranja od GSSG koncentracije pri aktiviranju bez odvajanja denaturirajućeg/redukcijskog sredstva. Dependence of activation gain on GSSG concentration during activation without separation of the denaturing/reducing agent.

[image] [image]

ʹ= dobitak aktivnog t-PA s obzirom na ukupni sadržaj proteina u "refractile bodies". ʹ= gain of active t-PA with respect to total protein content in "refractile bodies".

PRIMJER 2 EXAMPLE 2

Pripravak RB ("refractile bodies") (450 OD550/ml) smo inkubirali u 1 ml 0,1 mol/l Tris/HCl (pH=8,6) gvanidin-hidroklorida i 0,15 do 0,2 mola/l DTE 2 do 3 sata pri sobnoj temperaturi. Netopivi materijal (fragmente staničnih stijenki, itd) smo zatim odvojili centrifugiranjem (20 minuta pri 17000 okr./min.). Denaturirajuće i redukcijsko sredstvo smo uklonili gel filtracijom preko Sephadex G 25 (superfin) u 0,01 mol/l HCl. Pri tom smo uzorak razrijedili za faktor oko 5 do 10. Reducirani materijal u 0,01 mol/l HCl smo pohranili na -20°C. The preparation RB ("refractile bodies") (450 OD550/ml) was incubated in 1 ml of 0.1 mol/l Tris/HCl (pH=8.6) guanidine hydrochloride and 0.15 to 0.2 mol/l DTE 2 to 3 hours at room temperature. Insoluble material (fragments of cell walls, etc.) was then separated by centrifugation (20 minutes at 17,000 rpm). Denaturing and reducing agents were removed by gel filtration through Sephadex G 25 (superfine) in 0.01 mol/l HCl. In doing so, we diluted the sample by a factor of about 5 to 10. We stored the reduced material in 0.01 mol/l HCl at -20°C.

PRIMJER 3 EXAMPLE 3

U idućim tabelama je sabran utjecaj različitih parametara u smislu izuma na aktiviranje i stimuliranje t-PA. Za te reoksidacijske pokuse, prema primjeru 1, solubiliziran, reduciran protein nismo dalje čistili. The following tables summarize the influence of various parameters in terms of the invention on the activation and stimulation of t-PA. For these reoxidation experiments, according to example 1, we did not further purify the solubilized, reduced protein.

Reduciran protein (u 0,01 mol HCl) smo razrijeđenjem 1:10 do 1:500 aktivirali u "reoksidacijskom puferu". Aktiviranje smo završili nakon 22 do 40 sati inkubacije pri sobnoj temperaturi. The reduced protein (in 0.01 mol HCl) was diluted 1:10 to 1:500 and activated in the "reoxidation buffer". We finished the activation after 22 to 40 hours of incubation at room temperature.

Aktivnost reoksidiranog proteina se odnosi na "standardnu reoksidaciju" (=100%) u: The activity of the reoxidized protein refers to "standard reoxidation" (=100%) in:

0,1 mol/l Tris/HCl (pH=10,5 + 1 mmol/l EDTA 0.1 mol/l Tris/HCl (pH=10.5 + 1 mmol/l EDTA

+ 0,5 mol/l L-arginina + 0.5 mol/l L-arginine

+ 1 mg/ml BSA + 1 mg/ml BSA

+ 0,5 mmol/l GSH (reduciran glutation) + 0.5 mmol/l GSH (reduced glutathione)

+ 0,5 mmol/l GSSG (glutationdisulfid) + 0.5 mmol/l GSSG (glutathione disulfide)

Stimuliranost izračunamo iz E+CNBrFSP/E-CNBrFSP (prim. W. Nieuwenhuizen i sur., Biochimica et Biophysica Acta 755 (1983) 531 do 533). Aktivnost (u postotcima) i stimuliranost (faktor) smo odredili po J. H. Verheijen Thromb. Haemostas. 48 (3), 266-269, (1982). Stimulation is calculated from E+CNBrFSP/E-CNBrFSP (cf. W. Nieuwenhuizen et al., Biochimica et Biophysica Acta 755 (1983) 531 to 533). Activity (in percentages) and stimulation (factor) were determined according to J. H. Verheijen Thromb. Haemostas. 48 (3), 266-269, (1982).

Dobili smo slijedeće rezultate: We got the following results:

1. Ovisnost iskorištenja aktiviranja nakon dodatka L-arginina gvanidin-hidroklorida 1. Dependence of activation utilization after addition of L-arginine guanidine hydrochloride

Reoksidacija u 0,1 mol/l Tris/HCl (pH 10,5) Reoxidation in 0.1 mol/l Tris/HCl (pH 10.5)

+ 1 mmol/l EDTA + 1 mmol/l EDTA

+ 1 mg/ml BSA + 1 mg/ml BSA

+ 0,5 mmol/l GSH + 0.5 mmol/l GSH

+ 0,5 mmol/l GSSG + 0.5 mmol/l GSSG

a) L-arginin a) L-arginine

[image] [image]

Pri tom pokusu treba poštovati da se t-PA inhibira sa 1-argininom. Zato treba pad aktiviranog dobitka korigirati pri višim koncentracijama L-arginina s obzirom na inhibiciju. In this experiment, it should be noted that t-PA is inhibited by 1-arginine. Therefore, the decrease in activated gain should be corrected at higher concentrations of L-arginine due to inhibition.

b) Gvanidin-hidroklorid (Gdn. HCl) b) Guanidine hydrochloride (Gdn. HCl)

[image] [image]

2. Ovisnost iskorištenja aktiviranja o dodatku uree i derivata uree. 2. Dependence of activation utilization on the addition of urea and urea derivatives.

Reoksidacija u 0,1 mol/l Tris (pH 10,5), 1 mmol/l EDTA, 1 mg/ml BSA, 5 mmol/l GSH, 0,2 mmol/l GSSG Reoxidation in 0.1 mol/l Tris (pH 10.5), 1 mmol/l EDTA, 1 mg/ml BSA, 5 mmol/l GSH, 0.2 mmol/l GSSG

a) Urea a) Urea

[image] [image]

b) Metilurea b) Methylurea

[image] c) Etilurea [image] c) Ethylurea

[image] [image]

d) Dimetilurea d) Dimethylurea

[image] [image]

3. Ovisnost iskorištenja aktiviranja o dodatku amida masne kiseline. 3. Dependence of activation utilization on fatty acid amide addition.

