DK175091B1 - Method for activating gene-technologically prepared, heterologous, disulfide-bridged eukaryotic proteins after expression in prokaryotic cells - Google Patents

Method for activating gene-technologically prepared, heterologous, disulfide-bridged eukaryotic proteins after expression in prokaryotic cells Download PDF

Info

Publication number
DK175091B1
DK175091B1 DK198703203A DK320387A DK175091B1 DK 175091 B1 DK175091 B1 DK 175091B1 DK 198703203 A DK198703203 A DK 198703203A DK 320387 A DK320387 A DK 320387A DK 175091 B1 DK175091 B1 DK 175091B1
Authority
DK
Denmark
Prior art keywords
process according
mol
mmol
concentration
reactivation
Prior art date
Application number
DK198703203A
Other languages
Danish (da)
Other versions
DK320387A (en
DK320387D0 (en
Inventor
Rainer Rudolph
Stephan Fischer
Ralf Mattes
Original Assignee
Roche Diagnostics Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Diagnostics Gmbh filed Critical Roche Diagnostics Gmbh
Publication of DK320387A publication Critical patent/DK320387A/en
Publication of DK320387D0 publication Critical patent/DK320387D0/en
Priority to DK200001897A priority Critical patent/DK175109B1/en
Application granted granted Critical
Publication of DK175091B1 publication Critical patent/DK175091B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6456Plasminogen activators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6456Plasminogen activators
    • C12N9/6459Plasminogen activators t-plasminogen activator (3.4.21.68), i.e. tPA
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • C07K1/1133General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure by redox-reactions involving cystein/cystin side chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • C07K14/565IFN-beta
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21069Protein C activated (3.4.21.69)

Abstract

Method for activating non-glycosylated tissue plasminogen activator (t-PA) after its expression in prokaryotic cells comprises cell lysis; solubilisation under denaturing and reducing conditions, and reactivation under oxidising conditions in presence of reduced and oxidised glutathione (G5H, G55G). The new feature is that in the last stage is at pH 9-12 (pref. 9.5-11) with G5H and G55G concns. 0.1-20, pref. 0.2-10, mM and 0.01-3, pref. 0.5-1, mM, respectively, and with a non-denaturing concn. of the denaturing agent. Esp. the method is applied to t-PA expressed in E.coli and P. putida. The denaturing agent is pref. arginine, guanidine hydrochloride (both at 0.1-1, esp. 0.25-0.75, mM) or urea, at 0.5-4 (esp. 1-3.5) M in the last stage.

Description

DK 175091 B1DK 175091 B1

Opfindelsen angår en fremgangsmåde til aktivering af genteknologisk fremstillede, disulfidbro-holdige eukaryotiske proteiner efter ekspression i prokaryotiske celler.The invention relates to a method for activating gene-technologically prepared disulfide-bridged eukaryotic proteins after expression in prokaryotic cells.

Ved ekspressionen af heterologe proteiner i prokaryote celler danner disse proteiner i værtscellerne ofte inaktive, tungtopløselige aggregater (såkaldte "refractile bodies”), som 5 desuden er forurenede med værtscellernes proteiner. Man antager, at dannelsen af sådanne "refractile bodies" er en følge af den ved ekspressionen opståede høje proteinkoncentration i cellen; Det vides, at dannelsen af store enzymmængder i cellen fører til enzymernes sammenklumpning til uopløselige, højmolekylære, for det meste inaktive partikler. Før sådanne proteiner kan anvendes til f.eks. terapeutiske formål, skal disse 10 derfor oprenses og overføres til deres aktive form.In the expression of heterologous proteins in prokaryotic cells, these proteins in the host cells often form inactive, highly soluble aggregates (so-called "refractile bodies") which are additionally contaminated with the host cells' proteins. It is believed that the formation of such "refractile bodies" is a consequence of It is known that the formation of large amounts of enzymes in the cell leads to the clumping of the enzymes into insoluble, high molecular weight, mostly inactive particles, before such proteins can be used, for example, for therapeutic purposes. therefore, purified and transferred to their active form.

Ifølge kendte fremgangsmåder kan en reaktivering af sådanne, som aggregater foreliggende proteiner gennemføres i flere trin (sammenlign f.eks. R. Jaenicke, FEBS Federation of European Biochemical Societies, bind 52 (1979) 187 til 198; R. Rudolph et al., Biochemistry 18 (1979) 5572 til 5575): 15 I det første trin opnås en solubilisering ved tilsætning af kraftigt virkende denatureringsmidler, eksempelsvis guanidin- hydrochlorid eller urinstof i høj koncentration eller ved tilsætning af stærkt sure agentier, eksempelvis glycin/phosphor- syre-rblandinger. Som yderligere hjælpestoffer har reducerende SH-reagentier (f.eks. dithioerythritol, DTE) og EDTA vist sig som egnede, f.eks. ved renaturering af LDH. Såfremt proteinet er forure-20 net med proteiner fra værtscellen følger som næste trin en oprensning ved i og for sig kendte og gængse metoder, f.eks. gel- eller ionudbytterchromatografi. Derefter fortyndes kraftigt, for at nedsætte denatureringsmidlets koncentration. Ved anvendelse af guanidin-hydrochlorid fortyndes herved til koncentrationer under 0,5 mol/1. Ved enzymer med frie SH-grupper viste det sig at være fordelagtigt at tilsætte 25 SH-gruppebeskyttende agentier (sammenlign f.eks. R. Jaenicke, Journal Polymer Science, Part C 16 (1967) 2143 til 2160).According to known methods, reactivation of such proteins as aggregates of present proteins can be carried out in several steps (compare, e.g., R. Jaenicke, FEBS Federation of European Biochemical Societies, Vol. 52 (1979) 187 to 198; R. Rudolph et al. Biochemistry 18 (1979) 5572 to 5575): In the first step, solubilization is achieved by the addition of potent denaturants, for example guanidine hydrochloride or high concentration urea or by the addition of highly acidic agents, for example glycine / phosphoric acid mixtures . As additional adjuvants, reducing SH reagents (e.g., dithioerythritol, DTE) and EDTA have proven useful, e.g. by renaturating LDH. If the protein is contaminated with proteins from the host cell, the next step follows a purification by methods known per se and in the art, e.g. gel or ion exchange chromatography. Then vigorously dilute to reduce the denaturant concentration. Using guanidine hydrochloride is thereby diluted to concentrations below 0.5 mol / l. For enzymes with free SH groups, it was found advantageous to add 25 SH group protecting agents (compare, e.g., R. Jaenicke, Journal Polymer Science, Part C 16 (1967) 2143 to 2160).

UK Ί /5Uyi bl 2 I den europæiske patentansøgning EP-A-0114506 beskrives fremgangsmåder til isolering, oprensning og reaktivering af nogle heterologe ekspressionsprodukter fra bakteriekulturer; til reaktiveringen overføres opløsninger af "refractile bodies" i et kraftigt virkende denatureringsmiddel a) direkte til en opløsning i et svagere denatureringsmid-5 del, som herefter udsættes for oxiderende betingelser for at gendanne disulfidbroer; b) proteinet sulfoneres, overføres herefter til en opløsning i et svagere denatureringsmiddel, og S-sulfonatgruppeme omdannes ved behandling med et sulfhydrylreagens i dets reducerede og oxiderede form, f.eks. med GSH/GSSG, til -S-S-grupper; eller c) opløsningen behandles i et svagt denatureringsmiddel direkte med sulfhydryl-reagenset, f.eks. med 10 GSH/GSSG. Et typisk eksempel, hvorved de oven for anførte problemer forekommer, er t-PA.UK Ί / 5Uyi bl 2 European patent application EP-A-0114506 discloses methods for isolating, purifying and reactivating some heterologous expression products from bacterial cultures; for the reactivation, solutions of "refractile bodies" in a powerful denaturing agent are transferred a) directly to a solution of a weaker denaturing agent, which is then subjected to oxidative conditions to restore disulfide bridges; b) the protein is sulfonated, then transferred to a solution in a weaker denaturing agent, and the S-sulfonate groups are converted by treatment with a sulfhydryl reagent in its reduced and oxidized form, e.g. with GSH / GSSG, for -S-S groups; or c) the solution is treated in a weak denaturant directly with the sulfhydryl reagent, e.g. with 10 GSH / GSSG. A typical example whereby the above problems occur is t-PA.

Proteinmatrixens hovedkomponent i koaguleret blod er polymert fibrin. Denne protein-matrix opløses ved hjælp af plasmin, som dannes ud fra plasminogen via aktivering gennem de såkaldte plasminogen-aktivatorer, f.eks. gennem t-PA (vævs-plasminogen-15 aktivator, tissue-type plasminogenaktivator). Den enzymatiske aktivitet af naturligt eller ud fra højkaryotiske celler genteknologisk indvundet t-PA (katalytisk aktivering af plasminogen til plasmin) er ved fraværelse af fibrin eller fibrinspaltningsprodukter (FSP) særdeles ringe, men kan ved disse stimulatorers tilstedeværelse forøges væsentligt (mere end faktoren 10). Denne såkaldte aktivitetstimulerbarhed er en afgørende fordel af t-PA 20 i forhold til andre kendte plasminogenaktivatorer, såsom urokinase eller streptokinase (sammenlign f.eks. M. Hoylaerts et al., J. Biol. Chem. 257 (1982) 2912 til 2919; Nieuwenhiuzen et al., Biochemica et Biophysica Acta 755 (1983) 531 til 533). Stimuler-barhedsfaktoren med BrCN-spaltningsprodukter angives derfor i litteraturen forskelligt, og der nævnes tal op til 35.The major component of the protein matrix in coagulated blood is polymeric fibrin. This protein matrix is dissolved by plasmin which is formed from plasminogen via activation through the so-called plasminogen activators, e.g. through t-PA (tissue plasminogen activator, tissue type plasminogen activator). The enzymatic activity of natural or from high-karyotic cells genetically recovered t-PA (catalytic activation of plasminogen to plasmin) is extremely low in the absence of fibrin or fibrin cleavage products (FSP), but can be significantly increased in the presence of these stimulators (more than factor 10). . This so-called activity stimulability is a key advantage of t-PA 20 over other known plasminogen activators such as urokinase or streptokinase (compare, e.g., M. Hoylaerts et al., J. Biol. Chem. 257 (1982) 2912 to 2919; Nieuwenhiuzen et al., Biochemica et Biophysica Acta 755 (1983) 531 to 533). Therefore, the stimulus potency factor with BrCN cleavage products is stated differently in the literature and numbers up to 35 are mentioned.

