DE69530386T2 - VERFAHREN ZUM STERILISIEREN MITTELS -g(g)-STRAHLUNG UND EINES SAUERSTOFF-ABSORBERS, SOWIE NACH DIESEM VERFAHREN STERILISIERTER BEHÄLTER UND MEDIZINISCHE ARTIKEL - Google Patents
VERFAHREN ZUM STERILISIEREN MITTELS -g(g)-STRAHLUNG UND EINES SAUERSTOFF-ABSORBERS, SOWIE NACH DIESEM VERFAHREN STERILISIERTER BEHÄLTER UND MEDIZINISCHE ARTIKELInfo
- Publication number
- DE69530386T2 DE69530386T2 DE69530386T DE69530386T DE69530386T2 DE 69530386 T2 DE69530386 T2 DE 69530386T2 DE 69530386 T DE69530386 T DE 69530386T DE 69530386 T DE69530386 T DE 69530386T DE 69530386 T2 DE69530386 T2 DE 69530386T2
- Authority
- DE
- Germany
- Prior art keywords
- oxygen
- radiation
- article
- medical
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000001301 oxygen Substances 0.000 title claims abstract description 64
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 64
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000001954 sterilising effect Effects 0.000 title claims abstract description 29
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 25
- 230000005855 radiation Effects 0.000 title claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 53
- 230000008569 process Effects 0.000 claims abstract description 21
- 238000002360 preparation method Methods 0.000 claims abstract description 4
- -1 polypropylene Polymers 0.000 claims description 54
- 239000004743 Polypropylene Substances 0.000 claims description 32
- 229920001155 polypropylene Polymers 0.000 claims description 26
- 239000004698 Polyethylene Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 238000004806 packaging method and process Methods 0.000 claims description 10
- 229920000573 polyethylene Polymers 0.000 claims description 9
- 239000012298 atmosphere Substances 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 238000007911 parenteral administration Methods 0.000 claims description 6
- 150000001413 amino acids Chemical class 0.000 claims description 4
- 229940127554 medical product Drugs 0.000 claims description 4
- 238000011049 filling Methods 0.000 claims description 3
- 239000002960 lipid emulsion Substances 0.000 claims description 3
- 238000002425 crystallisation Methods 0.000 claims description 2
- 230000008025 crystallization Effects 0.000 claims description 2
- 239000011888 foil Substances 0.000 claims description 2
- 238000004659 sterilization and disinfection Methods 0.000 abstract description 17
- 239000007789 gas Substances 0.000 abstract description 4
- 229920000642 polymer Polymers 0.000 description 25
- 239000002861 polymer material Substances 0.000 description 21
- 150000003254 radicals Chemical class 0.000 description 21
- 229920002633 Kraton (polymer) Polymers 0.000 description 18
- 239000000047 product Substances 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 230000000694 effects Effects 0.000 description 13
- 238000003860 storage Methods 0.000 description 12
- 239000002250 absorbent Substances 0.000 description 11
- 230000002745 absorbent Effects 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 239000000654 additive Substances 0.000 description 9
- 238000004132 cross linking Methods 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 238000006731 degradation reaction Methods 0.000 description 7
- 229920001971 elastomer Polymers 0.000 description 7
- 238000010504 bond cleavage reaction Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000005060 rubber Substances 0.000 description 6
- 230000007017 scission Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000002411 thermogravimetry Methods 0.000 description 6
- 238000012668 chain scission Methods 0.000 description 5
- 238000000113 differential scanning calorimetry Methods 0.000 description 5
- 235000013305 food Nutrition 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 229940123973 Oxygen scavenger Drugs 0.000 description 4
- 101100311330 Schizosaccharomyces pombe (strain 972 / ATCC 24843) uap56 gene Proteins 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 101150018444 sub2 gene Proteins 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 239000007857 degradation product Substances 0.000 description 3
- 230000005281 excited state Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 150000002432 hydroperoxides Chemical class 0.000 description 3
- 238000011179 visual inspection Methods 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 description 2
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 2
- 230000005251 gamma ray Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-M hydroperoxide group Chemical group [O-]O MHAJPDPJQMAIIY-UHFFFAOYSA-M 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910021506 iron(II) hydroxide Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000000191 radiation effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- GUTLYIVDDKVIGB-OUBTZVSYSA-N Cobalt-60 Chemical compound [60Co] GUTLYIVDDKVIGB-OUBTZVSYSA-N 0.000 description 1
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 230000002292 Radical scavenging effect Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000032912 absorption of UV light Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000004388 gamma ray sterilization Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- FLTRNWIFKITPIO-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe] FLTRNWIFKITPIO-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000005511 kinetic theory Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000008155 medical solution Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229920006173 natural rubber latex Polymers 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920003251 poly(α-methylstyrene) Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000001256 steam distillation Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000000904 thermoluminescence Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/08—Radiation
- A61L2/081—Gamma radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B55/00—Preserving, protecting or purifying packages or package contents in association with packaging
- B65B55/02—Sterilising, e.g. of complete packages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/20—Targets to be treated
- A61L2202/24—Medical instruments, e.g. endoscopes, catheters, sharps
Landscapes
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Polyesters Or Polycarbonates (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
- Vorliegende Erfindung richtet sich auf ein neues Verfahren zum Sterilisieren eines aus Polymermaterialien, umfassend Polypropylen und/oder Polyethylen, hergestellten Gegenstandes durch Bestrahlungssterilisierung. Der Gegenstand ist in einer gasundurchlässigen Verpackung zusammen mit einem Sauerstoffabsorber für eine Zeit eingeschlossen, die ausreicht, um im Wesentlichen sämtlichen Sauerstoff in der Verpackung und den im Polymermaterial gelösten Sauerstoff zu verbrauchen. Der Gegenstand ist vorzugsweise für eine medizinische Verwendung bestimmt und kann ein durch Bestrahlung sterilisierbares, parenteral zu verabreichendes Präparat enthalten.
- Das Sterilisieren medizinischer Artikel aus Polymermaterialien kann durch eine Anzahl von Verfahren durchgeführt werden, wie z. B. die Wasserdampfsterilisation (Behandlung im Autoklaven), die Bestrahlungssterilisation (Elektronenstrahl (EP), β- und γ-Strahlen), die Sterilisation mit Ethylenoxid (EtO) und wässerigem Formaldehyd. Jedes Verfahren hat seine speziellen Vorteile und Nachteile und wird bezüglich der chemischen Struktur des Polymermaterials ausgewählt. Wenn das Material als Verpackungsmaterial verwendet wird, hängt die Auswahl auch von den Eigenschaften der eingeschlossenen Güter ab.
- Ein technisches Problem, das eine besonders sorgfältige Erwägung erfordert, ist das sterile Verpacken und Lagern parenteral verabreichbarer Flüssigkeiten, die sowohl gegenüber atmosphärischem Sauerstoff während der Lagerung empfindlich sind, als auch mit vielen Polymermaterialien und deren Additiven unverträglich sind.
- Bei bekannten Herstellungsverfahren bringen die härtesten Verfahren das Füllen eines Beutels mit der medizinischen Flüssigkeit in Gegenwart eines Inertgases, das Verschließen des Beutels und sein Unterwerfen einer Dampfsterilisation mit sich, wonach er, noch in Sauerstofffreier Atmosphäre, mit einem Sauerstoffabsorber in eine äußere, Sauerstoff-undurchlässige Umhüllung gebracht wird. Ein derartiges Verfahren, wie z. B. das im U.S.-Patent 4.998.400 beschriebene, ist jedoch sowohl arbeitsintensiv als auch Resourcen aufbrauchend.
- Bislang wurden Sauerstoffabsorber erfolgreich für die Verpackung im sauerstoff-empfindlichen Flüssigkeiten wie Aminosäurelösungen und Fettemulsionen erfolgreich verwendet. Die Absorber wurden zwischen einem inneren medizinischen Behälter aus einem gasdurchlässigen Polymermaterial, gefüllt mit der medizinischen Lösung, und einer äußeren, diesen einschließenden Folie aus einem gas- undurchlässigen Material angeordnet. Derartige Verpackungen sind z. B. in den Europäischen Patentanmeldungen EP-A-0 093 796 und EP-A-0 510 687 offenbart.
- Die Sterilisierung durch Bestrahlen ist ein erwünschtes Alternativverfahren zur Wärmesterilisation, da sie ein einfacheres und weniger kostspieliges Verfahren ist. Sie ist jedoch ein Verfahren, das sorgfältig in Erwägung gezogen werden muss, aufgrund der chemischen und physikalischen Veränderungen, die im Polymermaterial in Gegenwart von atmosphärischen Sauerstoff bewirkt werden können.
- EP-B-0 218 003 offenbart eine durch Bestrahlen sterilisierte medizinische Vorrichtung, eingeschlossen in einem gasdurchlässigen Beutel, welcher mit γ- Strahlen bestrahlt und sodann in ein gasundurchlässiges Umhüllungselement zusammen mit einem Entoxidierungsmittel gebracht wird. Sowohl restlicher Sauerstoff als auch Ozon, das von den γ-Strahlen herrührt, wird hierbei absorbiert und, weil der Eintritt von Sauerstoff aus der äußeren Umgebung fast vollständig verhindert wird, wird innerhalb der Umhüllung eine sauerstofffreie Bedingung erhalten. Der Zweck des in EP 0 218 003 offenbarten Verfahrens ist in erster Linie, den mit Ozon verbundenen "γ"-Geruch zu verhindern. Die Britische Patentschrift 1.230.950 beschreibt ein ähnliches Verfahren der Sterilisation von Material, das zusammen mit einem Sauerstoffabfänger verpackt ist, mit γ-Strahlen.