Reoksidacija u 0,1 mol/l Tris (pH 10,5), 1 mmol/l EDTA, 1 mg/ml BSA, 5 mmol/l GSH, 0,2 mmol/l GSSG. Reoxidation in 0.1 mol/l Tris (pH 10.5), 1 mmol/l EDTA, 1 mg/ml BSA, 5 mmol/l GSH, 0.2 mmol/l GSSG.

a) Formamid a) Formamide

[image] [image]

b) Metilformamid b) Methylformamide

[image] [image]

c) Acetamid c) Acetamide

[image] [image]

d) Propionamid d) Propionamide

[image] [image]

e) Butiramid e) Butyramide

[image] [image]

4. Ovisnost iskorištenja aktiviranja o pH vrijednosti. 4. Dependence of activation utilization on pH value.

Reoksidacija u 0,1 mol/l Tris/HCl + mmol/l EDTA Reoxidation in 0.1 mol/l Tris/HCl + mmol/l EDTA

+ 0,5 mol/l L-arginina + 0.5 mol/l L-arginine

+ 1 mg/ml BSA + 1 mg/ml BSA

+ 0,5 mmol/l GSH + 0.5 mmol/l GSH

+ 0,5 mmol/l GSSG + 0.5 mmol/l GSSG

[image] [image]

5. Ovisnost iskorištenja aktiviranja o GSH/GSSG-koncentraciji. 5. Dependence of activation utilization on GSH/GSSG concentration.

Reoksidacija u 0,1 mol/l Tris/HCl, pH 10,5 Reoxidation in 0.1 mol/l Tris/HCl, pH 10.5

+ 1 mmol/l EDTA + 1 mmol/l EDTA

+ 0,5 mol/l L-arginina + 0.5 mol/l L-arginine

+ 1 mg/ml BSA + 1 mg/ml BSA

a) + 1 mmol/l GSH a) + 1 mmol/l GSH

[image] [image]

6. Ovisnost iskorištenja aktiviranja o koncentraciji proteina pri reoksidaciji (razrijeđenje 1:20 -1:500) 6. Dependence of activation utilization on protein concentration during reoxidation (dilution 1:20 -1:500)

Reoksidacija u 0,1 mol/l Tris/HCl (pH 10,5) Reoxidation in 0.1 mol/l Tris/HCl (pH 10.5)

+ 0 mmol/l EDTA + 0 mmol/l EDTA

+ 0,5 mol/l L-arginina + 0.5 mol/l L-arginine

+ 1 mg/ml BSA + 1 mg/ml BSA

+ 0,5 mmol/l GSH + 0.5 mmol/l GSH

+ 0,5 mmol/l GSSG + 0.5 mmol/l GSSG

[image] [image]

7. Ovisnost iskorištenja aktiviranja o dodatku BSA 7. Dependence of activation utilization on BSA addition

Reoksidacija u 0,1 mol/l Tris/HCl (pH 10,5) Reoxidation in 0.1 mol/l Tris/HCl (pH 10.5)

+ 1 mmol/l EDTA + 1 mmol/l EDTA

+ 0,5 mol/l L-arginina + 0.5 mol/l L-arginine

+ 0,5 mmol/l GSH + 0.5 mmol/l GSH

+ 0,5 mmol/l GSSG + 0.5 mmol/l GSSG

[image] [image]

Slike 1 i 2 pokazuju aktivnost sa i bez CNBr-FSP pri standardnom testu nakon 17 sati reoksidacije pri sobnoj temperaturi u 0,1 mol/l Tris/HCl (pH 10,5) + 1 mmol/l EDTA + 0,5 mol/l L-arginina + 1 mg/ml BSA + 0,5 mmol/l GSH + 0,5 mmol/l GGSG. Na slici 1 i 2 krivulje (A) pokazuju aktivnost u prisutnosti CNBr-FSP, a krivulje (B) pokazuju aktivnost bez CNBr+FSP. Figures 1 and 2 show the activity with and without CNBr-FSP in a standard test after 17 hours of reoxidation at room temperature in 0.1 mol/l Tris/HCl (pH 10.5) + 1 mmol/l EDTA + 0.5 mol/ l L-arginine + 1 mg/ml BSA + 0.5 mmol/l GSH + 0.5 mmol/l GGSG. In Figure 1 and 2, curves (A) show the activity in the presence of CNBr-FSP, and curves (B) show the activity without CNBr+FSP.

PRIMJER 4 EXAMPLE 4

Aktiviranje t-PA preko miješanih disulfida t-PA i GSSG Activation of t-PA via mixed disulfides of t-PA and GSSG

Upotrebljive "refractile bodies" samo dobili prema jednom od ranijih primjera. Redukciju "refractile bodies" smo proveli nakon dvosatne inkubacije pri sobnoj temperaturi u 0,1 mol/l Tris/HCl, pH 8,6, 1 mmol/l EDTA, 6 mol/l Gdn/HCl, 0,2 mol/l DTE pri koncentraciji proteina oko 1 mg/ml. Usable "refractile bodies" only obtained according to one of the earlier examples. The reduction of "refractile bodies" was carried out after a two-hour incubation at room temperature in 0.1 mol/l Tris/HCl, pH 8.6, 1 mmol/l EDTA, 6 mol/l Gdn/HCl, 0.2 mol/l DTE at a protein concentration of about 1 mg/ml.

