SI8611796A - Method for activating gentechnological prepared of heterolog,eukaryotic proteins, which contain disulphide's bridges, after their expression in the procaryotes. - Google Patents
Method for activating gentechnological prepared of heterolog,eukaryotic proteins, which contain disulphide's bridges, after their expression in the procaryotes. Download PDFInfo
- Publication number
- SI8611796A SI8611796A SI8611796A SI8611796A SI8611796A SI 8611796 A SI8611796 A SI 8611796A SI 8611796 A SI8611796 A SI 8611796A SI 8611796 A SI8611796 A SI 8611796A SI 8611796 A SI8611796 A SI 8611796A
- Authority
- SI
- Slovenia
- Prior art keywords
- activation
- mol
- denaturing
- concentration
- mmol
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6424—Serine endopeptidases (3.4.21)
- C12N9/6456—Plasminogen activators
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6424—Serine endopeptidases (3.4.21)
- C12N9/6456—Plasminogen activators
- C12N9/6459—Plasminogen activators t-plasminogen activator (3.4.21.68), i.e. tPA
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/107—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
- C07K1/113—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
- C07K1/1133—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure by redox-reactions involving cystein/cystin side chains
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/555—Interferons [IFN]
- C07K14/565—IFN-beta
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/21—Serine endopeptidases (3.4.21)
- C12Y304/21069—Protein C activated (3.4.21.69)
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Lubricants (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
BOEHRINGER MANNHEIM GMBHBOEHRINGER MANNHEIM GMBH
Postopek za aktiviranje gentehnološko pripravljenih, heterolognih, eukariontskih proteinov, ki imajo disulfidne mostove, po ekspresiji v prokariontihMethod for activating gentechnologically prepared, heterologous, eukaryotic proteins having disulfide bridges after expression in prokaryotes
Predloženi izum se nanaša na postopek za aktiviranje gentehnološko pripravljenih, eukariontskih proteinov, ki vsebujejo disulfidne mostove, po ekspresiji v prokariontih.The present invention relates to a method for activating genetically engineered, eukaryotic proteins containing disulfide bridges upon expression in prokaryotes.
Pri ekspresiji heterolognih proteinov v prokariontih tvorijo ti proteini v celicah gostiteljicah pogosto neaktivne težko topne agregate (t.i. refractile bodies), ki so vrhu tega še oneciščeni s proteini celic gostiteljic. Domnevajo, da je tvorba takih refractile bodies posledica pri ekspresiji nastale visoke koncentracije proteinov v celici. Znano je, da pri tvorbi velikih količin encimov v celici poteka agregacija encimov v netopne, visokomolekulske, večinoma neaktivne delce. Preden pa lahko uporabimo take proteine, npr. za terapevtske namene, pa jih je treba očistiti in prevesti v aktivno obliko.In the expression of heterologous proteins in prokaryotes, these proteins are often inactive hard-soluble aggregates (so-called refractile bodies) in host cells, which are further contaminated with host cell proteins. The formation of such refractile bodies is thought to be due to the expression of the resulting high concentration of proteins in the cell. It is known that when large amounts of enzymes are formed in a cell, the enzyme aggregates into insoluble, high molecular weight, mostly inactive particles. However, before such proteins can be used, e.g. however, for therapeutic purposes, they must be purified and translated into active form.
Po znanih postopkih lahko poteka aktiviranje tovrstnih proteinov, ki nastopajo kot agregati, v več stopnjah (prim. npr. B. R. Jaenicke, FEBS Federation of European Biochemical Societies, Vol. 52 (1979) 187 do 198; R. Rudolph, Biochemistry J8 (1979) 5572 do 5575):According to known methods, the activation of such aggregate proteins can be effected in several steps (e.g., eg BR Jaenicke, FEBS Federation of European Biochemical Societies, Vol. 52 (1979) 187 to 198; R. Rudolph, Biochemistry J8 (1979 ) 5572 to 5575):
V prvi stopnji dosežejo solubiliziranje z dodatkom močnih denaturirnih sredstev, npr. gvanidin-hidroklorida ali sečnine v visoki koncentraciji, ali z dodatkom močno kislih sredstev, npr. zmesi glicina/fosforove kisline. Kot nadaljnje pomožne snovi so se obnesli reducirni SH-reagenti (npr. ditioeritritol, DTE) in EDTA, npr. pri renaturiranju LDH. V kolikor je protein onečiščen s proteini celice gostiteljice, sledi kot naslednja stopnja čiščenje po metodah, ki so same po sebi znane in običajne, npr. z gelno ali ionsko izmenjalno kromatografijo. Zatem močno razredčimo, da se zmanjša koncentracija denaturirnega sredstva. Pri uporabi gvanidin-hidroklorida pri tem razredčimo na vrednosti pod 0,5 mol/1. Pri encimih s prostimi SH-skupinami se izkaže kot prikladen dodatek sredstev, ki ščitijo SH-skupine (prim. npr. B. R. Jaenicke, Journal Polymer Science, Part C 16 (1967) 2143 do 2160).In the first stage, they achieve solubilization by the addition of strong denaturing agents, e.g. guanidine hydrochloride or urea in high concentration, or with the addition of strongly acidic agents, e.g. glycine / phosphoric acid mixtures. Reducing SH reagents (eg dithioerythritol, DTE) and EDTA, e.g. when renaturating LDH. To the extent that the protein is contaminated with the proteins of the host cell, then the next step is purification by methods known per se and conventional, e.g. by gel or ion exchange chromatography. It is then diluted sharply to reduce the concentration of the denaturing agent. When using guanidine hydrochloride, it is diluted to below 0.5 mol / l. For enzymes with free SH groups, it appears to be a suitable adjunct to agents protecting SH groups (see, e.g., B. R. Jaenicke, Journal Polymer Science, Part C 16 (1967) 2143 to 2160).
V EP-A-O1145O6 opisujejo postopke za izolacijo, čiščenj in aktiviranje nekaterih heterolognih produktov ekspresije iz bakterijskih kultur; za aktiviranje prevedejo raztopine refractile bodies v močnem denaturirnem sredstvu a) direktno v raztopino v šibkejšem denaturirnem sredstvu, kar nato pod- 3 vržejo oksidirnim pogojem, za ponovno tvorbo disulfidnih mostov; b) protein sulfonirajo, da nato prevedejo v raztopino v šibkem denaturirnem sredstvu ter S-sulfonatne skupine z obdelavo s sulfihidrilnim reagentom v njegovi reducirani in oksidirani obliki, npr. z GSH/GSSG, prevedejo v -S-S-skupine; ali c) raztopino v šibkem denaturirnem sredstvu direktno obdelajo s sulfhidrilnim reagentom, npr. z GSH/GSSG. Značilen primer, pri katerem nastopajo zgoraj prikazani problemi, je t-PA.EP-A-O1145O6 describes methods for isolating, purifying and activating certain heterologous expression products from bacterial cultures; to activate, transfer solutions of refractile bodies in a strong denaturing agent a) directly to a solution in a weaker denaturing agent, which is then subjected to oxidizing conditions to re-form disulfide bridges; b) the protein is sulphonated to then be converted into a solution in a weak denaturing agent and the S-sulphonate groups by treatment with the sulfhydryl reagent in its reduced and oxidized form, e.g. with GSH / GSSG, translated into -S-S-groups; or c) treat the solution in a weak denaturing agent directly with a sulfhydryl reagent, e.g. with GSH / GSSG. A typical example of the problems presented above is t-PA.
Glavna komponenta proteinske matrice strjene krvi je polimer fibrin. To proteinsko matrico raztaplja plazmin, ki se tvori iz plazminogena preko aktiviranja s t.i. aktivatorji plazminogena, npr. s t-PA (tkivni aktivator plazminogena, tissue-type plasminogen activator). Encimatska aktivnost naravnega ali iz eukariontov gentehnološko pridobljenega t-PA (katalitsko aktiviranje plazminogena do plazmina) je v odsotnosti fibrina ali fibrinskih cepilnih produktov (FSP) zelo majhna, da pa se v prisotnosti teh stimulatorjev znatno ojačiti (za več kot faktor 10). Ta t.i. stimulirnost učinkovi tosti je odločilna prednost t-PA v primeri z drugimi znanimi aktivatorji plazminogenov kot urokinazo ali streptokinazo (prim. npr. M. Hoylaerts et al, J. Biol. Chem. 257 (1982)The major component of the blood clotting protein matrix is the fibrin polymer. This protein matrix is dissolved by plasmin formed from plasminogen via activation by e.g. plasminogen activators, e.g. with t-PA (tissue-plasminogen activator). The enzymatic activity of natural or eukaryotes of gentechnologically derived t-PA (catalytic activation of plasminogen to plasmin) is very low in the absence of fibrin or fibrin cleavage products (FSP), but is significantly enhanced (by more than a factor of 10) in the presence of these stimulators. This t.i. stimulation of efficacy is a crucial advantage of t-PA compared to other known plasminogen activators such as urokinase or streptokinase (cf. e.g. M. Hoylaerts et al, J. Biol. Chem. 257 (1982)
2912 do 2019; Nieuwenhiuzen et al, Biochimica et Biophysica Acta 755 (1983) 531 do 533). Faktor stimulirnosti z BrCNcepilnimi produkti je zato v literaturi različno naveden in oštevilčen z do 35.2912 to 2019; Nieuwenhiuzen et al, Biochimica et Biophysica Acta 755 (1983) 531 to 533). The stimulus factor with BrCN vaccine products is therefore variously cited and numbered up to 35 in the literature.
