SI8611796A - Method for activating gentechnological prepared of heterolog,eukaryotic proteins, which contain disulphide's bridges, after their expression in the procaryotes. - Google Patents

Method for activating gentechnological prepared of heterolog,eukaryotic proteins, which contain disulphide's bridges, after their expression in the procaryotes. Download PDF

Info

Publication number
SI8611796A
SI8611796A SI8611796A SI8611796A SI8611796A SI 8611796 A SI8611796 A SI 8611796A SI 8611796 A SI8611796 A SI 8611796A SI 8611796 A SI8611796 A SI 8611796A SI 8611796 A SI8611796 A SI 8611796A
Authority
SI
Slovenia
Prior art keywords
activation
mol
denaturing
concentration
mmol
Prior art date
Application number
SI8611796A
Other languages
Slovenian (sl)
Other versions
SI8611796B (en
Inventor
Stephen Fischer
Ralf Mattes
Original Assignee
Boehringer Mannheim Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Mannheim Gmbh filed Critical Boehringer Mannheim Gmbh
Publication of SI8611796A publication Critical patent/SI8611796A/en
Publication of SI8611796B publication Critical patent/SI8611796B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6456Plasminogen activators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6456Plasminogen activators
    • C12N9/6459Plasminogen activators t-plasminogen activator (3.4.21.68), i.e. tPA
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • C07K1/1133General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure by redox-reactions involving cystein/cystin side chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • C07K14/565IFN-beta
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21069Protein C activated (3.4.21.69)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Method for activating non-glycosylated tissue plasminogen activator (t-PA) after its expression in prokaryotic cells comprises cell lysis; solubilisation under denaturing and reducing conditions, and reactivation under oxidising conditions in presence of reduced and oxidised glutathione (G5H, G55G). The new feature is that in the last stage is at pH 9-12 (pref. 9.5-11) with G5H and G55G concns. 0.1-20, pref. 0.2-10, mM and 0.01-3, pref. 0.5-1, mM, respectively, and with a non-denaturing concn. of the denaturing agent. Esp. the method is applied to t-PA expressed in E.coli and P. putida. The denaturing agent is pref. arginine, guanidine hydrochloride (both at 0.1-1, esp. 0.25-0.75, mM) or urea, at 0.5-4 (esp. 1-3.5) M in the last stage.

Description

BOEHRINGER MANNHEIM GMBHBOEHRINGER MANNHEIM GMBH

Postopek za aktiviranje gentehnološko pripravljenih, heterolognih, eukariontskih proteinov, ki imajo disulfidne mostove, po ekspresiji v prokariontihMethod for activating gentechnologically prepared, heterologous, eukaryotic proteins having disulfide bridges after expression in prokaryotes

Predloženi izum se nanaša na postopek za aktiviranje gentehnološko pripravljenih, eukariontskih proteinov, ki vsebujejo disulfidne mostove, po ekspresiji v prokariontih.The present invention relates to a method for activating genetically engineered, eukaryotic proteins containing disulfide bridges upon expression in prokaryotes.

Pri ekspresiji heterolognih proteinov v prokariontih tvorijo ti proteini v celicah gostiteljicah pogosto neaktivne težko topne agregate (t.i. refractile bodies), ki so vrhu tega še oneciščeni s proteini celic gostiteljic. Domnevajo, da je tvorba takih refractile bodies posledica pri ekspresiji nastale visoke koncentracije proteinov v celici. Znano je, da pri tvorbi velikih količin encimov v celici poteka agregacija encimov v netopne, visokomolekulske, večinoma neaktivne delce. Preden pa lahko uporabimo take proteine, npr. za terapevtske namene, pa jih je treba očistiti in prevesti v aktivno obliko.In the expression of heterologous proteins in prokaryotes, these proteins are often inactive hard-soluble aggregates (so-called refractile bodies) in host cells, which are further contaminated with host cell proteins. The formation of such refractile bodies is thought to be due to the expression of the resulting high concentration of proteins in the cell. It is known that when large amounts of enzymes are formed in a cell, the enzyme aggregates into insoluble, high molecular weight, mostly inactive particles. However, before such proteins can be used, e.g. however, for therapeutic purposes, they must be purified and translated into active form.

Po znanih postopkih lahko poteka aktiviranje tovrstnih proteinov, ki nastopajo kot agregati, v več stopnjah (prim. npr. B. R. Jaenicke, FEBS Federation of European Biochemical Societies, Vol. 52 (1979) 187 do 198; R. Rudolph, Biochemistry J8 (1979) 5572 do 5575):According to known methods, the activation of such aggregate proteins can be effected in several steps (e.g., eg BR Jaenicke, FEBS Federation of European Biochemical Societies, Vol. 52 (1979) 187 to 198; R. Rudolph, Biochemistry J8 (1979 ) 5572 to 5575):

V prvi stopnji dosežejo solubiliziranje z dodatkom močnih denaturirnih sredstev, npr. gvanidin-hidroklorida ali sečnine v visoki koncentraciji, ali z dodatkom močno kislih sredstev, npr. zmesi glicina/fosforove kisline. Kot nadaljnje pomožne snovi so se obnesli reducirni SH-reagenti (npr. ditioeritritol, DTE) in EDTA, npr. pri renaturiranju LDH. V kolikor je protein onečiščen s proteini celice gostiteljice, sledi kot naslednja stopnja čiščenje po metodah, ki so same po sebi znane in običajne, npr. z gelno ali ionsko izmenjalno kromatografijo. Zatem močno razredčimo, da se zmanjša koncentracija denaturirnega sredstva. Pri uporabi gvanidin-hidroklorida pri tem razredčimo na vrednosti pod 0,5 mol/1. Pri encimih s prostimi SH-skupinami se izkaže kot prikladen dodatek sredstev, ki ščitijo SH-skupine (prim. npr. B. R. Jaenicke, Journal Polymer Science, Part C 16 (1967) 2143 do 2160).In the first stage, they achieve solubilization by the addition of strong denaturing agents, e.g. guanidine hydrochloride or urea in high concentration, or with the addition of strongly acidic agents, e.g. glycine / phosphoric acid mixtures. Reducing SH reagents (eg dithioerythritol, DTE) and EDTA, e.g. when renaturating LDH. To the extent that the protein is contaminated with the proteins of the host cell, then the next step is purification by methods known per se and conventional, e.g. by gel or ion exchange chromatography. It is then diluted sharply to reduce the concentration of the denaturing agent. When using guanidine hydrochloride, it is diluted to below 0.5 mol / l. For enzymes with free SH groups, it appears to be a suitable adjunct to agents protecting SH groups (see, e.g., B. R. Jaenicke, Journal Polymer Science, Part C 16 (1967) 2143 to 2160).

V EP-A-O1145O6 opisujejo postopke za izolacijo, čiščenj in aktiviranje nekaterih heterolognih produktov ekspresije iz bakterijskih kultur; za aktiviranje prevedejo raztopine refractile bodies v močnem denaturirnem sredstvu a) direktno v raztopino v šibkejšem denaturirnem sredstvu, kar nato pod- 3 vržejo oksidirnim pogojem, za ponovno tvorbo disulfidnih mostov; b) protein sulfonirajo, da nato prevedejo v raztopino v šibkem denaturirnem sredstvu ter S-sulfonatne skupine z obdelavo s sulfihidrilnim reagentom v njegovi reducirani in oksidirani obliki, npr. z GSH/GSSG, prevedejo v -S-S-skupine; ali c) raztopino v šibkem denaturirnem sredstvu direktno obdelajo s sulfhidrilnim reagentom, npr. z GSH/GSSG. Značilen primer, pri katerem nastopajo zgoraj prikazani problemi, je t-PA.EP-A-O1145O6 describes methods for isolating, purifying and activating certain heterologous expression products from bacterial cultures; to activate, transfer solutions of refractile bodies in a strong denaturing agent a) directly to a solution in a weaker denaturing agent, which is then subjected to oxidizing conditions to re-form disulfide bridges; b) the protein is sulphonated to then be converted into a solution in a weak denaturing agent and the S-sulphonate groups by treatment with the sulfhydryl reagent in its reduced and oxidized form, e.g. with GSH / GSSG, translated into -S-S-groups; or c) treat the solution in a weak denaturing agent directly with a sulfhydryl reagent, e.g. with GSH / GSSG. A typical example of the problems presented above is t-PA.

Glavna komponenta proteinske matrice strjene krvi je polimer fibrin. To proteinsko matrico raztaplja plazmin, ki se tvori iz plazminogena preko aktiviranja s t.i. aktivatorji plazminogena, npr. s t-PA (tkivni aktivator plazminogena, tissue-type plasminogen activator). Encimatska aktivnost naravnega ali iz eukariontov gentehnološko pridobljenega t-PA (katalitsko aktiviranje plazminogena do plazmina) je v odsotnosti fibrina ali fibrinskih cepilnih produktov (FSP) zelo majhna, da pa se v prisotnosti teh stimulatorjev znatno ojačiti (za več kot faktor 10). Ta t.i. stimulirnost učinkovi tosti je odločilna prednost t-PA v primeri z drugimi znanimi aktivatorji plazminogenov kot urokinazo ali streptokinazo (prim. npr. M. Hoylaerts et al, J. Biol. Chem. 257 (1982)The major component of the blood clotting protein matrix is the fibrin polymer. This protein matrix is dissolved by plasmin formed from plasminogen via activation by e.g. plasminogen activators, e.g. with t-PA (tissue-plasminogen activator). The enzymatic activity of natural or eukaryotes of gentechnologically derived t-PA (catalytic activation of plasminogen to plasmin) is very low in the absence of fibrin or fibrin cleavage products (FSP), but is significantly enhanced (by more than a factor of 10) in the presence of these stimulators. This t.i. stimulation of efficacy is a crucial advantage of t-PA compared to other known plasminogen activators such as urokinase or streptokinase (cf. e.g. M. Hoylaerts et al, J. Biol. Chem. 257 (1982)

2912 do 2019; Nieuwenhiuzen et al, Biochimica et Biophysica Acta 755 (1983) 531 do 533). Faktor stimulirnosti z BrCNcepilnimi produkti je zato v literaturi različno naveden in oštevilčen z do 35.2912 to 2019; Nieuwenhiuzen et al, Biochimica et Biophysica Acta 755 (1983) 531 to 533). The stimulus factor with BrCN vaccine products is therefore variously cited and numbered up to 35 in the literature.

- 4 t-PA-nast, neglikoziliran produkt se tvori tudi v genetsko manipuliranih prokariontih (po vrinjenju c-DNA); takemu produktu pa ne pripada stimulirnost učinkovitosti t-PA iz eukarionta. Možno je, da izvira to iz tega, da so redoks pogoji v prokariontni celici tako različni od eukariontne celice, iz katere izvira gen, da se na začetku izoblikuje neaktiven produkt, kar lahko vodimo npr. na to, da so številni SS-mostovi, ki jih vsebuje naravna aktivna molekula, povezani na napačen način, ali pa sploh niso izoblikovani. Za terapevtsko uporabo t-PA pa ni potrebna samo encimatska aktivnost kot taka, temveč vrhu tega tudi njegova stimulirnost. Tudi dejstvo, da prokariontna celica verjetno ne ustvarja pravih pogojev za izoblikovanje aktivnosti eukariontskih proteinov na pravilen način, je za druge snovi nakazano v The EMBO Journal 4, Nr. 3 (1985) 775 do 780.- 4 t-PA-nast, non-glycosylated product is also formed in genetically manipulated prokaryotes (after c-DNA insertion); such product does not, however, belong to the stimulatory efficacy of t-PA from eukaryotes. This may be due to the fact that the redox conditions in the prokaryotic cell are so different from the eukaryotic cell from which the gene originates that an inactive product is initially formed, which can be led e.g. to the point that many SS bridges contained in the natural active molecule are either incorrectly bonded or not formed at all. However, therapeutic use of t-PA requires not only enzymatic activity per se, but also its stimulation. Also, the fact that a prokaryotic cell is unlikely to create the right conditions for the eukaryotic protein activity to be expressed in the correct manner is indicated for other substances in The EMBO Journal 4, Nr. 3 (1985) 775 to 780.