Reducirani protein, dijaliziran protiv 0,01 mol/l HCl, smo razrijedili u razmjeru 1:1 sa 0,1 mol/l Tris, pH 9,3, 9 mol/l uree i 0,2 mol/l GSSG te inkubirali 5 sati pri sobnoj temperaturi. Nakon zakiseljavanja sa koncentriranom HCl na pH 3, slijedila je dijaliza protiv 0,1 mol/l HCl pri 4°C. Nakon dijalize, ukupna koncentracija proteina je iznosila 0,33 mg/ml. S tako pripremljenim t-PASSG smo postigli optimalne uvjete. The reduced protein, dialyzed against 0.01 mol/l HCl, was diluted 1:1 with 0.1 mol/l Tris, pH 9.3, 9 mol/l urea and 0.2 mol/l GSSG and incubated for 5 hours at room temperature. After acidification with concentrated HCl to pH 3, dialysis against 0.1 mol/l HCl followed at 4°C. After dialysis, the total protein concentration was 0.33 mg/ml. With the t-PASSG prepared in this way, we achieved optimal conditions.

a) pH-optimum aktiviranja t-PASSG a) pH-optimum of t-PASSG activation

U tom primjeru kao i u idućim optimalnim pokusima kod (1) nismo upotrijebili GSSG i (2) aktiviranje smo završili nakon 17 sati inkubacije pri sobnoj temperaturi. Aktiviranje je provedeno sa 1:100 razrijeđenjem u 0,1 mol/l Tris, 1 mmol/l EDTA, 0,5 mol/l L-arginina, 1 mg/ml BSA u 2 mmol/l GSH pri varijaciji vrijednosti pH. In this example, as well as in the following optimal experiments, we (1) did not use GSSG and (2) the activation was completed after 17 hours of incubation at room temperature. Activation was carried out with a 1:100 dilution in 0.1 mol/l Tris, 1 mmol/l EDTA, 0.5 mol/l L-arginine, 1 mg/ml BSA in 2 mmol/l GSH at varying pH values.

[image] [image]

Dobitak smo odredili u postotku aktivnog t-PA s obzirom na upotrebljenu količinu proteina. We determined the gain as a percentage of active t-PA with regard to the amount of protein used.

b) Reproducibilnost rezultata aktiviranja od t-PA b) Reproducibility of activation results from t-PA

Pri identičnim aktivirajućim uvjetima opazili smo za različite vrste mjerenja, različite dobitke koji su između ostalog uvjetovani primjenom standardnog t-PA. Za pojašnjenje te širine sve aktivirajuće podatke smo za 1:100 odnosno 1:200 razrijeđenje stavili u 0,1 mol/l Tris/HCl, pH 8,5, 1 mmol/l EDTA, 0,5 mol/l L-arginina, 1 mg/ml BSA i 2 mmol/l GSH. Under identical activating conditions, we observed for different types of measurements, different gains, which are conditioned, among other things, by the use of standard t-PA. To clarify this width, we put all activating data for a 1:100 or 1:200 dilution in 0.1 mol/l Tris/HCl, pH 8.5, 1 mmol/l EDTA, 0.5 mol/l L-arginine, 1 mg/ml BSA and 2 mmol/l GSH.

[image] [image]

c) Stabilnost aktiviranog proteina c) Stability of the activated protein

Aktiviranje je u navedenim primjerima provedeno sa 1:200 razrijeđenjem u 0,1 mol/l Tris/HCl, 1 mmol/l EDTA, 0,5 mol/l L-arginina, 1 mg/ml BSA i 2 mmol/l GSH. In the above examples, activation was carried out with a 1:200 dilution in 0.1 mol/l Tris/HCl, 1 mmol/l EDTA, 0.5 mol/l L-arginine, 1 mg/ml BSA and 2 mmol/l GSH.

PRIMJER 5 EXAMPLE 5

Aktiviranje gentehnološki pripremljenog interferon-β Activation of genetically engineered interferon-β

"Refractile bodies" smo proizveli prema gornjim metodama. Redukciju/solubilizaciju "refractile bodies" smo izveli na slijedeći način: peletu smo inkubirali 3 sata na 25°C u 10 ml 9,1 mol Tris/HCl, pH 8,6, 6 mol/l Gdn/HCl, 1 mmol/l EDTA i 0,2 mol/l DTE te nakon 30 minuta centrifugiranja pri 4°C i 48000 g, namjestili smo pH gornjeg sloja (supernatanta) na oko 3 pomoću koncentrirane HCl. Zatim smo izveli gel filtraciju preko Sephadex G 25 F u 0,01 mol/l HCl. We produced "refractile bodies" according to the above methods. The reduction/solubilization of "refractile bodies" was performed as follows: the pellet was incubated for 3 hours at 25°C in 10 ml of 9.1 mol Tris/HCl, pH 8.6, 6 mol/l Gdn/HCl, 1 mmol/l EDTA and 0.2 mol/l DTE and after 30 minutes of centrifugation at 4°C and 48000 g, we adjusted the pH of the upper layer (supernatant) to about 3 using concentrated HCl. Then we performed gel filtration through Sephadex G 25 F in 0.01 mol/l HCl.

Eluat smo kontrolirali pomoću transmisije (280 nm) na provodljivost, koncentraciju proteina i reaktivnost. The eluate was controlled by transmission (280 nm) for conductivity, protein concentration and reactivity.

Standardno aktiviranje (100%) smo izveli u 0,1 mol/l Tris/HCl, pH 10,5, 1 mmol/l EDTA, 5 mmol/l GSH, 0,5 mmol/l GSSG i 0,25 mol/l L-arginina. Standard activation (100%) was performed in 0.1 mol/l Tris/HCl, pH 10.5, 1 mmol/l EDTA, 5 mmol/l GSH, 0.5 mmol/l GSSG and 0.25 mol/l L-arginine.

a) Vremenska ovisnost aktiviranja a) Time dependence of activation

Eluat smo razrijedili 1:50 u 0,1 mol/l Tris/HCl, pH 1 mmol/l EDTA, 5 mmol/l GSH, 0,5 mmol/l GSSG i 0,25 mol/l L-arginina. The eluate was diluted 1:50 in 0.1 mol/l Tris/HCl, pH 1 mmol/l EDTA, 5 mmol/l GSH, 0.5 mmol/l GSSG and 0.25 mol/l L-arginine.