25 Et t-PA-agtigt, ikke-glycosyleret produkt dannes også i genetisk manipuleret prokaryotiske celler (efter indslusning af cDNA); et sådant produkt virker imidlertid ikke stimulerende på aktiviteten af en t-PA fra eukaryotiske celler. Dette kan eventuelt skyldes, at reaktionsbetingelseme i den prokaryotiske celle på en sådan måde er forskellige fra det — DK 175091 B1 3 i den eukaryotiske celle, hvorfra genet stammer, at der allerede fra begyndelse af ikke dannes et aktivt produkt, som eksempelvis kunne skyldes, at de talrige SS-broer, som det naturlige aktive molekyle indeholder, på forkert måde er knyttet sammen eller slet ikke dannes. Ved den terapeutiske anvendelse af t-PA er imidlertid ikke kun alene den 5 enzymatiske aktivitet nødvendig, men desuden også dens stimulerbarhed. Til den kendsgerning, at den prokaryotiske celle formodentlig ikke skaber de rigtige betingelser for at tilvejebringe aktiviteten af eukaryotiske proteiner på en rigtig måde, henvises i sammenhæng med andre stoffer i EMBO Journal 4, nr. 3 (1985) 775 til 780.A t-PA-like, non-glycosylated product is also formed in genetically engineered prokaryotic cells (after cDNA entry); however, such a product does not stimulate the activity of a t-PA from eukaryotic cells. This may be due to the fact that the reaction conditions in the prokaryotic cell are so different from that in the eukaryotic cell from which the gene originates that, from the beginning, no active product is formed which could be due, for example, that the numerous SS bridges containing the naturally active molecule are incorrectly linked or not formed at all. However, in the therapeutic use of t-PA, not only is the enzymatic activity necessary, but also its stimulability. The fact that the prokaryotic cell probably does not create the right conditions to provide the activity of eukaryotic proteins properly is referred to in the context of other substances in EMBO Journal 4, No. 3 (1985) 775 to 780.

Ifølge den europæiske patentansøgning EP-A-0093639 bliver de fra E. coli opnåede 10 cellepellets til reaktiveringen af t-PA opslæmt i 6 mol/1 guanidin-hydrochlorid, behandlet med ultralyd, inkuberet og herefter dialyseret i 4 timer mod en opløsning af Tris-HCl (pH = 8,0), natriumchlorid, EDTA og Tween 80. Efter dialyse centrifugeres, hvorhos plasminogenaktivatoraktiviteten findes i overstanden. Den på denne måde renaturerede t-PA er ganske vist proteolytisk aktiv, men udviser imidlertid ingen målelig stimulerbar-15 hed gennem BrCN-spaltningsprodukter (BrCN-FSP) af fibrin, ifølge den i J. H. Verhei-jen, Thromb. Haemostas., 48, (3), 260-269 (1982) beskrevne fremgangsmåde.According to European patent application EP-A-0093639, the 10 cell pellets obtained from E. coli for the reactivation of t-PA are suspended in 6 mol / l guanidine hydrochloride, treated with ultrasound, incubated and then dialyzed for a solution of Tris -HCl (pH = 8.0), sodium chloride, EDTA and Tween 80. After dialysis, centrifuge the plasminogen activator activity in the supernatant. The t-PA thus renaturated is proteolytically active, but does not exhibit any measurable stimulability through fibrin BrCN cleavage products (BrCN-FSP) according to that of J. H. Verheijen, Thromb. Haemostas., 48, (3), 260-269 (1982).

Orsini og Goldberg (J. Biol. Chem. 253 (1978), 3453-3458) beskriver renatureringen af reduceret chymotrypsinogen A ved overførsel af de denaturerede proteiner i en rena-tureringspuffer, som indeholder GSH, GSSG og et ikke-denaturerende koncentration af 20 · guanidin-HCI eller urinstof.Orsini and Goldberg (J. Biol. Chem. 253 (1978), 3453-3458) describe the renaturation of reduced chymotrypsinogen A by transferring the denatured proteins into a purification buffer containing GSH, GSSG and a non-denaturing concentration of 20 · Guanidine HCl or urea.

44

Fra Proc. Nacl. Acad. Sci. USA, bind 81: side 3273-3277 (1984) kendes en fremgangsmåde til fremstilling af et rekombinant protein i E.coli. Celieekstraktet med det opløste, denaturerede og reducerede antistof centrifugeres og dialyseres, og dialysatet reaktiveres under en række dialyser ved pH-værdi 10,8 med 1 mM GSH og 0,1 mM GSSG og 25 urinstof, hvor sidstnævnte dialyseres til en slutkoncentration på 1M. Under rekonstitueringen af antistof sker der blandt andet en omdannelse af de denaturerede, disulfid-frie kæder til protein-S-sulfonat ved hjælp af natriumsulfid og natriumtetrathionat. I frem- DK 175091 B1 4 gangsmåden ifølge opfindelsen undgås imidlertid en række af mellemtrinnene, som ifølge ovenstående artikel skal gennemføres efter dannelse af disulfid og før rena-turering.From Proc. NaCl. Acad. Sci. United States, Vol. 81: pages 3273-3277 (1984) discloses a process for producing a recombinant protein in E. coli. The celiac extract with the dissolved, denatured and reduced antibody is centrifuged and dialyzed and the dialysate reactivated under a series of dialysis at pH 10.8 with 1 mM GSH and 0.1 mM GSSG and 25 urea, the latter dialyzed to a final concentration of 1M. During the reconstitution of antibody, among other things, the denatured, disulfide-free chains are converted to protein S-sulfonate by means of sodium sulfide and sodium tetrathionate. However, in the process of the invention, a number of intermediate steps are avoided which, according to the above article, must be carried out after disulfide formation and prior to purification.

Til reaktiveringen af denaturerede proteiner findes der ifølge kendt teknik ingen generelt 5 anvendelig fremgangsmåde; dette gælder især t-PA, idet det naturlige protein besidder en særdeles kompleks struktur; det indeholder en fri thiolgruppe og 17 SS-broer, som teoretisk kan sammenknyttes på 2,2 x 1020 forskellige måder, og kun en struktur svarer til den naturlige tilstand. Fremgangsmåder ifølge kendt teknik til reaktivering af t-PA fører godt nok til en proteolytisk aktiv t-PA, men udviser ingen målelig stimulerbarhed.For the reactivation of denatured proteins, there is no generally applicable method in the prior art; this is especially true for t-PA, since the natural protein has a highly complex structure; it contains a free thiol group and 17 SS bridges, which theoretically can be linked in 2.2 x 1020 different ways, and only one structure corresponds to the natural state. Prior art methods for reactivating t-PA well lead to a proteolytically active t-PA, but do not show any measurable stimulability.

10 En aktiveringsfremgangsmåde, som fører til stimulerbart t-PA, kendes ikke.An activation method leading to stimulable t-PA is not known.

Den foreliggende opfindelses formål er derfor at tilvejebringe en fremgangsmåde til fuldstændig aktivering af genteknologisk fremstillede, heterologe, disulfidbro-holdige eukaryotiske proteiner efter ekspression i prokaryotiske celler.The object of the present invention, therefore, is to provide a method for the complete activation of genetically engineered, heterologous, disulfide-bridged eukaryotic proteins after expression in prokaryotic cells.

Opfindelsen angår en fremgangsmåde til aktivering af genteknologisk fremstillede, 15 heterologe, disulfidbro-holdige eukaryotiske proteiner efter ekspression i prokaryotiske celler, som opnås i patentkrav 1 ved hjælp af celleoplukning, solubilisering under denaturerende og reducerende betingelser og aktivering (renaturering) under oxiderende betingelser ved tilstedeværelse af GSH/GSSG. Det ejendommelige ved fremgangsmåden er, at man i aktiveringstrinnet arbejder ved en pH-værdi på 8 til 12, en 20 GSH-koncentration på 0,1 til 20 mmol/1, en GSSG-koncentration på 0,01 til 3 mmol per liter og med en ikke-denaturerende koncentration af denatureringsmidlet, og at man i reaktiveringstrinnet som denatureringsmiddel anvender arginin og/eller mindst én forbindelse med den almene formel R2-CO-NRR, (I), hvor R og R, betyder H eller alkyl med 1 til 4 C-atomer og R2 betyder H eller NHR, eller alkyl med 1 til 3 C-atomer, med det 25 forbehold, at R og R, ikke samtidigt er H.The invention relates to a method for activating gene-technologically prepared, heterologous, disulfide-bridged eukaryotic proteins after expression in prokaryotic cells, which is obtained in claim 1 by cell pickup, solubilization under denaturing and reducing conditions, and activation (renaturation) under oxidizing conditions in the presence. of GSH / GSSG. The peculiarity of the process is that in the activation step one works at a pH of 8 to 12, a 20 GSH concentration of 0.1 to 20 mmol / l, a GSSG concentration of 0.01 to 3 mmol per liter and having a non-denaturing concentration of the denaturing agent and using in the reactivation step as denaturing agent arginine and / or at least one compound of the general formula R2-CO-NRR, (I) wherein R and R are H or alkyl of 1 to 4 C atoms and R 2 means H or NHR, or alkyl of 1 to 3 C atoms, with the proviso that R and R are not simultaneously H.

Foretrukne udførelsesformer for fremgangsmåden anføres i underkravene.Preferred embodiments of the method are set out in the subclaims.

DK 175091 B1 5DK 175091 B1 5

Som denatureringsmiddel anvendes arginin eller urinstofderivater ifølge formel (I).As the denaturing agent, arginine or urea derivatives of formula (I) are used.

Endvidere kan blandinger af disse denatureringsmidler anvendes. Fortrinsvis udføres dette aktiveringstrin også ved tilstedeværelse af et fremmed protein; som et sådant egner sig i reglen et hvilket som helst fremmedprotein, så længe dette ikke virker proteolytisk; 5 fortrinsvis anvendes okseserumalbumin (BSA), f.eks. i en mængde på 1 til 3 mg/ml. BSA-tilsætningen tilvejebringer et let forhøjet udbytte og stabilisering af proteinet (dette skyldes sandsynligvis beskyttelse mod overfladedenaturering og/eller proteolytisk nedbrydning).Furthermore, mixtures of these denaturing agents can be used. Preferably, this activation step is also performed in the presence of a foreign protein; as such, as a rule, any foreign protein is suitable as long as it does not appear proteolytic; Preferably, bovine serum albumin (BSA) is used, e.g. in an amount of 1 to 3 mg / ml. The BSA addition provides slightly elevated yield and stabilization of the protein (this is likely due to protection against surface denaturation and / or proteolytic degradation).

De øvrige fremgangsmådebetingelser kan svare til de for reaktiveringstrin fra teknikkens 10 stade kendte og sædvanlige betingelser. Aktiveringsvarighed (inkubation) andrager fortrinsvis 20 til 48 timer ved stuetemperatur. Halveringstiden for aktiveringen ligger ved tilstedeværelse af 0,5 mmol/1 reduceret (GSH) og oxideret (GSSG) glutathion ved ca. 10 til 15 timer ved 20°C. Ved en længere inkubation (48 timer) under reoxidations-betingelser aftager i reglen stimulerbarheden gennem CNBr-FSP. Aktiveringstrinnet 15 gennemføres fortrinsvis ved tilstedeværelse af EDTA, hvorhos den mest egnede koncentration er ca. 1 mmol/1 EDTA.The other process conditions may correspond to the usual and usual conditions known for the reactivation steps of the prior art. Activation duration (incubation) is preferably 20 to 48 hours at room temperature. The half-life of activation is in the presence of 0.5 mmol / l reduced (GSH) and oxidized (GSSG) glutathione at ca. 10 to 15 hours at 20 ° C. As a result of prolonged incubation (48 hours) under reoxidation conditions, the stimulability through CNBr-FSP generally decreases. Activation step 15 is preferably carried out in the presence of EDTA, where the most suitable concentration is approx. 1 mmol / 1 EDTA.