- 4 t-PA-nast, neglikoziliran produkt se tvori tudi v genetsko manipuliranih prokariontih (po vrinjenju c-DNA); takemu produktu pa ne pripada stimulirnost učinkovitosti t-PA iz eukarionta. Možno je, da izvira to iz tega, da so redoks pogoji v prokariontni celici tako različni od eukariontne celice, iz katere izvira gen, da se na začetku izoblikuje neaktiven produkt, kar lahko vodimo npr. na to, da so številni SS-mostovi, ki jih vsebuje naravna aktivna molekula, povezani na napačen način, ali pa sploh niso izoblikovani. Za terapevtsko uporabo t-PA pa ni potrebna samo encimatska aktivnost kot taka, temveč vrhu tega tudi njegova stimulirnost. Tudi dejstvo, da prokariontna celica verjetno ne ustvarja pravih pogojev za izoblikovanje aktivnosti eukariontskih proteinov na pravilen način, je za druge snovi nakazano v The EMBO Journal 4, Nr. 3 (1985) 775 do 780.- 4 t-PA-nast, non-glycosylated product is also formed in genetically manipulated prokaryotes (after c-DNA insertion); such product does not, however, belong to the stimulatory efficacy of t-PA from eukaryotes. This may be due to the fact that the redox conditions in the prokaryotic cell are so different from the eukaryotic cell from which the gene originates that an inactive product is initially formed, which can be led e.g. to the point that many SS bridges contained in the natural active molecule are either incorrectly bonded or not formed at all. However, therapeutic use of t-PA requires not only enzymatic activity per se, but also its stimulation. Also, the fact that a prokaryotic cell is unlikely to create the right conditions for the eukaryotic protein activity to be expressed in the correct manner is indicated for other substances in The EMBO Journal 4, Nr. 3 (1985) 775 to 780.
Po EP-A-0093639 za aktiviranje t-PA suspendirajo iz E. coli dobljene celične peletke v 6 mol/1 gvanidin-hidroklorida, obdelajo z ultra zvokom, inkubirajo in zatem dializirajo 4 ure proti raztopini iz Tris-HCl (pH = 8,0), natrijevega klorida, EDTA in Tween 80. Po dializi centrifugirajo, pri čemer v vrhnjem sloju (supernatantu) najdejo učinkovitost aktiviranja plazminogena. Na ta način naturiran t-PA je sicer proteolitično aktiven, vendar pa ne kaže merljive stimulirnosti z BrCN-cepilnimi produkti (BrCN-FSP) fibrina v smislu postopka, opisanega v J. H. Verheijen, Thromb. Haemostas.,EP-A-0093639 suspends E. coli cell pellets in 6 mol / l guanidine hydrochloride to activate t-PA, treated with ultra-sound, incubated and then dialyzed for 4 hours against Tris-HCl solution (pH = 8, 0), sodium chloride, EDTA and Tween 80. After dialysis, they were centrifuged, finding the plasminogen activation efficiency in the top layer (supernatant). Natured t-PA thus produced is proteolytically active, but it does not show measurable stimulation with BrCN-cleavage products (BrCN-FSP) of fibrin in the sense of the procedure described in J. H. Verheijen, Thromb. Haemostas.,
48, (3), 260 - 269 (1982).48, (3), 260-279 (1982).
- 5 Za aktiviranje denaturiranih proteinov ni iz stanja tehnike znan noben splošno uporaben postopek; to velja še prav posebej za t-PA, ker ima nativni protein zelo kompleksno strukturo; vsebuje prosto tiolno skupino in 17 SS-mostov, ki se dajo teoretično povezati na 2,2 x 10 različnih načinov, pri čemer samo ena struktura ustreza nativnemu stanju. Iz stanja tehnike znani postopki za aktiviranje t-PA sicer vodijo do proteolitično aktivnega t-PA, ki pa ne kaže merljive stimulirnosti; postopek aktiviranja, ki vodi do stimulirnega t-PA, pa še ni znan.- 5 No generally applicable method is known in the art for the activation of denatured proteins; this is especially true for t-PA because the native protein has a very complex structure; contains a free thiol group and 17 SS bridges that can theoretically be connected in 2.2 x 10 different ways, with only one structure corresponding to the native state. The prior art methods for activating t-PA do lead to proteolytically active t-PA, but do not show measurable stimulation; however, the activation process leading to the stimulatory t-PA is not yet known.
Naloga predloženega izuma za to je, da nam da na voljo postopek za popolno aktiviranje gentehnološko pripravljenih, heterolognih, eukariontskih proteinov, ki vsebujejo disulfidne mostove, po ekspresiji v prokariontih; to nalogo rešimo s predmetom predloženega izuma.It is an object of the present invention to provide us with a process for the complete activation of genetically engineered, heterologous, eukaryotic proteins containing disulfide bridges upon expression in prokaryotes; this task is solved by the object of the present invention.
Predmet izuma je postopek za aktiviranje gentehnološko pripravljenih, heterolognih, eukariontskih proteinov, ki vsebujejo disulfidne mostove, po ekspresiji v prokariontih, ob razklopu celice, solubiliziranju pri denaturirnih in reducirnih pogojih ter aktiviranju (renaturiranju) pri oksidirnih pogojih v prisotnosti GSH/GSSG, ki je označen s tem, da v stopnji aktiviranja delamo pri pH vrednosti 9 do 12, GSH-koncentraciji 0,1 do 20 mmol/1, GSSG-koncentraciji 0,01 do 3 mmol/1, ter z ne-denaturirno koncentracijo denaturirnega sredstva.The subject of the invention is a method for activating gene-technologically prepared, heterologous, eukaryotic proteins containing disulfide bridges after expression in prokaryotes, upon cell cleavage, solubilization under denaturing and reducing conditions and activation (renaturation) under oxidizing conditions of GS, in the presence of GS characterized in that, at the activation stage, we operate at a pH of 9 to 12, a GSH concentration of 0.1 to 20 mmol / l, a GSSG concentration of 0.01 to 3 mmol / l, and a non-denaturing concentration of the denaturing agent.
Prednostne izvedbe predloženega postopka so predmet ood zahtevkov.Preferred embodiments of the present process are the subject of claims.
- 6 Kot denaturirno sredstvo lahko praviloma uporabimo za aktiviranje pri oksidirnih pogojih običajno uporabljeno denaturirno sredstvo ali arginin; prednostno uporabljamo izmed znanih denaturirnih sredstev gvanidin-hidroklorid ali sečnino ali njune derivate. Vrhu tega se je kot primeren izkazal tudi arginin. Nadalje se da uporabljati zmesi teh denaturirnih sredstev. Prednostno izvedemo to stopnjo aktiviranja tudi v prisotnosti tujega proteina; kot tak je primeren praviloma vsak tuj protein, v kolikor ni proteolitično učinkovit; prednostno uporabijamo goveji serumski albumin (BSA), npr. v količini 1 do 3 mg/ml. Dodatek BSA izzove lahno povišanje dobitka in stabiliziranje proteina (verjetno z zaščito pred površinskim denaturiranjera in/ali proteolitično razgradnjo).- 6 As a rule, a denaturing agent or arginine can generally be used as a denaturing agent to activate under oxidizing conditions; guanidine hydrochloride or urea or derivatives thereof are preferably used among known denaturing agents. On top of this, arginine also proved to be suitable. Furthermore, mixtures of these denaturing agents may be used. Preferably, this level of activation is also carried out in the presence of a foreign protein; as such, any foreign protein is generally suitable as long as it is not proteolytically effective; preferably bovine serum albumin (BSA) is used, e.g. in an amount of 1 to 3 mg / ml. BSA supplementation causes a slight increase in yield and stabilization of the protein (probably by protection against surface denaturation and / or proteolytic degradation).
Ostali pogoji postopka lahko ustrezajo pogojem, ki so znani in običajni za reaktivirne stopnje iz stanja tehnike. Trajanje aktiviranja (inkubacija) znaša prednostno 20 do 48 ur pri sobni temperaturi. Razplovni čas aktiviranja znaša v prisotnosti 0,5 mmol/1 reduciranega (GSH) in oksidiranega (GSSG) glutationa okoli 10 do 15 ur pri 20 °C. Pri daljši inkubaciji (48 ur) pri reoksidacijskih pogojih stimulirnost z CNBr-FSP praviloma pojema. Stopnjo aktiviranja izvedemo pred nostno v prisotnosti EDTA, pri čemer najbolj smotrna koncentra cija znaša okoli 1 mmol/1 EDTA.Other conditions of the process may correspond to conditions known and common to the prior art reactivation steps. The activation time (incubation) is preferably 20 to 48 hours at room temperature. The activation time is about 10 to 15 hours at 20 ° C in the presence of 0.5 mmol / l reduced (GSH) and oxidized (GSSG) glutathione. On prolonged incubation (48 hours) under reoxidation conditions, stimulation with CNBr-FSP generally declines. The activation rate is preferably carried out in the presence of EDTA, with the most appropriate concentration being about 1 mmol / l EDTA.
Stopnje postopka, ki jih izvajamo pred ali po stopnji aktiviranja (reoksidacija/aktiviranje), kot celični razklop, solubiliziranje (solubiliziranje/redukcija) in v danem primeru ena ali več čistilnih operacij, ki jih izvedemo pred in/ali po stopnji aktiviranja, se dajo izvesti po tehniki, ki je znana oz. običajna za tovrstne postopke, npr. iz EP-A01 14506, EP-A-0093619; za dosego razultata, optimalnega z ozirom na dobitek in aktiviranje, pa je lahko smotrno, da izvedemo posamično ali vse stopnje postopka ob upoštevanju ene ali več v predloženem opisu pojasnjenih izvedb postopka. Tako je zlasti možno, da izvedemo stopnjo aktiviranja v smislu izuma v zmesi, dobljeni po razklopu, brez predhodnega denaturiranja in/ali redukcije, vsekakor pa z nizkim dobitkom. Ekspresijo izvedemo v prokariontih, prednostno v P.putida in zlasti E.coli. Postopek v smislu izuma pa je prav tako prikladen, kadar eksprimiramo v drugih prokariontih (npr. v Bacilli).The stages of the process performed before or after the activation step (reoxidation / activation), such as cell digestion, solubilization (solubilization / reduction), and optionally one or more purification operations performed before and / or after the activation step, are given performed according to a technique known or known. common in such procedures, e.g. from EP-A01 14506, EP-A-0093619; however, in order to achieve the optimum result in terms of gain and activation, it may be advisable to carry out individually or all stages of the process, taking into account one or more of the embodiments explained in the description provided. Thus, it is particularly possible to carry out the activation step of the invention in the mixture obtained after digestion without prior denaturation and / or reduction, and in any case in low yield. Expression is carried out in prokaryotes, preferably in P.putida and in particular E.coli. The process of the invention is also suitable when expressed in other prokaryotes (e.g., in Bacilla).