[image] [image]

b) Ovisnost aktiviranog dobitka o dodatku L-arginina b) Dependence of activated gain on L-arginine supplementation

Eluat smo razrijedili 1:50 sa 0,1 mol/l Tris/HCl, pH 8,5, 1 mmol/l EDTA, 5 mmol/l GSH, 0,5 mmol/l GSSG te 20 sati aktivirali na 0°C. The eluate was diluted 1:50 with 0.1 mol/l Tris/HCl, pH 8.5, 1 mmol/l EDTA, 5 mmol/l GSH, 0.5 mmol/l GSSG and activated for 20 hours at 0°C.

Ovisnost aktiviranja o L-argininu Dependence of activation on L-arginine

[image] [image]

c) Ovisnost dobitka o dodatku uree c) Dependence of gain on urea addition

Aktivirajuća otopina je odgovarala onoj iz točke b) ali smo aktiviranje provodili tokom 17 sati na 0°C. The activating solution corresponded to the one from point b), but the activation was carried out for 17 hours at 0°C.

Ovisnost aktiviranja o urei Dependence of activation on urea

[image] [image]

d) Ovisnost dobitka aktiviranja o dodatku formamida d) Dependence of the activation gain on the addition of formamide

Aktiviranje kao pod b; uzorke smo kontrolirali nakon 17 sati aktiviranja pri 0°C. Activation as under b; we checked the samples after 17 hours of activation at 0°C.

Ovisnost aktiviranja o formamidu Dependence of activation on formamide

[image] [image]

e) Ovisnost dobitka aktiviranja o redoks puferu e) Dependence of the activation gain on the redox buffer

Eluat smo razrijedili 1:50 u 0,1 M Tris/HCl, pH 8,5, 1 mM EDTA i 0,25 M L-arginina, te smo uzorke kontrolirali nakon 17 sati aktiviranja na 0°C. The eluate was diluted 1:50 in 0.1 M Tris/HCl, pH 8.5, 1 mM EDTA and 0.25 M L-arginine, and the samples were controlled after 17 hours of activation at 0°C.

Ovisnost aktiviranja o GSH/GSSG Dependence of activation on GSH/GSSG

f) [image] Ovisnost dobitka aktiviranja o koncentraciji proteina f) [image] Dependence of activation gain on protein concentration

Eluat smo razrijedili 1:10 do 1:100 u 0,1; Tris/HCl, pH 8,5 1 mM EDTA, 5 mM GSSG i 0,25 M L-arginina, te smo kontrolirali nakon 17 sati inkubacije na 0°C. We diluted the eluate 1:10 to 1:100 in 0.1; Tris/HCl, pH 8.5, 1 mM EDTA, 5 mM GSSG and 0.25 M L-arginine, and we controlled after 17 hours of incubation at 0°C.

cp-ovisnost aktiviranja cp-dependence of activation

[image] [image]

g) Ovisnost dobitka aktiviranja o dodatku BSA g) Dependence of activation gain on BSA addition

Eluat smo razrijedili 1:50 u 0,1 M Tris/HCl, pH 8,5, 1 mM EDTA, 5mM GSH, 0,5 mMGSSG i 0,25 M L-arginina te smo kontrolirali nakon 17 sati aktiviranja na 0°C. The eluate was diluted 1:50 in 0.1 M Tris/HCl, pH 8.5, 1 mM EDTA, 5 mM GSH, 0.5 mMGSSG and 0.25 M L-arginine and was controlled after 17 hours of activation at 0°C .

BSA-ovisnost aktiviranja BSA-dependent activation

[image] [image]

h) Ovisnost dobitka aktiviranja o pH h) Dependence of activation gain on pH

Eluat smo razrijedili 1:50 u 0,1 M Tris/HCl, 1mM EDTA, 5 mM GSH, 0,5 mM GSSF i 0,25 M L-arginina te smo kontrolirali nakon 17 sati aktiviranja na 0°C. The eluate was diluted 1:50 in 0.1 M Tris/HCl, 1 mM EDTA, 5 mM GSH, 0.5 mM GSSF and 0.25 M L-arginine and was controlled after 17 hours of activation at 0°C.

pH-ovisnost aktiviranja pH-dependence of activation

[image] [image]

Claims (23)