- Die Sterilisierungsverfahren gemäß diesen Patentschriften können jedoch zur Bildung unerwünschter und möglicherweise nachteiliger Abbauprodukte führen, die ihren Ursprung in freien Radikalen des Polymermaterials und den geringen Mengen aufgelösten Sauerstoffs, der im Polymermaterial während der γ-Bestrahlung zurückbleibt, haben. Die Aktivität der hoch reaktive freie Radikale enthaltenden Moleküle kann zu einem gewissen Ausmaß die ursprüngliche Polymerstruktur des Materials durch Bindungsspaltung und Makroradikalbildung durchdringen, wodurch das Material verfärbt wird oder seine mechanischen Eigenschaften verändert. In der Theorie kann ein geschichtetes Polymermaterial mit angeklebten oder eingebauten Sauerstoffabfängern, wie in den Japanischen Patentanmeldungen JP 61104974 und JP 63152570 offenbart mindestens teilweise die Probleme von Sekundärwirkungen, die von aufgelöstem restlichen Sauerstoff im Material herrühren, [lösen]. In der Praxis bewirkt die γ-Strahlung ein örtliches Überhitzen im Material, das zu einer thermischen Oxidation führt, welche die Sauerstoffabfänger zerstört.
- Es wurde eine große industrielle Anstrengung der Erforschung nichtverfärbender Bestrahlungssysteme gewidmet, insbesondere aus Polypropylen hergestellter medizinischer Vorrichtungen. Die chemisch aggressiven Radikale oder Produkte derselben können auch in Behältern aus bestrahlten Polymeren gelagerte medizinische Flüssigkeiten beschädigen. Dies neigt dazu, besonders nachteilig zu sein, wenn die Flüssigkeiten aus empfindlichen Aminosäurelösungen und/oder Lipidemulsionen mit einem Gehalt an mehrfach ungesättigten Fettsäuren bestehen, die über einen beträchtlichen Zeitraum hinweg gelagert werden sollen.
- Die verschiedenen Verfahren zum Stabilisieren von Polymeren gegenüber solchen Primär- und Sekundärvorgängen, die in Materialien auftreten, welche einer Strahlung hoher Energie ausgesetzt sind, umfassen das Abfangen von Elektronen und Ionen, Energieübertragungsverfahren ein Abfangen von Radikalen und die Beschleunigung des Radikalzerfalls. Solche Methoden sind normalerweise kostspielig und führen nicht immer Verfahren und Verbindungen ein, welche mit empfindlichen medizinischen Produkten verträglich sind. Es gibt eine sehr beschränkte Kenntnis, wie diese Verbindungen empfindliche Flüssigkeiten während des Lagerns stören können. Überdies gibt es auf dem Arzneimittelgebiet einen allgemeinen Wunsch medizinischer Autoritäten, dass Additive in irgend einer Form von Produkten auf dem Markt ausgeschlossen werden. Daneben wurden lediglich wenige Additive in der Praxis gefunden, die in einem Polymeren durch eine gegebene γ-Strahlendosis erzeugte Anzahl von Radikalen zu verringern. Die meisten dieser Additive sind für den Gebrauch unakzeptierbar, insbesondere für medizinische Artikel, und zwar aufgrund ihrer intensiven Gelbverfärbung. Einige derselben können möglicherweise den Abbau nach der γ-Bestrahlung beschleunigen. Ein anderer Versuch wurde unternommen, um ein Additiv zu verwenden, nicht, um die Radikalbildung zu verhindern, sondern stattdessen den (hoffentlich harmlosen) Zerfall dieser Radikale zu beschleunigen. Es wurde klar gezeigt, dass dieses Konzept der Radikal-Mobilisierung den Radikalzerfall beschleunigt und die Langzeit-Stabilität im Falle von Polypropylen zu verbessern. Es wurde nachgewiesen, dass der Zerfall von Makroradikalen, gebildet bei der Bestrahlung von Polypropen unter Vakuum durch PE-Wachse, ataktisches Polypropen und Kohlenwasserstoff in der Reihenfolge ansteigender Wirksamkeit beschleunigt wird. Keines dieser Additive verhindert jedoch die Ionen-Elektronen- Reaktionen oder deaktiviert angeregte Zustände, wenn sie während der Bestrahlung gebildet werden.
- Eine wichtige Notwendigkeit für eine medizinische Anlage, die mit γ-Strahlen zu sterilisieren ist, ist die im Wesentlichen vollständige Abwesenheit einer Verunreinigung. Dies schließt wirksam alle farbbildenden Antioxidationsmittel wie Phenole (gelbbraune Produkte) oder aromatische Amine (rotbraune Produkte) aus den medizinischen Kunststoffgegenständen aus; vgl. D. J. Carlsson u. a. in Radiation Effects on Polymers, Herausg. R. L. Clough u. a., ACS Symposium, Reihe 475, 1991.
- Sterisch gehinderte Amine, wie z. B. diejenigen auf Basis von 2,2,6,6- Tetramethylpiperidin, arbeiten als Antioxidationsmittel bei Umgebungstemperaturen in licht-Stabilisierungsverpackungen. Ferner sind diese und ihre Produkte farblos oder nur sehr schwach absorbierend. Zuvor wurde gezeigt, dass diese aliphatischen Amine als Stabilisatoren gegenüber einer Oxidation nach der γ-Bestrahlung von Polyolefinen funktionieren, ein Phänomen, das auf Seite 433 im Kapitel 26 "Stabilization of polyolefines to Gamma Irradiation" in der zuvor genannten Monographie von D. J. Carlsson u. a. erklärt wird.
- Das bestrahlte Polyolefin bildet infolge der Bildung freier Radikale unter anderen Verbindungen Hydroperoxide, welche sich unter der Bildung von sogar mehreren freien Radikalen zersetzen können. Hochwirksame Stabilisatorkombinationen können möglicherweise die Oxidation bis zu dem Punkt unterdrücken, wo atypische Hydroperoxidprodukte vorherrschen. Eine Oxdation nach dem Bestrahlen ist weitgehend von der Initiierung durch die langsame thermische Zersetzung der Hydroperoxide abhängig. Die Hydroperoxidzersetzung durch ein Additiv, wie z. B. sterisch gehinderte Amine, verhindern auch diesen oxidativen Abbau. Jedoch werden bei medizinischen Anwendungen alle derartigen Additive in der Regel vermieden, da sie dazu neigen, die Gegenstände zu verfärben und aus dem Material wandern können und somit ein Toxizitätsrisiko einführen.
- Folgende Beschreibung, gegeben, um die Primär- und Sekundärvorgänge, welche in Polymeren während und nach der Bestrahlungssterilisation stattfinden, zu verdeutlichen, basiert auf den Lehren von D. J. Carlsson u. a. in »Radiation Effets on Polymers", Herausg. L. Clough u. a., ACS Symposium Reihe 475, 1991. Diese Monographie wird durch Bezugnahme in vorliegende Beschreibung einbezogen.
- Das bei der Bestrahlung von Polymeren auftretende primäre Bestrahlungsverfahren kann eine Anzahl verschiedener Reaktionen hervorbringen, wie z. B. eine Vernetzung, eine Aufspaltung des Rückgrats des Polymeren und Wasserstoffentwicklung. Verschiedene chemische Produkte können aus dem Auftreten der komplexen Kaskade von Vorgängen resultieren, wie z. B. die nachfolgenden Reaktionen (1) bis (6), welche für eine γ-Bestrahlung typisch sind.
- Bei Raumtemperatur verläuft die Ionen-Elektronen-Rekombination schnell genug, um hoch angeregte Zustände (P*) und Kationen zu ergeben. Bei niederen Temperaturen (< -100ºC) können ausgestoßene Ionen in der Polymermatrix eingefangen werden. Die angeregten Zustände verbreiten einen Teil ihrer überschüssigen Energie durch Bindungsspaltung unter Bildung freier Radikale. Die Spaltung von C-H-Bindungen ist über die Spaltung des C-C-Rückgrats begünstigt.
- Sekundärreaktionen treten bei bestrahlten Polymeren auf, wenn die in den Reaktionen (5) und (6), oben, gebildeten Radikale zur Bildung chemischer Produkte führen, üblicherweise verbunden mit Bestrahlungswirkungen.
- Die Kombination von Macroalkylradikalen oder ihre Addition an ungesättigten Stellen führt zur Kettenverzweigung und/oder Vernetzung. Wasserstoffatome sondern sich hauptsächlich von der Polymerkette ab, um zu molekularem Wasserstoff und frischen Makroalkylradikalen zu führen [Reaktion (7)]:
- Bei manchen Polymeren ist die Hauptkettenspaltung von einer Monomerausscheidung gefolgt. Eine Makroradikalkombination führt zu einer Vernetzungsbildung [Reaktion (8)]:
- Die Ungesättigtheit ist ein Hauptprodukt von bestrahlten Polyolefinen, und es wird angenommen, das sie aus einer Migration von Radikalstellen durch einen inter- und intramolekularen Wasserstoffatomtransfer herrührt, bis zwei Stellen zusammenkommen. Ungesättigte Produkte mit konjugierten Doppelbindungen, die sich aus der Bestrahlung ergeben, können ein unerwünschtes verfärbtes Aussehen haben.