Po EP-A-0093639 za aktiviranje t-PA suspendirajo iz E. coli dobljene celične peletke v 6 mol/1 gvanidin-hidroklorida, obdelajo z ultra zvokom, inkubirajo in zatem dializirajo 4 ure proti raztopini iz Tris-HCl (pH = 8,0), natrijevega klorida, EDTA in Tween 80. Po dializi centrifugirajo, pri čemer v vrhnjem sloju (supernatantu) najdejo učinkovitost aktiviranja plazminogena. Na ta način naturiran t-PA je sicer proteolitično aktiven, vendar pa ne kaže merljive stimulirnosti z BrCN-cepilnimi produkti (BrCN-FSP) fibrina v smislu postopka, opisanega v J. H. Verheijen, Thromb. Haemostas.,EP-A-0093639 suspends E. coli cell pellets in 6 mol / l guanidine hydrochloride to activate t-PA, treated with ultra-sound, incubated and then dialyzed for 4 hours against Tris-HCl solution (pH = 8, 0), sodium chloride, EDTA and Tween 80. After dialysis, they were centrifuged, finding the plasminogen activation efficiency in the top layer (supernatant). Natured t-PA thus produced is proteolytically active, but it does not show measurable stimulation with BrCN-cleavage products (BrCN-FSP) of fibrin in the sense of the procedure described in J. H. Verheijen, Thromb. Haemostas.,

48, (3), 260 - 269 (1982).48, (3), 260-279 (1982).

- 5 Za aktiviranje denaturiranih proteinov ni iz stanja tehnike znan noben splošno uporaben postopek; to velja še prav posebej za t-PA, ker ima nativni protein zelo kompleksno strukturo; vsebuje prosto tiolno skupino in 17 SS-mostov, ki se dajo teoretično povezati na 2,2 x 10 različnih načinov, pri čemer samo ena struktura ustreza nativnemu stanju. Iz stanja tehnike znani postopki za aktiviranje t-PA sicer vodijo do proteolitično aktivnega t-PA, ki pa ne kaže merljive stimulirnosti; postopek aktiviranja, ki vodi do stimulirnega t-PA, pa še ni znan.- 5 No generally applicable method is known in the art for the activation of denatured proteins; this is especially true for t-PA because the native protein has a very complex structure; contains a free thiol group and 17 SS bridges that can theoretically be connected in 2.2 x 10 different ways, with only one structure corresponding to the native state. The prior art methods for activating t-PA do lead to proteolytically active t-PA, but do not show measurable stimulation; however, the activation process leading to the stimulatory t-PA is not yet known.

Naloga predloženega izuma za to je, da nam da na voljo postopek za popolno aktiviranje gentehnološko pripravljenih, heterolognih, eukariontskih proteinov, ki vsebujejo disulfidne mostove, po ekspresiji v prokariontih; to nalogo rešimo s predmetom predloženega izuma.It is an object of the present invention to provide us with a process for the complete activation of genetically engineered, heterologous, eukaryotic proteins containing disulfide bridges upon expression in prokaryotes; this task is solved by the object of the present invention.

Predmet izuma je postopek za aktiviranje gentehnološko pripravljenih, heterolognih, eukariontskih proteinov, ki vsebujejo disulfidne mostove, po ekspresiji v prokariontih, ob razklopu celice, solubiliziranju pri denaturirnih in reducirnih pogojih ter aktiviranju (renaturiranju) pri oksidirnih pogojih v prisotnosti GSH/GSSG, ki je označen s tem, da v stopnji aktiviranja delamo pri pH vrednosti 9 do 12, GSH-koncentraciji 0,1 do 20 mmol/1, GSSG-koncentraciji 0,01 do 3 mmol/1, ter z ne-denaturirno koncentracijo denaturirnega sredstva.The subject of the invention is a method for activating gene-technologically prepared, heterologous, eukaryotic proteins containing disulfide bridges after expression in prokaryotes, upon cell cleavage, solubilization under denaturing and reducing conditions and activation (renaturation) under oxidizing conditions of GS, in the presence of GS characterized in that, at the activation stage, we operate at a pH of 9 to 12, a GSH concentration of 0.1 to 20 mmol / l, a GSSG concentration of 0.01 to 3 mmol / l, and a non-denaturing concentration of the denaturing agent.

Prednostne izvedbe predloženega postopka so predmet ood zahtevkov.Preferred embodiments of the present process are the subject of claims.

- 6 Kot denaturirno sredstvo lahko praviloma uporabimo za aktiviranje pri oksidirnih pogojih običajno uporabljeno denaturirno sredstvo ali arginin; prednostno uporabljamo izmed znanih denaturirnih sredstev gvanidin-hidroklorid ali sečnino ali njune derivate. Vrhu tega se je kot primeren izkazal tudi arginin. Nadalje se da uporabljati zmesi teh denaturirnih sredstev. Prednostno izvedemo to stopnjo aktiviranja tudi v prisotnosti tujega proteina; kot tak je primeren praviloma vsak tuj protein, v kolikor ni proteolitično učinkovit; prednostno uporabijamo goveji serumski albumin (BSA), npr. v količini 1 do 3 mg/ml. Dodatek BSA izzove lahno povišanje dobitka in stabiliziranje proteina (verjetno z zaščito pred površinskim denaturiranjera in/ali proteolitično razgradnjo).- 6 As a rule, a denaturing agent or arginine can generally be used as a denaturing agent to activate under oxidizing conditions; guanidine hydrochloride or urea or derivatives thereof are preferably used among known denaturing agents. On top of this, arginine also proved to be suitable. Furthermore, mixtures of these denaturing agents may be used. Preferably, this level of activation is also carried out in the presence of a foreign protein; as such, any foreign protein is generally suitable as long as it is not proteolytically effective; preferably bovine serum albumin (BSA) is used, e.g. in an amount of 1 to 3 mg / ml. BSA supplementation causes a slight increase in yield and stabilization of the protein (probably by protection against surface denaturation and / or proteolytic degradation).

Ostali pogoji postopka lahko ustrezajo pogojem, ki so znani in običajni za reaktivirne stopnje iz stanja tehnike. Trajanje aktiviranja (inkubacija) znaša prednostno 20 do 48 ur pri sobni temperaturi. Razplovni čas aktiviranja znaša v prisotnosti 0,5 mmol/1 reduciranega (GSH) in oksidiranega (GSSG) glutationa okoli 10 do 15 ur pri 20 °C. Pri daljši inkubaciji (48 ur) pri reoksidacijskih pogojih stimulirnost z CNBr-FSP praviloma pojema. Stopnjo aktiviranja izvedemo pred nostno v prisotnosti EDTA, pri čemer najbolj smotrna koncentra cija znaša okoli 1 mmol/1 EDTA.Other conditions of the process may correspond to conditions known and common to the prior art reactivation steps. The activation time (incubation) is preferably 20 to 48 hours at room temperature. The activation time is about 10 to 15 hours at 20 ° C in the presence of 0.5 mmol / l reduced (GSH) and oxidized (GSSG) glutathione. On prolonged incubation (48 hours) under reoxidation conditions, stimulation with CNBr-FSP generally declines. The activation rate is preferably carried out in the presence of EDTA, with the most appropriate concentration being about 1 mmol / l EDTA.

Stopnje postopka, ki jih izvajamo pred ali po stopnji aktiviranja (reoksidacija/aktiviranje), kot celični razklop, solubiliziranje (solubiliziranje/redukcija) in v danem primeru ena ali več čistilnih operacij, ki jih izvedemo pred in/ali po stopnji aktiviranja, se dajo izvesti po tehniki, ki je znana oz. običajna za tovrstne postopke, npr. iz EP-A01 14506, EP-A-0093619; za dosego razultata, optimalnega z ozirom na dobitek in aktiviranje, pa je lahko smotrno, da izvedemo posamično ali vse stopnje postopka ob upoštevanju ene ali več v predloženem opisu pojasnjenih izvedb postopka. Tako je zlasti možno, da izvedemo stopnjo aktiviranja v smislu izuma v zmesi, dobljeni po razklopu, brez predhodnega denaturiranja in/ali redukcije, vsekakor pa z nizkim dobitkom. Ekspresijo izvedemo v prokariontih, prednostno v P.putida in zlasti E.coli. Postopek v smislu izuma pa je prav tako prikladen, kadar eksprimiramo v drugih prokariontih (npr. v Bacilli).The stages of the process performed before or after the activation step (reoxidation / activation), such as cell digestion, solubilization (solubilization / reduction), and optionally one or more purification operations performed before and / or after the activation step, are given performed according to a technique known or known. common in such procedures, e.g. from EP-A01 14506, EP-A-0093619; however, in order to achieve the optimum result in terms of gain and activation, it may be advisable to carry out individually or all stages of the process, taking into account one or more of the embodiments explained in the description provided. Thus, it is particularly possible to carry out the activation step of the invention in the mixture obtained after digestion without prior denaturation and / or reduction, and in any case in low yield. Expression is carried out in prokaryotes, preferably in P.putida and in particular E.coli. The process of the invention is also suitable when expressed in other prokaryotes (e.g., in Bacilla).

Celični razklop lahko pri tem izvedemo po običajnih metodah, npr. s pomočjo ultra zvoka, visokotlačno disperzijo ali lizocimsko; izvedemo ga prednostno v pufrski raztopini, primerni za nastavitev nevtralne do šibko kisle pH-vrednosti, kot suspenzijskega medija, npr. v 0,1 mol/1 Tris-HCl. Po celičnem razklopu odločimo netopno (refractile bodies) na poljuben način, prednostno z odcentrifugiranjem pri višjih g-številih in daljšem času centrifugiranja, ali s filtracijo. Po izpranju s sredstvi, ki ne motijo t-PA, tuje celične protei ne pa po možnosti raztapljajo, npr. v vodi, fosfatni pufrski raztopini, v danem primeru ob dodatku milih detergentov kot tritona, podvržemo oborino (pelet) solubiliziranju (solubiliziranje/redukcija). Solubiliziranje poteka prednostno v alkalnem pH-območju, zlasti pri pH 8,6 + 0,4 ter v prisotnostiCellular digestion can then be performed by conventional methods, e.g. using ultra-sound, high pressure dispersion or lysozyme; it is preferably carried out in a buffer solution suitable for adjusting the neutral to weakly acidic pH, such as a suspension medium, e.g. in 0.1 mol / 1 Tris-HCl. After cell digestion, the refractile bodies are chosen in any way, preferably by centrifugation at higher g-numbers and longer spin time, or by filtration. After washing with t-PA-free agents, foreign cellular proteins are not preferably dissolved, e.g. in water, phosphate buffer solution, optionally subjected to solubilization (solubilization / reduction) with the addition of soap detergents as tritone. Solubilization takes place preferably in the alkaline pH range, especially at pH 8.6 + 0.4 and in the presence

- 8 redukcijskega sredstva iz merkaptanske skupine in denaturirnega sredstva.- 8 reducing agent from mercaptan group and denaturing agent.

Kot denaturirna sredstva lahko uporabimo za solubiliziranje iz stanja tehnike, npr. iz EP-A-0114506, znana in običajna denaturirna sredstva, zlasti gvanidin-hidroklorid ali sečnino. Koncentracija gvanidin-hidroklorida znaša smotrno okoli 6 molov/1, sečnine pa okoli 8 raolov/1. Prav tako lahko uporabimo spojine s splošno formulo I.As denaturing agents, they can be used to solubilize the prior art, e.g. from EP-A-0114506, known and conventional denaturing agents, in particular guanidine hydrochloride or urea. The guanidine hydrochloride concentration is preferably about 6 moles / l and urea is about 8 moles / l. Compounds of general formula I may also be used.