1. Postupak za aktiviranje gentehnološki pripremljenih heterolognih, eukariontskih proteina koji sadrže disulfidne mostove, nakon ekspresije u prokariontama sa stanicnim raspadom, solubiliziranjera pri denaturirajućim uvjetima i reducirajućim uvjetima te aktiviranjem pri oksidirajućim uvjetima u prisutnosti GSH/GSSG, naznačen time, da pri stupnju aktiviranja radimo sa pH vrijednosti 9 do 12, koncentracijom GSH 0,l do 20 mmol/l, koncentracijom GSSG 0,01 do 3 mmol/l,ne-denaturirajućom koncentracijom denaturirajućeg sredstva.1. Procedure for activating genetically prepared heterologous, eukaryotic proteins containing disulfide bridges, after expression in prokaryotes with cell disintegration, solubilizer under denaturing conditions and reducing conditions, and activation under oxidizing conditions in the presence of GSH/GSSG, indicated by the fact that at the activation stage we work with a pH value of 9 to 12, a GSH concentration of 0.1 to 20 mmol/l, a GSSG concentration of 0.01 to 3 mmol/l, a non-denaturing concentration of a denaturing agent. 2. Postupak prema zahtjevu 1, naznačen time, da u stupnju aktiviranja pH vrijednost iznosi 9,5 do 11.2. The method according to claim 1, characterized in that in the activation stage the pH value is 9.5 to 11. 3. Postupak prema jednom od zahtjeva 1 ili 2, naznačen time, da u stupnju aktiviranja koncentracija GSH iznosi 0,2 do 10 mmol/1 i/ili koncentracija GSSG iznosi 0,05 do 1 mniol/l.3. The method according to one of claims 1 or 2, characterized in that in the activation stage the concentration of GSH is 0.2 to 10 mmol/1 and/or the concentration of GSSG is 0.05 to 1 mniol/l. 4. Postupak prema jednom od ranijih zahtjeva, naznačen time, da nakon solubiliziranja i prije aktiviranja, izvedemo stupanj čišćenja.4. The procedure according to one of the earlier requirements, indicated by the fact that after solubilization and before activation, we perform a cleaning step. 5. Postupak prema jednom od zahtjeva 1 do 3, naznačen time, da izvedemo aktiviranje bez ranijeg odvajanja denaturirajućeg/redukcijskog sredstva, pri čemu reakcijsku otopinu nakon denaturiranja/redukcije razrijedimo aktivnim puferom i pri idućem aktiviranju koncentracija GSSG prekorači preostalu rezidualnu koncentraciju DTE.5. The method according to one of claims 1 to 3, indicated by the fact that we perform activation without earlier separation of the denaturing/reducing agent, whereby the reaction solution after denaturation/reduction is diluted with an active buffer and during the next activation the concentration of GSSG exceeds the remaining residual concentration of DTE. 6. Varijanta postupka za aktiviranje gentehnološki pripremljenih, heterolognih, eukariontskih proteina koji sadrže disulfidne mostove, nakon ekspresije u prokariontama sa staničnim raspadom, solubiliziranjem pri denaturirajuoćim i reducirajućim uvjetima, te aktiviranjem pri oksidirajućim uvjetima u prisutnosti GSH, naznačen time, da redukcijsko/denaturirajuće sredstvo odvojino, dodatkom GSSG pri denaturirajućin uvjetima prevedemo tiolne skupine proteina u miješane disulfide proteina i glutationa, te u stupnju aktiviranja radimo pri pH vrijednosti 7 do 10,5 i koncentraciji GSH 0,5 do 5 mmol/1 i pri ne-denaturirajućim koncentracijama denaturirajućeg sredstva.6. A variant of the procedure for activating genetically prepared, heterologous, eukaryotic proteins containing disulfide bridges, after expression in prokaryotes with cell disintegration, solubilization under denaturing and reducing conditions, and activation under oxidizing conditions in the presence of GSH, indicated that the reducing/denaturing agent separately, with the addition of GSSG under denaturing conditions, we convert the thiol groups of proteins into mixed disulfides of proteins and glutathione, and in the activation stage we work at a pH value of 7 to 10.5 and a GSH concentration of 0.5 to 5 mmol/1 and at non-denaturing concentrations of the denaturing agent . 7. Postupak prema jednom od zahtjeva 1 do 6, naznačen time, da izvedemo ekspresiju u E. coli ili P. putida.7. The method according to one of claims 1 to 6, characterized in that we carry out the expression in E. coli or P. putida. 8. Postupak prema jednom od zahtjeva 1 do 7, naznačen time, da u stupnju aktiviranja, kao denaturirajuće sredstvo upotrijebimo arginin, gvanidin-hidroklorid i/ili barem jedan spoj opće formule R2-CO-NRR1(I), u kojoj R i R1, označavaju vodik: ili alkil sa 1 do 4 atoma ugljika, a R2 označava vodik ili NHR1, ili alkil sa 1 do 3 atoma ugljika.8. The method according to one of claims 1 to 7, characterized in that in the activation stage, as a denaturing agent, we use arginine, guanidine hydrochloride and/or at least one compound of the general formula R2-CO-NRR1(I), in which R and R1 , denote hydrogen: or alkyl with 1 to 4 carbon atoms, and R 2 denotes hydrogen or NHR 1 , or alkyl with 1 to 3 carbon atoms. 9. Postupak prema zahtjevu 8, naznačen time, da je koncentracija arginina i/ili gvanidin-hidroklorida 0,1 do 1,0 mol/1, naročito je povoljno 0,25 do 0,8 mol/l.9. The method according to claim 8, characterized in that the concentration of arginine and/or guanidine hydrochloride is 0.1 to 1.0 mol/l, particularly preferably 0.25 to 0.8 mol/l. 10. Postupak prema zahtjevu 8, naznačen time, da koncentracija spoja opće formule I iznosi 0,5 do 4 mol/1, naročito je povoljno 1 do 3,5 nol/1.10. The method according to claim 8, characterized in that the concentration of the compound of general formula I is 0.5 to 4 mol/1, particularly preferably 1 to 3.5 nol/1. 