DE3717060A1 - Polyether-polycarbonat-diole, ihre herstellung und verwendung als ausgangsprodukte fuer polyurethankunststoffe - Google Patents

Polyether-polycarbonat-diole, ihre herstellung und verwendung als ausgangsprodukte fuer polyurethankunststoffe

Info

Publication number
DE3717060A1
DE3717060A1 DE19873717060 DE3717060A DE3717060A1 DE 3717060 A1 DE3717060 A1 DE 3717060A1 DE 19873717060 DE19873717060 DE 19873717060 DE 3717060 A DE3717060 A DE 3717060A DE 3717060 A1 DE3717060 A1 DE 3717060A1
Authority
DE
Germany
Prior art keywords
groups
polyether
hexanediol
molecular weight
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19873717060
Other languages
English (en)
Inventor
Klaus Dr Koenig
James Michael Barnes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to DE19873717060 priority Critical patent/DE3717060A1/de
Priority to AT88107467T priority patent/ATE98273T1/de
Priority to DE88107467T priority patent/DE3886094D1/de
Priority to ES88107467T priority patent/ES2059430T3/es
Priority to EP88107467A priority patent/EP0292772B1/de
Priority to US07/193,303 priority patent/US4808691A/en
Priority to CA000566598A priority patent/CA1305172C/en
Priority to JP63120819A priority patent/JP2631507B2/ja
Publication of DE3717060A1 publication Critical patent/DE3717060A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/183Block or graft polymers containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0033Foam properties having integral skins