Celični razklop lahko pri tem izvedemo po običajnih metodah, npr. s pomočjo ultra zvoka, visokotlačno disperzijo ali lizocimsko; izvedemo ga prednostno v pufrski raztopini, primerni za nastavitev nevtralne do šibko kisle pH-vrednosti, kot suspenzijskega medija, npr. v 0,1 mol/1 Tris-HCl. Po celičnem razklopu odločimo netopno (refractile bodies) na poljuben način, prednostno z odcentrifugiranjem pri višjih g-številih in daljšem času centrifugiranja, ali s filtracijo. Po izpranju s sredstvi, ki ne motijo t-PA, tuje celične protei ne pa po možnosti raztapljajo, npr. v vodi, fosfatni pufrski raztopini, v danem primeru ob dodatku milih detergentov kot tritona, podvržemo oborino (pelet) solubiliziranju (solubiliziranje/redukcija). Solubiliziranje poteka prednostno v alkalnem pH-območju, zlasti pri pH 8,6 + 0,4 ter v prisotnostiCellular digestion can then be performed by conventional methods, e.g. using ultra-sound, high pressure dispersion or lysozyme; it is preferably carried out in a buffer solution suitable for adjusting the neutral to weakly acidic pH, such as a suspension medium, e.g. in 0.1 mol / 1 Tris-HCl. After cell digestion, the refractile bodies are chosen in any way, preferably by centrifugation at higher g-numbers and longer spin time, or by filtration. After washing with t-PA-free agents, foreign cellular proteins are not preferably dissolved, e.g. in water, phosphate buffer solution, optionally subjected to solubilization (solubilization / reduction) with the addition of soap detergents as tritone. Solubilization takes place preferably in the alkaline pH range, especially at pH 8.6 + 0.4 and in the presence
- 8 redukcijskega sredstva iz merkaptanske skupine in denaturirnega sredstva.- 8 reducing agent from mercaptan group and denaturing agent.
Kot denaturirna sredstva lahko uporabimo za solubiliziranje iz stanja tehnike, npr. iz EP-A-0114506, znana in običajna denaturirna sredstva, zlasti gvanidin-hidroklorid ali sečnino. Koncentracija gvanidin-hidroklorida znaša smotrno okoli 6 molov/1, sečnine pa okoli 8 raolov/1. Prav tako lahko uporabimo spojine s splošno formulo I.As denaturing agents, they can be used to solubilize the prior art, e.g. from EP-A-0114506, known and conventional denaturing agents, in particular guanidine hydrochloride or urea. The guanidine hydrochloride concentration is preferably about 6 moles / l and urea is about 8 moles / l. Compounds of general formula I may also be used.
Kot reducente iz skupine merkaptanov lahko uporabimo npr. reduciran glutation (GSH) ali 2-raerkaptoetanol, npr. v koncentraciji okoli 50 do 400 mmolov/1 ditiotreitola in/ali zlasti DTE (ditioeritritol) oz. DTT (ditiotreitol) , npr. v koncentraciji okoli 80 do 400 mmolov/1. Solubiliziranje poteka smotrno pri sobni temperaturi v času (inkubacija) 1 do več ur, prednostno 2 uri. Za preprečenje oksidacije reducenta z zračnim kisikom je lahko smotrno uporabiti EDTA. Poleg solubuliziranja/redukcije ima stopnja solubiliziranja tudi čistilni efekt, ker večji del materiala, ki ne reagira navskrižno imunološko s t-PA (tujih proteinov), ne preide v raztopino.As reducing agents from the mercaptans group, e.g. reduced glutathione (GSH) or 2-raercaptoethanol, e.g. at a concentration of about 50 to 400 mmol / l dithiothreitol and / or in particular DTE (dithioerythritol) or. DTT (dithiothreitol), e.g. at a concentration of about 80 to 400 mmol / l. Solubilization is preferably carried out at room temperature for a period of (incubation) for 1 to several hours, preferably 2 hours. It is advisable to use EDTA to prevent oxidation of the reducing agent with air oxygen. In addition to solubilizing / reducing, the solubilization rate also has a cleansing effect, since most of the material that does not react immunologically with t-PA (foreign proteins) does not pass into solution.
Po solubiliziranju in pred stopnjo aktiviranja lahko vrinemo same po sebi znane in običajne stopnje čiščenja; kot čistilne metode pridejo v poštev npr. sterična razklopna kromatografija (SEC) (v prisotnosti gvanidin-hidroklorida ali sečnine) ali ionski izmenjevalniki (v prisotnosti sečnine ali njenih derivatov); nespecifično reoksidacijo lahko preprečimo z dodatkom reducenta (npr. 2-merkaptoetanola) ali s pH-vrednostmiAfter solubilizing and before the activation step, known and conventional purification steps can be restored; as cleaning methods, for example, steric digestion chromatography (SEC) (in the presence of guanidine hydrochloride or urea) or ion exchangers (in the presence of urea or its derivatives); nonspecific reoxidation can be prevented by the addition of a reducing agent (eg 2-mercaptoethanol) or by pH values
- 9 £. 4,5 (prim. npr. R. Rudolph, Biochem. Soc.- £ 9. 4,5 (cf. e.g. R. Rudolph, Biochem. Soc.
Transactions 13 (1985) 3θθ do 311). Če v predhodni stopnji solubiliziranja uporabimo DTE, je treba le-tega v čistilni stopnji odstraniti, čiščenje lahko poteka npr. s SEC preko Sephade* G 100 v prisotnosti gvanidin-hidroklorida in reducenta, npr. GSH pri pH 1 do 4 (pri tej stopnji lahko odločimo veliko količino tujega proteina); ali z odločanjem denaturirnega - redukcijskega sredstva z razsoljenjem preko Sephadex G 25 v 0,01 mol/1 HCl oz. 0,1 mol/1 ocetne kisline. Odločanje denaturirnega-redukcijskega sredstva je alternativno možno z dializo proti istim raztopinam.Transactions 13 (1985) 3θθ to 311). If a DTE is used in the previous solubilization step, it must be removed in the purification step, for example, cleaning may take place. with SEC via Sephade * G 100 in the presence of guanidine hydrochloride and a reducing agent, e.g. GSH at pH 1 to 4 (a large amount of foreign protein can be decided at this stage); or by decontamination of a denaturing-reducing agent by desalination via Sephadex G 25 in 0.01 mol / l HCl or. 0.1 mol / l acetic acid. Alternatively, the denaturing-reducing agent can be made by dialysis against the same solutions.
Stopnji reaktiviranja je lahko priključena nadaljnja čistilna stopnja; tako čiščenje poteka praviloma s pomočjo dialize, ali pa tudi s sledečim izoliranjem aktiviranega t-PA, npr. z afinitetsko kromatografijo, npr. nad Lys-SepharoseA further purification step may be attached to the reactivation step; such purification is generally carried out by dialysis, or by subsequent isolation of activated t-PA, e.g. by affinity chromatography, e.g. over Lys-Sepharose
Nadaljnja izvedbena oblika izuma sloni na tvorbi mešanih disulfidov gentehnološko pripravljenih, heterolognih, eukariontskih proteinov, ki vsebujejo disulfidne mostove, in glutationa (v nadaljevanju okrajšano t-PASSG). To lahko olajša tako odločenje tujih proteinov v denaturiranem stanju, kot tudi nadaljnje čiščenje nativnega proteina. Čiščenje po modifikaciji tiolnih skupin ima to prednost, da je protein zaščiten pred oksidacijo iz zraka in s tem stabilen v večjem pH-območju, sprememba neto naboja pa olajša čiščenje. Z ionsko izmenjevalno obdelavo se da zlasti prikladno izvesti odločenje nemodificiranega proteina.A further embodiment of the invention is based on the formation of mixed disulfides of genetically engineered, heterologous, eukaryotic proteins containing disulfide bridges and glutathione (hereinafter abbreviated as t-PASSG). This can facilitate both the decision-making of foreign proteins in the denatured state as well as the further purification of the native protein. Purification after modification of thiol groups has the advantage that the protein is protected from oxidation from air and thus stable over a larger pH range, and a change in net charge facilitates purification. The ion exchange treatment makes it particularly convenient to perform the unmodified protein decision.
Za tvorbo mešanih disulfidov inkubiramo dializirani, reducirani protein, iz katerega smo očistili denaturirna in redukcijska sredstva, z razredčeno, npr. 0,2 M raztopino GSSG, ki vsebuje denaturirno sredstvo. Aktiviranje poteka po odločenju denaturirnega in oksidacijskega sredstva pri pH vrednosti 7 do 10,5, GSH-koncentraciji 0,5 do 5 mmol/1, in z ne-denaturirno koncentracijo denaturirnega sredstva.To form mixed disulfides, we incubate a dialysed, reduced protein from which the denaturing and reducing agents have been purified, with diluted e.g. 0.2 M GSSG solution containing denaturing agent. Activation takes place after the denaturing and oxidizing agent is selected at a pH of 7 to 10.5, a GSH concentration of 0.5 to 5 mmol / l, and a non-denaturing concentration of the denaturing agent.
Pri vseh drugih reakcijskih stopnjah ustreza aktiviranje proteina preko tvorbe mešanih disulfidov z GSSG izvedbenim oblikam za aktiviranje prejšnjega dela izuma. Pri tej izvedbeni obliki leži pH-optimura pri 8,5, dobitek je približno dvakrat tolikšen in aktivirani protein je dalj časa stabilen v renaturirnem pufru.For all other reaction steps, activation of the protein via the formation of mixed disulfides with GSSG embodiments for the activation of the previous part of the invention is appropriate. In this embodiment, the pH optimization is at 8.5, the yield is about twice that, and the activated protein is stable for a longer time in the renaturation buffer.