11. Postupak prema jednom od ranijih zahtjeva, naznačen time, da u stupnju aktiviranja radimo u prisutnosti neproteolitički učinkovitog proteina, naročito je povoljno u prisutnosti albumina goveđeg seruma.11. The method according to one of the earlier claims, characterized by the fact that in the activation step we work in the presence of a non-proteolytically effective protein, it is particularly advantageous in the presence of bovine serum albumin. 12. Postupak prema jednom od ranijih zahtjeva, naznačen time da stanični raspad izvedemo pomoću ultrazvuka, visokotlačne disperzije ili lizocima.12. The procedure according to one of the previous claims, characterized in that cell disintegration is carried out using ultrasound, high-pressure dispersion or lysosomes. 13. Postupak prema zahtjevu l2, naznačen time, da izvedemo stanični raspad u razrijeđenoj vodenoj puferska otopini, naročito je povoljno u 0,1 mol/l Tris, pri neutralnoj ili slabo kiseloj pH vrijednosti.13. The method according to claim 12, indicated by the fact that we carry out cell disintegration in a diluted aqueous buffer solution, particularly preferably in 0.1 mol/l Tris, at a neutral or slightly acidic pH value. 14. Postupak prema jednom od ranijih zahtjeva, naznačen time, da nakon staničnog raspada odvojimo netopive sastojke.14. The method according to one of the previous claims, characterized in that after cell disintegration, we separate the insoluble ingredients. 15. Postupak prema jednon od ranijih zahtjeva, naznačen time, da u stupnju solubiliziranja radimo pri alkalnoj.pH vrijednosti u prisutnosti redukcijskog sredstva iz merkapto skupine i u prisutnosti denaturirajućeg sredstva.15. The procedure according to one of the earlier requirements, indicated by the fact that in the solubilization stage we work at an alkaline pH value in the presence of a reducing agent from the mercapto group and in the presence of a denaturing agent. 16. Postupak prena zahtjevu 15, naznačen time, da radimo u prisutnosti gvanidin-hidroklorida i/ili spoja opće fornule I kao denaturirajućeg sredstva.16. The method according to claim 15, characterized in that we work in the presence of guanidine hydrochloride and/or a compound of general formula I as a denaturing agent. 17. Postupak prema zahtjevu 16, naznačen time, da koncentracija gvanidin-hidroklorida iznosi 6 mol/l, koncentracija spoja opće formule I iznosi 8 mol/l.17. The method according to claim 16, characterized in that the concentration of guanidine hydrochloride is 6 mol/l, the concentration of the compound of general formula I is 8 mol/l. 18. Postupak prema jednom od zahtjeva 15 do 17, naznačen time, da radimo u prisutnosti DTE, β-merkaptoetanola ili GSH.18. The method according to one of claims 15 to 17, characterized in that we work in the presence of DTE, β-mercaptoethanol or GSH. 19. Postupak prema jednom od ranijih zahtjeva, naznačen time, da čiščenje i odvajanje redukcijskih, oksidacijskih i denaturirajućih sredstava izvedeno pomoću sterične kromatografije sa izlučivanjem ili pomoću dijalize.19. The method according to one of the earlier claims, characterized in that the purification and separation of reducing, oxidizing and denaturing agents is carried out by means of steric exclusion chromatography or by means of dialysis. 20. Postupak prema jednom od ranijih zahtjeva, naznačen time, da nakon stupnja aktiviranja izvedemo stupanj čišćenja pomoću dijalize.20. The method according to one of the earlier claims, characterized in that after the activation step, we perform a cleaning step using dialysis. 21. Postupak prema jednom od zahjeva 1 do 20, naznačen time, da kao gentehnološki pripremljen eukariontski protein upotrijebimo t-PA.21. The method according to one of claims 1 to 20, characterized in that we use t-PA as a genetically prepared eukaryotic protein. 22. Postupak prema jenom od zahtjeva 1 do 20, naznačen time, da kao gentehnolcški pripremljen eukariontski protin upotrijebimo interferon-β.22. The method according to claim 1 to 20, characterized in that interferon-β is used as a genetically prepared eukaryotic protein. 23. Postupak prema zahtjevu 6, naznačen time, da odvojimo miješani. disulfid proteina i glutationa pomoću ionsko-izmjenjivačke obrade od nemodificiranog proteina.23. The method according to claim 6, characterized in that we separate the mixed. protein and glutathione disulfide using ion-exchange treatment from unmodified protein.
HRP-1796/86A 1985-10-23 1992-10-16 Process for activating heterologous, eucariotic proteins, genetically engineered and presenting disulphide bridges after their expression in procaryotic cells HRP921075B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853537708 DE3537708A1 (en) 1985-10-23 1985-10-23 METHOD FOR ACTIVATING T-PA AFTER EXPRESSION IN PROKARYONTS
YU179686A YU47185B (en) 1985-10-23 1986-10-21 PROCEDURE FOR THE ACTIVATION OF HETEROLOGICAL EUKARIOTIC PROTEINS PREPARED BY GEN-TECHNOLOGY HAVING DISULFID BRIDES OF POLSE EXPRESSION IN PROKARIOTS