- In Abwesenheit von Sauerstoff ist das Nettoergebnis der Bestrahlung das zusammengesetzte Ergebnis der Reaktionen (5) bis (9), so dass ein vernetztes Gel oder ein Molekulargewichtsabbau bewirkt wird. Das Verhalten von in Abwesenheit von Sauerstoff bestrahlten verschiedenen Polymeren kann in diejenigen verallgemeinert werden, welche während der Bestrahlung vernetzen; (Polyethylen, Poly(methylacrylat), Poly(acrylsäure), Polystyrol) und diejenigen, welche abgebaut werden [Poly(methylmethacrylat), Poly(methacrylsäure), Poly(α-methylstyrol), Poly(buten-2)]. Polypropen geht sowohl eine Spaltung als auch Vernetzung ein. Eine Vernetzung erhöht die Steifheit von Kunststoffen und kann sie unausdehnbar machen. Es wurde gezeigt, dass Poly(olefinsulfone) außerordentlich empfindlich gegenüber einer Bestrahlung mit γ- oder Elektronenstrahlen sind und als Photolacke kurzer Wellenlänge benutzt werden können. Eine Kettenspaltung führt auch zur Versprödung, jedoch ist im Vergleich zur oxidativen Kettenspaltung die Wirkung einer direkten, durch Bestrahlung bewirkten Spaltung bei Gebrauchspolymeren normalerweise geringer.
- Aufgrund seiner biradikalen Natur reagiert 02 bei nahezu Aufprallfrequenz mit Radikalen mit Kohlenstoff im Zentrum unter Bildung von Peroxyradikalen gemäß Umsetzung (10). Ein verhältnismäßig langsamer Wasserstoffentzug aus der Polymermatrix durch die Peroxyradikale, Reaktion (11), vervollständigt einen Zyklus von Reaktionen, welche die fortschreitende Oxidation des Polymeren bewirken.
- Das erste molekulare Produkt, die Hydroperoxidgruppe, ist thermisch instabil und spaltet sich leicht an der Bindung O-O, um ein Paar von Radikalen zu geben, und führt so zu einer Verzweigung, einer thermischen Oxidation während der Lagerung nach der Bestrahlung. Diese Wirkung ist von Hauptinteresse beim Sterilisieren medizinischer Ausrüstungen, Implantate usw. durch γ-Strahlen.
- Der Verlust physikalischer Eigenschaften bei vielen Polymeren mit einem Gehalt an aliphatischen Rückgrat-Substituenten resultiert aus der β-Spaltung von Alkoxiradikalen, Reaktion (12). Die Alkoxyradikale werden durch Hydroperoxidzersetzung gebildet. Sie werden auch in der komplizierten Selbstumsetzung von Peroxyradikalen, welche die Radikale beenden können, gebildet. Es wurde gezeigt, dass die Bruchdehnung merklich empfindlicher gegenüber einem Abbau als die Zugfestigkeit ist.
- Die Bestrahlungsempfindlichkeit von Polymermaterialien wird in der Regel durch Verunreinigungen, Additive, die Dosisrate, Probendicke und Morphologie beeinflusst. Beispielsweise ist die hoch ausgerichtete, Ketten verlängerte Morphologie in hoch gereckten PE-Fasern viel resistenter gegenüber γ-Strahlen als die übliche, aus der Schmelze abgeschreckte semikristalline Morphologie. Dies ergibt sich sowohl aus einer beschränkten O&sub2;-Diffusion als auch Wirkungen auf die Radikalzerfallsraten. Es ist infolgedessen kompliziert, die ausgeprägte Wirkung der Dosisrate vorauszusagen.
- Hauptziel vorliegender Erfindung ist die Verringerung der Sekundärprozesse, die im Polymermaterial während und nach den sterilisierenden Dosierungen von γ- Strahlung infolge der Anwesenheit von Sauerstoff auftreten. Von speziellem Vorteil ist, in der Lage zu sein, die Verfärbung und die physikalischen Veränderungen und den Abbau von Polymermaterialien zu eliminieren, welche häufig nach der Anwendung herkömmlicher Sterilisationsverfahren auftreten.
- Ein Zweck vorliegender Erfindung ist auch, eine sichere und reproduzierbare Sterilisation von empfindlichen medizinischen Objekten zu erhalten, ohne von kostspieligen Verfahren wie dem Evakuieren von Luft und Einführen von Inertgasen und die Dampfdestillation abhängig zu sein.
- Die Erfindung betrifft ein Verfahren zum Sterilisieren eines ein Polymermaterial umfassenden Gegenstands mittels Bestrahlung, wobei das Polymermaterial in einer gasundurchlässigen Verpackung zusammen mit einem Sauerstoffabsorber mit einer Wasserzufuhr während einer Zeit eingeschlossen ist, welche ausreicht, um im Wesentlichen allen Sauerstoff in der Verpackung und auch den in der Matrix des Polymermaterials gelösten Sauerstoffs zu verbrauchen. Die Verpackung und ihr Inhalt werden sodann einer sterilisierenden Dosis γ-Strahlung unterzogen. Beim Verfahren ist der Gegenstand vorzugsweise zum medizinischen Gebrauch, jedoch ist auch die Sterilisation anderer empfindlicher Instrumente und/oder elektronischer Artikel denkbar, wenn sie mit der γ-Bestrahlung verträglich sind.
- Bei einem speziellen Verfahren ist der zu sterilisierende Gegenstand ein Behälter aus einem Polymermaterial, gefüllt mit einem durch Strahlung sterilisierbaren Produkt, wobei sowohl der Behälter als auch sein Inhalt dem Verfahren unterzogen werden. Das Produkt ist vorzugsweise ein parenteral verabreichbares medizinisches Präparat, es ist aber auch möglich, andere Produkte wie Lebensmittel auf diese Weise zu sterilisieren.
- Ein wichtiger Teil vorliegender Erfindung ist die Verwendung eines Wasser enthaltenden Sauerstoffabsorptionsmittels zur Entfernung von im Wesentlichen sämtlichen in der Matrix eines Polymergegenstands, der der Sterilisation durch γ- Strahlung zu unterziehen ist. Ein geeignetes Sauerstoffabsorptionsmittel, das im Folgenden in größeren Einzelheiten beschrieben ist, ist ein solches auf Basis von Eisenoxid und enthält Kristallwasser, jedoch sind auch andere Desoxidationsmittel denkbar.
- Auch bilden ein aus Polymermaterial hergestellter, durch γ-Strahlen sterilisierter medizinischer Artikel und ein aus einem Polymermaterial hergestellter, durch γ-Strahlen sterilisierter Behälter, der ein durch Bestrahlung sterilisierbares medizinisches Produkt enthält, das für parenterale Verabreichung beabsichtigt ist, wobei beide durch das erwähnte Verfahren hergestellt werden, Teile vorliegender Erfindung.
- Zur erfolgreichen Durchführung der erfindungsgemäßen Sterilisation ist es wichtig, das sich das Polymermaterial oder der hieraus hergestellte gefüllte Behälter einen geeigneten, zuvor festgelegten Zeitraum in einer gasdurchlässigen Umhüllung oder Verpackung zusammen mit dem Sauerstoffabfänger bzw. -absorptionsmittel befindet, um im Wesentlichen den gesamten Sauerstoff, sogar die in der Polymermatrix des Gegenstands gelösten Sauerstoffmoleküle, zu verbrauchen. Ein geeigneter Lagerungszeitraum des Gegenstands aus Polymermaterial zusammen mit dem Sauerstoffabsorptionsmittel ist von mindestens etwa 48 Stunden bis mehrere Wochen. Eine Anzahl von Faktoren beeinflussen die Länge des Lagerungszeitraums, unter denen der wichtigste Faktor die chemische Natur des Polymeren und seine Affinität zu den Sauerstoffmolekülen, die Kapazität des Sauerstoffabsorptionssmittels, die Anzahl (oder Menge) Absorptionsmittel sowie das von der gasundurchlässigen Verpackung eingeschlossene Volumen. Jedoch muss es betrachtet werden, dass innerhalb des Konzepts vorliegende Erfindung zu liegt, diesen Zeitraum zu optimieren, und der Fachmann wird keine Schwierigkeiten haben, geeignete Lagerungsbedingungen herauszufinden. Typische Sauerstoffabsorptionsmittel, welche bei vorliegender Erfindung brauchbar sind, haben eine Absorptionskapazität von 10-15 ml Sauerstoff/Stunde. Mit dem Wissen über den Anfängssauerstoffgehalt der eingeschlossenen Atmosphäre, der kinetischen Daten des Absorptionsmittels und der speziellen Sauerstoffaffinität des Polymermaterials kann für jedes System eine Abschätzung des Lagerungszeitraums vorgenommen werden, um im Wesentlichen sauerstofffreie Bedingungen zu erhalten. Es muss auch in Erwägung gezogen werden, dass es innerhalb des erfinderischen Konzepts liegt, geeignete Beziehungen zwischen Lagerungszeit, Eigenschaften und Menge des Polymermaterials und der Menge und Verteilung des in der Gas- undurchlässigen Verpackung vorhandenen Sauerstoffabsorptionsmittels herauszufinden. Geeignete Lagerungszeiten, um im Wesentlichen sauerstofffreie Bedingungen auch innerhalb der Matrix des Polymermaterials zu erhalten, schwanken zwischen etwa 48 Stunden und mehreren Wochen.