V smislu izuma se nam posreči t-PA tako aktivirati iz prokariontov, da ni doseženo samo aktiviranje normalne biološke aktivnosti, temveč preko tega dosežemo še stimulirnost v zgoraj definiranem smislu, ki daleč prekaša stimulirnost nativnega t-PA in je večja od faktorja 10, lahko celo prekorači faktor 50.According to the invention, it is fortunate for t-PA to be activated from prokaryotes such that not only activation of normal biological activity is achieved, but also stimulation in the above defined sense, which far exceeds the stimulation of native t-PA and is greater than factor 10, it even exceeds the factor of 50.
Nadaljnji eukariontski protein, katerega v smislu izuma lahko aktiviramo po ekspresiji v prokariontu, je ,^-interferon.A further eukaryotic protein, which according to the invention can be activated after expression in a prokaryote, is N - interferon.
Naslednji primeri bliže pojasnjujejo izum, ne da bi ga omejevali. Če ni navedeno drugače, se odstotni podatki nanašajo na masne odstotke, temperaturni podatki pa na Celzijeve stopinje.The following examples further illustrate the invention without limiting it. Unless otherwise stated, percentages refer to mass percentages and temperature data to degrees Celsius.
PRIMER 1EXAMPLE 1
a) Priprava refractile bodiesa) Preparation of refractile bodies
100 g vlažne celične mase E. coli, navzete v 1,5 1,100 g of a wet cell mass of E. coli in 1.5 l,
0,1 mol/1 Tris/HCl (pH 6,5) in 20 mrool/1 EDTA smo homogenizirali (Ultra-Turrax, 10 sek.) ter dodali 0,25 mg/ml lizocima Po 30 minutah inkubacije pri sobni temperaturi smo ponovno homogenizirali in ohladili na 3 °C. Celični razklop smo dosegli z visokotlačno disperzijo (550 kg/cm2). Zatem smo splaknil še s 300 ml 0,1 mol/1 Tris/HCl (pH 6,5) in 20 mmol/1 EDTA. Po centrifugiranju (Sorvall GSA, 2 uri pri 13000 obr./min.,0.1 mol / l Tris / HCl (pH 6.5) and 20 mrool / l EDTA were homogenized (Ultra-Turrax, 10 sec) and 0.25 mg / ml lysozyme was added After 30 minutes of incubation at room temperature, homogenized and cooled to 3 ° C. Cell digestion was achieved by high pressure dispersion (550 kg / cm 2 ). It was further rinsed with 300 ml of 0.1 mol / 1 Tris / HCl (pH 6.5) and 20 mmol / 1 EDTA. After centrifugation (Sorvall GSA, 2 hours at 13000 rpm,
21000 g, 4 °C) smo pelet prevzeli v 1,2 1 0,1 mol/1 Tris/HCl (pH 6,5), 20 mmol/1 EDTA in 2,5 % Triton-x-100 ter homogenizirali. Po ponovnem centrifugiranju (Sorvall GSA, 30 min. pri 13000 U/min., 27000 g, 4 °C) smo pelet prevzeli v 1,3 1 0,1 mol/1 Tris/HCl (pH 6,5), 20 mmol/1 EDTA in 0,5 % Triton-x ter homogenizirali. Še trikrat smo izvedli izmenjalna centrifugiranja (Sorvall GSA, 30 minut pri 13000 obr./min., 27000 g 4 °C) in homogeniziranja peletov v 1 1 0,1 mol/1 Tris/HCl (pH 6,5) in 20 mmol/1 EDTA.21000 g, 4 ° C) the pellet was taken up in 1.2 1 0.1 mol / 1 Tris / HCl (pH 6.5), 20 mmol / 1 EDTA and 2.5% Triton-x-100 and homogenized. After re-centrifugation (Sorvall GSA, 30 min. At 13000 U / min, 27000 g, 4 ° C), the pellet was taken up in 1.3 1 0.1 mol / 1 Tris / HCl (pH 6.5), 20 mmol. / 1 EDTA and 0.5% Triton-x and homogenized. Alternative centrifugation was performed three more times (Sorvall GSA, 30 min at 13000 rpm, 27000 g 4 ° C) and homogenized pellets in 1 1 0.1 mol / 1 Tris / HCl (pH 6.5) and 20 mmol / 1 EDTA.
Vsebnost t-PA v refractile bodies pripravkih smo kvantificirali s SDS-PAGE, identificiranjem t-PA-trakov z Western-blotting in densitometrično analizo. Refractile bodies pokažejo pri SDS-PAGE in Western-blotting močan t-PA-trak z molekulsko maso okoli 60 kDa. Delež t-PA v celokupni vsebnosti proteinov refractile bodies znaša okoli 21 %.The content of t-PA in refractile bodies was quantified by SDS-PAGE, identification of t-PA bands by Western blotting and densitometric analysis. Refractile bodies show a strong t-PA band with a molecular weight of about 60 kDa in SDS-PAGE and Western blotting. The proportion of t-PA in the total protein content of refractile bodies is about 21%.
1.21.2
b) Solubiliziranje/redukcija refractile bodies”b) Solubilization / reduction of refractile bodies ”
Refractile bodies s koncentracijo proteinov 1 do 5 mg/ml smo inkubirali v 0,1 mol/1 Tris/HCl (pH 8,6), 6 molov/1 gvanidin-hidroklorida, 0,15 do 0,4 mol/1 DTE in 1 mmol/1 EDTA 2 do 3 ure pri sobni temperaturi. Zatem smo odcentrifugirali netopni material (fragmente celičnih sten itd.) (npr.Refractile bodies with a protein concentration of 1 to 5 mg / ml were incubated in 0.1 mol / 1 Tris / HCl (pH 8.6), 6 mol / 1 guanidine hydrochloride, 0.15 to 0.4 mol / 1 DTE, and 1 mmol / 1 EDTA for 2 to 3 hours at room temperature. We then centrifuged the insoluble material (cell wall fragments, etc.) (e.g.
Sorvall SS 34, 30 minut pri 15000 do 20000 obr./min., 35000 do 50000 g, 4 °C). pH vrednost vrhnjega sloja (supernatanta) smo s koncentrirano solno kislino nastavili na pH 3· Denaturirno in redukcijsko sredstvo smo nato odločili z dializo proti 0,01 mol/1 HCl pri 4 °C.Sorvall SS 34, 30 minutes at 15000 to 20000 rpm, 35000 to 50000 g, 4 ° C). The pH of the top layer (supernatant) was adjusted to pH 3 with concentrated hydrochloric acid. · The denaturing and reducing agent was then dialyzed against 0.01 mol / l HCl at 4 ° C.
c) Reoksidacija/aktiviranjec) Reoxidation / activation
Reoksidacija/aktiviranje je poteklo z 1:50 do 1:200 razredčino v 0,1 mol/1 Tris/HCl (pH 10,5), 1 mmol/1 EDTA, mg/ml BSA, 0,5 mol/1 L-arginina, 2 mmola/1 GSH, 0,2 mmola/1 GSSG. Po 1? do 24 urah aktiviranja pri okoli 20 °C smo določili aktivnost in v primerjavi z aktivnostjo nativnega glikoziliranega t-PA iz eukarionta določili dobitek.Reoxidation / activation expired from 1:50 to 1: 200 dilution in 0.1 mol / 1 Tris / HCl (pH 10.5), 1 mmol / 1 EDTA, mg / ml BSA, 0.5 mol / 1 L- arginine, 2 mmol / 1 GSH, 0.2 mmol / 1 GSSG. 1 each? up to 24 hours of activation at about 20 ° C, activity was determined and yield was determined relative to that of native glycosylated t-PA from eukaryotes.
Dobitek z ozirom na celokupno vsebnost proteinov v refractile bodies”: 2,5 +/- 0,5 % stimulirnost: 10 +/- 5Yield based on total protein content in refractile bodies ”: 2.5 +/- 0.5% stimulation: 10 +/- 5
Dobitek z ozirom na delež t-PA v refractile bodies:Yield with respect to the proportion of t-PA in refractile bodies:
Ca. 12 %.Ca. 12%.
d) Reoksidacija/aktiviranje brez odločenja denaturirno/redukcijskega sredstvad) Reoxidation / activation without decision of denaturing / reducing agent
Refractile bodies smo inkubirali pri koncentraciji proteinov 1,25 mg/ml v 0,1 mol/1 Tris/HCl (pH 8,6), 6 molov/1 gvanidin-hidroklorida, 0,2 mola/1 DTE in 1 mmol/1 EDTA 2 uri pri sobni temperaturi. Zatem smo takoj uvedli reoksidacijo z 1:100 razredčino v 0,1 mol/1 Tris/HCl (pH 10,5), 1 rnmol/1 EDTA, 1 mg/ml BSA, 0,3 mole/1 L-arginina, ter količinami GSSG, navedenimi v tabeli. Dodatno se je v aktivirnem nastavku nahajala preostala koncentracija 0,06 molov/1 gvanidin-hidroklorida in 2 mmola/1 DTE.Refractile bodies were incubated at a protein concentration of 1.25 mg / ml in 0.1 mol / 1 Tris / HCl (pH 8.6), 6 mol / 1 guanidine hydrochloride, 0.2 mol / 1 DTE and 1 mmol / 1 EDTA for 2 hours at room temperature. Subsequently, reoxidation was immediately initiated with a 1: 100 dilution in 0.1 mol / 1 Tris / HCl (pH 10.5), 1 rnmol / 1 EDTA, 1 mg / ml BSA, 0.3 mol / 1 L-arginine, and the quantities of GSSGs listed in the table. In addition, a residual concentration of 0.06 mol / 1 guanidine hydrochloride and 2 mmol / 1 DTE was located in the activation extension.
Odvisnost dobitka aktiviranja od GSSG-koncentracije pri aktiviranju brez odločenja denaturirno/redukcijskega sredstva.Dependence of activation gain on GSSG concentration on activation without denaturing / reducing agent.