Publications (2)

Publication Number Publication Date
HRP921075A2 true HRP921075A2 (en) 1995-06-30
HRP921075B1 HRP921075B1 (en) 1999-02-28

Family

ID=6284269

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP-1796/86A HRP921075B1 (en) 1985-10-23 1992-10-16 Process for activating heterologous, eucariotic proteins, genetically engineered and presenting disulphide bridges after their expression in procaryotic cells

Country Status (26)

Country Link
EP (3) EP0393725B1 (en)
JP (2) JPH0728745B2 (en)
KR (1) KR900009139B1 (en)
AT (2) ATE98648T1 (en)
AU (2) AU590029B2 (en)
CA (1) CA1329157C (en)
CZ (1) CZ280727B6 (en)
DD (1) DD260517A5 (en)
DE (3) DE3537708A1 (en)
DK (2) DK175091B1 (en)
ES (2) ES2061434T3 (en)
FI (2) FI94050C (en)
GR (2) GR920300062T1 (en)
HK (2) HK153596A (en)
HR (1) HRP921075B1 (en)
HU (2) HU204855B (en)
IE (1) IE62634B1 (en)
IL (1) IL80325A (en)
PT (1) PT83609B (en)
SI (1) SI8611796B (en)
SK (1) SK278317B6 (en)
SU (1) SU1607689A3 (en)
UA (1) UA6023A1 (en)
WO (1) WO1987002673A2 (en)
YU (1) YU47185B (en)
ZA (1) ZA868012B (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766205A (en) * 1985-11-13 1988-08-23 Beatrice Companies, Inc. Method for isolation of recombinant polypeptides in biologically active forms
JP2581668B2 (en) * 1985-11-27 1997-02-12 三井東圧化学株式会社 Novel DNA sequence encoding human tissue plasminogen activator derived from normal human cells and vectors and cells containing the same
US4777043A (en) * 1985-12-17 1988-10-11 Genentech, Inc. Stabilized human tissue plasminogen activator compositions
AU621051B2 (en) 1987-04-28 1992-03-05 Amgen, Inc. Method for purifying granulocyte-macrophage colony stimulating factor
DE3722082A1 (en) * 1987-07-03 1989-01-12 Behringwerke Ag METHOD FOR DETERMINING THE ACTIVITY OF SERINE PROTEASES OR SERINE PROTEASE INHIBITORS
CA1340586C (en) * 1988-09-23 1999-06-08 Cetus Corporation Process for recovering microbially produced interferon-beta
DE3832898A1 (en) * 1988-09-28 1990-04-12 Boehringer Mannheim Gmbh PRAEPARATE OF EXPRESSED PLASMINOGEN ACTIVATOR IN PROKARYONS
DE3835350A1 (en) * 1988-10-17 1990-04-19 Boehringer Mannheim Gmbh ACTIVATION OF GENETICALLY MANUFACTURED ANTIBODY EXPRESSED IN PROKARYONS
DE3903581A1 (en) * 1989-02-07 1990-08-16 Boehringer Mannheim Gmbh FABRIC PLASMINOGEN ACTIVATOR DERIVATIVE
DE3942143A1 (en) * 1989-12-20 1991-06-27 Boehringer Mannheim Gmbh T-PA PRO STABILIZATION
DE69126434D1 (en) * 1990-08-20 1997-07-10 Novo Nordisk As Process for the production of biologically active IGF-1 by using amino-terminally extended IGF-1
AU664021B2 (en) * 1990-09-05 1995-11-02 Natinco Nv Solubilization of proteins in active forms
DE4037196A1 (en) * 1990-11-22 1992-05-27 Boehringer Mannheim Gmbh METHOD FOR REACTIVATING DENATURED PROTEIN
DE4113750A1 (en) * 1991-04-26 1992-10-29 Boehringer Mannheim Gmbh IMPROVEMENT OF RENATURATION IN THE SECRETION OF DISULFID-BRIDGED PROTEINS
DE4139000A1 (en) 1991-11-27 1993-06-03 Boehringer Mannheim Gmbh METHOD OF GENERATING BIOLOGICALLY ACTIVE SS-NGF
US5212091A (en) * 1992-03-02 1993-05-18 Monsanto Company Method of producing tissue factor pathway inhibitor
WO1993019084A1 (en) * 1992-03-24 1993-09-30 Synergen, Inc. Refolding and purification of insulin-like growth factor i
DK0600372T3 (en) 1992-12-02 1997-08-11 Hoechst Ag Process for the preparation of proinsulin with properly connected cystine bridges.
DE4405179A1 (en) * 1994-02-18 1995-08-24 Hoechst Ag Method of obtaining insulin with correctly connected cystine bridges
FR2729972B1 (en) * 1995-01-31 1997-04-18 Sanofi Sa PROCESS FOR THE EXTRACTION OF PERIPLASMIC PROTEINS FROM PROKARYOTIC MICROORGANISMS IN THE PRESENCE OF ARGININ
US5714371A (en) * 1995-05-12 1998-02-03 Schering Corporation Method for refolding insoluble aggregates of hepatitis C virus protease
US5728804A (en) * 1995-06-02 1998-03-17 Research Corporation Technologies, Inc. Use of cyclodextrins for protein renaturation
US6342585B1 (en) * 1996-06-11 2002-01-29 Roche Diagnostics Gmbh Method of activating denatured protein
WO2001087925A2 (en) 2000-05-16 2001-11-22 Bolder Biotechnology, Inc. Methods for refolding proteins containing free cysteine residues
US7153943B2 (en) 1997-07-14 2006-12-26 Bolder Biotechnology, Inc. Derivatives of growth hormone and related proteins, and methods of use thereof
US6653098B1 (en) * 1998-02-23 2003-11-25 G. D. Searle & Co. Method of producing mouse and human endostatin
DE19850429A1 (en) * 1998-10-27 2000-05-04 Andre Schrattenholz Fragments
EP1048732A1 (en) 1999-04-26 2000-11-02 F. Hoffmann-La Roche Ag Process for producing natural folded and secreted proteins
EP1077263A1 (en) * 1999-07-29 2001-02-21 F.Hoffmann-La Roche Ag Process for producing natural folded and secreted proteins by co-secretion of chaperones
DE10105912A1 (en) * 2001-02-09 2002-08-14 Roche Diagnostics Gmbh Recombinant Proteinase K
DE10105911A1 (en) 2001-02-09 2002-08-14 Roche Diagnostics Gmbh Expression of the recombinant proteinase K from Tritirachium album in yeast
DE102005033250A1 (en) 2005-07-15 2007-01-18 Bioceuticals Arzneimittel Ag Process for purifying G-CSF
DE102006009437A1 (en) 2006-03-01 2007-09-13 Bioceuticals Arzneimittel Ag G-CSF liquid formulation
AR062069A1 (en) 2006-07-14 2008-10-15 Genentech Inc REPLEGED OF RECOMBINANT PROTEINS
US8617531B2 (en) 2006-12-14 2013-12-31 Bolder Biotechnology, Inc. Methods of making proteins and peptides containing a single free cysteine
NZ601759A (en) 2010-03-17 2013-07-26 Biogenerix Gmbh Method for obtaining biologically active recombinant human g-csf
EP2630153A4 (en) * 2010-10-20 2015-06-03 Medimmune Llc Methods for processing inclusion bodies
HUP1200171A1 (en) 2012-03-19 2013-09-30 Richter Gedeon Nyrt Methods for the production of polypeptides
HUP1200172A2 (en) 2012-03-19 2013-10-28 Richter Gedeon Nyrt Methods for refolding g-csf from inclusion bodies
CN103852527B (en) * 2012-12-05 2015-05-13 中国科学院大连化学物理研究所 High-flux protein sample pre-treatment device
US10457716B2 (en) 2014-08-06 2019-10-29 University Of Notre Dame Du Lac Protein folding and methods of using same
CA3048735A1 (en) 2016-12-30 2018-07-05 Biogend Therapeutics Co., Ltd. Recombinant polypeptides, compositions, and methods thereof
WO2022129460A1 (en) 2020-12-18 2022-06-23 Richter Gedeon Nyrt. Methods for the purification of refolded fc-peptide fusion protein