- Das Polymermaterial, welches Polypropylen und/oder Polyethylen umfasst, kann eine homogene Zusammensetzung oder verschiedene Gemische einschließlich mehrschichtiger Polymerfolienmaterialien sein. Zumindest ein Polymer sollte der Kategorie angehören, welche sekundär oxidiert und vernetzt werden kann, wie zuvor definiert.
- Die gasundurchlässige Verpackung enthält vorzugsweise eine Aluminiumschicht oder besteht aus einer Aluminiumfolie. Andere Beispiele für geeignete Materialien sind PVDC, EVOH; PVOH, plasmabeschichtete Mehrschichtstrukturen mit einem Gehalt an SiOx, Al&sub2;O&sub3; usw., bestimmte aromatische Polyamide (Nylons) wie z. B. MXD-6 und die Mehrschichtstrukturen in der internationalen Patentanmeldung PCT/SE94100138.
- Die gasundurchlässige Verpackung mit einem Gehalt an dem polymeren medizinischen Artikel oder dem polymeren Behälter, der mit einem Produkt zur parenteralen Verabreichung gefüllt ist, kann gegebenenfalls in einer sauerstoffarmen Atmosphäre in Gegenwart von Stickstoff oder einem anderen geeigneten Inertgas verschlossen werden. Ein wichtiger Vorteil vorliegender Erfindung ist die Möglichkeit, die gasundurchlässige Verpackung in Luft zu verschließen, ohne die Verwendung von Inertgasen, und dass sie in der Lage ist, eine vorteilhafte γ-Strahlen-Sterilisation ohne Nebenreaktionen zu erhalten.
- Der Behälter, der mit einem Produkt zur parenteralen Verabreichung gefüllt ist, ist vorzugsweise aus EVOH, Polypropen, Polyethylen, EVA, Excel® Nylon-11) oder anderen Polymermaterialien, welche teilweise gasdurchlässig sind, hergestellt. Das Füll- und Verschließverfahren der Behälter wird mit herkömmlichen aseptischen Verfahren durchgeführt und wird im Vorliegenden nicht weiter diskutiert.
- Die Erfindung ist auf einen breiten Bereich von Polymermaterialien und parenteral verabreichbaren Produkten anwendbar. Besonders bevorzugte Produkte sind solche, die für die parenterale Verabreichung beabsichtigt sind, die nach der Produktion gelagert werden müssen und die hohe Mengen von gegenüber Sauerstoff und/oder Wärme empfindlichen Aminosäuren, Proteinen oder Lipidemulsionen, umfassend empfindliche ungesättigte Fettsäuren, enthalten. Derartige Produkte können entweder in flüssiger Form oder als Trockenpulver in verschiedenen Kammern eines Behälters zusammen mit einem ebenfalls sterilisierten Lösungsmittel gelagert werden, die gerade vor Verabreichung zu einer parenteral verabreichbaren flüssigen Zusammensetzung rekonstituiert wurden.
- Ein geeigneter Sauerstoffabsorber ist in einem kleinen Beutel eingeschlossen und wird als Trockenmittel verwendet. Solche Sauerstoffabsorptionsmittel sind aus der Nahrungsmittelindustrie bekannt und sie werden in eine Lebensmittelverpackung eingebracht, um Sauerstoff zu entfernen und das Lebensmittel von einem Verderb infolge des anwesenden Sauerstoffs zu schützen. Das Lebensmittel behält seinen ursprünglichen Geschmack bei, da es kein Fäulniswachstum und kein Fortschreiten der Oxidation gibt. Es gibt grundsätzlich zwei Arten von Sauerstoffabsorptionsmitteln, diejenigen, welche die Anwesenheit von Wasser verlangen, und diejenigen, welche gebundenes Wasser (Kristallwasser) von Anfang an enthalten. Letzterer Typ wird vorzugsweise bei vorliegender Erfindung in Kombinationen mit einer gasundurchlässigen Umhüllung und einem Polymermaterial benutzt, das der γ- Strahlung ausgesetzt wird. Der erstere Typ kann benutzt werden, wenn Wasser zusammen mit dem Sauerstoffabsorptionsmittel zugeführt wird.
- Sauerstoffabsorptionsmittel, die aus Eisenpulver zusammengesetzt sind, werden gemäß vorliegender Erfindung besonders bevorzugt. Sie basieren auf der Tatsache, dass das Rosten von Eisen Sauerstoff erfordert. Der Oxidationsmechanismus ist zu kompliziert, um durch eine einzige Formel ausgedrückt zu werden, kann jedoch allgemein wie folgt ausgedrückt werden:
- Fe → FeO → Fe&sub3;O&sub4; → Fe&sub2;O&sub3;
- Fe → Fe²&spplus; + 2e&supmin;
- 1/2 O&sub2; + H&sub2;O + 2e&supmin; → 2OH&supmin;
- Fe²&spplus; + 2OH&supmin; → Fe(OH)&sub2;
- Fe(OH)&sub2; + 1/4 O&sub2; → 1/2 H&sub2;O → Fe(OH)&sub3;
- Die bei vorliegender Erfindung benutzten Dosen von γ-Strahlen sind von herkömmlicher Größenordnung mit einer Dosierungsrate von etwa 0,1 Mrad/Stunde und den Bestrahlungsdosen von 15-35 kGy.
- Im folgenden beispielgebenden Teil haben wir bestrahlte Materialien durch UV-, IR-Spektroskopie, Zugfestigkeit (Bruchdehnung) Differentiafabtastkalorimetrie (DSC), thermo gravimetrische Analyse (TGA), Chemiluminiszenz, visuelle Prüfung und gaschromatographische/massenspektroskopische Analyse von flüchtigen Nebenprodukten charakterisiert.
- Es ist aus den Beispielen 1.1 und 1.7 sowie Beispiel 2 offensichtlich, dass nach dem erfindungsgemäßen Verfahren sterilisierte Polymergegenstände ihre ursprünglichen physikalischen und mechanischen Eigenschaften zu einem hohen Grad beibehalten und eine verminderte Tendenz zeigen, möglicherweise toxische Nebenprodukte zu bilden.
- Folgender, beispielgebender Teil soll nicht den Umfang vorliegender Erfindung begrenzen, wie er durch die Patentansprüche beschrieben wird, sondern lediglich einige leicht reproduzierbare ausgewählte Tests veranschaulichen.
- Die untersuchte Verbindung ist ein Polypropylen/Kraton-Gemisch in Form eines 1 mm dicken Sattel-Öffnungssystems, eingestellt mit einer Einspritzöffnung aus Naturkautschuk (Latex). Der Handelsname des Polypropens ist "Fina Dypro Z- 7650, hergestellt von der Firma Fina, und der Handelsname des Kratons ist Kraton G-1652, hergestellt von Shell. Die beiden Materialien sind von Ferro kompoundiert. Ein von Mitsubishi hergestelltes Absorptionsmittel auf Eisenbasis "ZR-200" wird verwendet, wenn ein sauerstofffreies Material erhalten werden soll, während Stickstoff benutzt wird, wenn eine sauerstofffreie Atmosphäre erhalten werden soll.
- Fünf Polypropylen/Kraton-Sättel wurden mit einem undurchlässigen Aluminiumbeutel (15 · 20 mm) umhüllt, der mit einer Polyethylenschicht auf der Innenseite und einer Poly(ethylenterephthalat)-Schicht auf der Außenseite bedeckt war. Die Proben wurden in der Aluminiumumhüllung bei Umgebungstemperatur von 22ºC unter verschiedenen Atmosphären gelagert: Luft, Luft + 1 ZR-200, Stickstoff und Stickstoff + 1 ZR-200, und zwar 5 Tage vor der Bestrahlung. Der Sauerstoffrestgehalt in der Aluminiumumhüllung wurde mit einer Servomex- Sauerstoffanalysenvorrichtung vor der Bestrahlung kontrolliert.
- Die Bestrahlung mit γ-Strahlen wurde unter Verwendung des Isotops Kobalt 60 mit einer Dosierungsrate von 0,1 Mrad/Std. durchgeführt; die Bestrahlungsdosis war 35 kGy.
- Die bestrahlen Sättel wurden direkt nach dem Bestrahlen visuell geprüft. Der Grad der visuell feststellbaren Verfärbung des Polypropylens/Kraton-Materials und die visuell feststellbare Beschädigung der Kautschuk-Injektionsöffnung wurden bewertet. Als Bezugsprobe wurde ein unbestrahlter Polypropylen/Kraton-Sattel untersucht. Die Eigenschaften von Polymermaterialien werden durch Bestrahlen als Ergebnis der chemischen Veränderungen in den Polymermolekülen beeinflusst. Bei der visuellen Untersuchung wurde das PP/Kraton-Material unmittelbar nach Bestrahlung in Luft gelb, und die Kautschuk-Injektionsöffnung wurde beschädigt. Bei Verwendung eines Absorptionsmittels, ZR-200, trat diese Farbänderng des Materials nicht auf, und keine visuelle Beschädigung der Kautschuk-Injektionsöffnung wurde festgestellt.