Kot reducente iz skupine merkaptanov lahko uporabimo npr. reduciran glutation (GSH) ali 2-raerkaptoetanol, npr. v koncentraciji okoli 50 do 400 mmolov/1 ditiotreitola in/ali zlasti DTE (ditioeritritol) oz. DTT (ditiotreitol) , npr. v koncentraciji okoli 80 do 400 mmolov/1. Solubiliziranje poteka smotrno pri sobni temperaturi v času (inkubacija) 1 do več ur, prednostno 2 uri. Za preprečenje oksidacije reducenta z zračnim kisikom je lahko smotrno uporabiti EDTA. Poleg solubuliziranja/redukcije ima stopnja solubiliziranja tudi čistilni efekt, ker večji del materiala, ki ne reagira navskrižno imunološko s t-PA (tujih proteinov), ne preide v raztopino.As reducing agents from the mercaptans group, e.g. reduced glutathione (GSH) or 2-raercaptoethanol, e.g. at a concentration of about 50 to 400 mmol / l dithiothreitol and / or in particular DTE (dithioerythritol) or. DTT (dithiothreitol), e.g. at a concentration of about 80 to 400 mmol / l. Solubilization is preferably carried out at room temperature for a period of (incubation) for 1 to several hours, preferably 2 hours. It is advisable to use EDTA to prevent oxidation of the reducing agent with air oxygen. In addition to solubilizing / reducing, the solubilization rate also has a cleansing effect, since most of the material that does not react immunologically with t-PA (foreign proteins) does not pass into solution.

Po solubiliziranju in pred stopnjo aktiviranja lahko vrinemo same po sebi znane in običajne stopnje čiščenja; kot čistilne metode pridejo v poštev npr. sterična razklopna kromatografija (SEC) (v prisotnosti gvanidin-hidroklorida ali sečnine) ali ionski izmenjevalniki (v prisotnosti sečnine ali njenih derivatov); nespecifično reoksidacijo lahko preprečimo z dodatkom reducenta (npr. 2-merkaptoetanola) ali s pH-vrednostmiAfter solubilizing and before the activation step, known and conventional purification steps can be restored; as cleaning methods, for example, steric digestion chromatography (SEC) (in the presence of guanidine hydrochloride or urea) or ion exchangers (in the presence of urea or its derivatives); nonspecific reoxidation can be prevented by the addition of a reducing agent (eg 2-mercaptoethanol) or by pH values

- 9 £. 4,5 (prim. npr. R. Rudolph, Biochem. Soc.- £ 9. 4,5 (cf. e.g. R. Rudolph, Biochem. Soc.

Transactions 13 (1985) 3θθ do 311). Če v predhodni stopnji solubiliziranja uporabimo DTE, je treba le-tega v čistilni stopnji odstraniti, čiščenje lahko poteka npr. s SEC preko Sephade* G 100 v prisotnosti gvanidin-hidroklorida in reducenta, npr. GSH pri pH 1 do 4 (pri tej stopnji lahko odločimo veliko količino tujega proteina); ali z odločanjem denaturirnega - redukcijskega sredstva z razsoljenjem preko Sephadex G 25 v 0,01 mol/1 HCl oz. 0,1 mol/1 ocetne kisline. Odločanje denaturirnega-redukcijskega sredstva je alternativno možno z dializo proti istim raztopinam.Transactions 13 (1985) 3θθ to 311). If a DTE is used in the previous solubilization step, it must be removed in the purification step, for example, cleaning may take place. with SEC via Sephade * G 100 in the presence of guanidine hydrochloride and a reducing agent, e.g. GSH at pH 1 to 4 (a large amount of foreign protein can be decided at this stage); or by decontamination of a denaturing-reducing agent by desalination via Sephadex G 25 in 0.01 mol / l HCl or. 0.1 mol / l acetic acid. Alternatively, the denaturing-reducing agent can be made by dialysis against the same solutions.

Stopnji reaktiviranja je lahko priključena nadaljnja čistilna stopnja; tako čiščenje poteka praviloma s pomočjo dialize, ali pa tudi s sledečim izoliranjem aktiviranega t-PA, npr. z afinitetsko kromatografijo, npr. nad Lys-SepharoseA further purification step may be attached to the reactivation step; such purification is generally carried out by dialysis, or by subsequent isolation of activated t-PA, e.g. by affinity chromatography, e.g. over Lys-Sepharose

Nadaljnja izvedbena oblika izuma sloni na tvorbi mešanih disulfidov gentehnološko pripravljenih, heterolognih, eukariontskih proteinov, ki vsebujejo disulfidne mostove, in glutationa (v nadaljevanju okrajšano t-PASSG). To lahko olajša tako odločenje tujih proteinov v denaturiranem stanju, kot tudi nadaljnje čiščenje nativnega proteina. Čiščenje po modifikaciji tiolnih skupin ima to prednost, da je protein zaščiten pred oksidacijo iz zraka in s tem stabilen v večjem pH-območju, sprememba neto naboja pa olajša čiščenje. Z ionsko izmenjevalno obdelavo se da zlasti prikladno izvesti odločenje nemodificiranega proteina.A further embodiment of the invention is based on the formation of mixed disulfides of genetically engineered, heterologous, eukaryotic proteins containing disulfide bridges and glutathione (hereinafter abbreviated as t-PASSG). This can facilitate both the decision-making of foreign proteins in the denatured state as well as the further purification of the native protein. Purification after modification of thiol groups has the advantage that the protein is protected from oxidation from air and thus stable over a larger pH range, and a change in net charge facilitates purification. The ion exchange treatment makes it particularly convenient to perform the unmodified protein decision.

Za tvorbo mešanih disulfidov inkubiramo dializirani, reducirani protein, iz katerega smo očistili denaturirna in redukcijska sredstva, z razredčeno, npr. 0,2 M raztopino GSSG, ki vsebuje denaturirno sredstvo. Aktiviranje poteka po odločenju denaturirnega in oksidacijskega sredstva pri pH vrednosti 7 do 10,5, GSH-koncentraciji 0,5 do 5 mmol/1, in z ne-denaturirno koncentracijo denaturirnega sredstva.To form mixed disulfides, we incubate a dialysed, reduced protein from which the denaturing and reducing agents have been purified, with diluted e.g. 0.2 M GSSG solution containing denaturing agent. Activation takes place after the denaturing and oxidizing agent is selected at a pH of 7 to 10.5, a GSH concentration of 0.5 to 5 mmol / l, and a non-denaturing concentration of the denaturing agent.

Pri vseh drugih reakcijskih stopnjah ustreza aktiviranje proteina preko tvorbe mešanih disulfidov z GSSG izvedbenim oblikam za aktiviranje prejšnjega dela izuma. Pri tej izvedbeni obliki leži pH-optimura pri 8,5, dobitek je približno dvakrat tolikšen in aktivirani protein je dalj časa stabilen v renaturirnem pufru.For all other reaction steps, activation of the protein via the formation of mixed disulfides with GSSG embodiments for the activation of the previous part of the invention is appropriate. In this embodiment, the pH optimization is at 8.5, the yield is about twice that, and the activated protein is stable for a longer time in the renaturation buffer.

V smislu izuma se nam posreči t-PA tako aktivirati iz prokariontov, da ni doseženo samo aktiviranje normalne biološke aktivnosti, temveč preko tega dosežemo še stimulirnost v zgoraj definiranem smislu, ki daleč prekaša stimulirnost nativnega t-PA in je večja od faktorja 10, lahko celo prekorači faktor 50.According to the invention, it is fortunate for t-PA to be activated from prokaryotes such that not only activation of normal biological activity is achieved, but also stimulation in the above defined sense, which far exceeds the stimulation of native t-PA and is greater than factor 10, it even exceeds the factor of 50.

Nadaljnji eukariontski protein, katerega v smislu izuma lahko aktiviramo po ekspresiji v prokariontu, je ,^-interferon.A further eukaryotic protein, which according to the invention can be activated after expression in a prokaryote, is N - interferon.

Naslednji primeri bliže pojasnjujejo izum, ne da bi ga omejevali. Če ni navedeno drugače, se odstotni podatki nanašajo na masne odstotke, temperaturni podatki pa na Celzijeve stopinje.The following examples further illustrate the invention without limiting it. Unless otherwise stated, percentages refer to mass percentages and temperature data to degrees Celsius.

PRIMER 1EXAMPLE 1

a) Priprava refractile bodiesa) Preparation of refractile bodies

100 g vlažne celične mase E. coli, navzete v 1,5 1,100 g of a wet cell mass of E. coli in 1.5 l,

0,1 mol/1 Tris/HCl (pH 6,5) in 20 mrool/1 EDTA smo homogenizirali (Ultra-Turrax, 10 sek.) ter dodali 0,25 mg/ml lizocima Po 30 minutah inkubacije pri sobni temperaturi smo ponovno homogenizirali in ohladili na 3 °C. Celični razklop smo dosegli z visokotlačno disperzijo (550 kg/cm2). Zatem smo splaknil še s 300 ml 0,1 mol/1 Tris/HCl (pH 6,5) in 20 mmol/1 EDTA. Po centrifugiranju (Sorvall GSA, 2 uri pri 13000 obr./min.,0.1 mol / l Tris / HCl (pH 6.5) and 20 mrool / l EDTA were homogenized (Ultra-Turrax, 10 sec) and 0.25 mg / ml lysozyme was added After 30 minutes of incubation at room temperature, homogenized and cooled to 3 ° C. Cell digestion was achieved by high pressure dispersion (550 kg / cm 2 ). It was further rinsed with 300 ml of 0.1 mol / 1 Tris / HCl (pH 6.5) and 20 mmol / 1 EDTA. After centrifugation (Sorvall GSA, 2 hours at 13000 rpm,

21000 g, 4 °C) smo pelet prevzeli v 1,2 1 0,1 mol/1 Tris/HCl (pH 6,5), 20 mmol/1 EDTA in 2,5 % Triton-x-100 ter homogenizirali. Po ponovnem centrifugiranju (Sorvall GSA, 30 min. pri 13000 U/min., 27000 g, 4 °C) smo pelet prevzeli v 1,3 1 0,1 mol/1 Tris/HCl (pH 6,5), 20 mmol/1 EDTA in 0,5 % Triton-x ter homogenizirali. Še trikrat smo izvedli izmenjalna centrifugiranja (Sorvall GSA, 30 minut pri 13000 obr./min., 27000 g 4 °C) in homogeniziranja peletov v 1 1 0,1 mol/1 Tris/HCl (pH 6,5) in 20 mmol/1 EDTA.21000 g, 4 ° C) the pellet was taken up in 1.2 1 0.1 mol / 1 Tris / HCl (pH 6.5), 20 mmol / 1 EDTA and 2.5% Triton-x-100 and homogenized. After re-centrifugation (Sorvall GSA, 30 min. At 13000 U / min, 27000 g, 4 ° C), the pellet was taken up in 1.3 1 0.1 mol / 1 Tris / HCl (pH 6.5), 20 mmol. / 1 EDTA and 0.5% Triton-x and homogenized. Alternative centrifugation was performed three more times (Sorvall GSA, 30 min at 13000 rpm, 27000 g 4 ° C) and homogenized pellets in 1 1 0.1 mol / 1 Tris / HCl (pH 6.5) and 20 mmol / 1 EDTA.

Vsebnost t-PA v refractile bodies pripravkih smo kvantificirali s SDS-PAGE, identificiranjem t-PA-trakov z Western-blotting in densitometrično analizo. Refractile bodies pokažejo pri SDS-PAGE in Western-blotting močan t-PA-trak z molekulsko maso okoli 60 kDa. Delež t-PA v celokupni vsebnosti proteinov refractile bodies znaša okoli 21 %.The content of t-PA in refractile bodies was quantified by SDS-PAGE, identification of t-PA bands by Western blotting and densitometric analysis. Refractile bodies show a strong t-PA band with a molecular weight of about 60 kDa in SDS-PAGE and Western blotting. The proportion of t-PA in the total protein content of refractile bodies is about 21%.