De af aktiveringstrinnet (reoxidation/aktivering) forudgående og efterfølgende fremgangsmådetrin, såsom celleoplukning, solubilisering (solubilisering/reduktion) og eventuelt et eller flere af de af aktiveringstrinnet forudgående og/eller efterfølgende oprens-20 ningsoperationer, kan ifølge kendt teknik, f.eks. EP-A-0114506 og EP-A-0093619, gennemføres ved for sådanne fremgangsmåder kendte og gængse metoder; med henblik på et med hensyn til udbytte og aktivering optimalt resultat kan det imidlertid være nyttigt, at gennemføre enkelte eller alle fremgangstrin i overensstemmelse med en eller flere af de heri angivne udførelsesformer. Navnlig er det muligt at gennemføre trinnene 25 til aktivering ifølge opfindelsen ved den efter oplukningen opnåede blanding uden forudgående denaturering og/eller reduktion, dog med lavere udbytte. Ekspressionen gennemføres i prokaryote celler, fortrinsvis i P. putida, og især i E. coli. Fremgangsmåden vi\ i ( vvs u i 6 ifølge opfindelsen er imidlertid lige så egnet, når ekspressionen foregår i andre prokaryote celler (f.eks. Bacilli).The prior and subsequent process steps of the activation step (reoxidation / activation), such as cell unlocking, solubilization (solubilization / reduction), and optionally one or more of the activation step (s) preceding and / or subsequent purification operations, may be known, e.g. EP-A-0114506 and EP-A-0093619 are carried out by methods known and customary in the art; however, for optimum yield and activation results, it may be useful to carry out some or all of the steps in accordance with one or more of the embodiments set forth herein. In particular, it is possible to carry out the steps 25 for activation according to the invention in the mixture obtained after the opening without prior denaturation and / or reduction, however with lower yield. Expression is carried out in prokaryotic cells, preferably in P. putida, and especially in E. coli. However, the process vii (vvs u i 6 of the invention is equally suitable when expression occurs in other prokaryotic cells (e.g., bacilli).

Celleoplukningen kan gennemføres ved dertil gængse metoder, f.eks. ved hjælp af ultralyd, højtryksdispersion eller lysozym; oplukningen sker fortrinsvis i en til indstilling 5 af en neutral til svag sur pH-værdi egnet pufferopløsning som suspensionsmedium, som f.eks. i 0,1 mol/1 Tris-HCl. Efter celleoplukningen fraskilles de uopløselige bestanddele ("refractile bodies") på en hvilken som helst måde, fortrinsvis ved afcentrifugering ved højere g-tal og længere centrifugeringstider eller ved filtrering. Efter vask med agentier, som ikke indvirker på t-PA, men som så vidt muligt opløser fremmede celleproteiner, 10 f.eks. vand, phosphat-pufferopløsning, underkastes bundfaldet (pellet) eventuelt under tilsætning af milde detergenter, såsom Triton, solubiliseringen (solubilisering/reduktion). Solubiliseringen sker fortrinsvis i alkalisk pH-område, navnlig ved pH = 8,6 ± 0,4 og ved tilstedeværelse af et reduktionsmiddel af mercaptangruppenog et denatureringsmiddel.Cell harvesting can be accomplished by conventional methods, e.g. by ultrasound, high pressure dispersion or lysozyme; The digestion preferably takes place in a buffer solution suitable for setting 5 of a neutral to slightly acidic pH value, such as suspension medium, e.g. in 0.1 mol / l Tris-HCl. After cell uptake, the insoluble components ("refractile bodies") are separated in any way, preferably by centrifugation at higher g-numbers and longer centrifugation times or by filtration. After washing with agents that do not interfere with t-PA, but which, as far as possible, dissolve foreign cell proteins, e.g. water, phosphate buffer solution, is optionally subjected to the precipitate (pellet) with the addition of mild detergents such as Triton, the solubilization (solubilization / reduction). The solubilization is preferably in alkaline pH range, in particular at pH = 8.6 ± 0.4 and in the presence of a reducing agent of mercaptan group and a denaturing agent.

15 Som denatureringsmiddel kan anvendes de for solubiliseringen fra teknikkens stade, f.eks. fra den europæiske patentansøgning EP-A-0114506, kendte og sædvanlige denatureringsmidler anvendes, navnlig guanidin-hydrochlorid eller urinstof. Koncentrationen af guanidin-hydrochlorid andrager hensigtsmæssigt ca. 6 mol/1 og for urinstof ca. 8 mol/1. Ligeledes kan forbindelser med den almene formel I anvendes.As denaturing agents, they can be used for the solubilization of the prior art, e.g. from European patent application EP-A-0114506, known and customary denaturing agents are used, in particular guanidine hydrochloride or urea. Conveniently, the concentration of guanidine hydrochloride is approx. 6 mol / l and for urea approx. 8 mol / l. Also, compounds of the general formula I may be used.

20 Som reduktionsmiddel af mercaptangruppen kan f.eks. anvendes reduceret glutathion (GSH) eller 2-mercaptoethanol, f.eks. i en koncentration på ca. 50 til 400 mmol per liter og/eller navnlig DTE (dithioerythritol) eller DTT (dithiothreitol), f.eks. i en koncentration på ca. 80 til 400 mmol/1. Solubiliseringen sker passende ved stuetemperatur i løbet af en eller flere timer (inkubation), fortrinsvis i løbet af to timer. Til forhindring af 25 reduktionsmidlets oxidation gennem luftens oxygen kan det desuden være nyttigt at tilsætte EDTA. Ved siden af solubilisering/reduktion har solubiliseringstrinnet også en DK 175091 B1 7 rensningseffekt, idet en stor del af det med t-PA immunologisk ikke-krydsreagerende materiale (fremmedprotein) ikke går i opløsning.As a reducing agent of the mercaptan group, e.g. reduced glutathione (GSH) or 2-mercaptoethanol, e.g. at a concentration of approx. 50 to 400 mmol per liter and / or in particular DTE (dithioerythritol) or DTT (dithiothreitol), e.g. at a concentration of approx. 80 to 400 mmol / l. Suitably, the solubilization occurs at room temperature over one or more hours (incubation), preferably over two hours. In addition, to prevent the oxidation of the reducing agent through the oxygen of the air, it may be useful to add EDTA. In addition to solubilization / reduction, the solubilization step also has a purification effect, since a large proportion of the t-PA immunologically non-cross-reacting material (foreign protein) does not dissolve.

Efter solubiliseringen og før aktiveringstrinnet kan de på i og for sig kendte og gængse rensningstrin skubbes ind; som rensningsmetoder kommer f.eks. sterisk udelukkelses-5 chromatografi (SEC) (ved tilstedeværelse af guanidin-hydrochlorid eller urinstof) eller ionbytter (f.eks. ved tilstedeværelse af urinstof eller derivater deraf) i betragtning; en uspecifik reoxidation kan forhindres ved tilsætning af et reduktionsmiddel (f.eks.After the solubilization and before the activation step, the known and common purification steps can be pushed in; as cleaning methods come e.g. steric exclusion chromatography (SEC) (in the presence of guanidine hydrochloride or urea) or ion exchange (eg in the presence of urea or derivatives thereof) under consideration; a nonspecific reoxidation can be prevented by the addition of a reducing agent (e.g.

2-mercaptoethanoI) eller ved pH-værdi 4,5 (sammenlign f.eks. R. Rudolph, Biochem.2-mercaptoethanol) or at pH 4.5 (compare, e.g., R. Rudolph, Biochem.

Soc. Transactions 13 (1985) 308 til 311). Anvendes i det forudgående solubiliseringstrin 10 DTE, skal dette fraskilles i et rensningstrin. Rensningen kan f.eks. udføres ved SEC over Sephadex G 100 ved tilstedeværelse af guanidin-hydrochlorid og et reduktionsmiddel, f.eks. GSH ved en pH på 1 til 4 (i dette trin kan en stor mængde fremmedprotein fraskilles); eller via fraskillelse af denaturerings/ reduktionsmidlet ved afsaltning over Sephadex G 25 i 0,01 mol/1 HC1 eller 0,1 mol/1 eddikesyre. Denaturerings-/reduktions-15 midlets fraskillelse kan alternativt opnås ved dialyse mod de samme opløsninger.Soc. Transactions 13 (1985) 308 to 311). If used in the previous solubilization step 10 DTE, this must be separated in a purification step. The purification may e.g. performed at SEC over Sephadex G 100 in the presence of guanidine hydrochloride and a reducing agent, e.g. GSH at a pH of 1 to 4 (in this step a large amount of foreign protein can be separated); or via separation of the denaturant / reducing agent by desalting over Sephadex G 25 in 0.01 mol / l HCl or 0.1 mol / l acetic acid. Alternatively, the separation of the denaturing / reducing agent can be achieved by dialysis against the same solutions.

Et yderligere rensningstrin kan følge reaktiveringstrinnet; en sådan rensning sker i reglen ved hjælp af dialyse, eller også ved en efterfølgende isolering af den aktiverede tPA, eksempelvis ved hjælp af affmitetschromatografi, f.eks. over Lyssepharose.A further purification step may follow the reactivation step; such purification is usually done by dialysis, or also by subsequent isolation of the activated tPA, for example by affinity chromatography, e.g. over Lyssepharose.

Ifølge opfindelsen er det muligt at aktivere t-PA, der stammer fra prokaryote celler, 20 således at man ikke kun opnår en aktivering af den normale biologiske aktivitet, men derudover også en stimulerbarhed, som defineret ovenfor, der i stort omfang overgår stimulerbarheden af den naturlige t-PA, og som kan være større end faktor 10, endog faktor 50.According to the invention, it is possible to activate t-PA derived from prokaryotic cells so that not only an activation of normal biological activity is achieved but also a stimulus, as defined above, which greatly exceeds the stimulability of the natural t-PA, which may be greater than factor 10, even factor 50.

Et yderligere eukaryotisk protein, som kan aktiveres ifølge opfindelsen efter ekspression 25 i prokaryote celler, er B-interferon.A further eukaryotic protein that can be activated according to the invention after expression 25 in prokaryotic cells is B-interferon.

8 DK 175091 Bl8 DK 175091 Bl

Opfindelsen belyses ved hjælp af de efterfølgende eksempler, uden dog at være begrænset dertil. Når der ikke er anført andet, henviser procentangivelser til vægt% og temperaturangivelser til °C.The invention is illustrated by the following examples, but not limited thereto. Unless otherwise indicated, percentages indicate% by weight and temperature indications to ° C.