GSSG (mmol /1)GSSG (mmol / l)
Dobitek Stimulirnost (%)(Faktor)Yield Stimulation (%) (Factor)
4,04.0
1.41.4
5.4 5,8 5,25.4 5.8 5.2
10,0 ’= dobitek aktivnega t-PA z ozirom na celokupno vsebnost proteinov v refractile bodies.10,0 '= yield of active t-PA with respect to the total protein content of the refractile bodies.
PRIMER 2EXAMPLE 2
Pripravek RB (refractile bodies) (450 0Dccn/ml) ob u smo inkubirali v 1 ml 0,1 mol/1 Tris/HCl (pH = 8,6), mole/1 gvanidin-hidroklorida in 0,15 do 0,2 mola/1 DTE 2 do 3 ure pri sobni temperaturi. Netopni material (fragemente celičnih sten itd.) smo zatem odločili s centrifugacijo (20 minut pri 17000 obr./min.). Denaturirno in redukcijsko sredstvo smo odstranili z gelno filtracijo preko Sephadex C 25 (superfin) v 0,01 mol/1 HCI. Pri tem smo vzorec razredčili za faktor okoli 5 do 10. Reducirani material v 0,01 mol/1 HCI smo shranili pri -20 °C.Preparation of RB (refractile bodies) (450 0D ccn / ml) at u was incubated in 1 ml of 0.1 mol / 1 Tris / HCl (pH = 8.6), moles / 1 of guanidine hydrochloride and 0.15 to 0. 2 mol / 1 DTE for 2 to 3 hours at room temperature. The insoluble material (cell wall fragments, etc.) was then determined by centrifugation (20 minutes at 17,000 rpm). The denaturing and reducing agent was removed by gel filtration via Sephadex C 25 (superfin) in 0.01 mol / l HCl. The sample was diluted by a factor of about 5 to 10. The reduced material in 0.01 mol / l HCl was stored at -20 ° C.
PRIMER 3EXAMPLE 3
V naslednjih tabelah je zbran vpliv različnih parametrov v smislu izuma na aktiviranje in stimuliranje t-PA. Za te reoksidacijske poskuse pa po primeru 1 solubilizirani, reducirani protein nismo dalje predhodno očistili.The following tables summarize the effect of various parameters of the invention on the activation and stimulation of t-PA. For these reoxidation experiments, however, solubilized, reduced protein was not further purified by Example 1.
Reducirani protein (v 0,01 molu HCI) smo z razredčenjem na 1:10 do 1:500 aktivirali v reoksidacijskem pufru. Aktiviranje smo določili po 22 do 48 urah inkubacije pri sobni temperaturi. Aktivnost reoksidiranega proteina se nanaša na standardno reoksidacijo (=100 %) v:The reduced protein (in 0.01 mol HCI) was activated in reoxidation buffer by dilution to 1:10 to 1: 500. Activation was determined after 22 to 48 hours of incubation at room temperature. Reoxidated protein activity refers to standard reoxidation (= 100%) in:
0,1 mol/1 Tris/HCl (pH = 10,5) + 1 mmol/1 EDTA + 0,5 mol/1 L-arginina + 1 mg/ml BSA + 0,5 mmol/1 GSH (reduciran glutation) + 0,5 mmol/1 GSSG (glutationdisulfid).0.1 mol / 1 Tris / HCl (pH = 10.5) + 1 mmol / 1 EDTA + 0.5 mol / 1 L-arginine + 1 mg / ml BSA + 0.5 mmol / 1 GSH (reduced glutathione) + 0.5 mmol / l GSSG (glutathione disulfide).
l' - . tl '-. t
Stimulirnost izračunamo iz E+cugppsp^.cNBrFSP (prim. W. Nieuwenhuizen et al, Biochimica et Biophysica Acta 755 (1983) 531 do 533). Aktivnost (v odstotkih) in stimulirnost (faktor) smo določili po J. H. Verheijen Thromb. Haemostas. 48(3), 266-269, (1982).Stimulation is calculated from E + cugppsp ^ .cNBrFSP (cf. W. Nieuwenhuizen et al, Biochimica et Biophysica Acta 755 (1983) 531 to 533). Activity (percentage) and stimulation (factor) were determined according to J. H. Verheijen Thromb. Haemostas. 48 (3), 266-269, (1982).
Dobili smo naslednje rezultate:We obtained the following results:
1. Odvisnost izkoristka aktiviranja po dodatku L-arginina, gvanidin-hidroklorida1. Activation efficiency dependence upon the addition of L-arginine, guanidine hydrochloride
Reoksidacija v 0,1 mol/1 Tris/HCl (pH 10,5) + 1 mmol/1 EDTA + 1 mg/ml BSA + 0,5 mmol/1 GSH + 0,5 mmol/1 GSSGReoxidation in 0.1 mol / 1 Tris / HCl (pH 10.5) + 1 mmol / 1 EDTA + 1 mg / ml BSA + 0.5 mmol / 1 GSH + 0.5 mmol / 1 GSSG
a) L-arginina) L-arginine
Pri tem poskusu je treba upoštevati, da se t-PA inhibira z L-argininom. Zato je treba padec aktivir nega dobitka korigirati pri višjih koncentracijah L-arginina z ozirom na inhibicijo.In this experiment, it should be noted that t-PA is inhibited by L-arginine. Therefore, the decrease in activation gain should be corrected at higher concentrations of L-arginine with respect to inhibition.
b) Gvanidin-hidroklorid (Gdn.HCl)b) Guanidine hydrochloride (Gdn.HCl)
b) Metilsecninab) Methylurea
Metilsečnina Aktivnost (mol/1) (%)Methylurea Activity (mol / 1) (%)
Odvisnost izkoristka aktiviranja od dodatka amidov maščobne kisline:Dependence of activation efficiency on the addition of fatty acid amides:
Reoksidacija v 0,1 mol/1 Tris (pH 10,5), 1 mmol/1 EDTA, 1 mg/ml BSA, 5 mmol/1 GSH, 0,2 mmol/1 GSSG.Reoxidation in 0.1 mol / 1 Tris (pH 10.5), 1 mmol / 1 EDTA, 1 mg / ml BSA, 5 mmol / 1 GSH, 0.2 mmol / 1 GSSG.
a) Formamida) Formamide
Formamid AktivnostFormamide Activity
d) Propionamidd) Propionamide
Odvisnost izkoristka aktiviranja od pH-vrednostiDependence of activation efficiency on pH
Reoksidacija v 0,1 mol/1 Tris/HCl + 1 mmol/1 EDTA +0,5 mol/1 L-arginina + 1 mg/ml BSA + 0,5 mmol/1 GSH + 0,5 mmol/1 GSSGReoxidation in 0.1 mol / 1 Tris / HCl + 1 mmol / 1 EDTA +0.5 mol / 1 L-arginine + 1 mg / ml BSA + 0.5 mmol / 1 GSH + 0.5 mmol / 1 GSSG
5, Odvisnost izkoristka aktiviranja od GSH/GSSG-koncentracije5, Dependence of activation yield on GSH / GSSG concentration
Reoksidacija v o,l mol/1 Tris/HCl, pH 10,5, + 1 mmol/1 EDTA + 0,5 mol/1 L-arSinina + 1 mg/ml BSAReoxidation in water, 1 mol / 1 Tris / HCl, pH 10,5, + 1 mmol / 1 EDTA + 0,5 mol / 1 L- ar S inine + 1 mg / ml BSA
a) + 1 mmol/1 GSHa) + 1 mmol / 1 GSH
b) + 0,2 mmol/l GSSGb) + 0.2 mmol / l GSSG
Odvisnost izkoristka aktiviranja od koncentracije proteina pri reoksidaciji (razredčenje 1:20 - 1:500)Dependence of activation efficiency on protein concentration during reoxidation (dilution 1:20 - 1: 500)
Reoksidacija v 0,1 mol/1 Tris/HCl (pH 10,5) + 1 mmol/l EDTA + 0,5 mol/1 L-arginina + 1 mg/ml BSA +0,5 mmol/l GSH + 0,5 mmol/l GSSGReoxidation in 0.1 mol / 1 Tris / HCl (pH 10.5) + 1 mmol / l EDTA + 0.5 mol / 1 L-arginine + 1 mg / ml BSA +0.5 mmol / l GSH + 0, 5 mmol / l GSSG
Odvisnost izkoristka aktiviranja od dodatka BSADependence of activation yield on BSA supplementation
Reoksidacija v 0,1 mol/1 Tris/HCl (pH 10,5) + 1 mmol/1 EDTA + 0,5 mol L+ 0,5 mmol/1 GSH + 0,5 mmol/1 GSSGReoxidation in 0.1 mol / 1 Tris / HCl (pH 10.5) + 1 mmol / 1 EDTA + 0.5 mol L + 0.5 mmol / 1 GSH + 0.5 mmol / 1 GSSG
Sliki 1 in 2 kažeta aktivnost z in brez CNBr-FSP pri standardnem testu po 17 urah reoksidacije pri sobni temperaturi v 0,1 mol/1 Tris/HCl (pH = 10,5) + 1 mmol/1 EDTA + 0,5 mol/L-arginina + 1 mg/ml BSA + 0,5 mmol/1 GSH + 0,5 mmol/1 GSSG. Na sl. 1 in 2 kažejo krivulje (A) aktivnost v prisotnosti CNBr-FSP, krivulje (B) pa aktivnost brez CNBr-FSP.Figures 1 and 2 show activity with and without CNBr-FSP in a standard assay after 17 hours of reoxidation at room temperature in 0.1 mol / 1 Tris / HCl (pH = 10.5) + 1 mmol / 1 EDTA + 0.5 mol / L-arginine + 1 mg / ml BSA + 0.5 mmol / 1 GSH + 0.5 mmol / 1 GSSG. In FIG. 1 and 2 show curves (A) activity in the presence of CNBr-FSP, and curves (B) show activity without CNBr-FSP.