- Die Ultraviolettabsorption des bestrahlten und unbestrahlten Polypropylen/Kraton-Gemischs wurde mit einem Shimadzu Spektrophotometer UV-265 analysiert. Ein rechteckiges (8 · 40 mm) Polypropylen/Kraton-Probestück mit einer Dicke von 1 mm wurde hierzu verwendet. Die Absorption von UV-Licht wurde in verschiedenen Atmosphären gemessen und sodann von der Absorption durch das unbestrahlte Material abgezogen. Aus Tabelle 1 ist ersichtlich, dass es eine ausgesprochene Wirkung auf die UV-Absorption des PP/Kraton-Materials nach γ- Bestrahlung in Gegenwart eines Sauerstoffabsorptionsmittels gibt. Dies zeigt, dass die im Material stattfindenen Primär- und Sekundärvorgänge durch den Ausschluss/Verbrauch von Sauerstoff unterdrückt werden. Tabelle 1 zeigt die UV- Lichtabsorption von Polypropylen/Kraton-Proben, bestrahlt in verschiedenen Atmosphären bei 35 kGy-γ-Bestrahlung, abgezogen von der Absorption durch die unbestrahlte Probe.
- Probe / Absorptionsvermögen bei 282 mm
- Luft 1,0
- Luft + ZR-200 0,26
- Stickstoff 0,34
- Stickstoff + ZR-200 0,16
- Die zuvor beschriebenen Proben des Polypropylen/Kraton-Materials wurden vor und nach Bestrahlung durch IR-Spektroskopie geprüft. Zur Identifizierung der Strukturveränderung auf der Oberfläche (Tiefe: 2 um) im Infrarotbereich (4.000-625 cm&supmin;¹) wurde ein 1.600 FTIR-Spektrophotometer der Fa. Perkin-Elmer benutzt.
- Die Verwendung eines äußeren Sauerstoff-Absorptionsmittels vor und während des Aussetzens einer Bestrahlung hoher Energie bewirkt die Unterdrückung der Bildung von Hydroperoxiden während des Kettenoxidationsverfahrens durch freie Radikale, das sich unmittelbar an das Aussetzen der Strahlung hoher Energie anschließt. Die Oxidation nach der γ-Bestrahlung äußert sich in den FTIR- Spektren, d. h. einer graduellen Erhöhung des Absorptionsvermögens bei etwa 3400 cm&supmin;¹, 1720 cm&supmin;¹ und 1200 cm&supmin;¹ während der nachfolgenden Lagerung von Polypropylen (1); diese wurden bei vorliegender Untersuchung nicht beobachtet. In der Tabelle 2 werden Daten für Proben unmittelbar nach Bestrahlung vorgestellt, und wie anhand der Peaks zu sehen ist, die der Carbonylgruppe (1750 cm&supmin;¹), Doppelbindungen (1650 cm&supmin;¹) und Kohlenstoff-Sauerstoff-Bindungen (1150 cm&supmin;¹) entsprechen, gibt es eine signifikante Verringerung bei Proben, welche in Anwesenheit eines Sauerstoffabsorptionsmittels bestrahlt wurden.
- Tabelle 2 zeigt FTIR-Peakhöhenindizes von Polypropylen/Kraton-Proben, unbestrahlt und bestrahlt in verschiedenen Atmosphären in einer Dosis von 35 kGy γ-Strahlen. Die Peakhöhen bei 1750, 1650 und 1150 cm&supmin;¹ sind alle mit der Peakhöhe bei 1460 cm&supmin;¹ verglichen. Tabelle 2
- Aus der kinetischen Theorie der Kautschukelastizität erhält man den Ausdruck E = δs/δe = 3pRT/Mc, welcher angibt, dass der Modul eines Kautschuks sich linear mit ansteigender Temperatur erhöhen sollte. Diese Wirkung kann durch Bestrahlen eines Materials, das normalerweise nicht als Kautschuk angesehen wird, wie z. B. eines Polyethylens hoher Dichte, und anschließende Beobachtung des Verhaltens des Moduls im Bereich oberhalb des Schmelzpunkts des unbestrahlten Materials gezeigt werden. Die Wirkung der Bestrahlung ist die Erzeugung von Vernetzungen ebenso wie die Verringerung der Kristallinität, und wenn die Vernetzungsdichte ausreichend hoch wird, werden die Ketten in ein flexibles dreidimensionales Netzwerk gebunden, und das Material zeigt ein Kautschukähnliches Verhalten oberhalb seiner Schmelztemperatur. Eine Bestrahlung hat auch eine Auswirkung auf die mechanischen Eigenschaften des Polyethylens unterhalb der Schmelztemperatur, und diese Veränderungen sind weitgehend ein Ergebnis des Kristallinitätsverlustes infolge der Bestrahlung.
- Dies zeigt sich z. B. im Abfall des Moduls im Raumtemperaturbereich und darunter. Offensichtlich bewirkt bei den sehr hohen Dosierungen die zusätzliche Versteifungswirkung eines ansteigenden Grads der Vernetzung zwischen den Ketten mehr als eine Kompensation der erhöhten Flexibilität infolge Verlusts der Kristallinität. Mechanische Daten für unbestrahlte und bestrahlte PP/Kraton- Materialien direkt nach Bestrahlung sind in Tabelle 3 enthalten.
- Tabelle 3 zeigt die Zugfestigkeit und Bruchdehnung der zuvor beschriebenen Proben. Das Zug-Dehnungs-Testen vor und nach Bestrahlung wurde bei 25ºC unter Verwendung rechtwinkliger Testtücke (10 · 55 mm) mit einer Dicke von 1 mm durchgeführt. Eine Universaltestvorrichtung, Modell Atwetron TCTS, wurde bei einer Zugstangenkopf-Geschwindigkeit von 500 mm/Min. verwendet. Tabelle 3
- Die Daten zeigen, dass das gegenseitig sich durchdringende Netzwerk zwischen PP und Kraton minimale Veränderungen der Zugfestigkeit und Bruchdehnung bei Bestrahlen in Gegenwart eines Sauerstoffabsorptionsmittel eingehen. Jedoch zeigen in Gegenwart von in luftbestrahlten Materilien keinen signifikanten Abbau und/oder keine signifikante Vernetzung. Dies könnte aufgrund der Kompensation von zwei Wirkungen sein. Bei aliphatischen Polymeren sind die kautschukartigen Polymeren am meisten bestrahlungsresistent, vermutlich weil viele Spaltungen auftreten müssen, um die Integrität des Gegenstands wesentlich zu verringern. Bei hoch kristallinen Polymeren ist lediglich eine verhältnismäßig geringe Anzahl von Spaltungen in den interkristallinen Bindemolekülen erforderlich, um die Zähigkeit des Materials drastisch zu beeinflussen. Weit Veränderungen der Zugeigenschaften von Polymeren sich aus durch Strahlung bewirkte Kettenspaltung oder Vernetzungsbildung ergeben, kann es möglich sein, sich Copolymere oder Blends von Polymeren sich vorzustellen, bei denen sich diese beiden Wirkungen kompensieren. Anstrengungen, diese Vorstellung zu belegen, waren nur teilweise mit Methylmethacrylat (PMMA geht bei Bestrahlung eine Kettenspaltung ein), das mit Styrol-Butadien-Kautschuken (SBR, Vernetzung bei Bestrahlung) copolymerisiert war. Nach Lagerung könnte man einen signfikanteren Unterschied zwischen den Proben in Tabelle 3 erwarten.
- Die Chemoluminiszenz ist ein Verfahren, während des Zerfalls von Hydroperoxiden abgegebene Photonen zu messen. Eine schnelle Chemoluminiszenzanalyse wurde mit einem von der Fa. Alnor Instruments AB erhältlichen Thermoluminiszenzdosimeter (TLD) untersucht. Mit dem TLD wurde die Anzahl von Photonen bestimmt, welche aus bestrahlten und unbestrahlten PolypropylenlKraton-Proben abgegeben werden. Die Chemoluminiszenzanalyse wurde unter Stickstoffatmosphäre bei 100ºC oder 130ºC 70 Sekunden durchgeführt.
- Tabelle 4 zeigt die Ergebnisse einer Chemoluminiszenz bei 100ºC, während Tabelle 5 diese bei 130ºC zeigt.
- Probe / Anzahl der Photonen
- Unbestrahlt 1,6·10&sup4;
- Luft 3,5·10&sup4;
- Luft + ZR 1,7·10&sup4;
- Stickstoff 3,1·10&sup4;
- Stickstoff+ZR 1,8·10&sup4;
- Unbestrahlte Probe / Anzahl der Photonen
- Gelagert ohne ZR 1,8·104
- Gelagert mit ZR 1,4·10&sup4;
- Wie aus Tabelle 4 ersichtlich ist, gibt es einen Abfall an Photonen aus den in Gegenwart eines Sauerstoffabsorptionsmittels bestrahlten Materialien und, wie in Tabelle 5 gezeigt ist, auch bei einer unbestrahlten Probe.
- Mit einem thermogravimetrischen Analysesystem, Metier TA 3000, bestehend aus einer Mikrowaage Mettler MT5 und einem durch einen TC 10A Prozessor gesteuerten Ofen, wurde der Massenverlust des Polypropylens/Kraton-Materials als Funktion der Zeit gemessen. Eine Probe von etwa 35 mg wurde von Ramtemperatur auf 600ºC mit einer Erwärmungsgeschwindigkeit von 5ºC/Min. erwärmt. Bestrahlte und unbestrahlte Proben wurden analysiert. Tabelle 6
- Die Ergebnisse der TG-Analyse, gezeigt als Einstelltemperatur und Neigung der Temperaturverringerung zeigen keinen signifikanten Unterschied zwischen den Proben.