1.21.2

b) Solubiliziranje/redukcija refractile bodies”b) Solubilization / reduction of refractile bodies ”

Refractile bodies s koncentracijo proteinov 1 do 5 mg/ml smo inkubirali v 0,1 mol/1 Tris/HCl (pH 8,6), 6 molov/1 gvanidin-hidroklorida, 0,15 do 0,4 mol/1 DTE in 1 mmol/1 EDTA 2 do 3 ure pri sobni temperaturi. Zatem smo odcentrifugirali netopni material (fragmente celičnih sten itd.) (npr.Refractile bodies with a protein concentration of 1 to 5 mg / ml were incubated in 0.1 mol / 1 Tris / HCl (pH 8.6), 6 mol / 1 guanidine hydrochloride, 0.15 to 0.4 mol / 1 DTE, and 1 mmol / 1 EDTA for 2 to 3 hours at room temperature. We then centrifuged the insoluble material (cell wall fragments, etc.) (e.g.

Sorvall SS 34, 30 minut pri 15000 do 20000 obr./min., 35000 do 50000 g, 4 °C). pH vrednost vrhnjega sloja (supernatanta) smo s koncentrirano solno kislino nastavili na pH 3· Denaturirno in redukcijsko sredstvo smo nato odločili z dializo proti 0,01 mol/1 HCl pri 4 °C.Sorvall SS 34, 30 minutes at 15000 to 20000 rpm, 35000 to 50000 g, 4 ° C). The pH of the top layer (supernatant) was adjusted to pH 3 with concentrated hydrochloric acid. · The denaturing and reducing agent was then dialyzed against 0.01 mol / l HCl at 4 ° C.

c) Reoksidacija/aktiviranjec) Reoxidation / activation

Reoksidacija/aktiviranje je poteklo z 1:50 do 1:200 razredčino v 0,1 mol/1 Tris/HCl (pH 10,5), 1 mmol/1 EDTA, mg/ml BSA, 0,5 mol/1 L-arginina, 2 mmola/1 GSH, 0,2 mmola/1 GSSG. Po 1? do 24 urah aktiviranja pri okoli 20 °C smo določili aktivnost in v primerjavi z aktivnostjo nativnega glikoziliranega t-PA iz eukarionta določili dobitek.Reoxidation / activation expired from 1:50 to 1: 200 dilution in 0.1 mol / 1 Tris / HCl (pH 10.5), 1 mmol / 1 EDTA, mg / ml BSA, 0.5 mol / 1 L- arginine, 2 mmol / 1 GSH, 0.2 mmol / 1 GSSG. 1 each? up to 24 hours of activation at about 20 ° C, activity was determined and yield was determined relative to that of native glycosylated t-PA from eukaryotes.

Dobitek z ozirom na celokupno vsebnost proteinov v refractile bodies”: 2,5 +/- 0,5 % stimulirnost: 10 +/- 5Yield based on total protein content in refractile bodies ”: 2.5 +/- 0.5% stimulation: 10 +/- 5

Dobitek z ozirom na delež t-PA v refractile bodies:Yield with respect to the proportion of t-PA in refractile bodies:

Ca. 12 %.Ca. 12%.

d) Reoksidacija/aktiviranje brez odločenja denaturirno/redukcijskega sredstvad) Reoxidation / activation without decision of denaturing / reducing agent

Refractile bodies smo inkubirali pri koncentraciji proteinov 1,25 mg/ml v 0,1 mol/1 Tris/HCl (pH 8,6), 6 molov/1 gvanidin-hidroklorida, 0,2 mola/1 DTE in 1 mmol/1 EDTA 2 uri pri sobni temperaturi. Zatem smo takoj uvedli reoksidacijo z 1:100 razredčino v 0,1 mol/1 Tris/HCl (pH 10,5), 1 rnmol/1 EDTA, 1 mg/ml BSA, 0,3 mole/1 L-arginina, ter količinami GSSG, navedenimi v tabeli. Dodatno se je v aktivirnem nastavku nahajala preostala koncentracija 0,06 molov/1 gvanidin-hidroklorida in 2 mmola/1 DTE.Refractile bodies were incubated at a protein concentration of 1.25 mg / ml in 0.1 mol / 1 Tris / HCl (pH 8.6), 6 mol / 1 guanidine hydrochloride, 0.2 mol / 1 DTE and 1 mmol / 1 EDTA for 2 hours at room temperature. Subsequently, reoxidation was immediately initiated with a 1: 100 dilution in 0.1 mol / 1 Tris / HCl (pH 10.5), 1 rnmol / 1 EDTA, 1 mg / ml BSA, 0.3 mol / 1 L-arginine, and the quantities of GSSGs listed in the table. In addition, a residual concentration of 0.06 mol / 1 guanidine hydrochloride and 2 mmol / 1 DTE was located in the activation extension.

Odvisnost dobitka aktiviranja od GSSG-koncentracije pri aktiviranju brez odločenja denaturirno/redukcijskega sredstva.Dependence of activation gain on GSSG concentration on activation without denaturing / reducing agent.

GSSG (mmol /1)GSSG (mmol / l)

Dobitek Stimulirnost (%)(Faktor)Yield Stimulation (%) (Factor)

0,2 0.2 0 0 1 1 0,13 0.13 5 5 1,49 1.49 6 6 1,28 1,28 7 7 1,04 1.04 9 9 0,98 0.98 10 10 1,77 1.77 15 15 0 0 20 20 0 0

4,04.0

1.41.4

5.4 5,8 5,25.4 5.8 5.2

10,0 ’= dobitek aktivnega t-PA z ozirom na celokupno vsebnost proteinov v refractile bodies.10,0 '= yield of active t-PA with respect to the total protein content of the refractile bodies.

PRIMER 2EXAMPLE 2

Pripravek RB (refractile bodies) (450 0Dccn/ml) ob u smo inkubirali v 1 ml 0,1 mol/1 Tris/HCl (pH = 8,6), mole/1 gvanidin-hidroklorida in 0,15 do 0,2 mola/1 DTE 2 do 3 ure pri sobni temperaturi. Netopni material (fragemente celičnih sten itd.) smo zatem odločili s centrifugacijo (20 minut pri 17000 obr./min.). Denaturirno in redukcijsko sredstvo smo odstranili z gelno filtracijo preko Sephadex C 25 (superfin) v 0,01 mol/1 HCI. Pri tem smo vzorec razredčili za faktor okoli 5 do 10. Reducirani material v 0,01 mol/1 HCI smo shranili pri -20 °C.Preparation of RB (refractile bodies) (450 0D ccn / ml) at u was incubated in 1 ml of 0.1 mol / 1 Tris / HCl (pH = 8.6), moles / 1 of guanidine hydrochloride and 0.15 to 0. 2 mol / 1 DTE for 2 to 3 hours at room temperature. The insoluble material (cell wall fragments, etc.) was then determined by centrifugation (20 minutes at 17,000 rpm). The denaturing and reducing agent was removed by gel filtration via Sephadex C 25 (superfin) in 0.01 mol / l HCl. The sample was diluted by a factor of about 5 to 10. The reduced material in 0.01 mol / l HCl was stored at -20 ° C.

PRIMER 3EXAMPLE 3

V naslednjih tabelah je zbran vpliv različnih parametrov v smislu izuma na aktiviranje in stimuliranje t-PA. Za te reoksidacijske poskuse pa po primeru 1 solubilizirani, reducirani protein nismo dalje predhodno očistili.The following tables summarize the effect of various parameters of the invention on the activation and stimulation of t-PA. For these reoxidation experiments, however, solubilized, reduced protein was not further purified by Example 1.

Reducirani protein (v 0,01 molu HCI) smo z razredčenjem na 1:10 do 1:500 aktivirali v reoksidacijskem pufru. Aktiviranje smo določili po 22 do 48 urah inkubacije pri sobni temperaturi. Aktivnost reoksidiranega proteina se nanaša na standardno reoksidacijo (=100 %) v:The reduced protein (in 0.01 mol HCI) was activated in reoxidation buffer by dilution to 1:10 to 1: 500. Activation was determined after 22 to 48 hours of incubation at room temperature. Reoxidated protein activity refers to standard reoxidation (= 100%) in:

0,1 mol/1 Tris/HCl (pH = 10,5) + 1 mmol/1 EDTA + 0,5 mol/1 L-arginina + 1 mg/ml BSA + 0,5 mmol/1 GSH (reduciran glutation) + 0,5 mmol/1 GSSG (glutationdisulfid).0.1 mol / 1 Tris / HCl (pH = 10.5) + 1 mmol / 1 EDTA + 0.5 mol / 1 L-arginine + 1 mg / ml BSA + 0.5 mmol / 1 GSH (reduced glutathione) + 0.5 mmol / l GSSG (glutathione disulfide).

l' - . tl '-. t

Stimulirnost izračunamo iz E+cugppsp^.cNBrFSP (prim. W. Nieuwenhuizen et al, Biochimica et Biophysica Acta 755 (1983) 531 do 533). Aktivnost (v odstotkih) in stimulirnost (faktor) smo določili po J. H. Verheijen Thromb. Haemostas. 48(3), 266-269, (1982).Stimulation is calculated from E + cugppsp ^ .cNBrFSP (cf. W. Nieuwenhuizen et al, Biochimica et Biophysica Acta 755 (1983) 531 to 533). Activity (percentage) and stimulation (factor) were determined according to J. H. Verheijen Thromb. Haemostas. 48 (3), 266-269, (1982).

Dobili smo naslednje rezultate:We obtained the following results:

1. Odvisnost izkoristka aktiviranja po dodatku L-arginina, gvanidin-hidroklorida1. Activation efficiency dependence upon the addition of L-arginine, guanidine hydrochloride

Reoksidacija v 0,1 mol/1 Tris/HCl (pH 10,5) + 1 mmol/1 EDTA + 1 mg/ml BSA + 0,5 mmol/1 GSH + 0,5 mmol/1 GSSGReoxidation in 0.1 mol / 1 Tris / HCl (pH 10.5) + 1 mmol / 1 EDTA + 1 mg / ml BSA + 0.5 mmol / 1 GSH + 0.5 mmol / 1 GSSG

a) L-arginina) L-arginine

L-arginin) L-arginine) Aktivnost Activity Stimulirnost Stimulation (mol/1) (mol / 1) (%) (%) (Faktor) (Factor)

0 0 4 4 2,5 2.5 0,25 0.25 98 98 7,5 7.5 0,5 0.5 100 100 21,9 21.9 0,75 0.75 27 27 16,3 16.3 1,0 1.0 23 23 3,5 3.5

Pri tem poskusu je treba upoštevati, da se t-PA inhibira z L-argininom. Zato je treba padec aktivir nega dobitka korigirati pri višjih koncentracijah L-arginina z ozirom na inhibicijo.In this experiment, it should be noted that t-PA is inhibited by L-arginine. Therefore, the decrease in activation gain should be corrected at higher concentrations of L-arginine with respect to inhibition.

b) Gvanidin-hidroklorid (Gdn.HCl)b) Guanidine hydrochloride (Gdn.HCl)

(Gdn'HCl, (mol/1) (Gdn'HCl, (mol / 1) Aktivnost (%) Activity (%) 0 0 11 11 0,25 0.25 22 22 0,5 0.5 53 53 0,75 0.75 58 58 1,0 1.0 12 12 Odvisnost izkoristka aktiviranja Dependence of activation efficiency od dodatka from the supplement sečnine in derivatov sečnine. urea and urea derivatives. Reoksidacija v 0,1 mol/1 Tris (pH 10,5) , 1 mmol/1 Reoxidation in 0.1 mol / l Tris (pH 10.5), 1 mmol / l EDTA, 1 mg/ml BSA, 5 mmol/1 GSH, EDTA, 1 mg / ml BSA, 5 mmol / 1 GSH, 0,2 mmol/1 GSSG 0.2 mmol / l GSSG a) Sečnina a) Urea Sečnina Urea Aktivnost Activity (mol/1) (mol / 1) (%) (%) 0 0 1 1 0,5 0.5 20 20 1 1 59 59 1,5 1.5 126 126 2 2 162 162 2,5 2.5 141 141 3 3 72 72 4 4 12 12 5 5 0 0

b) Metilsecninab) Methylurea

Metilsečnina Aktivnost (mol/1) (%)Methylurea Activity (mol / 1) (%)