PRIMER 4EXAMPLE 4
Aktiviranje t-PA preko mešanih disulfidov t-PA in GSSGActivation of t-PA via mixed t-PA and GSSG disulfides
Uporabljene refractile bodies smo dobili po enem izmed prejšnjih primerov. RedukcijoThe refractile bodies used were obtained from one of the preceding examples. Reduction
- 23 refractile bodies smo izvedli po 2 urah inkubacije pri sobni temperaturi v 0,1 mol/1 Tris/HCl, pH 8,6, 1 mmol/1 EDTA, 6 mol/1 Gdn/HCl, 0,2 mol/1 DTE pri koncentraciji proteinov okoli 1 mg/ml.- 23 refractile bodies were performed after 2 hours of incubation at room temperature in 0.1 mol / 1 Tris / HCl, pH 8.6, 1 mmol / 1 EDTA, 6 mol / 1 Gdn / HCl, 0.2 mol / 1 DTE at a protein concentration of about 1 mg / ml.
Reducirani protein, dializiran proti 0,01 mol/1 HCl, smo razredčili v razmerju 1:1 z 0,1 mol/1 Tris, pH 9,3, mol/1 sečnine in 0,2 mol/1 GSSG ter inkubirali 5 ur pri sobni temperaturi.The reduced protein dialyzed against 0.01 mol / 1 HCl was diluted 1: 1 with 0.1 mol / 1 Tris, pH 9.3, mol / 1 urea and 0.2 mol / 1 GSSG and incubated for 5 hours at room temperature.
Po nakisanju s koncentrirano HCl na pH 3 je sledila dializa proti 0,1 mol/1 HCl pri 4 °C. Po dializi je znašala celokupna koncentracija proteinov 0,33 mg/ml. S tako pripravljenim t-PASSG smo določili optimalne reaktivirne pogoje.Acidification with concentrated HCl at pH 3 was followed by dialysis against 0.1 mol / l HCl at 4 ° C. Following dialysis, the total protein concentration was 0.33 mg / ml. With t-PASSG prepared in this way, optimal reactivation conditions were determined.
a) pH-optimum aktiviranja t-PASSGa) pH-optimum activation of t-PASSG
V tem primeru kot tudi v naslednjih optimirnih poskusih pri (1) nismo uporabili GSSG in (2) smo določili aktiviranje po 17 urah inkubacije pri sobni temperaturi. Aktiviranje je poteklo z 1:100 razredčino v 0,1 mol/1 Tris, mmol/1 EDTA, 0,5 mol/1 L-arginina, 1 mg/ml BSA in 2 mmola/1 GSH pri variaciji vrednosti pH.In this case, as well as in the following optimization experiments, (1) GSSG was not used and (2) activation was determined after 17 hours of incubation at room temperature. Activation expired with a 1: 100 dilution in 0.1 mol / 1 Tris, mmol / 1 EDTA, 0.5 mol / 1 L-arginine, 1 mg / ml BSA and 2 mmol / 1 GSH at variation in pH.
Dobitek smo določili v odtotkih aktivnega t-PA z ozirom na uporabljeno količino proteina.The yield was determined in percentages of active t-PA based on the amount of protein used.
b) Reproducirnost rezultatov aktiviranja od t-PASSG Pri identičnih aktivirnih pogojih opazimo pri različnih merjenih vrstah različne dobitke, ki so med drugim pogojeni z nihanjem standardnega t-PA. Za pojasnilo te širine napak smo vse aktivirne podatke po 1:100 oz. 1:200 razredčini zbrali v 0,1 mol/1 Tris/HCl, pH 8,5, mraol/1 EDTA, 0,5 mol/1 L-arginina, 1 mg/ml BSA in mmol/1 GSH.b) Reproducibility of activation results from t-PASSG Under identical activation conditions different gains are observed for different measured species, which are conditioned, among other things, by the fluctuation of standard t-PA. To explain this error width, we have all the activation data at 1: 100 oz. 1: 200 dilutions were collected in 0.1 mol / 1 Tris / HCl, pH 8.5, mraol / 1 EDTA, 0.5 mol / 1 L-arginine, 1 mg / ml BSA and mmol / 1 GSH.
c) Stabilnost aktiviranega proteinac) Stability of activated protein
Aktiviranje je poteklo v navedenih primerih z 1:200 razredčino v 0,1 mol/1 Tris/HCl, 1 mmol/1 EDTA,Activation expired in the above cases with a 1: 200 dilution in 0.1 mol / 1 Tris / HCl, 1 mmol / 1 EDTA,
0,5 mol/1 L-arginina, 1 mg/ml BSA in 2 mmol/1 GSH.0.5 mol / 1 L-arginine, 1 mg / ml BSA and 2 mmol / 1 GSH.
PRIMER 5EXAMPLE 5
Aktiviranje gentehnološko pripravljenega interferona-^.Activation of a genetically engineered interferon- ^.
Refractile bodies smo proizvedli po zgornjih metodah. Redukcijo/solubiliziranje refractile bodies smo izvedli kot sledi: pelet smo inkubirali za 3 ure pri 25 °C v 10 ml 9,1 mol Tris/HCl, pH 8,6, 6 mol/1 Gdn/HCl, mmol/1 EDTA in 0,2 mol/1 DTE ter po 3θ minutah centrifugiranja pri 4 °C in 48000 g uravnali pH vrhnjega sloja (supernatanta) na okoli 3 s koncentrirano HCI. Zatem smo izvedli gelno filtracijo preko Sephadex G 25 F v 0,01 mol/1Refractile bodies were manufactured using the above methods. The reduction / solubilization of the refractile bodies was performed as follows: the pellet was incubated for 3 hours at 25 ° C in 10 ml of 9.1 mol Tris / HCl, pH 8.6, 6 mol / 1 Gdn / HCl, mmol / 1 EDTA and 0 , 2 mol / 1 DTE, and after 3θ minutes of centrifugation at 4 ° C and 48000 g, the pH of the top layer (supernatant) was adjusted to about 3 with concentrated HCl. Subsequently, gel filtration was performed via Sephadex G 25 F in 0.01 mol / l
HCI.HCI.
Eluat smo kontrolirali s pomočjo transmisije (280 nm) na prevodnost, koncentracijo proteinov in reaktivirnost.The eluate was controlled by transmission (280 nm) for conductivity, protein concentration and reactivity.
Standardno aktiviranje (100 %) smo izvedli v 0,1 mol/1 Tris/HCl, pH 10,5, 1 mmol/1 EDTA, 5 mmol/1 GSH, 0,5 mmol/1 GSSG in 0,25 mol/1 L-arginina.Standard activation (100%) was performed in 0.1 mol / 1 Tris / HCl, pH 10.5, 1 mmol / 1 EDTA, 5 mmol / 1 GSH, 0.5 mmol / 1 GSSG and 0.25 mol / 1 L-arginine.
a) Ca sovna odvisnost od aktiviranjaa) Dependence on activation
Eluat smo razredčili 1:50 v 0,1 mol/1 Tris/HCl, pH 8,5,.1.mmol/1 EDTA, 5 mmol/1 GSH, 0,5 mmol/1 GSSG in 0,25 mol/1 L-arginina.The eluate was diluted 1:50 in 0.1 mol / 1 Tris / HCl, pH 8.5, .1.mol / 1 EDTA, 5 mmol / 1 GSH, 0.5 mmol / 1 GSSG and 0.25 mol / 1 L-arginine.
Aktivirni čas (h)Activation time (h)
AktivnostActivity
0°C16 ° C
b) Odvisnost aktivirnega dobitka od dodatka L-arginina Eluat smo razredčili 1:50 z 0,1 mol/1 Tris/HCl, pH 8,5, 1 mmol/1 EDTA, 5 ramol/1 GSH, 0,5 mmol/1 GSSG ter 20 ur aktivirali pri 0 °C.b) The dependence of the activation gain on the addition of L-arginine Eluate was diluted 1:50 with 0.1 mol / 1 Tris / HCl, pH 8.5, 1 mmol / 1 EDTA, 5 ramol / 1 GSH, 0.5 mmol / 1 GSSG and activated at 0 ° C for 20 hours.
Odvisnost aktiviranja od L-argininaActivation dependence on L-arginine
L-arginin (M) Aktivnost (%)L-arginine (M) Activity (%)
88
0,25 80.25 8
0,5 150.5 15
0,75 150.75 15
c) Odvisnost dobitka aktiviranja od dodatka sečninec) Dependence of activation gain on urea supplementation
Aktivirna raztopina je ustrezala oni pri točki b), vendar pa smo aktivirali 17 ur pri 0°C.The activation solution corresponded to that of point b), but was activated for 17 hours at 0 ° C.
Odvisnost aktiviranja od sečnineActivation dependence on urea
Sečnina (M) Aktivnost (%)Urea (M) Activity (%)
d) Odvisnost dobitka aktiviranja od dodatka formamida Aktiviranje kot pri b); vzorce smo kontrolirali po 17 urah aktiviranja pri 0 °C.d) Dependence of activation gain on formamide supplementation Activation as in b); the samples were monitored after 17 hours of activation at 0 ° C.
Odvisnost aktiviranja od formamidaFormamide activation dependence
Formamid (M)Formamide (M)
AktivnostActivity
e) Odvisnost dobitka aktiviranja od redoks pufrae) Dependence of activation gain on redox buffer
Eluat smo razredčili 1:50 v 0,1 M Tris/HCl, pH 8,5 mM EDTA in 0,25 M L-arginina ter vzorce kontrolirali po 17 urah aktiviranja pri 0 °C.The eluate was diluted 1:50 in 0.1 M Tris / HCl, pH 8.5 mM EDTA and 0.25 M L-arginine, and samples were controlled after 17 hours of activation at 0 ° C.