EKSEMPEL 1 5 a) Fremstilling af "refractile bodies" 100 g E. coli fugtig cellemasse, optaget i 1,5 1, 0,1 mol/1 Tris/HCl (pH 6,5) og 20 mmol/1 EDTA homogeniseredes (Ultra-Turrax, 10 sek.), og der tilsattes 0,25 mg/ml lysozym. Efter 30 minutters inkubation ved stuetemperatur homogeniseredes påny og nedkøledes til 3°C. Celleoplukningen opnåedes ved hjælp af højtryksdispersion (550 10 kg/cm2). Herefter efterspuledes med 300 ml 0,1 mol/1 Tris/HCl (pH 6,5) og 20 mmol/1 EDTA. Efter centrifugering (2 timer ved 27.000 g, 4°C) optoges pelleten i 1,3 1 0,1 mol/1 Tris/HCl (pH 6,5), 20 mmol/1 EDTA og 2,5% Triton-x-100og homogeniseredes.EXAMPLE 1 a) Preparation of "refractile bodies" 100 g of E. coli moist cell mass, taken up in 1.5 L, 0.1 mol / L Tris / HCl (pH 6.5) and 20 mmol / L EDTA were homogenized (Ultra -Turrax, 10 sec) and 0.25 mg / ml lysozyme was added. After 30 minutes of incubation at room temperature, it was homogenized again and cooled to 3 ° C. Cell uptake was achieved by high pressure dispersion (550 10 kg / cm 2). Thereafter, rinsed with 300 ml of 0.1 mol / l Tris / HCl (pH 6.5) and 20 mmol / l EDTA. After centrifugation (2 hours at 27,000 g, 4 ° C), the pellet was taken up in 1.3 l 0.1 mol / l Tris / HCl (pH 6.5), 20 mmol / l EDTA and 2.5% Triton-x 100 and homogenized.

Efter fornyet centrifugering (30 minutter ved 27.000 g, 4°C) optoges pelleten i 1,310,1 mol/1 Tris/HCl (pH 6,5), 20 mmol/1 EDTA og 0,5% Triton-x-100 og homogeniseredes.After re-centrifugation (30 minutes at 27,000 g, 4 ° C), the pellet was taken up in 1,310.1 mol / l Tris / HCl (pH 6.5), 20 mmol / l EDTA and 0.5% Triton-x-100 and homogenized. .

15 Skiftevis centrifugering (30 minutter ved 27.000 g, 4°C) og homogenisering af pelleten i 1 1 0,1 mol/1 Tris/HCl (pH 6,5) og 20 mmol/1 EDTA gennemførtes endnu tre gange.Alternately centrifugation (30 minutes at 27,000 g, 4 ° C) and homogenization of the pellet in 1 1 0.1 mol / 1 Tris / HCl (pH 6.5) and 20 mmol / 1 EDTA were performed three more times.

"Refractile bodies "-præparaternes t-PA-indhold kvantificeredes ved SDS-PAGE, identificering af t-PA-båndene ved "Western blotting" og ved densiometrisk analyse. De "refractile bodies" udviste ved SDS-PAGE og "Western blotting" et kraftigt t-PA- bånd 20 med en molekylvægt på ca. 60 kDa. t-PA-andelen af det totale proteinindhold i "refractile bodies" udgør ca. 21%.The t-PA content of "refractile bodies" preparations was quantified by SDS-PAGE, identification of the t-PA bands by "Western blotting" and by densiometric analysis. The "refractile bodies" exhibited, by SDS-PAGE and "Western blotting, a strong t-PA band 20 having a molecular weight of approx. 60 kDa. The t-PA proportion of the total protein content in "refractile bodies" is approx. 21%.

b) Solubilisering/reduktion af "refractile bodies" "Refractile bodies" inkuberedes ved en proteinkoncentration på 1 til 5 mg/ml i 0,1 mol/1 Tris/HCl (pH 8,6), 5 mol/1 guanidinhydrochlorid, 0,15 til 0,4 mol/1 DTE og 1 mmol/1 DK 175091 B1 9 EDTA i 2 til 3 timer ved stuetemperatur. Herefter fracentrifugeredes uopløseligt materiale (cellevægfragmenter osv.), f.eks. 30 minutter ved 35.000 til 50.000 g, 4°C. Overstandens pH-værdi indstilledes med kone. HC1 til pH 3. Denaturerings- og reduktionsmidlet fraskiltes derpå ved dialyse mod 0,01 mol/1 HC1 ved 4°C.b) Solubilization / reduction of "refractile bodies" "Refractile bodies" were incubated at a protein concentration of 1 to 5 mg / ml in 0.1 mol / 1 Tris / HCl (pH 8.6), 5 mol / 1 guanidine hydrochloride, 0, 15 to 0.4 mol / 1 DTE and 1 mmol / 1 EDTA for 2 to 3 hours at room temperature. Subsequently, insoluble material (cell wall fragments, etc.) was centrifuged, e.g. 30 minutes at 35,000 to 50,000 g, 4 ° C. The pH of the supernatant was adjusted with the wife. HCl to pH 3. The denaturant and reducing agent were then separated by dialysis against 0.01 mol / l HCl at 4 ° C.

5 c) Reoxidation/aktiveringC) Reoxidation / activation

Reoxidation/aktivering gennemførtes ved en 1:50 til 1:200 fortynding i 0,1 mol/1 Tris/HCl (pH 10,5), 1 mmol/1 EDTA, 1 mg/ml BSA, 0,5 mol/1 L-arginin, 2 mmol/1 GSH, 0,2 mmol/1 GSSG. Efter 17 til 24 timers aktivering ved ca. 20°C bestemtes aktiviteten, og udbyttet ved sammenligning med aktiviteten af naturlig glycosyleret t-PA, 10 der stammer fra eukaryote celler.Reoxidation / activation was performed at a 1:50 to 1: 200 dilution in 0.1 mol / l Tris / HCl (pH 10.5), 1 mmol / l EDTA, 1 mg / ml BSA, 0.5 mol / l L -arginine, 2 mmol / 1 GSH, 0.2 mmol / 1 GSSG. After 17 to 24 hours of activation at approx. 20 ° C, the activity was determined and the yield compared with the activity of natural glycosylated t-PA derived from eukaryotic cells.

Udbytte beregnet på det totale proteinindhold af "refractile bodies”: 2,5 ± 0,5% stimulerbarhed: 10 ± 5Yield calculated on the total protein content of "refractile bodies": 2.5 ± 0.5% stimulability: 10 ± 5

Udbytte beregnet på t-PA-andelen af 15 "refractile bodies": ca. 12% d) Reoxidation/aktivering uden denaturerings-/reduktionsmidlets fraskillelse "Refractile bodies” inkuberedes ved en proteinkoncentration på 1,25 mg/ml i 0,1 mol/1 Tris/HCl (pH 8,6), 6 mol/1 guanidin-hydrochlorid, 0,2 mol/1 DTE og 1 mmol/1 EDTA i 2 timer ved stuetemperatur. Herefter påbegyndtes straks reoxidation ved en 1:100 20 fortynding i 0,1 mol/1 Tris/HCl (pH 10,5), 1 mmol/1 EDTA, 1 mg/ml BSA, 0,3 mol/1 L-arginin, og de i tabellen anførte mængder af GSSG. Derudover fandtes i aktiveringsportionen en restkoncentration på 0,06 mol/1 guanidin/hydrochlorid og 2 mmol/1 DTE.Yield calculated on the t-PA proportion of 15 "refractile bodies": approx. 12% d) Reoxidation / activation without separation of the denaturing / reducing agent "Refractile bodies" was incubated at a protein concentration of 1.25 mg / ml in 0.1 mol / 1 Tris / HCl (pH 8.6), 6 mol / 1 guanidine hydrochloride, 0.2 mol / 1 DTE and 1 mmol / 1 EDTA for 2 hours at room temperature, then immediately reoxidation was started at a 1: 100 dilution in 0.1 mol / 1 Tris / HCl (pH 10.5), 1 mmol / 1 EDTA, 1 mg / ml BSA, 0.3 mol / 1 L-arginine and the amounts of GSSG listed in the table, and in the activation portion, a residual concentration of 0.06 mol / 1 guanidine / hydrochloride and 2 mmol was found. / 1 DTE.

10 υιν i/ου»i di10 υιν i / ου »i di

Aktiveringsudbyttets afhængighed af GSSG-koncentrationen ved aktivering uden dena-turerings-/reduktionsmidIets fraskillelse.Dependence of activation yield on GSSG concentration upon activation without separation of the denaturing / reducing agent.

GSSG Udbytte' Stimulerbarhed (mmol/1)__(Faktor)_ 5 0,2 0 1 0,13 4,0 5 1,49 7,4 6 1,28 5,4 7 1,04 5,8 10 9 0,98 5,2 10 1,77 10,0 15 0 20 0 ' = Udbytte af aktiv t-PA beregnet på det totale proteinindhold i "refractile bodies".GSSG Yield 'Stimulability (mmol / 1) __ (Factor) _ 5 0.2 0 1 0.13 4.0 5 1.49 7.4 6 1.28 5.4 7 1.04 5.8 10 9 0 , 98 5.2 10 1.77 10.0 15 0 20 0 '= Yield of active t-PA calculated on the total protein content of "refractile bodies".

15 EKSEMPEL 2EXAMPLE 2

Et RB ("refractile bodies")-præparat (ca. 5 mg) inkuberedes i 1 ml 0,1 mol/1 Tris/HCl (pH = 8,6), 6 mol/1 guanidin-hydrochlorid og 0,15 - 0,2 mol/1 i DTE i 2 til 3 timer ved stuetemperatur. Uopløseligt materiale (cellevægfragmenter) fraskiltes herefter ved centrifugering (20 minutter ved 17.000 g). Denaturerings- og reduktionsmidlet fjernedes 20 ved gelfiltrering gennem Sephadex 25 (superfine) i 0,01 mol/1 HC1. Derved fortyndedes prøven ca. med faktor 5 til 10. Det reducerede materiale opbevaredes i 0,01 mol/1 HC1 ved -20°C.A RB ("refractile bodies") preparation (about 5 mg) was incubated in 1 ml of 0.1 mol / l Tris / HCl (pH = 8.6), 6 mol / l guanidine hydrochloride and 0.15-0. , 2 mol / l in DTE for 2 to 3 hours at room temperature. Insoluble material (cell wall fragments) was then separated by centrifugation (20 minutes at 17,000 g). The denaturing and reducing agent was removed by gel filtration through Sephadex 25 (superfine) in 0.01 mol / l HCl. Thereby, the sample was diluted ca. by factor 5 to 10. The reduced material was stored in 0.01 mol / l HCl at -20 ° C.

DK 175091 B1 11 EKSEMPEL 3 I de efterfølgende tabeller vises indflydelsen af forskellige parametre ifølge opfindelsen på t-PA's aktivering og stimulerbarhed. Ved denne reduktionsundersøgelse blev det ifølge eksempel 2 solubiliserede, reducerede protein ikke yderligere foroprenset.EXAMPLE 3 The following tables show the influence of various parameters according to the invention on the activation and stimulability of t-PA. In this reduction study, according to Example 2, solubilized reduced protein was not further purified.