0,5 0.5 22 22 1 1 174 174 1,5 1.5 313 313 2 2 375 375 2,5 2.5 332 332 3 3 215 215 4 4 12 12 5 5 0 0 c) Etilsečnina c ) Ethylurea Etilsečnina Ethylurea Aktivnost Activity (moi/1) (moi / 1) (%) (%) 0,5 0.5 46 46 1 1 212 212 1,5 1.5 323 323 2 2 300 300 2,5 2.5 107 107 3 3 19 19 4 4 0 0 5 5 0 0

d) Dimetilsečnina Dimetilsečnina (mol/1) d) Dimethylurea Dimethylurea (mol / 1) Aktivnost (%) Activity (%) Stimulirnost (Faktor) Stimulation (Factor) 0,5 0.5 167 167 8,8 8.8 1 1 256 256 8,9 8.9 1,5 1.5 283 283 9,4 9,4 2 2 177 177 7,7 7.7 2,5 2.5 78 78 8,9 8.9 3 3 23 23 9,9 9.9 4 4 4 4 8,6 8.6 5 5 2 2 3,5 3.5

Odvisnost izkoristka aktiviranja od dodatka amidov maščobne kisline:Dependence of activation efficiency on the addition of fatty acid amides:

Reoksidacija v 0,1 mol/1 Tris (pH 10,5), 1 mmol/1 EDTA, 1 mg/ml BSA, 5 mmol/1 GSH, 0,2 mmol/1 GSSG.Reoxidation in 0.1 mol / 1 Tris (pH 10.5), 1 mmol / 1 EDTA, 1 mg / ml BSA, 5 mmol / 1 GSH, 0.2 mmol / 1 GSSG.

a) Formamida) Formamide

Formamid AktivnostFormamide Activity

(mol/1) (mol / 1) (%) (%) 0 0 42 42 0,5 0.5 59 59 1 1 175 175 1,5 1.5 245 245 2 2 325 325 2,5 2.5 423 423 3 3 444 444 4 4 416 416 5 5 341 341

b) Metilformamid b) Methylformamide Metilformamid (mol/1) Methylformamide (mol / 1) Aktivnost (%) Activity (%) 0,5 0.5 100 100 1 1 135 135 1,5 1.5 304 304 2 2 389 389 2,5 2.5 466 466 3 3 452 452 4 4 425 425 5 5 121 121

c) Acetamid c) Acetamide Acetamid (mol/1) Acetamide (mol / 1) Aktivnost (%) Activity (%) 0,5 0.5 72 72 1 1 134 134 1,5 1.5 207 207 2 2 261 261 2,5 2.5 204 204 3 3 237 237 4 4 198 198 5 5 141 141

d) Propionamidd) Propionamide

Propionamid (mol/1) Propionamide (mol / 1) Aktivnost (%) Activity (%) 0,5 0.5 95 95 1 1 99 99 1,5 1.5 197 197 2 2 150 150 2,5 2.5 101 101 3 3 39 39 4 4 2 2 5 5 0 0

e) Butiramid e) Butyramide Butiramid (mol/1) Butyramide (mol / 1) Aktivnost (%) Activity (%) 0,5 0.5 55 55 1 1 52 52 1,5 1.5 17 17 2 2 0 0

Odvisnost izkoristka aktiviranja od pH-vrednostiDependence of activation efficiency on pH

Reoksidacija v 0,1 mol/1 Tris/HCl + 1 mmol/1 EDTA +0,5 mol/1 L-arginina + 1 mg/ml BSA + 0,5 mmol/1 GSH + 0,5 mmol/1 GSSGReoxidation in 0.1 mol / 1 Tris / HCl + 1 mmol / 1 EDTA +0.5 mol / 1 L-arginine + 1 mg / ml BSA + 0.5 mmol / 1 GSH + 0.5 mmol / 1 GSSG

PH P H Aktivnost (%) Activity (%) Stimulirnost (Faktor) Stimulation (Factor) 7 7 1 1 8 8 22 22 3,0 3.0 9 9 89 89 13,6 13.6 10 10 105 105 20,3 20.3 11 11 95 95 21,3 21.3

5, Odvisnost izkoristka aktiviranja od GSH/GSSG-koncentracije5, Dependence of activation yield on GSH / GSSG concentration

Reoksidacija v o,l mol/1 Tris/HCl, pH 10,5, + 1 mmol/1 EDTA + 0,5 mol/1 L-arSinina + 1 mg/ml BSAReoxidation in water, 1 mol / 1 Tris / HCl, pH 10,5, + 1 mmol / 1 EDTA + 0,5 mol / 1 L- ar S inine + 1 mg / ml BSA

a) + 1 mmol/1 GSHa) + 1 mmol / 1 GSH

(GSSG) (mmol/1) (GSSG) (mmol / l) Aktivnost (%) Activity (%) Stimulirnost (Faktor) Stimulation (Factor) 0,1 0.1 239 239 14,9 14.9 0,2 0.2 273 273 15,3 15.3 0,5 0.5 193 193 13,3 13.3 1 1 198 198 12,5 12.5 5 5 17 17 2,1 2.1 10 10 0 0 - - 20 20 0 0 -

b) + 0,2 mmol/l GSSGb) + 0.2 mmol / l GSSG

(GSH) (mmol/l) (GSH) (mmol / l) Aktivnost (%) Activity (%) Stimulirnost (Faktor) Stimulation (Factor) 0,05 0.05 15 15 2,2 2.2 0,1 0.1 40 40 3,8 3.8 0,2 0.2 112 112 6,8 6,8 0,5 0.5 142 142 7,4 7.4 1 1 273 273 6,8 6,8 5 5 260 260 7,9 7.9 10 10 143 143 6,3 6,3 20 20 55 55 5,1 5.1

Odvisnost izkoristka aktiviranja od koncentracije proteina pri reoksidaciji (razredčenje 1:20 - 1:500)Dependence of activation efficiency on protein concentration during reoxidation (dilution 1:20 - 1: 500)

Reoksidacija v 0,1 mol/1 Tris/HCl (pH 10,5) + 1 mmol/l EDTA + 0,5 mol/1 L-arginina + 1 mg/ml BSA +0,5 mmol/l GSH + 0,5 mmol/l GSSGReoxidation in 0.1 mol / 1 Tris / HCl (pH 10.5) + 1 mmol / l EDTA + 0.5 mol / 1 L-arginine + 1 mg / ml BSA +0.5 mmol / l GSH + 0, 5 mmol / l GSSG

Razredčenje Dilution Aktivnost (%) Activity (%) Stimulirnost (Faktor) Stimulation (Factor) 1:10 1:10 29 29 15,3 15.3 1:20 1:20 45 45 25,4 25,4 1:50 1:50 69 69 37,9 37,9 1:100 1: 100 100 100 37,9 37,9 1:200 1: 200 79 79 52,7 52,7 1:500 1: 500 29 29 28,7 28.7

Odvisnost izkoristka aktiviranja od dodatka BSADependence of activation yield on BSA supplementation

Reoksidacija v 0,1 mol/1 Tris/HCl (pH 10,5) + 1 mmol/1 EDTA + 0,5 mol L+ 0,5 mmol/1 GSH + 0,5 mmol/1 GSSGReoxidation in 0.1 mol / 1 Tris / HCl (pH 10.5) + 1 mmol / 1 EDTA + 0.5 mol L + 0.5 mmol / 1 GSH + 0.5 mmol / 1 GSSG

BSA BSA Aktivnost Activity (mg/ml) (mg / ml) (%) (%) 0 0 47 47 0,5 0.5 83 83 1 1 100 100 3 3 102 102 5 5 52 52

Sliki 1 in 2 kažeta aktivnost z in brez CNBr-FSP pri standardnem testu po 17 urah reoksidacije pri sobni temperaturi v 0,1 mol/1 Tris/HCl (pH = 10,5) + 1 mmol/1 EDTA + 0,5 mol/L-arginina + 1 mg/ml BSA + 0,5 mmol/1 GSH + 0,5 mmol/1 GSSG. Na sl. 1 in 2 kažejo krivulje (A) aktivnost v prisotnosti CNBr-FSP, krivulje (B) pa aktivnost brez CNBr-FSP.Figures 1 and 2 show activity with and without CNBr-FSP in a standard assay after 17 hours of reoxidation at room temperature in 0.1 mol / 1 Tris / HCl (pH = 10.5) + 1 mmol / 1 EDTA + 0.5 mol / L-arginine + 1 mg / ml BSA + 0.5 mmol / 1 GSH + 0.5 mmol / 1 GSSG. In FIG. 1 and 2 show curves (A) activity in the presence of CNBr-FSP, and curves (B) show activity without CNBr-FSP.

PRIMER 4EXAMPLE 4

Aktiviranje t-PA preko mešanih disulfidov t-PA in GSSGActivation of t-PA via mixed t-PA and GSSG disulfides

Uporabljene refractile bodies smo dobili po enem izmed prejšnjih primerov. RedukcijoThe refractile bodies used were obtained from one of the preceding examples. Reduction

- 23 refractile bodies smo izvedli po 2 urah inkubacije pri sobni temperaturi v 0,1 mol/1 Tris/HCl, pH 8,6, 1 mmol/1 EDTA, 6 mol/1 Gdn/HCl, 0,2 mol/1 DTE pri koncentraciji proteinov okoli 1 mg/ml.- 23 refractile bodies were performed after 2 hours of incubation at room temperature in 0.1 mol / 1 Tris / HCl, pH 8.6, 1 mmol / 1 EDTA, 6 mol / 1 Gdn / HCl, 0.2 mol / 1 DTE at a protein concentration of about 1 mg / ml.

Reducirani protein, dializiran proti 0,01 mol/1 HCl, smo razredčili v razmerju 1:1 z 0,1 mol/1 Tris, pH 9,3, mol/1 sečnine in 0,2 mol/1 GSSG ter inkubirali 5 ur pri sobni temperaturi.The reduced protein dialyzed against 0.01 mol / 1 HCl was diluted 1: 1 with 0.1 mol / 1 Tris, pH 9.3, mol / 1 urea and 0.2 mol / 1 GSSG and incubated for 5 hours at room temperature.

Po nakisanju s koncentrirano HCl na pH 3 je sledila dializa proti 0,1 mol/1 HCl pri 4 °C. Po dializi je znašala celokupna koncentracija proteinov 0,33 mg/ml. S tako pripravljenim t-PASSG smo določili optimalne reaktivirne pogoje.Acidification with concentrated HCl at pH 3 was followed by dialysis against 0.1 mol / l HCl at 4 ° C. Following dialysis, the total protein concentration was 0.33 mg / ml. With t-PASSG prepared in this way, optimal reactivation conditions were determined.

a) pH-optimum aktiviranja t-PASSGa) pH-optimum activation of t-PASSG

V tem primeru kot tudi v naslednjih optimirnih poskusih pri (1) nismo uporabili GSSG in (2) smo določili aktiviranje po 17 urah inkubacije pri sobni temperaturi. Aktiviranje je poteklo z 1:100 razredčino v 0,1 mol/1 Tris, mmol/1 EDTA, 0,5 mol/1 L-arginina, 1 mg/ml BSA in 2 mmola/1 GSH pri variaciji vrednosti pH.In this case, as well as in the following optimization experiments, (1) GSSG was not used and (2) activation was determined after 17 hours of incubation at room temperature. Activation expired with a 1: 100 dilution in 0.1 mol / 1 Tris, mmol / 1 EDTA, 0.5 mol / 1 L-arginine, 1 mg / ml BSA and 2 mmol / 1 GSH at variation in pH.

pH pH Dobitek (%) Yield (%) Stimulirnost Stimulation 6 6 0,04 0.04 3,3 3.3 6,5 6.5 0,37 0.37 9,5 9.5 7 7 1,35 1.35 11,4 11.4 7,5 7.5 5,66 5.66 7,1 7.1 8 8 7,32 7.32 8,2 8.2 8,5 8.5 8,65 8.65 7,0 7.0 9 9 8,59 8.59 8,7 8.7 9,5 9.5 8,32 8,32 11,7 11.7 10 10 6,15 6.15 12,5 12.5 10,5 10.5 3,07 3.07 11,2 11.2

Dobitek smo določili v odtotkih aktivnega t-PA z ozirom na uporabljeno količino proteina.The yield was determined in percentages of active t-PA based on the amount of protein used.

b) Reproducirnost rezultatov aktiviranja od t-PASSG Pri identičnih aktivirnih pogojih opazimo pri različnih merjenih vrstah različne dobitke, ki so med drugim pogojeni z nihanjem standardnega t-PA. Za pojasnilo te širine napak smo vse aktivirne podatke po 1:100 oz. 1:200 razredčini zbrali v 0,1 mol/1 Tris/HCl, pH 8,5, mraol/1 EDTA, 0,5 mol/1 L-arginina, 1 mg/ml BSA in mmol/1 GSH.b) Reproducibility of activation results from t-PASSG Under identical activation conditions different gains are observed for different measured species, which are conditioned, among other things, by the fluctuation of standard t-PA. To explain this error width, we have all the activation data at 1: 100 oz. 1: 200 dilutions were collected in 0.1 mol / 1 Tris / HCl, pH 8.5, mraol / 1 EDTA, 0.5 mol / 1 L-arginine, 1 mg / ml BSA and mmol / 1 GSH.