- Ein Mettler TA 3000 System wurde mit einer Differentialabtastkalorimetrie- Messzelle DSC 30 und einem Prozessor TC 10A verwendet. Proben von etwa 20 mg wurden von -100ºC auf 300ºC bei einer Erwärmungsrate von 10ºC/Min. unter Stickstoffatmosphäre erwärmt. Es wurden bestrahlte und unbestrahlte Proben analysiert. Tabelle 7
- In Tabelle 7 sind die Ergebnisse der DSC-Analyse, der Schmelzpeak und der Wert ΔH des Polypropylenteils des Sattelmaterials gezeigt. Ein unbestrahlter Sattel und in verschiedenen Atmosphären bestrahlte Sättel, die aus Tabelle 7 zu ersehen sind, wurden analysiert. Wie aus Tabelle 7 ersichtlich ist, zeigte das in Luft bestrahlte Sattelmaterial einen Anstieg des Schmelzpunkts und einen Abfall des Werts ΔH des Polypropylenmaterials im Vergleich zum unbestrahlten Material und dem mit einem hinzugegebenen Sauerstoffabsorptionsmittel bestrahlte Material. Der Anstieg der Schmelztemperatur des Polypropylens im Vergleich zur unbestrahlten Probe wird durch die Vernetzung verursacht, während der Abfall des Wertes ΔH im Vergleich zur unbestrahlten Probe eine Verringerung der Kristallinität des Materials infolge Bildung von Vernetzung bei Bestrahlung in Luft anzeigt.
- Zur Identifizierung der flüchtigen, bei Bestrahlung mit γ-Strahlen von Sätteln aus »Excel" in verschiedenen Atmosphären wurden Proben durch Luftraum-GC-MS analysiert. Die Analysenvorrichtung bestand aus einem Gaschromatographen Modell Hewlett Packard 5890, der mit einem Massendetektor 5972 und einem Luftraum-Probesammler 7694 ausgestattet war. Die Proben wurden 60 Minuten auf 130ºC erwärmt, bevor sie in den Gaschromatographen übergeführt wurden. Als Säule bei der gaschromatographischen Auftrennung wurde eine Säule HP Ultra der Abmessung 2,50 m·0,32 mm benutzt. Das angewandte Temperaturprogramm war wie folgt: 60ºC 10 Min, 10ºC/Min. bis zu 230ºC; Einspritztemperatur 220ºC. Tabelle 8 Luftraum-GC-MS von mit 35 kGy γ-Strahlen bestrahlten Sättel aus "Excel"
- Die Ergebnisse der GC-MS-Analyse sind in der Tabelle 8 enthalten. Die Anzahl flüchtiger Abbauprodukte verringert sich, wenn das PP/Kraton-Material in Gegenwart eines Sauerstoffabsorptionsmittels bestrahlt wird, im Vergleich dazu, wenn das Material in Gegenwart von Luft bestrahlt wird. Die unbekannte Verbindung, die als Aubbauverbindung auftritt, stammt wahrscheinlich aus einem aromatischen Antioxidationsmittel des PP-Materials. Das in Gegenwart eines Sauerstoffabsorptionsmittels bestrahlte Material hat die gleichen Abbauverbindungen wie die unbestrahlte Probe, was von Hauptbedeutung ist.
- Der Test beweist, wie möglicherweise toxische Abbauprodukte wie Cyclohexen, Cyclohexanol und Cyclohexanon in den Proben abwesend sind, welche in Gegenwart eines Sauerstoffabsorptionsmittels bestrahlt wurden.
Claims (10)
1. Verfahren zur Sterilisation eines Artikels durch Strahlung, worin der Artikel aus
einem polymeren Material hergestellt ist, welches Polypropylen und/oder Polyethylen
umfasst, dadurch gekennzeichnet, dass das polymere Material in eine gasundurchlässige
Verpackung zusammen mit einem Sauerstoffabsorber, der Zugang zu einem
Wasservorrat hat, für mindestens 48 Stunden eingeschlossen wird und danach die
Verpackung und ihr Inhalt einer sterilisierenden Dosis γ-Strahlung unterworfen werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die gasundurchlässige
Verpackung eine Aluminiumfolie umfasst.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die
gasundurchlässige Verpackung in Luft versiegelt wird.
4. Verfahren gemäss mindestens einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass der Sauerstoffabsorber ein Eisenpulver ist, welches Kristallwasser
enthält.
5. Verfahren gemäss mindestens einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass der Artikel ein Artikel zur medizinischen Verwendung ist.
6. Verfahren gemäss mindestens einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass der Artikel ein Behälter ist, der ein durch γ-Strahlung
sterilisierbares Produkt enthält.
7. Verfahren gemäss Anspruch 6, dadurch gekennzeichnet, dass das Produkt eine
parenteral verabreichbare Zubereitung ist.
8. Medizinischer Artikel, der mit γ-Strahlung sterilisiert ist und aus einem
polymeren Material hergestellt ist, welches Polypropylen und/oder Polyethylen umfasst,
dadurch gekennzeichnet, dass der Artikel hergestellt ist, indem man
a) den medizinischen Gegenstand, wahlweise in einer
sauerstoffabgereicherten Atmosphäre, in eine gasundurchlässige Verpackung
zusammen mit einem Sauerstoffabsorber, der Zugang zu einem Wasservorrat hat,
einschließt;
b) die Verpackung verschließt und mindestens 48 Stunden lagert;
c) die Verpackung und ihren Inhalt einer sterilisierenden Dosis γ-Strahlung
unterwirft.
9. Behälter, der mit γ-Strahlung sterilisiert ist und aus einem polymeren Material
hergestellt ist, welches Polypropylen und/ oder Polyethylen umfasst, wobei der Behälter
ein durch Strahlung sterilisierbares medizinisches Produkt enthält, welches zur
parenteralen Verabreichung bestimmt ist, dadurch gekennzeichnet, dass der Behälter
hergestellt ist, indem man
a) den Behälter mit dem medizinischen Produkt, wahlweise in einer
sauerstoffabgereicherten Atmosphäre, aseptisch befüllt und verschließt;
b) den medizinischen Gegenstand, wahlweise in einer
sauerstoffabgereicherten Atmosphäre, in eine gasundurchlässige Verpackung
zusammen mit einem Sauerstoffabsorber, der Zugang zu einer Wasserversorgung
hat, einschließt;
c) die Verpackung verschließt und mindestens 48 Stunden lagert;
d) die Verpackung und ihren Inhalt einer sterilisierenden Dosis γ-Strahlung
unterwirft.
10. Behälter gemäss Anspruch 9, dadurch gekennzeichnet, dass er Aminosäuren
und/oder eine Lipidemulsion enthält.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9401986A SE9401986D0 (sv) | 1994-06-08 | 1994-06-08 | New process for sterilization and articles sterilized thereby |
PCT/SE1995/000684 WO1995033651A1 (en) | 1994-06-08 | 1995-06-08 | A PROCESS FOR STERILISATION BY η-RADIATION AND BY THE USE OF AN OXYGEN ABSORBER, A CONTAINER AND A MEDICAL ARTICLE STERILISED BY THE PROCESS |
Publications (2)
Publication Number | Publication Date |
---|---|
DE69530386D1 DE69530386D1 (de) | 2003-05-22 |
DE69530386T2 true DE69530386T2 (de) | 2003-11-27 |
Family
ID=20394289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE69530386T Expired - Fee Related DE69530386T2 (de) | 1994-06-08 | 1995-06-08 | VERFAHREN ZUM STERILISIEREN MITTELS -g(g)-STRAHLUNG UND EINES SAUERSTOFF-ABSORBERS, SOWIE NACH DIESEM VERFAHREN STERILISIERTER BEHÄLTER UND MEDIZINISCHE ARTIKEL |
Country Status (11)
Country | Link |
---|---|
US (1) | US5881534A (de) |
EP (1) | EP0759873B1 (de) |
JP (1) | JPH10501204A (de) |
AT (1) | ATE237505T1 (de) |
AU (1) | AU690697B2 (de) |
CA (1) | CA2192365C (de) |
DE (1) | DE69530386T2 (de) |
DK (1) | DK0759873T3 (de) |
SE (1) | SE9401986D0 (de) |
WO (1) | WO1995033651A1 (de) |
ZA (1) | ZA954735B (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013174515A1 (de) * | 2012-05-24 | 2013-11-28 | Pan-Biotech Gmbh | Zellkulturbehälter für den einmalgebrauch |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040067157A1 (en) * | 1993-07-22 | 2004-04-08 | Clearant, Inc. | Methods for sterilizing biological materials |
US5362442A (en) * | 1993-07-22 | 1994-11-08 | 2920913 Canada Inc. | Method for sterilizing products with gamma radiation |
SE9601348D0 (sv) * | 1996-04-10 | 1996-04-10 | Pharmacia Ab | Improved containers for parenteral fluids |
US5863496A (en) * | 1996-11-25 | 1999-01-26 | Prepared Media Laboratory, Inc. | Sterile packaging |
US6594156B1 (en) * | 2000-04-24 | 2003-07-15 | Minimed Inc. | Device and method for circuit protection during radiation sterilization |