5 Det reducerede protein (i 0,01 mol/1 HC1) aktiveredes ved fortynding til fra 1:10 til 1:500 i "reoxidationspuffer". Aktiveringen bestemtes efter 22 til 48 timers inkubation ved stuetemperatur. Det reoxiderede proteins aktivitet baseredes på en "standard-reoxi-dation" (=100%) i: 0,1 mol/1 Tris/HCl (pH = 10,5) + 1 mmol/1 EDT A 10 + 0,5 mol/1 L-argininThe reduced protein (in 0.01 mol / l HCl) was activated by dilution to from 1:10 to 1: 500 in "reoxidation buffer". Activation was determined after 22 to 48 hours incubation at room temperature. The activity of the reoxidized protein was based on a "standard reoxidation" (= 100%) in: 0.1 mol / l Tris / HCl (pH = 10.5) + 1 mmol / l EDT A 10 + 0.5 mol / 1 L-arginine

+ 1 mg/ml BSA+ 1 mg / ml BSA

+ 0,5 mmol/1 GSH (reduceret glutathion) + 0,5 mmol/1 GSSG (glutathiondisulfid).+ 0.5 mmol / 1 GSH (reduced glutathione) + 0.5 mmol / 1 GSSG (glutathione disulfide).

Stimulerbarheden beregnes ud fra ΔΕ+CNBrFSP/AE-CNBrFSP (sammenlign W.Stimulability is calculated from ΔΕ + CNBrFSP / AE-CNBrFSP (compare W

15 Nieuwenhuizen et al., Biochimica et Biophysica Acta 755 (1983) 531 til 533). Aktiviteten (i procent) og stimulerbarheden (faktor) bestemtes ifølge J. H. Verheijen Thromb. Haemostas. 48(3), 266-269, (1982).15 Nieuwenhuizen et al., Biochimica et Biophysica Acta 755 (1983) 531 to 533). Activity (as a percentage) and stimulability (factor) were determined according to J. H. Verheijen Thromb. Haemostas. 48 (3), 266-269, (1982).

De følgende resultater opnåedes: 1. Aktiveringsudbyttets afhængighed af L-arginin eller guanidin-hydrochloridtilsæt-20 ning.The following results were obtained: 1. Dependence of activation yield on L-arginine or guanidine hydrochloride addition.

Reoxidation i 0,1 mol/1 Tris/HCl (pH 10,5)Reoxidation in 0.1 mol / l Tris / HCl (pH 10.5)

+ 1 mmol/1 EDT A + 1 mg/ml BSA+ 1 mmol / 1 EDT A + 1 mg / ml BSA

w m · www 12w m · www 12

+ 0,5 mmol/1 GSH + 0,5 mmol/1 GSSG+ 0.5 mmol / 1 GSH + 0.5 mmol / 1 GSSG

a) L-arginin L-arginin Aktivitet Stimulerbarhed 5 (mol/1) (%) (faktor) 0 4 Ϊ3 0,25 98 7,5 0,5 100 21,9 0,75 27 16,3 10 1,0 23 3,5a) L-arginine L-arginine Activity Stimulability 5 (mol / l) (%) (factor) 0 4 Ϊ3 0.25 98 7.5 0.5 100 21.9 0.75 27 16.3 10 1.0 23 3.5

Det skal bemærkes, at t-PA ved denne undersøgelse inhiberes af L-arginin. Nedgang i aktiveringsudbyttet ved højere L-argininkoncentrationer skal derfor korrigeres med hensyn til inhiberingen.It should be noted that in this study, t-PA is inhibited by L-arginine. Decrease in the activation yield at higher L-arginine concentrations must therefore be corrected for the inhibition.

15 b) Guanidin-hydrochlorid (Gdn/HCl) (Gdn/HCl) Aktivitet (mol/1) (%) 0 11 0,25 22 20 0,5 53 0,75 58 1,0 12 DK 175091 B1 13 2. Aktiveringsudbyttets afhængighed af urinstof og urinstofderivaters tilsætning.B) Guanidine hydrochloride (Gdn / HCl) (Gdn / HCl) Activity (mol / l) (%) 0 11 0.25 22 20 0.5 53 0.75 58 1.0 12 DK 175091 B1 13 2. The dependence of the activation yield on the addition of urea and urea derivatives.

Reoxidation i 0,1 mol/1 Tris (pH 10,5), 1 mmol/1 EDTA, 1 mg/ml BSA, 5 mmol/1 GSH,Reoxidation in 0.1 mol / l Tris (pH 10.5), 1 mmol / l EDTA, 1 mg / ml BSA, 5 mmol / l GSH,

0,2 mmol/1 GSSG0.2 mmol / 1 GSSG

a) Urinstof 5 Urinstof Aktivitet (mol/1) (%) 0 1 0,5 20 1 59 10 1,5 126 2 162 2.5 141 3 72 4 12 15 5 0 b) Methylurinstofa) Urea 5 Urea Activity (mol / 1) (%) 0 1 0.5 20 1 59 10 1.5 126 2 162 2.5 141 3 72 4 12 15 5 0 b) Methylurea

Methylurinstof Aktivitet (mol/1) (%) 0,5 22 20 1 174 1.5 313 2 375 2.5 332 3 215 25 4 12 5 0 L^IX I f I U1 14 c) HthylurinstofMethylurea Activity (mol / l) (%) 0.5 22 20 1 174 1.5 313 2 375 2.5 332 3 215 25 4 12 5 0 L ^ IX I f I U1 14 c)

Ethylurinstof Aktivitet (mol/1) (%) 0,5 46 5 1 212 1.5 323 2 300 2.5 107 3 19 10 4 0 i 5 0 d) DimethylurinstofEthylurea Activity (mol / l) (%) 0.5 46 5 1 212 1.5 323 2 300 2.5 107 3 19 10 4 0 i 5 0 d) Dimethyl urea

Dimethylurinstof Aktivitet Stimulerbarhed (mol/1) (%) (Faktor) 15 0,5 167 8,8 1 256 8,9 1.5 283 9,4 2 177 7,7 2.5 78 8,9 20 3 23 9,9 4 4 8,6 5 2 3,5 3. Aktiveringsudbyttets afhængighed af fedtsyreamiders tilsætning: DK 175091 B1 15Dimethylurea Activity Stimulability (mol / l) (%) (Factor) 15 0.5 167 8.8 1 256 8.9 1.5 283 9.4 2 177 7.7 2.5 78 8.9 20 3 23 9.9 4 4 8.6 5 2 3.5 3. Dependence of activation yield on addition of fatty acid amides: DK 175091 B1 15

Reoxidation i 0,1 mol/1 Tris (pH 10,5), 1 mmol/1 EDTA, 1 mg/ml BSA, 5 mmol/1 GSH, 0,2 mmol/1 GSSG.Reoxidation in 0.1 mol / 1 Tris (pH 10.5), 1 mmol / 1 EDTA, 1 mg / ml BSA, 5 mmol / 1 GSH, 0.2 mmol / 1 GSSG.

a) Formamida) Formamide

Formamid Aktivitet 5 (mol/1) (%) 0 42 0,5 59 1 175 1.5 245 10 2 325 2.5 423 3 444 4 416 5 341 15 b) MethylformamidFormamide Activity 5 (mol / l) (%) 0 42 0.5 59 1 175 1.5 245 10 2 325 2.5 423 3 444 4 416 5 341 15 b) Methylformamide

Methylformamid Aktivitet (mol/1) (%) 0,5 100 1 135 20 1,5 304 2 389 2.5 466 3 452 4 425 25 5 121 DK 175091 B1 16 c) AcetamidMethylformamide Activity (mol / l) (%) 0.5 100 1 135 20 1.5 304 2 389 2.5 466 3 452 4 425 25 5 121 DK 175091 B1 16 c) Acetamide

Acetamid Aktivitet (mol/I) (%) 0,5 72 5 1 134 1.5 207 2 261 2.5 204 3 237 10 4 198 5 141 d) PropionamidAcetamide Activity (mol / l) (%) 0.5 72 5 1 134 1.5 207 2 261 2.5 204 3 237 10 4 198 5 141 d) Propionamide

Propionamid Aktivitet (mol/1) (%) 15 0,5 95 1 99 1.5 197 2 150 2.5 101 20 3 39 4 2 5 0 DK 175091 B1 17 e) ButyramidPropionamide Activity (mol / l) (%) 15 0.5 95 1 99 1.5 197 2 150 2.5 101 20 3 39 4 2 5 0 DK 175091 B1 17 e) Butyramide

Butyramid Aktivitet (mol/1) (%) 0,5 55 5 1 52 1,5 17 2 0 4. Aktiveringsudbyttes afhængighed af pH-værdienButyramide Activity (mol / l) (%) 0.5 55 5 1 52 1.5 17 2 0 4. Dependence of activation yield on pH

Reoxidation i 0,1 mol/1 Tris/HCl + 1 mmol/1 EDTA 10 + 0,5 mol/1 L-argininReoxidation in 0.1 mol / 1 Tris / HCl + 1 mmol / 1 EDTA 10 + 0.5 mol / 1 L-arginine

+ 1 mg/ml BSA + 0,5 mmol/1 GSH + 0,5 mmol/1 GSSG+ 1 mg / ml BSA + 0.5 mmol / 1 GSH + 0.5 mmol / 1 GSSG

pH Aktivitet Stimulerbarhed 15 (%) (Faktor) 7 1 8 22 3,0 9 89 13,6 10 105 20,3 20 11 95 21,3pH Activity Stimulability 15 (%) (Factor) 7 1 8 22 3.0 9 89 13.6 10 105 20.3 20 11 95 21.3

1^1¾ I VVV I W I1 ^ 1¾ I VVV I W I

5. Aktiveringsudbyttets afhængighed af GSH/GSSG-koncentrationen 185. Dependence of activation yield on GSH / GSSG concentration 18

Reoxidation i 0,1 mol/1 Tris/HCl, pH 10,5,Reoxidation in 0.1 mol / l Tris / HCl, pH 10.5,

+ 1 mmol/1 EDTA + 0,5 mol/1 L-arginin 5 + 1 mg/ml BSA+ 1 mmol / 1 EDTA + 0.5 mol / 1 L-arginine 5 + 1 mg / ml BSA

a) + 1 mmol/1 GSHa) + 1 mmol / 1 GSH

(GSSG) Aktivitet Stimulerbarhed (mmol/1) (%) (Faktor) 0,1 239 14,9 10 0,2 273 15,3 0,5 193 13,3 1 198 12,5 5 17 2,1 10 0 15 20 0(GSSG) Activity Stimulability (mmol / 1) (%) (Factor) 0.1 239 14.9 10 0.2 273 15.3 0.5 193 13.3 1 198 12.5 5 17 2.1 10 0 15 20 0

b) + 0,2 mmol/l GSSGb) + 0.2 mmol / l GSSG

DK 175091 B1 19 (GSH) Aktivitet Stimulerbarhed (mmol/l) (%) (Faktor) 0,05 15 2,2 5 0,1 40 3,8 0,2 112 6,8 0,5 142 7,4 1 273 6,8 5 260 7,9 10 10 143 6,3 / 20 55 5,1 6. Aktiveringsudbyttets afhængighed af protein-koncentrationen ved reoxidationen (fortynding 1:20 - 1:500)DK 175091 B1 19 (GSH) Activity Stimulability (mmol / l) (%) (Factor) 0.05 15 2.2 5 0.1 40 3.8 0.2 112 6.8 0.5 142 7.4 1 273 6.8 5 260 7.9 10 10 143 6.3 / 20 55 5.1 6. Dependence of activation yield on protein concentration upon reoxidation (dilution 1:20 - 1: 500)