Poskus Try it Dobitek Profit (%) (%) Stimulirnost Stimulation 1 1 8,65 8.65 7,0 7.0 2 2 4,47 4,47 9,3 9.3 3 3 4,49 4,49 9,7 9.7 4 4 8,50 8.50 6,5 6.5 5 5 3,45 3.45 17,2 17.2 6 6 4,32 4.32 8,3 8.3 7 7 3,29 3.29 14,0 14,0 8 8 3,54 3.54 13,4 13,4 9 9 5,07 5.07 16,4 16.4 Srednja vrednost Medium value 5,1 +/- 5.1 +/- 1,9 1.9 11,3 +/- 3,8 11.3 +/- 3.8

c) Stabilnost aktiviranega proteinac) Stability of activated protein

Aktiviranje je poteklo v navedenih primerih z 1:200 razredčino v 0,1 mol/1 Tris/HCl, 1 mmol/1 EDTA,Activation expired in the above cases with a 1: 200 dilution in 0.1 mol / 1 Tris / HCl, 1 mmol / 1 EDTA,

0,5 mol/1 L-arginina, 1 mg/ml BSA in 2 mmol/1 GSH.0.5 mol / 1 L-arginine, 1 mg / ml BSA and 2 mmol / 1 GSH.

PRIMER 5EXAMPLE 5

Aktiviranje gentehnološko pripravljenega interferona-^.Activation of a genetically engineered interferon- ^.

Refractile bodies smo proizvedli po zgornjih metodah. Redukcijo/solubiliziranje refractile bodies smo izvedli kot sledi: pelet smo inkubirali za 3 ure pri 25 °C v 10 ml 9,1 mol Tris/HCl, pH 8,6, 6 mol/1 Gdn/HCl, mmol/1 EDTA in 0,2 mol/1 DTE ter po 3θ minutah centrifugiranja pri 4 °C in 48000 g uravnali pH vrhnjega sloja (supernatanta) na okoli 3 s koncentrirano HCI. Zatem smo izvedli gelno filtracijo preko Sephadex G 25 F v 0,01 mol/1Refractile bodies were manufactured using the above methods. The reduction / solubilization of the refractile bodies was performed as follows: the pellet was incubated for 3 hours at 25 ° C in 10 ml of 9.1 mol Tris / HCl, pH 8.6, 6 mol / 1 Gdn / HCl, mmol / 1 EDTA and 0 , 2 mol / 1 DTE, and after 3θ minutes of centrifugation at 4 ° C and 48000 g, the pH of the top layer (supernatant) was adjusted to about 3 with concentrated HCl. Subsequently, gel filtration was performed via Sephadex G 25 F in 0.01 mol / l

HCI.HCI.

Eluat smo kontrolirali s pomočjo transmisije (280 nm) na prevodnost, koncentracijo proteinov in reaktivirnost.The eluate was controlled by transmission (280 nm) for conductivity, protein concentration and reactivity.

Standardno aktiviranje (100 %) smo izvedli v 0,1 mol/1 Tris/HCl, pH 10,5, 1 mmol/1 EDTA, 5 mmol/1 GSH, 0,5 mmol/1 GSSG in 0,25 mol/1 L-arginina.Standard activation (100%) was performed in 0.1 mol / 1 Tris / HCl, pH 10.5, 1 mmol / 1 EDTA, 5 mmol / 1 GSH, 0.5 mmol / 1 GSSG and 0.25 mol / 1 L-arginine.

a) Ca sovna odvisnost od aktiviranjaa) Dependence on activation

Eluat smo razredčili 1:50 v 0,1 mol/1 Tris/HCl, pH 8,5,.1.mmol/1 EDTA, 5 mmol/1 GSH, 0,5 mmol/1 GSSG in 0,25 mol/1 L-arginina.The eluate was diluted 1:50 in 0.1 mol / 1 Tris / HCl, pH 8.5, .1.mol / 1 EDTA, 5 mmol / 1 GSH, 0.5 mmol / 1 GSSG and 0.25 mol / 1 L-arginine.

Aktivirni čas (h)Activation time (h)

AktivnostActivity

0°C16 ° C

b) Odvisnost aktivirnega dobitka od dodatka L-arginina Eluat smo razredčili 1:50 z 0,1 mol/1 Tris/HCl, pH 8,5, 1 mmol/1 EDTA, 5 ramol/1 GSH, 0,5 mmol/1 GSSG ter 20 ur aktivirali pri 0 °C.b) The dependence of the activation gain on the addition of L-arginine Eluate was diluted 1:50 with 0.1 mol / 1 Tris / HCl, pH 8.5, 1 mmol / 1 EDTA, 5 ramol / 1 GSH, 0.5 mmol / 1 GSSG and activated at 0 ° C for 20 hours.

Odvisnost aktiviranja od L-argininaActivation dependence on L-arginine

L-arginin (M) Aktivnost (%)L-arginine (M) Activity (%)

88

0,25 80.25 8

0,5 150.5 15

0,75 150.75 15

c) Odvisnost dobitka aktiviranja od dodatka sečninec) Dependence of activation gain on urea supplementation

Aktivirna raztopina je ustrezala oni pri točki b), vendar pa smo aktivirali 17 ur pri 0°C.The activation solution corresponded to that of point b), but was activated for 17 hours at 0 ° C.

Odvisnost aktiviranja od sečnineActivation dependence on urea

Sečnina (M) Aktivnost (%)Urea (M) Activity (%)

0 0 13 13 0,5 0.5 100 100 1 1 200 200 1 »5 1 »5 100 100

d) Odvisnost dobitka aktiviranja od dodatka formamida Aktiviranje kot pri b); vzorce smo kontrolirali po 17 urah aktiviranja pri 0 °C.d) Dependence of activation gain on formamide supplementation Activation as in b); the samples were monitored after 17 hours of activation at 0 ° C.

Odvisnost aktiviranja od formamidaFormamide activation dependence

Formamid (M)Formamide (M)

AktivnostActivity

e) Odvisnost dobitka aktiviranja od redoks pufrae) Dependence of activation gain on redox buffer

Eluat smo razredčili 1:50 v 0,1 M Tris/HCl, pH 8,5 mM EDTA in 0,25 M L-arginina ter vzorce kontrolirali po 17 urah aktiviranja pri 0 °C.The eluate was diluted 1:50 in 0.1 M Tris / HCl, pH 8.5 mM EDTA and 0.25 M L-arginine, and samples were controlled after 17 hours of activation at 0 ° C.

Odvisnost aktiviranja od GSH/GSSGActivation dependence on GSH / GSSG

GSH (mM) GSSG (mM) Aktivnost (%)GSH (mM) GSSG (mM) Activity (%)

0,5 60.5 6

0,5 130.5 13

0,5 250.5 25

0,5 250.5 25

0,1 130.1 13

0,5 130.5 13

1,0 131.0 13

5 65 6

- 28 f) Odvisnost dobitka aktiviranja od koncentracije proteinov Eluat smo razredčili 1:10 do 1:100 v 0,1 M Tris/HCl, pH 8,5 1 mM EDTA, 5 mM GSH, 0,5 mM GSSG in 0,25 M L-arginina ter kontorlirali po 17 urah aktiviranja pri 0 °C. cp-odvisnost aktiviranja cp (mg/ml) Aktivnost (%)- 28 f) Dependence of activation gain on Eluate protein concentration was diluted 1:10 to 1: 100 in 0.1 M Tris / HCl, pH 8.5 1 mM EDTA, 5 mM GSH, 0.5 mM GSSG and 0.25 M L-arginine and counterbalanced after 17 hours of activation at 0 ° C. cp-activation-dependent cp (mg / ml) Activity (%)

0,018 130.018 13

0,036 130,036 13

0,072 130,072 13

0,108 80.108 8

0,180 100.180 10

g) Odvisnost dobitka aktiviranja od dodatka BSAg) Dependence of activation gain on BSA supplementation

Eluat smo razredčili 1:50 v 0,1 M Tris/HCl, pH 8,5, 1 mM EDTA, 5 mM GSH, 0,5 mM GSSG in 0,25 M L-arginina ter kontrolirali po 17 urah aktiviranja pri 0 °C.The eluate was diluted 1:50 in 0.1 M Tris / HCl, pH 8.5, 1 mM EDTA, 5 mM GSH, 0.5 mM GSSG and 0.25 M L-arginine and controlled after 17 hours of activation at 0 ° C.

BSA-odvisnost aktiviranjaBSA-dependent activation

BSA (mg/ml) Aktivnost (%)BSA (mg / ml) Activity (%)

1313

1313

2525

1313

- 29 h) Odvisnost dobitka aktiviranja od pH- 29 h) Dependence of activation gain on pH

Eluat smo razredčili 1:50 v 0,1 M Tris/HCl, mM EDTA, 5 mM GSH, 0,5 mM GSSG in 0,25 M L-arginina ter kontrolirali po 17 urah aktiviranja pri 0 °C.The eluate was diluted 1:50 in 0.1 M Tris / HCl, mM EDTA, 5 mM GSH, 0.5 mM GSSG and 0.25 M L-arginine and controlled after 17 hours of activation at 0 ° C.

pH-odvisnost aktiviranja pH Aktivnost (%)pH-dependent activation of pH Activity (%)

6,5 6.5 0 0 7,5 7.5 6 6 8,5 8.5 13 13 9,5 9.5 50 50 10,5 10.5 100 100

Claims (23)