Odvisnost aktiviranja od GSH/GSSGActivation dependence on GSH / GSSG
GSH (mM) GSSG (mM) Aktivnost (%)GSH (mM) GSSG (mM) Activity (%)
0,5 60.5 6
0,5 130.5 13
0,5 250.5 25
0,5 250.5 25
0,1 130.1 13
0,5 130.5 13
1,0 131.0 13
5 65 6
- 28 f) Odvisnost dobitka aktiviranja od koncentracije proteinov Eluat smo razredčili 1:10 do 1:100 v 0,1 M Tris/HCl, pH 8,5 1 mM EDTA, 5 mM GSH, 0,5 mM GSSG in 0,25 M L-arginina ter kontorlirali po 17 urah aktiviranja pri 0 °C. cp-odvisnost aktiviranja cp (mg/ml) Aktivnost (%)- 28 f) Dependence of activation gain on Eluate protein concentration was diluted 1:10 to 1: 100 in 0.1 M Tris / HCl, pH 8.5 1 mM EDTA, 5 mM GSH, 0.5 mM GSSG and 0.25 M L-arginine and counterbalanced after 17 hours of activation at 0 ° C. cp-activation-dependent cp (mg / ml) Activity (%)
0,018 130.018 13
0,036 130,036 13
0,072 130,072 13
0,108 80.108 8
0,180 100.180 10
g) Odvisnost dobitka aktiviranja od dodatka BSAg) Dependence of activation gain on BSA supplementation
Eluat smo razredčili 1:50 v 0,1 M Tris/HCl, pH 8,5, 1 mM EDTA, 5 mM GSH, 0,5 mM GSSG in 0,25 M L-arginina ter kontrolirali po 17 urah aktiviranja pri 0 °C.The eluate was diluted 1:50 in 0.1 M Tris / HCl, pH 8.5, 1 mM EDTA, 5 mM GSH, 0.5 mM GSSG and 0.25 M L-arginine and controlled after 17 hours of activation at 0 ° C.
BSA-odvisnost aktiviranjaBSA-dependent activation
BSA (mg/ml) Aktivnost (%)BSA (mg / ml) Activity (%)
1313
1313
2525
1313
- 29 h) Odvisnost dobitka aktiviranja od pH- 29 h) Dependence of activation gain on pH
Eluat smo razredčili 1:50 v 0,1 M Tris/HCl, mM EDTA, 5 mM GSH, 0,5 mM GSSG in 0,25 M L-arginina ter kontrolirali po 17 urah aktiviranja pri 0 °C.The eluate was diluted 1:50 in 0.1 M Tris / HCl, mM EDTA, 5 mM GSH, 0.5 mM GSSG and 0.25 M L-arginine and controlled after 17 hours of activation at 0 ° C.
pH-odvisnost aktiviranja pH Aktivnost (%)pH-dependent activation of pH Activity (%)
Claims (23)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19853537708 DE3537708A1 (en) | 1985-10-23 | 1985-10-23 | METHOD FOR ACTIVATING T-PA AFTER EXPRESSION IN PROKARYONTS |
YU179686A YU47185B (en) | 1985-10-23 | 1986-10-21 | PROCEDURE FOR THE ACTIVATION OF HETEROLOGICAL EUKARIOTIC PROTEINS PREPARED BY GEN-TECHNOLOGY HAVING DISULFID BRIDES OF POLSE EXPRESSION IN PROKARIOTS |
Publications (2)
Publication Number | Publication Date |
---|---|
SI8611796A true SI8611796A (en) | 1996-10-31 |
SI8611796B SI8611796B (en) | 1998-06-30 |
Family
ID=6284269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI8611796A SI8611796B (en) | 1985-10-23 | 1986-10-21 | Method for activating gentechnological prepared of heterolog,eukaryotic proteins, which contain disulphide's bridges, after their expression in the procaryotes. |
Country Status (26)
Country | Link |
---|---|
EP (3) | EP0393725B1 (en) |
JP (2) | JPH0728745B2 (en) |
KR (1) | KR900009139B1 (en) |
AT (2) | ATE131489T1 (en) |
AU (2) | AU590029B2 (en) |
CA (1) | CA1329157C (en) |
CZ (1) | CZ280727B6 (en) |
DD (1) | DD260517A5 (en) |
DE (3) | DE3537708A1 (en) |
DK (2) | DK175091B1 (en) |
ES (2) | ES2061434T3 (en) |
FI (2) | FI94050C (en) |
GR (2) | GR920300062T1 (en) |
HK (2) | HK153596A (en) |
HR (1) | HRP921075B1 (en) |
HU (2) | HUT43643A (en) |
IE (1) | IE62634B1 (en) |
IL (1) | IL80325A (en) |
PT (1) | PT83609B (en) |
SI (1) | SI8611796B (en) |
SK (1) | SK278317B6 (en) |
SU (1) | SU1607689A3 (en) |
UA (1) | UA6023A1 (en) |
WO (1) | WO1987002673A2 (en) |
YU (1) | YU47185B (en) |
ZA (1) | ZA868012B (en) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4766205A (en) * | 1985-11-13 | 1988-08-23 | Beatrice Companies, Inc. | Method for isolation of recombinant polypeptides in biologically active forms |
JP2581668B2 (en) * | 1985-11-27 | 1997-02-12 | 三井東圧化学株式会社 | Novel DNA sequence encoding human tissue plasminogen activator derived from normal human cells and vectors and cells containing the same |
US4777043A (en) * | 1985-12-17 | 1988-10-11 | Genentech, Inc. | Stabilized human tissue plasminogen activator compositions |
AU621051B2 (en) * | 1987-04-28 | 1992-03-05 | Amgen, Inc. | Method for purifying granulocyte-macrophage colony stimulating factor |
DE3722082A1 (en) * | 1987-07-03 | 1989-01-12 | Behringwerke Ag | METHOD FOR DETERMINING THE ACTIVITY OF SERINE PROTEASES OR SERINE PROTEASE INHIBITORS |
CA1340586C (en) * | 1988-09-23 | 1999-06-08 | Cetus Corporation | Process for recovering microbially produced interferon-beta |
DE3832898A1 (en) * | 1988-09-28 | 1990-04-12 | Boehringer Mannheim Gmbh | PRAEPARATE OF EXPRESSED PLASMINOGEN ACTIVATOR IN PROKARYONS |
DE3835350A1 (en) * | 1988-10-17 | 1990-04-19 | Boehringer Mannheim Gmbh | ACTIVATION OF GENETICALLY MANUFACTURED ANTIBODY EXPRESSED IN PROKARYONS |
DE3903581A1 (en) * | 1989-02-07 | 1990-08-16 | Boehringer Mannheim Gmbh | FABRIC PLASMINOGEN ACTIVATOR DERIVATIVE |
DE3942143A1 (en) * | 1989-12-20 | 1991-06-27 | Boehringer Mannheim Gmbh | T-PA PRO STABILIZATION |
ATE154073T1 (en) * | 1990-08-20 | 1997-06-15 | Novo Nordisk As | PROCESS FOR PRODUCING BIOLOGICALLY ACTIVE IGF-1 BY USING AMINO-TERMINAL EXTENDED IGF-1 |
ES2119779T3 (en) * | 1990-09-05 | 1998-10-16 | Southern Cross Biotech Pty Ltd | SOLUBILIZATION OF PROTEINS IN ACTIVE FORMS. |
DE4037196A1 (en) * | 1990-11-22 | 1992-05-27 | Boehringer Mannheim Gmbh | METHOD FOR REACTIVATING DENATURED PROTEIN |
DE4113750A1 (en) | 1991-04-26 | 1992-10-29 | Boehringer Mannheim Gmbh | IMPROVEMENT OF RENATURATION IN THE SECRETION OF DISULFID-BRIDGED PROTEINS |
DE4139000A1 (en) * | 1991-11-27 | 1993-06-03 | Boehringer Mannheim Gmbh | METHOD OF GENERATING BIOLOGICALLY ACTIVE SS-NGF |
US5212091A (en) * | 1992-03-02 | 1993-05-18 | Monsanto Company | Method of producing tissue factor pathway inhibitor |
EP0586667A1 (en) * | 1992-03-24 | 1994-03-16 | Synergen, Inc. | Refolding and purification of insulin-like growth factor i |
ES2097426T3 (en) | 1992-12-02 | 1997-04-01 | Hoechst Ag | PROCEDURE FOR OBTAINING PROINSULIN WITH CORRECTLY UNITED CYSTINE BRIDGES. |
DE4405179A1 (en) * | 1994-02-18 | 1995-08-24 | Hoechst Ag | Method of obtaining insulin with correctly connected cystine bridges |
FR2729972B1 (en) * | 1995-01-31 | 1997-04-18 | Sanofi Sa | PROCESS FOR THE EXTRACTION OF PERIPLASMIC PROTEINS FROM PROKARYOTIC MICROORGANISMS IN THE PRESENCE OF ARGININ |
US5714371A (en) * | 1995-05-12 | 1998-02-03 | Schering Corporation | Method for refolding insoluble aggregates of hepatitis C virus protease |
US5728804A (en) * | 1995-06-02 | 1998-03-17 | Research Corporation Technologies, Inc. | Use of cyclodextrins for protein renaturation |
DE59711375D1 (en) * | 1996-06-11 | 2004-04-08 | Roche Diagnostics Gmbh | METHOD FOR ACTIVATING DENATURED PROTEIN |
US7153943B2 (en) | 1997-07-14 | 2006-12-26 | Bolder Biotechnology, Inc. | Derivatives of growth hormone and related proteins, and methods of use thereof |
US6653098B1 (en) * | 1998-02-23 | 2003-11-25 | G. D. Searle & Co. | Method of producing mouse and human endostatin |
DE19850429A1 (en) * | 1998-10-27 | 2000-05-04 | Andre Schrattenholz | Fragments |
EP1048732A1 (en) | 1999-04-26 | 2000-11-02 | F. Hoffmann-La Roche Ag | Process for producing natural folded and secreted proteins |
EP1077263A1 (en) * | 1999-07-29 | 2001-02-21 | F.Hoffmann-La Roche Ag | Process for producing natural folded and secreted proteins by co-secretion of chaperones |
ES2290142T3 (en) | 2000-05-16 | 2008-02-16 | Bolder Biotechnology, Inc. | METHODS FOR REPLEGATION OF PROTEINS CONTAINING FREE CISTEINE RESIDUES. |
DE10105911A1 (en) | 2001-02-09 | 2002-08-14 | Roche Diagnostics Gmbh | Expression of the recombinant proteinase K from Tritirachium album in yeast |
DE10105912A1 (en) * | 2001-02-09 | 2002-08-14 | Roche Diagnostics Gmbh | Recombinant Proteinase K |
DE102005033250A1 (en) | 2005-07-15 | 2007-01-18 | Bioceuticals Arzneimittel Ag | Process for purifying G-CSF |
DE202006020194U1 (en) | 2006-03-01 | 2007-12-06 | Bioceuticals Arzneimittel Ag | G-CSF liquid formulation |