Reoxidation i 0,1 mol/1 Tris/HCl (pH 10,5)Reoxidation in 0.1 mol / l Tris / HCl (pH 10.5)

15 +1 mmol/l EDT A15 + 1 mmol / l EDT A

+ 0,5 mol/1 L-arginin + 1 mg/ml BSA + 0,5 mmol/l GSH + 0,5 mmol/l GSSG+ 0.5 mol / l L-arginine + 1 mg / ml BSA + 0.5 mmol / l GSH + 0.5 mmol / l GSSG

20 Fortynding Aktivitet Stimulerbarhed (%) (Faktor) 1:10 29 15,3 1:20 45 25,4 1:50 69 37,9 25 1:100 100 37,9 1:200 79 52,7 1:500___29__28,7 -__Dilution Activity Stimulability (%) (Factor) 1:10 29 15.3 1:20 45 25.4 1:50 69 37.9 25 1: 100 100 37.9 1: 200 79 52.7 1: 500 ___ 29__28, 7 -__

Ul\ I «IV? I Dl 7. Aktiveringsudbyttets afhængighed af BSA-tilsætning 20Ul \ I «IV? I Part 7. Dependency of Activation Yield on BSA Addition 20

Reoxidation i 0,1 mol/1 Tris/HCl (pH 10,5)Reoxidation in 0.1 mol / l Tris / HCl (pH 10.5)

+ 1 mmol/1 EDT A + 0,5 mol/1 L-arginin 5 +0,5 mmol/1 GSH+ 1 mmol / 1 EDT A + 0.5 mol / 1 L-arginine + 0.5 mmol / 1 GSH

+ 0,5 mmol/1 GSSG+ 0.5 mmol / 1 GSSG

BSA Aktivitet (mg/ml) (%) 0 47 10 0,5 83 1 100 3 102 5 52BSA Activity (mg / ml) (%) 0 47 10 0.5 83 1 100 3 102 5 52

Figurerne 1 og 2 viser aktiviteten med og uden CNBr-FSP ved standardundersøgelsen 15 efter 17 timers reoxidation ved stuetemperatur i 0,1 mol/1 Tris/HCl (pH = 10,5) + 1 mmol/1 EDTA + 0,5 mol/1 L-arginin + 1 mg/ml BSA + 0,5 mmol/1 GSH + 0,5 mmol/1 GSSG. I figurerne 1 og 2 henviser kurven (A) til aktiviteten ved tilstedeværelse af CNBr-FSP, kurven (B) til aktiviteten uden CNBr-FSP.Figures 1 and 2 show the activity with and without CNBr-FSP in the standard study 15 after 17 hours reoxidation at room temperature in 0.1 mol / 1 Tris / HCl (pH = 10.5) + 1 mmol / 1 EDTA + 0.5 mol / 1 L-arginine + 1 mg / ml BSA + 0.5 mmol / 1 GSH + 0.5 mmol / 1 GSSG. In Figures 1 and 2, curve (A) refers to the activity in the presence of CNBr-FSP, curve (B) to activity without CNBr-FSP.

EKSEMPEL 4 20 Aktivering af genteknologisk fremstillet Interferon-β.EXAMPLE 4 Activation of genetically engineered Interferon-β.

"Refractile bodies" fremstilledes i overensstemmelse med de førnævnte metoder. Reduk-tionen/solubiliseringen af de "refractile bodies" gennemførtes som følger: Pelleten inkuberedes i 3 timer ved 25 °C i 10 ml 9,1 mol/1 Tris/HCl, pH 8,6, 6 mol/1 Gdn-HCl, DK 175091 B1 21 1 mmol/1 EDTA og 0,2 mol/1 DTE og efter 30 minutters centrifugering ved 4°C og 48.000 g indstilledes overstandens pH til ca. 3 med kone. HC1. Herefter gennemførtes en gelfiltrering over Sephadex G25 F i 0,01 mol/1 HC1."Refractile bodies" were prepared according to the aforementioned methods. The reduction / solubilization of the "refractile bodies" was carried out as follows: The pellet was incubated for 3 hours at 25 ° C in 10 ml of 9.1 mol / l Tris / HCl, pH 8.6, 6 mol / l Gdn-HCl, DK 175091 B1 21 1 mmol / l EDTA and 0.2 mol / l DTE and after 30 minutes centrifugation at 4 ° C and 48,000 g the pH of the supernatant was adjusted to approx. 3 with wife. HC1. Subsequently, a gel filtration over Sephadex G25 F was performed in 0.01 mol / l HCl.

Eluatets ledningsevne, proteinkoncentration og reaktiverbarhed undersøgtes.The conductivity, protein concentration and reactivability of the eluate were investigated.

5 Det reoxiderede proteins aktivitet baseres på en "standardaktivering" (=100%) i 0,1 mol/1 Tris/HCl, pH 10,5, 1 mmol/1 EDTA, 5 mmol/1 GSH, 0,5 mmol/1 GSSG og 0,25 mol/1 L-arginin.The activity of the reoxidized protein is based on a "standard activation" (= 100%) in 0.1 mol / 1 Tris / HCl, pH 10.5, 1 mmol / 1 EDTA, 5 mmol / 1 GSH, 0.5 mmol / 1 GSSG and 0.25 mol / l L-arginine.

a) Aktiveringsudbyttes afhængighed af L-arginintilsætninga) Dependence of activation yield on L-arginine addition

Eluatet fortyndedes 1:50 med 0,1 mol/1 Tris/HCl, pH 8,5, 1 mmol/1 EDTA, 5 mmol/1 10 GSH, 9,5 mmol/1 GSSG og inkuberedes i 20 timer ved 0°C.The eluate was diluted 1:50 with 0.1 mol / l Tris / HCl, pH 8.5, 1 mmol / 1 EDTA, 5 mmol / l GSH, 9.5 mmol / l GSSG and incubated for 20 hours at 0 ° C .

Aktiveringens L-arginin-afhængighed L-arginin (mol/1) Aktivitet (%) 0 8 0,25 8 15 0,5 15 0,75 15 b) Aktiveringsudbyttets afhængig af urinstoftilsætningL-arginine dependence of activation L-arginine (mol / l) Activity (%) 0 8 0.25 8 15 0.5 15 0.75 15 b) Activation yield dependent on urea addition

Aktiveringsopløsningen svarer til den fra punkt a); dog aktiveredes i 17 timer ved 0°C.The activation solution is similar to that of point a); however, activated for 17 hours at 0 ° C.

I « WWW I w II «WWW I w I

Urinstof-afhængighed af aktiveringen 22Urea dependence on activation 22

Urinstof (mol/I) Aktivitet (%) 0 13 0,5 100 5 1 200 1,5 100 c) Aktiveringsudbyttets afhængighed af formamidtilsætningUrea (mol / I) Activity (%) 0 13 0.5 100 5 1 200 1.5 100 c) Dependence of activation yield on formamide addition

Aktiveringen som i a); prøverne undersøgtes efter 17 timers aktivering ved 0°C. Formamid-afhængighed af aktiveringen 10 Formamid (mol/I) Aktivitet 0 13 1 13 2 13 3 0 15 4 0 d) Aktiveringsudbyttets afhængighed af redoxpufferenThe activation as in a); the samples were examined after 17 hours of activation at 0 ° C. Formamide dependence on activation 10 Formamide (mol / I) Activity 0 13 1 13 2 13 3 0 15 4 0 d) Dependence of activation yield on redox buffer

Eluatet fortyndedes 1:50 i 0,1 mol/1 Tris/HCl, pH 8,5, 1 mmol/1 EDTA og 0,25 mol/1 L-arginin, og prøverne undersøgtes efter 17 timers aktivering ved 0°C.The eluate was diluted 1:50 in 0.1 mol / L Tris / HCl, pH 8.5, 1 mmol / L EDTA and 0.25 mol / L L-arginine, and the samples were tested after 17 hours of activation at 0 ° C.

GSH/GSSG-afhængighed af aktiveringen DK 175091 B1 23 GSH (mmol/l) GSSG (mmol/l) Aktivitet (%) 1 0,5 6 5 0,5 13 10 0,5 25 5 20 0,5 25 5 0,1 13 5 0,5 13 5 1,0 13 5 5 6 10 e) Aktiveringsudbyttets afhængighed af BSA-tilsætningenGSH / GSSG Dependence on Activation DK 175091 B1 23 GSH (mmol / l) GSSG (mmol / l) Activity (%) 1 0.5 6 5 0.5 13 10 0.5 25 5 20 0.5 25 5 0 , 1 13 5 0.5 13 5 1.0 13 5 5 6 10 e) Dependency of activation yield on BSA addition

Eluatet fortyndedes 1:50 i 0,1 mol/l Tris/HCl, pH 8,5, 1 mmol/l EDTA, 5 mmol/l GSH, 0,5 mmol/l GSSG og 0,25 mol/l L- arginin og undersøgtes efter 17 timers aktivering ved 0°C.The eluate was diluted 1:50 in 0.1 mol / l Tris / HCl, pH 8.5, 1 mmol / l EDTA, 5 mmol / l GSH, 0.5 mmol / l GSSG and 0.25 mol / l L-arginine and tested after 17 hours of activation at 0 ° C.

BSA-afhængighed af aktiveringen 15 BSA (mg/ml) Aktivitet (%) 0 13 1 13 2 25 5 13 DK 175091 B1 24BSA dependence on activation 15 BSA (mg / ml) Activity (%) 0 13 1 13 2 25 5 13 DK 175091 B1 24

f) Aktiveringsudbyttets afhængighed af pHf) Dependence of activation yield on pH

Eluatet fortyndedes 1:50 i 0,1 mol/1 Tris/HCI, 1 mmol/1 EDTA, 5 mmol/1 GSH, 0,5 mmol/GSSG og 0,25 mol/1 L-arginin og undersøgtes efter 17 timers aktivering ved 0°C.The eluate was diluted 1:50 in 0.1 mol / L Tris / HCl, 1 mmol / L EDTA, 5 mmol / L GSH, 0.5 mmol / GSSG and 0.25 mol / L L-arginine and tested after 17 hours of activation at 0 ° C.

pH-afhængighed af aktiveringen 5 pH Aktivitet (%) 6.5 0 7.5 6 8.5 13 9.5 50 10 10,5 100pH Dependence on Activation 5 pH Activity (%) 6.5 0 7.5 6 8.5 13 9.5 50 10 10.5 100

Claims (20)