1. Postopek za aktiviranje gentehnološko pripravljenih heterolognih, eukariontskih proteinov, ki vsebujejo disulfidne mostove, po ekspresiji v prokariontih s celičnim razklopom, solubiliziranjem ob denaturirnih in reducirnih pogojih ter aktiviranjem ob oksidirnih pogojih v prisotnosti GSH/GSSG, označen s tera, da pri stopnji aktiviranja delomo s pH vrednostjo 9 do 12, koncentracijo GSH 0,1 do 20 mmol/1, koncentracijo GSSG 0,01 do 3 mmol/1 ter ne-denaturirno koncentracijo denaturirnega sredstva.1. A method for activating gene-technologically prepared heterologous, eukaryotic proteins containing disulfide bridges after expression in prokaryotes by cell digestion, solubilizing under denaturing and reducing conditions, and activating under oxidizing conditions in the presence of GSH / GSSG, labeled with GSH / GSSG partly with a pH of 9 to 12, a GSH concentration of 0.1 to 20 mmol / l, a GSSG concentration of 0.01 to 3 mmol / l and a non-denaturing concentration of the denaturing agent. 2. Postopek po zahtevku 1, označen s tem, da v stopnji aktiviranja znaša pH vrednost 9,5 do 11.Method according to claim 1, characterized in that at the activation stage the pH is 9.5 to 11. 3. Postopek po enem izmed zahtevkov 1 in 2, označen s tem, da v stopnji aktiviranja znaša koncentracija GSH 0,2 do 10 mmol/1 in/ali koncentracija GSSG 0,05 do 1 mmol/1.Method according to one of Claims 1 and 2, characterized in that in the activation stage the GSH concentration is 0.2 to 10 mmol / l and / or the GSSG concentration is 0.05 to 1 mmol / l. 4. Postopek po enem izmed zgornjih zahtevkov, označen s tem, da po solubiliziranju in pred aktiviranjem izvedemo stopnjo čiščenja.Method according to one of the above claims, characterized in that a purification step is carried out after solubilization and before activation. 5. Postopek po enem izmed zahtevkov 1 do 3, označen s tem, da izvedemo aktiviranje brez predhodnega odločenja denaturirno/redukcijskega sredstva, pri čemer reakcijsko raztopino po denaturiranju/redukciji razredčimo z aktivirnim pufrom ter pri naslednjem aktiviranju koncentracija GSSG prekorači preostalo rezidualno koncentracijo DTE.Method according to one of Claims 1 to 3, characterized in that activation is carried out without prior determination of the denaturing / reducing agent, diluting the reaction solution after denaturing / reduction with activating buffer and exceeding the residual residual DTE concentration on subsequent activation. 6. Varianta postopka za aktiviranje gentehnološko pripravljenih, heterolognih, eukariontskih proteinov, ki kažejo disulfidne mostove, po ekspresiji v prokariontih s celičnim razklopom, solubiliziranjem pri denaturirnih in reducirnih pogojih, ter aktiviranjem pri oksidirnih pogojih v prisotnosti GSH, označen s tem, da redukcijsko/ denaturirno sredstvo odločimo, z dodatkom GSSG pri denaturirnih pogojih prevedemo tiolne skupine proteinov v mešane disulfide proteina in glutationa, pri stopnji aktiviranja delamo pri pH vrednosti 7 do 10,5 in koncentraciji GSH 0,5 do 5 mmol/1 ter pri ne-denaturirni koncentraciji denaturirnega sredstva.6. Process variant for the activation of genetically engineered, heterologous, eukaryotic proteins exhibiting disulfide bridges after expression in prokaryotes with cellular digestion, solubilization under denaturing and reducing conditions, and activation under oxidizing conditions in the presence of GSH, characterized in that denaturing agent is decided, with the addition of GSSG under denaturing conditions, the thiol groups of proteins are converted into mixed disulfides of protein and glutathione, at the activation rate we operate at pH values of 7 to 10.5 and a GSH concentration of 0.5 to 5 mmol / l and at a non-denaturing concentration denaturing agent. 7. Postopek po enem izmed zahtevkov 1 do 6, označen s tem, da izvedemo ekspresijo v E. coli ali p. putida.A method according to any one of claims 1 to 6, characterized in that expression is carried out in E. coli or p. putida. 8. Postopek po enem izmed zahtevkov 1 do 7, označen s tem, da v stopnji aktiviranja uporabimo kot denaturirno sredstvo arginin, gvanidin hidroklorid in/ali vsaj eno spojino s splošno formulo R^CO-NRR^ (I), v kateri R in R1 pomenita vodik ali alkil z 1 do 4 atomi ogljika, R2 pa vodik ali NHR1 ali alkil z 1 do 3 atomi ogljika.Process according to one of Claims 1 to 7, characterized in that, in the activation step, arginine, guanidine hydrochloride and / or at least one compound of the general formula R ^CO-NRR ^ (I) is used as denaturing agent, in which R and R 1 is hydrogen or alkyl of 1 to 4 carbon atoms, and R 2 is hydrogen or NHR 1 or alkyl of 1 to 3 carbon atoms. 9. Postopek po zahtevku 8, označen s tem, da znaša koncentracija arginina in/ali gvanidinhidroklorida 0,1 do 1,0 mol/1, zlasti 0,25 do 0,8 mol/1.A process according to claim 8, characterized in that the concentration of arginine and / or guanidine hydrochloride is 0.1 to 1.0 mol / l, in particular 0.25 to 0.8 mol / l. 3232 10. Postopek po zahtevku 8, označen s tem, da znaša koncentracija spojine s splošno formulo I 0,5 do 4 mol/1, zlasti 1 do 3,5 mol/1.A process according to claim 8, characterized in that the concentration of the compound of general formula I is 0.5 to 4 mol / l, in particular 1 to 3.5 mol / l. 11. Postopek po enem izmed prejšnjih zahtevkov, označen s tem, da delamo pri stopnji aktiviranja v prisotnosti neproteolitično učinkovitega proteina, zlasti v prisotnosti albumina iz govejega seruma.Method according to one of the preceding claims, characterized in that we operate at the rate of activation in the presence of a non-proteolytically effective protein, in particular in the presence of bovine serum albumin. 12. Postopek po enem izmed prejšnjih zahtevkov, označen s tem, da izvedemo celični razklop s pomočjo ultra zvoka, visokotlačne disperzije ali lizocima.Method according to one of the preceding claims, characterized in that the cell digestion is performed by means of ultra-sound, high-pressure dispersion or lysozyme. 13· Postopek po zahtevku 12, označen s tem, da izvedemo razklop v razredčeni vodni pufrski raztopini, zlasti v 0,1 mol/1 Tris, pri nevtralni do šibko kisli pH vrednosti.13 The method of claim 12, characterized in that it is digested in dilute aqueous buffer solution, in particular in 0.1 mol / l Tris, at a neutral to slightly acidic pH. 14. Postopek po enem izmed prejšnjih zahtevkov, označen s tem, da po celičnem razklopu odločimo netopne sestavine.Process according to one of the preceding claims, characterized in that insoluble constituents are selected after cell digestion. 15. Postopek po enem izmed prejšnjih zahtevkov, označen s tem, da pri stopnji solubiliziranja delamo pri alkalni pH vrednosti v prisotnosti redukcijskega sredstva iz merkapto skupine ter v prisotnosti denaturirnega sredstva.Process according to one of the preceding claims, characterized in that, at the solubilization step, it is operated at an alkaline pH in the presence of a reducing agent from the mercapto group and in the presence of a denaturing agent. 16. Postopek po zahtevku 15, označen s tem, da delamo v prisotnosti gvanidinhidroklorida in/ali spojine s splošno formulo I kot denaturirnega sredstva.A process according to claim 15, characterized in that it is acted in the presence of guanidine hydrochloride and / or a compound of general formula I as a denaturing agent. - 33- 33 17. Postopek po zahtevku 16, označen s tem, da znaša koncentracija gvanidinhidroklorida 6 mol/1, koncentracija spojine s splošno formulo I pa 8 mol/1.Process according to claim 16, characterized in that the guanidine hydrochloride concentration is 6 mol / l and the concentration of the compound of general formula I is 8 mol / l. 18. Postopek po enem izmed zahtevkov 15 do 17, označen s tem, da delamo v prisotnosti DTE, /J-merkaptoetanola ali GSH.Process according to one of Claims 15 to 17, characterized in that it operates in the presence of DTE, N-mercaptoethanol or GSH. 19. Postopek po enem izmed prejšnjih zahtevkov, označen s tem, da izvedemo čiščenje in odločenje redukcijskih, oksidacijskih ali denaturirnih sredstev s pomočjo sterične izločevalne kromatografije ali dialize.Method according to one of the preceding claims, characterized in that the purification and decontamination of reducing, oxidizing or denaturing agents is carried out by steric separation chromatography or dialysis. 20. Postopek po enem izmed prejšnjih zahtevkov, označen s tem, da po stopnji aktiviranja izvedemo čistilno stopnjo s pomočjo dialize.Method according to one of the preceding claims, characterized in that after the activation step, a cleaning step is carried out by dialysis. 21. Postopek po enem izmed zahtevkov 1 do 20, označen s tem, da kot gentehnološko pripravljen eukariontski protein uporabimo t-PA.Process according to one of Claims 1 to 20, characterized in that t-PA is used as a genetically engineered eukaryotic protein. 22. Postopek po enem izmed zahtevkov 1 do 20, označen s tem, da kot gentehnološko pripravljen eukariontski protein uporabimo inteferon-/^ .Method according to one of Claims 1 to 20, characterized in that the interferon - / - is used as a genetically engineered eukaryotic protein. 23. Postopek po zahtevku 6, označen s tem, da odločimo mešani disulfid proteina in glutationa z ionsko izmenjalno obdelavo od nemodificiranega proteina.Process according to claim 6, characterized in that the mixed disulfide of protein and glutathione is removed by ion-exchange treatment from unmodified protein.
SI8611796A 1985-10-23 1986-10-21 Method for activating gentechnological prepared of heterolog,eukaryotic proteins, which contain disulphide's bridges, after their expression in the procaryotes. SI8611796B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853537708 DE3537708A1 (en) 1985-10-23 1985-10-23 METHOD FOR ACTIVATING T-PA AFTER EXPRESSION IN PROKARYONTS
YU179686A YU47185B (en) 1985-10-23 1986-10-21 PROCEDURE FOR THE ACTIVATION OF HETEROLOGICAL EUKARIOTIC PROTEINS PREPARED BY GEN-TECHNOLOGY HAVING DISULFID BRIDES OF POLSE EXPRESSION IN PROKARIOTS

Publications (2)

Publication Number Publication Date
SI8611796A true SI8611796A (en) 1996-10-31
SI8611796B SI8611796B (en) 1998-06-30

Family

ID=6284269

Family Applications (1)

Application Number Title Priority Date Filing Date
SI8611796A SI8611796B (en) 1985-10-23 1986-10-21 Method for activating gentechnological prepared of heterolog,eukaryotic proteins, which contain disulphide's bridges, after their expression in the procaryotes.

Country Status (26)