SG162834A1 (en) | 2006-07-14 | 2010-07-29 | Genentech Inc | Refolding of recombinant proteins |
US8617531B2 (en) | 2006-12-14 | 2013-12-31 | Bolder Biotechnology, Inc. | Methods of making proteins and peptides containing a single free cysteine |
CA2789615A1 (en) | 2010-03-17 | 2011-09-22 | Biogenerix Gmbh | Method for obtaining biologically active recombinant human g-csf |
JP2013540157A (en) * | 2010-10-20 | 2013-10-31 | メディミューン,エルエルシー | Method for treating inclusion bodies |
HUP1200171A1 (en) | 2012-03-19 | 2013-09-30 | Richter Gedeon Nyrt | Methods for the production of polypeptides |
HUP1200172A2 (en) | 2012-03-19 | 2013-10-28 | Richter Gedeon Nyrt | Methods for refolding g-csf from inclusion bodies |
CN103852527B (en) * | 2012-12-05 | 2015-05-13 | 中国科学院大连化学物理研究所 | High-flux protein sample pre-treatment device |
US10457716B2 (en) | 2014-08-06 | 2019-10-29 | University Of Notre Dame Du Lac | Protein folding and methods of using same |
JP2020504748A (en) | 2016-12-30 | 2020-02-13 | バイオジェンド セラピューティクス カンパニー リミテッド | Recombinant polypeptides, compositions and methods thereof |
AU2021399935A1 (en) | 2020-12-18 | 2023-06-29 | Richter Gedeon Nyrt. | Methods for the purification of refolded fc-peptide fusion protein |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5135481A (en) * | 1974-09-18 | 1976-03-25 | Fujiwa Kako Kk | KOJUNDOHITOROKINAAZE NO SEIHO |
US4468633A (en) | 1982-04-28 | 1984-08-28 | The Bendix Corporation | Adjustable microwave power combiner for a plurality of coaxially mounted impatt diodes |
IL68561A (en) | 1982-05-05 | 1991-01-31 | Genentech Inc | Preparation of polypeptide with human tissue plasminogen activator function,processes for making it,and dna and transformed cell intermediates thereof |
US4432895A (en) * | 1982-11-24 | 1984-02-21 | Hoffmann-La Roche Inc. | Monomeric interferons |
GR79124B (en) | 1982-12-22 | 1984-10-02 | Genentech Inc | |
JPH06102034B2 (en) * | 1983-03-25 | 1994-12-14 | セルテク リミテツド | Protein production method |
JPS6051119A (en) * | 1983-08-30 | 1985-03-22 | Green Cross Corp:The | Dried pharmaceutical preparation of urokinase |
US4530787A (en) * | 1984-03-28 | 1985-07-23 | Cetus Corporation | Controlled oxidation of microbially produced cysteine-containing proteins |
US4748234A (en) * | 1985-06-26 | 1988-05-31 | Cetus Corporation | Process for recovering refractile bodies containing heterologous proteins from microbial hosts |
US4766205A (en) * | 1985-11-13 | 1988-08-23 | Beatrice Companies, Inc. | Method for isolation of recombinant polypeptides in biologically active forms |
FR2596360B1 (en) * | 1986-04-01 | 1989-02-17 | Sotralentz Sa | CONTAINER ON PALLET WITH FOLDED AND REINFORCED MESH PROTECTION DEVICE |
JPH0651119A (en) * | 1992-07-28 | 1994-02-25 | Sekisui Chem Co Ltd | Production of phase difference plate |
-
1985
- 1985-10-23 DE DE19853537708 patent/DE3537708A1/en active Granted
-
1986
- 1986-10-10 IE IE268386A patent/IE62634B1/en not_active IP Right Cessation
- 1986-10-15 IL IL80325A patent/IL80325A/en not_active IP Right Cessation
- 1986-10-17 CZ CS867526A patent/CZ280727B6/en not_active IP Right Cessation
- 1986-10-17 SK SK7526-86A patent/SK278317B6/en unknown
- 1986-10-21 YU YU179686A patent/YU47185B/en unknown
- 1986-10-21 SI SI8611796A patent/SI8611796B/en unknown
- 1986-10-22 ZA ZA868012A patent/ZA868012B/en unknown
- 1986-10-22 CA CA000521121A patent/CA1329157C/en not_active Expired - Lifetime
- 1986-10-22 DD DD29546886A patent/DD260517A5/en not_active IP Right Cessation
- 1986-10-23 DE DE86114731T patent/DE3689404D1/en not_active Expired - Lifetime
- 1986-10-23 ES ES86114731T patent/ES2061434T3/en not_active Expired - Lifetime
- 1986-10-23 DE DE3650449T patent/DE3650449D1/en not_active Expired - Lifetime
- 1986-10-23 UA UA4202987A patent/UA6023A1/en unknown
- 1986-10-23 KR KR1019870700536A patent/KR900009139B1/en not_active IP Right Cessation
- 1986-10-23 EP EP90109721A patent/EP0393725B1/en not_active Expired - Lifetime
- 1986-10-23 AT AT90109721T patent/ATE131489T1/en not_active IP Right Cessation
- 1986-10-23 EP EP86114731A patent/EP0219874B1/en not_active Expired - Lifetime
- 1986-10-23 PT PT83609A patent/PT83609B/en not_active IP Right Cessation
- 1986-10-23 JP JP61505882A patent/JPH0728745B2/en not_active Expired - Lifetime
- 1986-10-23 EP EP86906320A patent/EP0253823A1/en active Pending
- 1986-10-23 ES ES90109721T patent/ES2020498T3/en not_active Expired - Lifetime
- 1986-10-23 HU HU865290A patent/HUT43643A/en unknown
- 1986-10-23 AU AU65993/86A patent/AU590029B2/en not_active Ceased
- 1986-10-23 AT AT86114731T patent/ATE98648T1/en not_active IP Right Cessation
- 1986-10-23 HU HU865290A patent/HU204855B/en unknown
- 1986-10-23 WO PCT/EP1986/000610 patent/WO1987002673A2/en active IP Right Grant
-
1987
- 1987-06-22 FI FI872753A patent/FI94050C/en not_active IP Right Cessation
- 1987-06-22 SU SU874202987Q patent/SU1607689A3/en active
- 1987-06-23 DK DK198703203A patent/DK175091B1/en not_active IP Right Cessation
-
1989
- 1989-09-13 AU AU41321/89A patent/AU607083B2/en not_active Expired
-
1991
- 1991-04-12 JP JP3079762A patent/JPH0824594B2/en not_active Expired - Lifetime
-
1992
- 1992-08-31 GR GR92300062T patent/GR920300062T1/en unknown
- 1992-10-16 HR HRP-1796/86A patent/HRP921075B1/en not_active IP Right Cessation
-
1993
- 1993-09-03 FI FI933868A patent/FI95578C/en not_active IP Right Cessation
-
1995
- 1995-12-14 GR GR950403376T patent/GR3018410T3/en unknown
-
1996
- 1996-08-08 HK HK153596A patent/HK153596A/en not_active IP Right Cessation
- 1996-08-08 HK HK153496A patent/HK153496A/en not_active IP Right Cessation
-
2000
- 2000-12-18 DK DK200001897A patent/DK175109B1/en not_active IP Right Cessation
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SI8611796A (en) | Method for activating gentechnological prepared of heterolog,eukaryotic proteins, which contain disulphide's bridges, after their expression in the procaryotes. | |
US5453363A (en) | Process for the activation of t-PA or Ing after genetic expression in prokaryotes | |
Hillson et al. | Formation and isomerization of disulfide bonds in proteins: protein disulfide-isomerase | |
EP0364926B1 (en) | Activation of recombinant antibodies expressed in prokaryotes | |
Danielsen et al. | A neutral endopeptidase in the microvillar membrane of pig intestine. Partial purification and properties. | |
Sierecka | Purification and partial characterization of a neutral protease from a virulent strain of Bacillus cereus | |
Terada et al. | Study on human erythrocyte thioltransferase: comparative characterization with bovine enzyme and its physiological role under oxidative stress | |
Mookhtiar et al. | Purification to homogeneity of latent and active 58-kilodalton forms of human neutrophil collagenase | |
Gan et al. | Preparation of homogeneous pig liver thioltransferase by a thiol: disulfide mediated pI shift | |
Guiard et al. | More similarity between bakers' yeast l-(+)-lactate dehydrogenase and liver microsomal cytochrome b 5 | |
Zolfaghari et al. | A high-molecular-mass neutral endopeptidase-24.5 from human lung | |
CZ280848B6 (en) | Activation method of heterologous proteins obtained by genetic technology and containing disulfide bridges of eukaryotic origin after expression in prokaryotic organisms | |
JP5830524B2 (en) | Method for producing folded prethrombin or a derivative thereof | |
US4390629A (en) | Polypeptide degrading enzymes | |
JP2004057064A (en) | Method for preventing degradation of nucleic acid, method for extracting nucleic acid, and method for storing nucleic acid | |
KR20010017096A (en) | Human Serum Albumin with Increased Antioxidation Activity and Process for Preparing the Same | |
Bergström et al. | Large-scale production of intermediate-purity, soluble human plasminogen | |
Kregar et al. | Extracellular proteinases of Claviceps purpurea. Isolation and characterization of an aspartic proteinase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
IF | Valid on the event date |