1. Fremgangsmåde til aktivering af genteknologisk fremstillede, heterologe disulfidbro-holdige eukaryotiske proteiner efter ekspression i prokaryotiske celler ved celleopluk- 5 ning, solubilisering under denaturerende og reducerende betingelser og reaktivering under oxiderende betingelser ved tilstedeværelse af GSH/GSSG, kendetegnet ved, at der ved reaktiveringstrinnet arbejdes med en pH-værdi på 8 til 12, en GSH-koncentration på 0,1 til 20 mtnol/1, en GSSG-koncentration på 0,01 til 3 mmol/1 og ved en ikke-denaturerende koncentration af denatureringsmidlet og ved, at der i reakti-10 veringstrinnet som denatureringsmiddel anvendes arginin og/eller mindst én forbindelse med den almene formel R2-CO-NR-R, (I), hvor R og R, betyder H eller alkyl med 1 til 4 C-atomer og R2 betyder H eller NHR, eller alkyl med 1 til 3 C-atomer, med det forbehold, at R og R, ikke samtidigt er H.A method for activating gene-technologically prepared, heterologous disulfide-bridged eukaryotic proteins after expression in prokaryotic cells by cell uptake, solubilization under denaturing and reducing conditions, and reactivation under oxidizing conditions in the presence of GSH / GSSG, characterized in that by the reactivation step is worked at a pH of 8 to 12, a GSH concentration of 0.1 to 20 mtnol / 1, a GSSG concentration of 0.01 to 3 mmol / 1 and at a non-denaturing concentration of the denaturant and at wherein in the reaction step, as the denaturing agent, arginine and / or at least one compound of the general formula R2-CO-NR-R, (I) wherein R and R are H or alkyl of 1 to 4 C atoms are used. and R 2 is H or NHR, or alkyl of 1 to 3 C atoms, with the proviso that R and R are not simultaneously H. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at pH-værdien i reakti-15 veringstrinnet andrager 9,5 til 11.Process according to claim 1, characterized in that the pH of the reaction step is 9.5 to 11. 3. Fremgangsmåde ifølge krav 1 eller 2, kendetegnet ved, at GSH-koncentrationen andrager 0,2 til 10 mmol/1 og/eller GSSG-koncentrationen 0,05 til 1 mmol/1 i reaktiveringstrinnet.Process according to claim 1 or 2, characterized in that the GSH concentration is 0.2 to 10 mmol / 1 and / or the GSSG concentration 0.05 to 1 mmol / 1 in the reactivation step. 4. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at 20 man efter solubilisering og før reaktivering gennemfører et rensningstrin.Process according to any one of the preceding claims, characterized in that a purification step is carried out after solubilization and before reactivation. 5. Fremgangsmåde ifølge ethvert af kravene 1 til 3, kendetegnet ved, at reaktiveringen gennemføres uden forudgående fraskillelse af denaturerings-/reduktions-midlerne, hvorhos reaktionsopløsningen fortyndes efter denaturering/reduktion med reaktiveringspuffer, og at GSSG-koncentration ved den efterfølgende reaktivering over- 25 stiger den forblivende restkoncentration af DTE. " "" ^mmmtm DK 175091 B1 26Process according to any one of claims 1 to 3, characterized in that the reactivation is carried out without prior separation of the denaturing / reducing agents, wherein the reaction solution is diluted after denaturation / reduction with reactivation buffer and that GSSG concentration upon subsequent reactivation is exceeded. the residual residual concentration of DTE increases. "" "^ mmmtm DK 175091 B1 26 6. Fremgangsmåde ifølge ethvert af kravene 1 til 6, kendetegnet ved, at man gennemfører ekspressionen i E. coli eller P. putida.Process according to any one of claims 1 to 6, characterized in that the expression is carried out in E. coli or P. putida. 7. Fremgangsmåde ifølge ethvert af kravene 1-6, kendetegnet ved, at koncentrationen af arginin andrager 0,1 til 1,0 mol/1, navnlig 0,25 til 0,8 mol/l.Process according to any one of claims 1-6, characterized in that the concentration of arginine is 0.1 to 1.0 mol / l, in particular 0.25 to 0.8 mol / l. 8. Fremgangsmåde ifølge ethvert af kravene 1-6, kendetegnet ved, at koncentra tionen af forbindelser med den almene formel I andrager 0,5 til 4 mol/1, navnlig 1 til 3,5 mol/1.Process according to any one of claims 1-6, characterized in that the concentration of compounds of the general formula I is 0.5 to 4 mol / l, in particular 1 to 3.5 mol / l. 9. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at der ved reaktiveringstrinnet arbejdes ved tilstedeværelse af et ikke-proteolytisk virksomt 10 protein, navnlig ved tilstedeværelse af okseserumalbumin.Process according to any one of the preceding claims, characterized in that during the reactivation step, work is carried out in the presence of a non-proteolytically active protein, in particular in the presence of bovine serum albumin. 10. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at man gennemfører celleoplukningen ved hjælp af ultralyd, højttryksdispersion eller lysozym.Method according to any one of the preceding claims, characterized in that the cell pickup is carried out by means of ultrasound, high pressure dispersion or lysozyme. 11. Fremgangsmåde ifølge krav 10, kendetegnet ved, at man gennemfører 15 oplukningen i en fortyndet vandig pufferopløsning, navnlig i 0,1 mol/1 Tris, ved en neutral til svag sur pH-værdi.Process according to claim 10, characterized in that the digestion is carried out in a dilute aqueous buffer solution, in particular in 0.1 mol / l Tris, at a neutral to slightly acidic pH. 12. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at man efter celleoplukningen fraskiller de uopløselige bestanddele.Process according to any one of the preceding claims, characterized in that after the cell opening, the insoluble components are separated. 13. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at 20 man gennemfører solubiliseringstrinnet ved alkalisk pH-værdi i nærværelse af et reduktionsmiddel fra mercaptogruppen og i nærværelse af et denatureringsmiddel. DK 175091 B1 27Process according to any one of the preceding claims, characterized in that the solubilization step is carried out at alkaline pH in the presence of a reducing agent from the mercapto group and in the presence of a denaturing agent. DK 175091 B1 27 14. Fremgangsmåde ifølge krav 13, kendetegnet ved, at man arbejder i nærværelse af forbindelser med den almene formel I som denatureringsmiddel.Process according to claim 13, characterized in that it is used in the presence of compounds of the general formula I as a denaturing agent. 15. Fremgangsmåde ifølge krav 14, kendetegnet ved, at koncentration af forbindelser med den almene formel I andrager 8 mol/1.Process according to claim 14, characterized in that the concentration of compounds of the general formula I is 8 mol / l. 16. Fremgangsmåde ifølge ethvert af kravene 13 til 15, k e n d e t e g n e t ved, at man arbejder ved tilstedeværelse af DTE, β-mercaptoethanol, cystein eller GSH.Process according to any one of claims 13 to 15, characterized in that it operates in the presence of DTE, β-mercaptoethanol, cysteine or GSH. 17. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at man gennemfører rensning og fraskillelse af reduktions-, oxidations- eller denatureringsmidler ved hjælp af sterisk udelukkelseschomatografi eller dialyse.Process according to any one of the preceding claims, characterized in that purification and separation of reducing, oxidizing or denaturing agents are carried out by steric exclusion chromatography or dialysis. 18. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at man efter reaktiveringstrinnet gennemfører et rensningstrin ved hjælp af dialyse.Process according to any one of the preceding claims, characterized in that, after the reactivation step, a purification step is carried out by dialysis. 19. Fremgangsmåde ifølge ethvert af kravene 1 til 18, kendetegnet ved, at man som genteknologisk fremstillet eukaryotisk protein anvender t-PA.Method according to any one of claims 1 to 18, characterized in that t-PA is used as a genetically-engineered eukaryotic protein. 20. Fremgangsmåde ifølge ethvert af kravene 1 til 19, kendetegnet ved, at man 15 som genteknologisk fremstillet eukaryotisk protein anvender Interferon-β.Method according to any one of claims 1 to 19, characterized in that Interferon-β is used as a genetically-engineered eukaryotic protein.
DK198703203A 1985-10-23 1987-06-23 Method for activating gene-technologically prepared, heterologous, disulfide-bridged eukaryotic proteins after expression in prokaryotic cells DK175091B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK200001897A DK175109B1 (en) 1985-10-23 2000-12-18 Activating recombinant non-glycosylated tissue plasminogen activator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3537708 1985-10-23
DE19853537708 DE3537708A1 (en) 1985-10-23 1985-10-23 METHOD FOR ACTIVATING T-PA AFTER EXPRESSION IN PROKARYONTS
EP8600610 1986-10-23
PCT/EP1986/000610 WO1987002673A2 (en) 1985-10-23 1986-10-23 Process for activating heterologous, eucaryotic proteins genetically engineered and presenting disulphide bridges after their expression in procaryotic cells

Publications (3)

Publication Number Publication Date
DK320387A DK320387A (en) 1987-06-23
DK320387D0 DK320387D0 (en) 1987-06-23
DK175091B1 true DK175091B1 (en) 2004-05-24

Family

ID=6284269

Family Applications (2)

Application Number Title Priority Date Filing Date
DK198703203A DK175091B1 (en) 1985-10-23 1987-06-23 Method for activating gene-technologically prepared, heterologous, disulfide-bridged eukaryotic proteins after expression in prokaryotic cells
DK200001897A DK175109B1 (en) 1985-10-23 2000-12-18 Activating recombinant non-glycosylated tissue plasminogen activator

Family Applications After (1)

Application Number Title Priority Date Filing Date
DK200001897A DK175109B1 (en) 1985-10-23 2000-12-18 Activating recombinant non-glycosylated tissue plasminogen activator

Country Status (26)