Country Link
EP (3) EP0393725B1 (en)
JP (2) JPH0728745B2 (en)
KR (1) KR900009139B1 (en)
AT (2) ATE131489T1 (en)
AU (2) AU590029B2 (en)
CA (1) CA1329157C (en)
CZ (1) CZ280727B6 (en)
DD (1) DD260517A5 (en)
DE (3) DE3537708A1 (en)
DK (2) DK175091B1 (en)
ES (2) ES2061434T3 (en)
FI (2) FI94050C (en)
GR (2) GR920300062T1 (en)
HK (2) HK153596A (en)
HR (1) HRP921075B1 (en)
HU (2) HUT43643A (en)
IE (1) IE62634B1 (en)
IL (1) IL80325A (en)
PT (1) PT83609B (en)
SI (1) SI8611796B (en)
SK (1) SK278317B6 (en)
SU (1) SU1607689A3 (en)
UA (1) UA6023A1 (en)
WO (1) WO1987002673A2 (en)
YU (1) YU47185B (en)
ZA (1) ZA868012B (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766205A (en) * 1985-11-13 1988-08-23 Beatrice Companies, Inc. Method for isolation of recombinant polypeptides in biologically active forms
JP2581668B2 (en) * 1985-11-27 1997-02-12 三井東圧化学株式会社 Novel DNA sequence encoding human tissue plasminogen activator derived from normal human cells and vectors and cells containing the same
US4777043A (en) * 1985-12-17 1988-10-11 Genentech, Inc. Stabilized human tissue plasminogen activator compositions
AU621051B2 (en) * 1987-04-28 1992-03-05 Amgen, Inc. Method for purifying granulocyte-macrophage colony stimulating factor
DE3722082A1 (en) * 1987-07-03 1989-01-12 Behringwerke Ag METHOD FOR DETERMINING THE ACTIVITY OF SERINE PROTEASES OR SERINE PROTEASE INHIBITORS
CA1340586C (en) * 1988-09-23 1999-06-08 Cetus Corporation Process for recovering microbially produced interferon-beta
DE3832898A1 (en) * 1988-09-28 1990-04-12 Boehringer Mannheim Gmbh PRAEPARATE OF EXPRESSED PLASMINOGEN ACTIVATOR IN PROKARYONS
DE3835350A1 (en) * 1988-10-17 1990-04-19 Boehringer Mannheim Gmbh ACTIVATION OF GENETICALLY MANUFACTURED ANTIBODY EXPRESSED IN PROKARYONS
DE3903581A1 (en) * 1989-02-07 1990-08-16 Boehringer Mannheim Gmbh FABRIC PLASMINOGEN ACTIVATOR DERIVATIVE
DE3942143A1 (en) * 1989-12-20 1991-06-27 Boehringer Mannheim Gmbh T-PA PRO STABILIZATION
ATE154073T1 (en) * 1990-08-20 1997-06-15 Novo Nordisk As PROCESS FOR PRODUCING BIOLOGICALLY ACTIVE IGF-1 BY USING AMINO-TERMINAL EXTENDED IGF-1
ES2119779T3 (en) * 1990-09-05 1998-10-16 Southern Cross Biotech Pty Ltd SOLUBILIZATION OF PROTEINS IN ACTIVE FORMS.
DE4037196A1 (en) * 1990-11-22 1992-05-27 Boehringer Mannheim Gmbh METHOD FOR REACTIVATING DENATURED PROTEIN
DE4113750A1 (en) 1991-04-26 1992-10-29 Boehringer Mannheim Gmbh IMPROVEMENT OF RENATURATION IN THE SECRETION OF DISULFID-BRIDGED PROTEINS
DE4139000A1 (en) * 1991-11-27 1993-06-03 Boehringer Mannheim Gmbh METHOD OF GENERATING BIOLOGICALLY ACTIVE SS-NGF
US5212091A (en) * 1992-03-02 1993-05-18 Monsanto Company Method of producing tissue factor pathway inhibitor
EP0586667A1 (en) * 1992-03-24 1994-03-16 Synergen, Inc. Refolding and purification of insulin-like growth factor i
ES2097426T3 (en) 1992-12-02 1997-04-01 Hoechst Ag PROCEDURE FOR OBTAINING PROINSULIN WITH CORRECTLY UNITED CYSTINE BRIDGES.
DE4405179A1 (en) * 1994-02-18 1995-08-24 Hoechst Ag Method of obtaining insulin with correctly connected cystine bridges
FR2729972B1 (en) * 1995-01-31 1997-04-18 Sanofi Sa PROCESS FOR THE EXTRACTION OF PERIPLASMIC PROTEINS FROM PROKARYOTIC MICROORGANISMS IN THE PRESENCE OF ARGININ
US5714371A (en) * 1995-05-12 1998-02-03 Schering Corporation Method for refolding insoluble aggregates of hepatitis C virus protease
US5728804A (en) * 1995-06-02 1998-03-17 Research Corporation Technologies, Inc. Use of cyclodextrins for protein renaturation
DE59711375D1 (en) * 1996-06-11 2004-04-08 Roche Diagnostics Gmbh METHOD FOR ACTIVATING DENATURED PROTEIN
US7153943B2 (en) 1997-07-14 2006-12-26 Bolder Biotechnology, Inc. Derivatives of growth hormone and related proteins, and methods of use thereof
US6653098B1 (en) * 1998-02-23 2003-11-25 G. D. Searle & Co. Method of producing mouse and human endostatin
DE19850429A1 (en) * 1998-10-27 2000-05-04 Andre Schrattenholz Fragments
EP1048732A1 (en) 1999-04-26 2000-11-02 F. Hoffmann-La Roche Ag Process for producing natural folded and secreted proteins
EP1077263A1 (en) * 1999-07-29 2001-02-21 F.Hoffmann-La Roche Ag Process for producing natural folded and secreted proteins by co-secretion of chaperones
ES2290142T3 (en) 2000-05-16 2008-02-16 Bolder Biotechnology, Inc. METHODS FOR REPLEGATION OF PROTEINS CONTAINING FREE CISTEINE RESIDUES.
DE10105911A1 (en) 2001-02-09 2002-08-14 Roche Diagnostics Gmbh Expression of the recombinant proteinase K from Tritirachium album in yeast
DE10105912A1 (en) * 2001-02-09 2002-08-14 Roche Diagnostics Gmbh Recombinant Proteinase K
DE102005033250A1 (en) 2005-07-15 2007-01-18 Bioceuticals Arzneimittel Ag Process for purifying G-CSF
DE202006020194U1 (en) 2006-03-01 2007-12-06 Bioceuticals Arzneimittel Ag G-CSF liquid formulation
SG162834A1 (en) 2006-07-14 2010-07-29 Genentech Inc Refolding of recombinant proteins
US8617531B2 (en) 2006-12-14 2013-12-31 Bolder Biotechnology, Inc. Methods of making proteins and peptides containing a single free cysteine
CA2789615A1 (en) 2010-03-17 2011-09-22 Biogenerix Gmbh Method for obtaining biologically active recombinant human g-csf
JP2013540157A (en) * 2010-10-20 2013-10-31 メディミューン,エルエルシー Method for treating inclusion bodies
HUP1200171A1 (en) 2012-03-19 2013-09-30 Richter Gedeon Nyrt Methods for the production of polypeptides
HUP1200172A2 (en) 2012-03-19 2013-10-28 Richter Gedeon Nyrt Methods for refolding g-csf from inclusion bodies
CN103852527B (en) * 2012-12-05 2015-05-13 中国科学院大连化学物理研究所 High-flux protein sample pre-treatment device
US10457716B2 (en) 2014-08-06 2019-10-29 University Of Notre Dame Du Lac Protein folding and methods of using same
JP2020504748A (en) 2016-12-30 2020-02-13 バイオジェンド セラピューティクス カンパニー リミテッド Recombinant polypeptides, compositions and methods thereof
AU2021399935A1 (en) 2020-12-18 2023-06-29 Richter Gedeon Nyrt. Methods for the purification of refolded fc-peptide fusion protein

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135481A (en) * 1974-09-18 1976-03-25 Fujiwa Kako Kk KOJUNDOHITOROKINAAZE NO SEIHO
US4468633A (en) 1982-04-28 1984-08-28 The Bendix Corporation Adjustable microwave power combiner for a plurality of coaxially mounted impatt diodes
IL68561A (en) 1982-05-05 1991-01-31 Genentech Inc Preparation of polypeptide with human tissue plasminogen activator function,processes for making it,and dna and transformed cell intermediates thereof
US4432895A (en) * 1982-11-24 1984-02-21 Hoffmann-La Roche Inc. Monomeric interferons
GR79124B (en) 1982-12-22 1984-10-02 Genentech Inc
JPH06102034B2 (en) * 1983-03-25 1994-12-14 セルテク リミテツド Protein production method
JPS6051119A (en) * 1983-08-30 1985-03-22 Green Cross Corp:The Dried pharmaceutical preparation of urokinase
US4530787A (en) * 1984-03-28 1985-07-23 Cetus Corporation Controlled oxidation of microbially produced cysteine-containing proteins
US4748234A (en) * 1985-06-26 1988-05-31 Cetus Corporation Process for recovering refractile bodies containing heterologous proteins from microbial hosts
US4766205A (en) * 1985-11-13 1988-08-23 Beatrice Companies, Inc. Method for isolation of recombinant polypeptides in biologically active forms
FR2596360B1 (en) * 1986-04-01 1989-02-17 Sotralentz Sa CONTAINER ON PALLET WITH FOLDED AND REINFORCED MESH PROTECTION DEVICE
JPH0651119A (en) * 1992-07-28 1994-02-25 Sekisui Chem Co Ltd Production of phase difference plate

Also Published As

Publication number Publication date
SK278317B6 (en) 1996-10-02
ES2020498T3 (en) 1996-04-01
DK200001897A (en) 2000-12-18
IL80325A0 (en) 1987-01-30
EP0393725A1 (en) 1990-10-24
PT83609A (en) 1986-11-01
PT83609B (en) 1988-10-14
CZ752686A3 (en) 1996-01-17
DE3537708C2 (en) 1993-07-08
KR870700601A (en) 1987-12-30
EP0393725B1 (en) 1995-12-13
WO1987002673A2 (en) 1987-05-07
HUT43643A (en) 1987-11-30
EP0253823A1 (en) 1988-01-27
ES2020498A4 (en) 1991-08-16
JPH04218387A (en) 1992-08-07
SK752686A3 (en) 1996-10-01
DE3650449D1 (en) 1996-01-25
FI94050C (en) 1995-07-10
ZA868012B (en) 1987-06-24
JPH0824594B2 (en) 1996-03-13
EP0219874B1 (en) 1993-12-15
WO1987002673A3 (en) 1987-10-22
DK320387A (en) 1987-06-23
DK175091B1 (en) 2004-05-24
DD260517A5 (en) 1988-09-28
FI872753A0 (en) 1987-06-22
ES2061434T3 (en) 1994-12-16
SU1607689A3 (en) 1990-11-15
YU47185B (en) 1995-01-31
DK320387D0 (en) 1987-06-23
ATE98648T1 (en) 1994-01-15
AU590029B2 (en) 1989-10-26
JPH0728745B2 (en) 1995-04-05
JPS62502895A (en) 1987-11-19
IE862683L (en) 1987-04-23
IL80325A (en) 1992-06-21
HU204855B (en) 1992-02-28
EP0219874A2 (en) 1987-04-29
UA6023A1 (en) 1994-12-29
HRP921075A2 (en) 1995-06-30
AU607083B2 (en) 1991-02-21
CZ280727B6 (en) 1996-04-17
FI95578B (en) 1995-11-15
FI95578C (en) 1996-02-26
HRP921075B1 (en) 1999-02-28
SI8611796B (en) 1998-06-30
FI872753A (en) 1987-06-22
CA1329157C (en) 1994-05-03
FI933868A (en) 1993-09-03
DE3689404D1 (en) 1994-01-27
FI94050B (en) 1995-03-31
DE3537708A1 (en) 1987-04-23
HK153496A (en) 1996-08-16
YU179686A (en) 1988-06-30
GR3018410T3 (en) 1996-03-31
HK153596A (en) 1996-08-16
DK175109B1 (en) 2004-06-07
GR920300062T1 (en) 1992-08-31
KR900009139B1 (en) 1990-12-22
FI933868A0 (en) 1993-09-03
IE62634B1 (en) 1995-02-22
ATE131489T1 (en) 1995-12-15
EP0219874A3 (en) 1988-02-10
AU4132189A (en) 1990-01-04
AU6599386A (en) 1987-05-19

Similar Documents

Publication Publication Date Title
SI8611796A (en) Method for activating gentechnological prepared of heterolog,eukaryotic proteins, which contain disulphide's bridges, after their expression in the procaryotes.
US5453363A (en) Process for the activation of t-PA or Ing after genetic expression in prokaryotes
Hillson et al. Formation and isomerization of disulfide bonds in proteins: protein disulfide-isomerase
EP0364926B1 (en) Activation of recombinant antibodies expressed in prokaryotes
Danielsen et al. A neutral endopeptidase in the microvillar membrane of pig intestine. Partial purification and properties.
Sierecka Purification and partial characterization of a neutral protease from a virulent strain of Bacillus cereus
Terada et al. Study on human erythrocyte thioltransferase: comparative characterization with bovine enzyme and its physiological role under oxidative stress
Mookhtiar et al. Purification to homogeneity of latent and active 58-kilodalton forms of human neutrophil collagenase
Gan et al. Preparation of homogeneous pig liver thioltransferase by a thiol: disulfide mediated pI shift
Guiard et al. More similarity between bakers' yeast l-(+)-lactate dehydrogenase and liver microsomal cytochrome b 5
Zolfaghari et al. A high-molecular-mass neutral endopeptidase-24.5 from human lung
CZ280848B6 (en) Activation method of heterologous proteins obtained by genetic technology and containing disulfide bridges of eukaryotic origin after expression in prokaryotic organisms
JP5830524B2 (en) Method for producing folded prethrombin or a derivative thereof
US4390629A (en) Polypeptide degrading enzymes
JP2004057064A (en) Method for preventing degradation of nucleic acid, method for extracting nucleic acid, and method for storing nucleic acid
KR20010017096A (en) Human Serum Albumin with Increased Antioxidation Activity and Process for Preparing the Same
Bergström et al. Large-scale production of intermediate-purity, soluble human plasminogen
Kregar et al. Extracellular proteinases of Claviceps purpurea. Isolation and characterization of an aspartic proteinase

Legal Events

Date Code Title Description
IF Valid on the event date