US6713773B1 (en) | 1999-10-07 | 2004-03-30 | Mitec, Inc. | Irradiation system and method |
US6429608B1 (en) | 2000-02-18 | 2002-08-06 | Mitec Incorporated | Direct injection accelerator method and system |
US6653641B2 (en) | 2000-02-24 | 2003-11-25 | Mitec Incorporated | Bulk material irradiation system and method |
US6707049B1 (en) | 2000-03-21 | 2004-03-16 | Mitec Incorporated | Irradiation system with compact shield |
US20040086420A1 (en) * | 2000-03-23 | 2004-05-06 | Macphee Martin J. | Methods for sterilizing serum or plasma |
US6412639B1 (en) * | 2000-04-28 | 2002-07-02 | Closure Medical Corporation | Medical procedure kit having medical adhesive |
US6875400B2 (en) * | 2000-12-22 | 2005-04-05 | Cryovac, Inc. | Method of sterilizing and initiating a scavenging reaction in an article |
EP1241110A1 (de) * | 2001-03-16 | 2002-09-18 | Pfizer Products Inc. | Ausgabeeinheit für sauerstoff-empfindlichen Medikamenten |
EP1243524A3 (de) | 2001-03-16 | 2004-04-07 | Pfizer Products Inc. | Pharmazeutisches Kit fÜr sauerstoffempfindliche Medikamente |
US6682695B2 (en) * | 2001-03-23 | 2004-01-27 | Clearant, Inc. | Methods for sterilizing biological materials by multiple rates |
US7154103B2 (en) * | 2001-04-02 | 2006-12-26 | Mitec Incorporated | Method of providing extended shelf life fresh meat products |
US6885011B2 (en) * | 2001-04-02 | 2005-04-26 | Mitec Incorporated | Irradiation system and method |
MXPA03009992A (es) | 2001-05-03 | 2005-03-07 | Advanced Light Technology Llc | Procesamiento diferencial fotoquimico y fotomecanico. |
US20050019208A1 (en) * | 2001-05-18 | 2005-01-27 | Speer Drew V. | Process for pasteurizing an oxygen sensitive product and triggering an oxygen scavenger, and the resulting package |
US6696060B2 (en) * | 2001-06-14 | 2004-02-24 | Clearant, Inc. | Methods for sterilizing preparations of monoclonal immunoglobulins |
US6683319B1 (en) | 2001-07-17 | 2004-01-27 | Mitec Incorporated | System and method for irradiation with improved dosage uniformity |
US6946098B2 (en) | 2001-08-10 | 2005-09-20 | Clearant, Inc. | Methods for sterilizing biological materials |
US20030031584A1 (en) * | 2001-08-10 | 2003-02-13 | Wilson Burgess | Methods for sterilizing biological materials using dipeptide stabilizers |
US7252799B2 (en) * | 2001-08-31 | 2007-08-07 | Clearant, Inc. | Methods for sterilizing preparations containing albumin |
US6749851B2 (en) | 2001-08-31 | 2004-06-15 | Clearant, Inc. | Methods for sterilizing preparations of digestive enzymes |
US6783968B2 (en) | 2001-09-24 | 2004-08-31 | Clearant, Inc. | Methods for sterilizing preparations of glycosidases |
US20030185702A1 (en) * | 2002-02-01 | 2003-10-02 | Wilson Burgess | Methods for sterilizing tissue |
US20030095890A1 (en) * | 2001-09-24 | 2003-05-22 | Shirley Miekka | Methods for sterilizing biological materials containing non-aqueous solvents |
US20110091353A1 (en) * | 2001-09-24 | 2011-04-21 | Wilson Burgess | Methods for Sterilizing Tissue |
US20030079333A1 (en) * | 2001-10-29 | 2003-05-01 | Guthrie Joseph D. | Process for making a metal-polymer composite having an irradiated polymer coating |
US7219799B2 (en) * | 2002-12-31 | 2007-05-22 | Possis Medical, Inc. | Packaging system with oxygen sensor |
US20060064071A1 (en) * | 2001-11-06 | 2006-03-23 | Possis Medical, Inc. | Gas inflation/evacuation system incorporating a reservoir and removably attached sealing system for a guidewire assembly having an occlusive device |
US7334681B2 (en) * | 2001-11-06 | 2008-02-26 | Possis Medical, Inc. | Packaging system with oxygen sensor for gas inflation/evacuation system and sealing system |
US20030124023A1 (en) * | 2001-12-21 | 2003-07-03 | Wilson Burgess | Method of sterilizing heart valves |
US20030180181A1 (en) * | 2002-02-01 | 2003-09-25 | Teri Greib | Methods for sterilizing tissue |
US20080177359A1 (en) * | 2002-05-03 | 2008-07-24 | Advanced Light Technology, Llc. | Differential photochemical and photomechanical processing |
US6908591B2 (en) * | 2002-07-18 | 2005-06-21 | Clearant, Inc. | Methods for sterilizing biological materials by irradiation over a temperature gradient |
US20040013562A1 (en) * | 2002-07-18 | 2004-01-22 | Wilson Burgess | Methods for sterilizing milk. |
FR2848183B1 (fr) * | 2002-12-10 | 2006-01-27 | Tornier Sa | Procede de conditionnement sterile d'un implant prothetique en polyethylene |
WO2004066876A1 (en) * | 2003-01-27 | 2004-08-12 | Medtronic Vascular Connaught | Improved packaging for stent delivery systems |
US6933026B2 (en) * | 2003-02-06 | 2005-08-23 | Aradgim Corporation | Method to reduce damage caused by irradiation of halogenated polymers |
US7354433B2 (en) * | 2003-02-28 | 2008-04-08 | Advanced Light Technologies, Llc | Disinfection, destruction of neoplastic growth, and sterilization by differential absorption of electromagnetic energy |
US20110040295A1 (en) * | 2003-02-28 | 2011-02-17 | Photometics, Inc. | Cancer treatment using selective photo-apoptosis |
JP2004275616A (ja) * | 2003-03-18 | 2004-10-07 | Terumo Corp | 滅菌方法、医療容器およびプレフィルドシリンジの製造方法 |
EP1638614A1 (de) | 2003-06-12 | 2006-03-29 | Safe Haven, Inc. | Verfahren und gerät zur sterilisierung von luft und gegenständen |
US7077922B2 (en) * | 2003-07-02 | 2006-07-18 | Owens Corning Composites S.P.R.L. | Technique to fill silencers |
CA2481865C (en) * | 2003-09-24 | 2011-07-05 | Nipro Corporation | Hollow fiber blood-processing device and method for packaging and sterilizing such devices |
US7695674B2 (en) * | 2003-09-29 | 2010-04-13 | Medtronic Vascular, Inc. | Method of sterilizing balloon with ionizing radiation |
JP2005169008A (ja) * | 2003-12-15 | 2005-06-30 | Nipro Corp | 生体適合性材料の滅菌方法 |
US20050129569A1 (en) | 2003-12-15 | 2005-06-16 | Becton, Dickinson And Company | Terminal sterilization of prefilled containers |
US20070163917A1 (en) * | 2004-07-16 | 2007-07-19 | Pfizer Inc. | Package and device for simultaneously maintaining low moisture and low oxygen levels |
US20080000830A1 (en) * | 2004-08-10 | 2008-01-03 | Kimihiro Mabuchi | Highly Water Permeable Hollow Fiber Membrane Type Blood Purifier and Process for Manufacturing the Same |
CN100515548C (zh) * | 2004-08-10 | 2009-07-22 | 尼普洛株式会社 | 聚砜系选择渗透性中空纤维膜组件及其制造方法 |
JP4885437B2 (ja) | 2004-10-15 | 2012-02-29 | 東洋紡績株式会社 | 血液浄化器および血液浄化器包装体 |
JP4731875B2 (ja) | 2004-10-15 | 2011-07-27 | 東洋紡績株式会社 | 血液浄化器の滅菌方法および血液浄化器包装体 |
US9067178B2 (en) * | 2004-12-22 | 2015-06-30 | Nipro Corporation | Blood purifier package and process for manufacturing the same |
US20070060878A1 (en) | 2005-09-01 | 2007-03-15 | Possis Medical, Inc. | Occlusive guidewire system having an ergonomic handheld control mechanism and torqueable kink-resistant guidewire |
US7615031B2 (en) * | 2005-09-01 | 2009-11-10 | Medrad, Inc. | Gas inflation/evacuation system incorporating a multiple element valved guidewire assembly having an occlusive device |
US20080097294A1 (en) * | 2006-02-21 | 2008-04-24 | Possis Medical, Inc. | Occlusive guidewire system having an ergonomic handheld control mechanism prepackaged in a pressurized gaseous environment and a compatible prepackaged torqueable kink-resistant guidewire with distal occlusive balloon |
US8608703B2 (en) | 2007-06-12 | 2013-12-17 | Medrad, Inc. | Infusion flow guidewire system |
US20070237866A1 (en) * | 2006-03-10 | 2007-10-11 | Mitec Incorporated | Process for the extension of microbial life and color life of fresh meat products |
US20090288366A1 (en) * | 2008-05-23 | 2009-11-26 | Phillip Andrew Schorr | Vacuum packaged products and methods for making same |
US20100293892A1 (en) * | 2008-12-12 | 2010-11-25 | Edwards Lifesciences Corporation | Method of Packaging and Package for Sensors |
ES2640314T3 (es) | 2010-01-22 | 2017-11-02 | Allegiance Corporation | Métodos para envasar y esterilizar artículos elastoméricos y artículos elastoméricos envasados producidos mediante los mismos |