Country Link
EP (3) EP0393725B1 (en)
JP (2) JPH0728745B2 (en)
KR (1) KR900009139B1 (en)
AT (2) ATE98648T1 (en)
AU (2) AU590029B2 (en)
CA (1) CA1329157C (en)
CZ (1) CZ280727B6 (en)
DD (1) DD260517A5 (en)
DE (3) DE3537708A1 (en)
DK (2) DK175091B1 (en)
ES (2) ES2061434T3 (en)
FI (2) FI94050C (en)
GR (2) GR920300062T1 (en)
HK (2) HK153496A (en)
HR (1) HRP921075B1 (en)
HU (2) HUT43643A (en)
IE (1) IE62634B1 (en)
IL (1) IL80325A (en)
PT (1) PT83609B (en)
SI (1) SI8611796B (en)
SK (1) SK278317B6 (en)
SU (1) SU1607689A3 (en)
UA (1) UA6023A1 (en)
WO (1) WO1987002673A2 (en)
YU (1) YU47185B (en)
ZA (1) ZA868012B (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766205A (en) * 1985-11-13 1988-08-23 Beatrice Companies, Inc. Method for isolation of recombinant polypeptides in biologically active forms
JP2581668B2 (en) * 1985-11-27 1997-02-12 三井東圧化学株式会社 Novel DNA sequence encoding human tissue plasminogen activator derived from normal human cells and vectors and cells containing the same
US4777043A (en) * 1985-12-17 1988-10-11 Genentech, Inc. Stabilized human tissue plasminogen activator compositions
AU621051B2 (en) * 1987-04-28 1992-03-05 Amgen, Inc. Method for purifying granulocyte-macrophage colony stimulating factor
DE3722082A1 (en) * 1987-07-03 1989-01-12 Behringwerke Ag METHOD FOR DETERMINING THE ACTIVITY OF SERINE PROTEASES OR SERINE PROTEASE INHIBITORS
CA1340586C (en) * 1988-09-23 1999-06-08 Cetus Corporation Process for recovering microbially produced interferon-beta
DE3832898A1 (en) * 1988-09-28 1990-04-12 Boehringer Mannheim Gmbh PRAEPARATE OF EXPRESSED PLASMINOGEN ACTIVATOR IN PROKARYONS
DE3835350A1 (en) * 1988-10-17 1990-04-19 Boehringer Mannheim Gmbh ACTIVATION OF GENETICALLY MANUFACTURED ANTIBODY EXPRESSED IN PROKARYONS
DE3903581A1 (en) * 1989-02-07 1990-08-16 Boehringer Mannheim Gmbh FABRIC PLASMINOGEN ACTIVATOR DERIVATIVE
DE3942143A1 (en) * 1989-12-20 1991-06-27 Boehringer Mannheim Gmbh T-PA PRO STABILIZATION
EP0545999B1 (en) * 1990-08-20 1997-06-04 Novo Nordisk A/S Process for the preparation of biologically active IGF-1 using IGF-1 having an amino-terminal extension
DE69129747T2 (en) * 1990-09-05 1998-11-12 Southern Cross Biotech Pty Ltd BRINGING PROTEINS IN SOLUTION IN ACTIVE FORM
DE4037196A1 (en) * 1990-11-22 1992-05-27 Boehringer Mannheim Gmbh METHOD FOR REACTIVATING DENATURED PROTEIN
DE4113750A1 (en) * 1991-04-26 1992-10-29 Boehringer Mannheim Gmbh IMPROVEMENT OF RENATURATION IN THE SECRETION OF DISULFID-BRIDGED PROTEINS
DE4139000A1 (en) 1991-11-27 1993-06-03 Boehringer Mannheim Gmbh METHOD OF GENERATING BIOLOGICALLY ACTIVE SS-NGF
US5212091A (en) * 1992-03-02 1993-05-18 Monsanto Company Method of producing tissue factor pathway inhibitor
CA2109820A1 (en) * 1992-03-24 1993-09-30 George N. Cox Refolding and purification of insulin-like growth factor i
SG46612A1 (en) 1992-12-02 1998-02-20 Hoechst Ag Process for obtaining proinsulin in processing correctly linked cystine bridges
DE4405179A1 (en) * 1994-02-18 1995-08-24 Hoechst Ag Method of obtaining insulin with correctly connected cystine bridges
FR2729972B1 (en) * 1995-01-31 1997-04-18 Sanofi Sa PROCESS FOR THE EXTRACTION OF PERIPLASMIC PROTEINS FROM PROKARYOTIC MICROORGANISMS IN THE PRESENCE OF ARGININ
US5714371A (en) * 1995-05-12 1998-02-03 Schering Corporation Method for refolding insoluble aggregates of hepatitis C virus protease
US5728804A (en) * 1995-06-02 1998-03-17 Research Corporation Technologies, Inc. Use of cyclodextrins for protein renaturation
WO1997047735A1 (en) * 1996-06-11 1997-12-18 Boehringer Mannheim Gmbh Method of activating denatured protein
US7153943B2 (en) 1997-07-14 2006-12-26 Bolder Biotechnology, Inc. Derivatives of growth hormone and related proteins, and methods of use thereof
US6653098B1 (en) * 1998-02-23 2003-11-25 G. D. Searle & Co. Method of producing mouse and human endostatin
DE19850429A1 (en) * 1998-10-27 2000-05-04 Andre Schrattenholz Fragments
EP1048732A1 (en) 1999-04-26 2000-11-02 F. Hoffmann-La Roche Ag Process for producing natural folded and secreted proteins
EP1077263A1 (en) * 1999-07-29 2001-02-21 F.Hoffmann-La Roche Ag Process for producing natural folded and secreted proteins by co-secretion of chaperones
ATE367398T1 (en) 2000-05-16 2007-08-15 Bolder Biotechnology Inc METHOD FOR REFOLDING PROTEINS WITH FREE CYSTEINE RESIDUE
DE10105911A1 (en) 2001-02-09 2002-08-14 Roche Diagnostics Gmbh Expression of the recombinant proteinase K from Tritirachium album in yeast
DE10105912A1 (en) * 2001-02-09 2002-08-14 Roche Diagnostics Gmbh Recombinant Proteinase K
DE102005033250A1 (en) 2005-07-15 2007-01-18 Bioceuticals Arzneimittel Ag Process for purifying G-CSF
DE202006020194U1 (en) 2006-03-01 2007-12-06 Bioceuticals Arzneimittel Ag G-CSF liquid formulation
MX2009000278A (en) 2006-07-14 2009-01-26 Genentech Inc Refolding of recombinant proteins.
WO2008076933A2 (en) 2006-12-14 2008-06-26 Bolder Biotechnology, Inc. Long acting proteins and peptides and methods of making and using the same
MX2012010661A (en) 2010-03-17 2013-03-25 Biogenerix Gmbh Method for obtaining biologically active recombinant human g-csf.
US20130273607A1 (en) * 2010-10-20 2013-10-17 Medimmune, Llc Methods for processing inclusion bodies
HUP1200172A2 (en) 2012-03-19 2013-10-28 Richter Gedeon Nyrt Methods for refolding g-csf from inclusion bodies
HUP1200171A1 (en) 2012-03-19 2013-09-30 Richter Gedeon Nyrt Methods for the production of polypeptides
CN103852527B (en) * 2012-12-05 2015-05-13 中国科学院大连化学物理研究所 High-flux protein sample pre-treatment device
US10457716B2 (en) 2014-08-06 2019-10-29 University Of Notre Dame Du Lac Protein folding and methods of using same
AU2017389916B2 (en) 2016-12-30 2021-09-30 Biogend Therapeutics Co., Ltd. Recombinant polypeptides, compositions, and methods thereof
EP4263568A1 (en) 2020-12-18 2023-10-25 Richter Gedeon Nyrt. Methods for the purification of refolded fc-peptide fusion protein

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135481A (en) * 1974-09-18 1976-03-25 Fujiwa Kako Kk KOJUNDOHITOROKINAAZE NO SEIHO
US4468633A (en) 1982-04-28 1984-08-28 The Bendix Corporation Adjustable microwave power combiner for a plurality of coaxially mounted impatt diodes
GR79202B (en) 1982-05-05 1984-10-22 Genentech Inc
US4432895A (en) * 1982-11-24 1984-02-21 Hoffmann-La Roche Inc. Monomeric interferons
GR79124B (en) * 1982-12-22 1984-10-02 Genentech Inc
GB2138004B (en) * 1983-03-25 1987-05-13 Celltech Ltd A process for the production of a protein
JPS6051119A (en) * 1983-08-30 1985-03-22 Green Cross Corp:The Dried pharmaceutical preparation of urokinase
US4530787A (en) * 1984-03-28 1985-07-23 Cetus Corporation Controlled oxidation of microbially produced cysteine-containing proteins
US4748234A (en) * 1985-06-26 1988-05-31 Cetus Corporation Process for recovering refractile bodies containing heterologous proteins from microbial hosts
US4766205A (en) * 1985-11-13 1988-08-23 Beatrice Companies, Inc. Method for isolation of recombinant polypeptides in biologically active forms
FR2596360B1 (en) * 1986-04-01 1989-02-17 Sotralentz Sa CONTAINER ON PALLET WITH FOLDED AND REINFORCED MESH PROTECTION DEVICE
JPH0651119A (en) * 1992-07-28 1994-02-25 Sekisui Chem Co Ltd Production of phase difference plate

Also Published As

Publication number Publication date
FI872753A0 (en) 1987-06-22
DE3537708A1 (en) 1987-04-23
GR920300062T1 (en) 1992-08-31
IL80325A0 (en) 1987-01-30
CA1329157C (en) 1994-05-03
PT83609B (en) 1988-10-14
YU179686A (en) 1988-06-30
JPH04218387A (en) 1992-08-07
JPH0824594B2 (en) 1996-03-13
UA6023A1 (en) 1994-12-29
DD260517A5 (en) 1988-09-28
AU6599386A (en) 1987-05-19
KR900009139B1 (en) 1990-12-22
ATE131489T1 (en) 1995-12-15
FI933868A0 (en) 1993-09-03
IE862683L (en) 1987-04-23
EP0219874A2 (en) 1987-04-29
DK200001897A (en) 2000-12-18
DK320387A (en) 1987-06-23
WO1987002673A3 (en) 1987-10-22
AU590029B2 (en) 1989-10-26
SU1607689A3 (en) 1990-11-15
HRP921075A2 (en) 1995-06-30
HUT43643A (en) 1987-11-30
IE62634B1 (en) 1995-02-22
YU47185B (en) 1995-01-31
ES2020498A4 (en) 1991-08-16
DK175109B1 (en) 2004-06-07
ATE98648T1 (en) 1994-01-15
JPH0728745B2 (en) 1995-04-05
FI95578B (en) 1995-11-15
FI95578C (en) 1996-02-26
EP0219874B1 (en) 1993-12-15
SI8611796B (en) 1998-06-30
ZA868012B (en) 1987-06-24
PT83609A (en) 1986-11-01
SI8611796A (en) 1996-10-31
SK752686A3 (en) 1996-10-01
WO1987002673A2 (en) 1987-05-07
DE3689404D1 (en) 1994-01-27
GR3018410T3 (en) 1996-03-31
ES2061434T3 (en) 1994-12-16
HK153496A (en) 1996-08-16
AU607083B2 (en) 1991-02-21
HRP921075B1 (en) 1999-02-28
AU4132189A (en) 1990-01-04
FI933868A (en) 1993-09-03
EP0393725A1 (en) 1990-10-24
FI872753A (en) 1987-06-22
KR870700601A (en) 1987-12-30
FI94050C (en) 1995-07-10
HU204855B (en) 1992-02-28
DK320387D0 (en) 1987-06-23
SK278317B6 (en) 1996-10-02
EP0253823A1 (en) 1988-01-27
CZ752686A3 (en) 1996-01-17
DE3537708C2 (en) 1993-07-08
CZ280727B6 (en) 1996-04-17
IL80325A (en) 1992-06-21
FI94050B (en) 1995-03-31
EP0393725B1 (en) 1995-12-13
JPS62502895A (en) 1987-11-19
HK153596A (en) 1996-08-16
DE3650449D1 (en) 1996-01-25
EP0219874A3 (en) 1988-02-10
ES2020498T3 (en) 1996-04-01

Similar Documents

Publication Publication Date Title
DK175091B1 (en) Method for activating gene-technologically prepared, heterologous, disulfide-bridged eukaryotic proteins after expression in prokaryotic cells
Matheson et al. Isolation and properties of human neutrophil myeloperoxidase
EP0215625B1 (en) Protein recovery
JP3288720B2 (en) Method for activating denatured protein
Owen et al. Evidence for an ester bond between thrombin and heparin cofactor
AU620927B2 (en) A preparation of plasminogen activator expressed in prokaryotes
EP0067293B1 (en) Method for isolating alpha-1-antitrypsin
CZ46094A3 (en) Activation method of heterologous proteins obtained by genetic technology containing disulfide bridges of eukaryotic origin after expression in prokaryotic organisms
Aurell et al. Determination of factor Xa activity by means of chromogenic substrates based on the primary structure of prothrombin
Nohara et al. Media selection for refolding of thermolysin by use of immobilized preparation
JP3040189B2 (en) Protein extraction method
JPH07100032B2 (en) Method for producing high-purity tissue plasminogen activator
JPS63145297A (en) Purification of protein

Legal Events

Date Code Title Description
PUP Patent expired