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135481A (en) * 1974-09-18 1976-03-25 Fujiwa Kako Kk KOJUNDOHITOROKINAAZE NO SEIHO
US4468633A (en) 1982-04-28 1984-08-28 The Bendix Corporation Adjustable microwave power combiner for a plurality of coaxially mounted impatt diodes
IL68561A (en) 1982-05-05 1991-01-31 Genentech Inc Preparation of polypeptide with human tissue plasminogen activator function,processes for making it,and dna and transformed cell intermediates thereof
US4432895A (en) * 1982-11-24 1984-02-21 Hoffmann-La Roche Inc. Monomeric interferons
GR79124B (en) * 1982-12-22 1984-10-02 Genentech Inc
ATE107356T1 (en) * 1983-03-25 1994-07-15 Celltech Ltd METHOD OF PRODUCING A PROTEIN.
JPS6051119A (en) * 1983-08-30 1985-03-22 Green Cross Corp:The Dried pharmaceutical preparation of urokinase
US4530787A (en) * 1984-03-28 1985-07-23 Cetus Corporation Controlled oxidation of microbially produced cysteine-containing proteins
US4748234A (en) * 1985-06-26 1988-05-31 Cetus Corporation Process for recovering refractile bodies containing heterologous proteins from microbial hosts
US4766205A (en) * 1985-11-13 1988-08-23 Beatrice Companies, Inc. Method for isolation of recombinant polypeptides in biologically active forms
FR2596360B1 (en) * 1986-04-01 1989-02-17 Sotralentz Sa CONTAINER ON PALLET WITH FOLDED AND REINFORCED MESH PROTECTION DEVICE
JPH0651119A (en) * 1992-07-28 1994-02-25 Sekisui Chem Co Ltd Production of phase difference plate

Also Published As

Publication number Publication date
JPS62502895A (en) 1987-11-19
CA1329157C (en) 1994-05-03
FI872753A (en) 1987-06-22
EP0219874A2 (en) 1987-04-29
FI94050B (en) 1995-03-31
SK752686A3 (en) 1996-10-01
FI933868A (en) 1993-09-03
WO1987002673A2 (en) 1987-05-07
DK320387D0 (en) 1987-06-23
ES2020498T3 (en) 1996-04-01
IE62634B1 (en) 1995-02-22
AU590029B2 (en) 1989-10-26
AU4132189A (en) 1990-01-04
HK153496A (en) 1996-08-16
UA6023A1 (en) 1994-12-29
EP0393725A1 (en) 1990-10-24
AU607083B2 (en) 1991-02-21
FI94050C (en) 1995-07-10
YU179686A (en) 1988-06-30
DD260517A5 (en) 1988-09-28
SU1607689A3 (en) 1990-11-15
FI95578B (en) 1995-11-15
FI95578C (en) 1996-02-26
FI933868A0 (en) 1993-09-03
DE3689404D1 (en) 1994-01-27
YU47185B (en) 1995-01-31
ZA868012B (en) 1987-06-24
HRP921075B1 (en) 1999-02-28
CZ280727B6 (en) 1996-04-17
ES2061434T3 (en) 1994-12-16
JPH0728745B2 (en) 1995-04-05
ATE98648T1 (en) 1994-01-15
GR3018410T3 (en) 1996-03-31
HK153596A (en) 1996-08-16
DK175091B1 (en) 2004-05-24
EP0219874A3 (en) 1988-02-10
EP0253823A1 (en) 1988-01-27
AU6599386A (en) 1987-05-19
IE862683L (en) 1987-04-23
DE3650449D1 (en) 1996-01-25
DK200001897A (en) 2000-12-18
SI8611796B (en) 1998-06-30
SI8611796A (en) 1996-10-31
JPH0824594B2 (en) 1996-03-13
ES2020498A4 (en) 1991-08-16
HU204855B (en) 1992-02-28
FI872753A0 (en) 1987-06-22
IL80325A0 (en) 1987-01-30
JPH04218387A (en) 1992-08-07
PT83609A (en) 1986-11-01
DK320387A (en) 1987-06-23
EP0393725B1 (en) 1995-12-13
EP0219874B1 (en) 1993-12-15
KR870700601A (en) 1987-12-30
KR900009139B1 (en) 1990-12-22
SK278317B6 (en) 1996-10-02
PT83609B (en) 1988-10-14
ATE131489T1 (en) 1995-12-15
CZ752686A3 (en) 1996-01-17
DE3537708C2 (en) 1993-07-08
WO1987002673A3 (en) 1987-10-22
DE3537708A1 (en) 1987-04-23
IL80325A (en) 1992-06-21
HUT43643A (en) 1987-11-30
GR920300062T1 (en) 1992-08-31
DK175109B1 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
HRP921075A2 (en) Process for activating heterologous, eucariotic proteins, genetically engineered and presenting disulphide bridges after their expression in procaryotic cells
EP0155387B1 (en) Fibronolytically active hybrid protein, process for its preparation and pharmaceutical composition
JP4383546B2 (en) Improved processing method of activated protein C
EP0364926A2 (en) Activation of recombinant antibodies expressed in prokaryotes
Dodd et al. Isolation and preliminary characterisation of active B-chain of recombinant tissue-type plasminogen activator
Zolfaghari et al. A high-molecular-mass neutral endopeptidase-24.5 from human lung
AU620927B2 (en) A preparation of plasminogen activator expressed in prokaryotes
CA2092158A1 (en) Method of activating a blood coagulation factor
Sugiura et al. Purification and properties of human kidney dipeptidases
CZ280848B6 (en) Activation method of heterologous proteins obtained by genetic technology and containing disulfide bridges of eukaryotic origin after expression in prokaryotic organisms
JP2004057064A (en) Method for preventing degradation of nucleic acid, method for extracting nucleic acid, and method for storing nucleic acid
Foltmann et al. Comparative investigations on pig gastric proteases and their zymogens
Swanson et al. The identification of prolyl endopeptidase in bovine lenses: a preliminary report
KR100273718B1 (en) Novel fibrin dissolving enzyme
Sangild COMPARATIVE INVESTIGATIONS ON PIG GASTRIC PROTEASES AND THEIR ZYMOGENS
JPH07100032B2 (en) Method for producing high-purity tissue plasminogen activator
Kregar et al. Extracellular proteinases of Claviceps purpurea. Isolation and characterization of an aspartic proteinase
JPS63145297A (en) Purification of protein
JPS6226298A (en) Improvement for folding protein containing disulfide bridge

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
B1PR Patent granted
ODRP Renewal fee for the maintenance of a patent

Payment date: 20051013

Year of fee payment: 20

PB20 Patent expired after termination of 20 years

Effective date: 20061022