US9309017B2 (en) * | 2010-02-24 | 2016-04-12 | H. J. Paul Langen | Item loading apparatus |
US9238119B2 (en) | 2010-08-12 | 2016-01-19 | Boston Scientific Limited | Infusion flow system and fluid coupling |
WO2013058373A1 (ja) * | 2011-10-19 | 2013-04-25 | ラジエ工業株式会社 | たん白質の劣化を抑制する方法およびたん白質の製造方法 |
DE102012104753A1 (de) * | 2012-06-01 | 2013-12-05 | Krones Ag | Vorrichtung zum Sterilisieren von Behältnissen mit Sterilisationsüberprüfung |
PT2968729T (pt) | 2013-03-14 | 2018-11-06 | Fresenius Kabi Deutschland Gmbh | Sistema de acondicionamento para fármacos sensíveis ao oxigénio |
BR112015021586B1 (pt) | 2013-03-14 | 2023-01-31 | Fresenius Kabi Deutschland Gmbh | Formulação de morfina farmacêutica injetável e kit |
DE102014108530A1 (de) | 2014-06-17 | 2015-12-17 | B. Braun Avitum Ag | Verfahren zur Sterilisierung eines Hohlfaserfiltermoduls, Hohlfaserfiltermodul mit Verschluss und Sauerstoff absorbierender Verschluss |
WO2018093700A1 (en) | 2016-11-16 | 2018-05-24 | Avent, Inc. | Film to film packaging solution for sterilized polyolefin-based nonwoven fabric products |
JP2024061493A (ja) * | 2022-10-21 | 2024-05-07 | 住友ゴム工業株式会社 | 医療用ゴム部品の滅菌方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3503671A (en) * | 1967-04-17 | 1970-03-31 | Bell Telephone Labor Inc | Multiple-pass light-deflecting modulator |
NL6900448A (de) * | 1968-12-05 | 1970-06-09 | ||
JPS5435189A (en) * | 1977-08-24 | 1979-03-15 | Mitsubishi Gas Chem Co Inc | Oxygen absorber |
JPS58192552A (ja) * | 1982-05-06 | 1983-11-10 | テルモ株式会社 | 薬液を収容してなる合成樹脂製医療用バッグを収納した包装容器 |
JPS61104974A (ja) * | 1984-10-22 | 1986-05-23 | 凸版印刷株式会社 | 放射線滅菌用包装容器 |
JPS6274364A (ja) * | 1985-09-27 | 1987-04-06 | 株式会社 ニツシヨ− | 医療用具 |
US4998400A (en) * | 1986-03-22 | 1991-03-12 | Material Engineering Technology Laboratory, Incorporated | Medical fluid-filled plastic container and methods of making same |
SE452710B (sv) * | 1986-04-07 | 1987-12-14 | Stefan Westerberg | Forfarande och anordning for stralsterilisering av organiskt material |
US4899517A (en) * | 1986-10-13 | 1990-02-13 | Mitsui Toatsu Chemicals, Inc. | Storage, transporation method, packaging material, and package for agricultural products |
JPS63152570A (ja) * | 1986-12-03 | 1988-06-25 | 三菱瓦斯化学株式会社 | 液状物保存袋および液状物の保存方法 |
GB8817240D0 (en) * | 1988-07-20 | 1988-08-24 | Univ Salford Business Services | Sterilising methods |
US5014494A (en) * | 1988-09-27 | 1991-05-14 | Sherwood Medical Company | Method of sterilizing medical articles |
MY106642A (en) * | 1989-10-23 | 1995-07-31 | Mitsubishi Gas Chemical Co | Inhibitor parcel and method for preserving electronic devices or electronic parts. |
US5202052A (en) * | 1990-09-12 | 1993-04-13 | Aquanautics Corporation | Amino polycarboxylic acid compounds as oxygen scavengers |
EP0510687B1 (de) * | 1991-04-26 | 2002-10-16 | Mitsubishi Pharma Corporation | Infustionspräparat |
ZA938951B (en) * | 1992-12-21 | 1994-08-02 | Kimberly Clark Co | Packaging and methods for reducing odors and strength loss caused by the irradiation of polyolefin-based products |
US5577368A (en) * | 1995-04-03 | 1996-11-26 | Johnson & Johnson Professional, Inc. | Method for improving wear resistance of polymeric bioimplantable components |
-
1994
- 1994-06-08 SE SE9401986A patent/SE9401986D0/xx unknown
-
1995
- 1995-06-08 JP JP8500775A patent/JPH10501204A/ja not_active Ceased
- 1995-06-08 AT AT95922067T patent/ATE237505T1/de not_active IP Right Cessation
- 1995-06-08 ZA ZA954735A patent/ZA954735B/xx unknown
- 1995-06-08 US US08/750,245 patent/US5881534A/en not_active Expired - Fee Related
- 1995-06-08 EP EP95922067A patent/EP0759873B1/de not_active Expired - Lifetime
- 1995-06-08 AU AU26884/95A patent/AU690697B2/en not_active Ceased
- 1995-06-08 DK DK95922067T patent/DK0759873T3/da active
- 1995-06-08 WO PCT/SE1995/000684 patent/WO1995033651A1/en active IP Right Grant
- 1995-06-08 CA CA002192365A patent/CA2192365C/en not_active Expired - Fee Related
- 1995-06-08 DE DE69530386T patent/DE69530386T2/de not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013174515A1 (de) * | 2012-05-24 | 2013-11-28 | Pan-Biotech Gmbh | Zellkulturbehälter für den einmalgebrauch |
US9938493B2 (en) | 2012-05-24 | 2018-04-10 | Sartoruis Stedim Biotech Gmbh | Single-use cell culture container |
Also Published As
Publication number | Publication date |
---|---|
AU690697B2 (en) | 1998-04-30 |
DK0759873T3 (da) | 2003-07-07 |
WO1995033651A1 (en) | 1995-12-14 |
DE69530386D1 (de) | 2003-05-22 |
EP0759873A1 (de) | 1997-03-05 |
ATE237505T1 (de) | 2003-05-15 |
CA2192365A1 (en) | 1995-12-14 |
SE9401986D0 (sv) | 1994-06-08 |
ZA954735B (en) | 1996-01-26 |
EP0759873B1 (de) | 2003-04-16 |
AU2688495A (en) | 1996-01-04 |
US5881534A (en) | 1999-03-16 |
JPH10501204A (ja) | 1998-02-03 |
CA2192365C (en) | 2004-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69530386T2 (de) | VERFAHREN ZUM STERILISIEREN MITTELS -g(g)-STRAHLUNG UND EINES SAUERSTOFF-ABSORBERS, SOWIE NACH DIESEM VERFAHREN STERILISIERTER BEHÄLTER UND MEDIZINISCHE ARTIKEL | |
US3537967A (en) | Radiation sterilized,thiodipropionic acid ester stabilized,propylene polymers | |
DE3686939T2 (de) | Mittels strahlung sterilisierbare propylenpolymerzusammensetzungen und daraus hergestellte gegenstaende. | |
DE69430233T2 (de) | Haftende sterilisierte Cyanoacrylatmischung und Verfahren zu ihrer Herstellung | |
US3940325A (en) | Radiation-sterilized shaped articles of olefin polymers | |
DE60213141T2 (de) | Kautschukzusammensetzung oder das vernetzte Produkt zur Herstellung von Gummipfropfen für Medikamente oder medizinische Behandlung | |
DE69527740T2 (de) | Ultraviolett absorbierendes, optisch transparentes Verpackungsmaterial | |
DE69413395T2 (de) | Nicht oxydierendes, medizinisches polymerimplantat | |
Demertzis et al. | The effects of γ‐irradiation on compositional changes in plastic packaging films | |
US4460445A (en) | Radiation-stable polyolefin compositions containing benzaldehyde acetals | |
DE69807726T2 (de) | Verfahren und vorrichtung zum aktivieren eines eine oxidierbare , organische verbindung enthaltenden gegenstandes | |
DE69717112T2 (de) | Methode zur aktivierung einer sauerstoffabsorbierenden zusammensetzung mit gepulstem licht | |
DE60129597T3 (de) | Verfahren zur verbesserung der stabilität einer pharmazeutischen zubereitung | |
US4820755A (en) | Radiation sterilizable composition and articles made therefrom | |
US5376716A (en) | Radiation resistant polypropylene resins | |
US2904392A (en) | Method of packaging and treating articles | |
DE69408346T2 (de) | Gegen hochenergetische Strahlung beständige Polypropylenzusammensetzung | |
Goulas et al. | Effect of ionizing radiation on the physicochemical and mechanical properties of commercial monolayer flexible plastics packaging materials | |
DE69700896T2 (de) | Versprödungsbeständige Polyolefinzusammensetzung und daraus bestehende flexible Gegenstände | |
NZ208423A (en) | Sterilised, radiation-stabilised semi-crystalline polymer articles | |
DE68927643T3 (de) | Verwendung von verschlossenen behältern für gefärbte nahrungsmittel | |
DE1028775B (de) | Verfahren zum Stabilisieren von bestrahltem Polyaethylen gegen Oxydation durch Luftsauerstoff | |
US3194668A (en) | Process for preparing radiation stabilized polyethylene and food package utilizing same | |
DE102006027305B4 (de) | Verfahren zur Sterilisation einer gasdurchlässigen und keimdichten Verpackung | |
DE3002341A1 (de) | Verfahren und vorrichtung zum lagern eines festen chlorierungsmittels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8364 | No opposition during term of opposition | ||
8339 | Ceased/non-payment of the annual fee |