Description

Die vorliegende Erfindung betrifft neue Polyether-Polycarbonat-Diole auf Basis des 1,6-Hexandiols, die Herstellung dieser Produkte sowie ihre Verwendung als Ausgangsstoffe für hochwertige Polyurethan-Kunststoffe.
Aliphatische Polycarbonat-Diole sind seit langem bekannt. Sie werden aus nicht vicinalen Diolen durch Umsetzung mit Diarylcarbonat (DOS 1915 908), Dialkylcarbonat (DOS 2555 805), Dioxolanonen (DOS 2523 352), Phosgen (DOS 1595 446), Bis-chlorkohlensäureestern (DP 857 948) oder Harnstoff (P. Ball, H. Fuillmann und W. Heitz, Angew. Chem. 92 1980 Nr. 9, S. 742, 743) hergestellt. Von den in der Literatur beschriebenen Diolen haben bislang nur solche auf ausschließlicher oder vorwiegender Basis des 1,6-Hexandiols größere technische Bedeutung erlangt. So werden aus Hexandiolpolycarbonat nach bekannten Verfahren hochwertige Polyurethan-Elastomere und -Beschichtungsmittel hergestellt, die insbesondere wegen der hervorragenden Resistenz gegen hydrolytische Einflüsse für die Herstellung von Artikeln mit langer Lebensdauer eingesetzt werden. Die Hydrolysefestigkeit solcher Polyurethane ist bekanntlich um Größenordnungen besser als die von Polyurethanen auf Basis von Adipinsäure-Polyester als Diolkomponente. Reine Hexandiolpolycarbonate (Mol-Gew. 500-4000) sind Wachse mit einem Erweichungspunkt von 45-55°C (je nach MG). Die Kristallisationsneigung des Weichsegments führt dazu, daß die entsprechenden Polyurethane bei tiefen Temperaturen zum Verhärten neigen und ihre Flexibilität verlieren. Um diesen gravierenden Nachteil zu beheben, wurden Hexandiolpolycarbonate hergestellt, bei denen der Erweichungspunkt durch Einbau von Störkomponenten je nach deren Anteil mehr oder weniger stark erniedrigt war. Da die hierfür geeigneten längerkettigen Diole technisch nicht verfügbar waren, wurde hierfür Adipinsäure (DAS 1964 998), Caprolacton (DAS 1770 245) oder Di-, Tri- und Tetraethylenglykol (DAS 2221 751) verwendet. Die Folge war eine Verminderung der Hydrolysefestigkeit der Polyurethane durch die leichter hydrolysierenden Estergruppen bzw. die hydrophilen Ethersegmente.
Ein weiterer Nachteil der Hexandiolpolycarbonate ist deren relativ hohe Eigenviskosität (z. B. ca. 5000 mPa · s bei 60°C, MG 2000), die insbesondere dann zu gewissen Verarbeitungsschwierigkeiten führt, wenn die Polyurethan-Herstellung nach dem Zweistufenverfahren über ein Isocyanat-Präpolymer erfolgen soll.
Hochwertige Polyurethane (PU) werden zunehmend in Gebieten eingesetzt, bei denen die entsprechenden Artikel außer hydrolytischen Einflüssen auch dem Angriff durch Mikroorganismen ausgesetzt sind. Dies gilt z. B. für Walzen in Druckerei- oder Textilbetrieben, für Kabelummantelungen, für Federelemente und Schwingungsdämpfer im Maschinenbau, für Beschichtungen von Markisen, Flachdächern und Gartenmöbeln sowie für Elastomerfasern in Freizeittextilien. Hier zeigen FP auf Basis von aliphatischen Polycarbonaten eine ähnliche Anfälligkeit wie solche auf Basis aliphatischer Polyester.
Bekannterweise sind Polyurethane auf Basis von Polyethern bedeutend resistenter gegen den Abbau durch Mikroorganismen. Die für die genannten Einsatzgebiete mit hohen Qualitätsanforderungen ausschließlich in Frage kommenden und auch verwendeten Polymerisate des Tetrahydrofurans weisen hier wiederum einige andere Nachteile auf. So führt auch hier die Kristallinität zu einer Verhärtungstendenz des PU bei tiefen Temperaturen; insbesondere dann, wenn das angestrebte Eigenschaftsprofil der PU den Einsatz von Weichsegmenten mit mittleren MG von 2000 und höher erfordert. Die Quellbeständigkeit der PU sowohl in Wasser als auch in organischen Lösungsmitteln ist nur mäßig; das gleiche gilt für die Weiterreißfestigkeit.
In dem US-Patent Nr. 44 63 191 werden Polyetherpolycarbonate der allgemeinen Formel
mit
R= -CH₂-CH₂-CH₂-CH₂- n= 7-45 und m= 0-18,
ihre Herstellung und Verwendung beschrieben.
Sie werden durch Kondensation von Polytetramethylenetherglykolen vom mittleren Molekulargewicht 500-3000, vorzugsweise 650-2900, mit Dialkylcarbonaten, cyclischen Carbonaten oder Phosgen hergestellt.
Für die mittleren Molekulargewichte der Polyethercarbonate ergibt sich aus der allgemeinen Formel ein Bereich von 828 bis 51 192. Für das Verhältnis von Ethergruppen zu Carbonatgruppen resultiert als niedrigster Wert 12 : 1, als höchster Wert 46,3 : 1.
Der nur geringfügige Austausch von Ethergruppen durch Carbonatgruppen in den beschriebenen Produkten bewirkt naturgemäß auch nur eine geringfügige Änderung im Eigenschaftsbild der Polyethercarbonate gegenüber den reinen Polytetramethylenetherglykolen.
Dies gilt auch für die aus dem US-Patent Nr. 44 76 293 bekannten Produkte, wo zur Herstellung von Polyethercarbonat-Diolen als Ausgangsprodukte Copolyether-Diole aus Tetrahydrofuran und 10-80 Gew.-% eines anderen cyclischen Alkylenoxids mit zwei oder drei Kohlenstoffatomen im Ring (Epoxide und Oxetane, MG 600-3000) zu Polycarbonaten kondensiert werden.
Zur Herstellung hochwertiger Polyurethane sind derartige Produkte nur schlecht geeignet, da der Anteil an hydrophilen Ethersegmenten und/oder seitenständigen Substituenten die Gebrauchseigenschaften der Polyurethanerzeugnisse erfahrungsgemäß stark negativ beeinflussen.
Es sind auch Hydroxyl-Endgruppen aufweisende Polyether auf Basis des 1,6-Hexandiols längst bekannt. Sie können durch Direktveretherung von Hexandiol mit sauren Katalysatoren wie z. B. p-Toluolsulfonsäure (USP 24 92 955) oder Benzol- bzw. Naphthalindisulfonsäure (DAS 15 70 540) hergestellt werden.
Die bei Temperaturen von 150-200°C verlaufende Kondensation ist um so mehr von Nebenreaktionen und Verfärbungen begleitet, je höher die angestrebten mittleren Molekulargewichte sind. Zum Erreichen von Molekulargewichten von 1000-2000, wie sie in der Polyurethan-Chemie üblich und erforderlich sind, sind lange Reaktionszeiten bei relativ hoher Temperatur erforderlich. Mit dem Kondensationswasser destillieren die Nebenprodukte Oxepan, Hexadien und Hexenol ab, wodurch die Ausbeute stark vermindert wird (USP 24 92 955).
Außerdem besteht die Gefahr, daß die Produkte anstelle von OH-Gruppen endständige Doppelbindungen enthalten, die sich bei der Polyurethansynthese als Kettenabbrecher störend bemerkbar machen (USP 24 92 955).
Die Hexandiolpolyether sind kristallin mit Erweichungspunkten über 60°C; die daraus hergestellten PU zeigen ein schlechtes Tieftemperaturverhalten (schlechte Flexibilität in der Kälte, Dehnungskristallisation). Aus den genannten Gründen haben sie bislang auch noch keinerlei technische Bedeutung erlangt.
Es wurde nun überraschend gefunden, daß man zu einer sehr brauchbaren Polyolkomponente zur Herstellung hochwertiger PU-Kunststoffe gelangt, die alle Nachteile der genannten Ausgangsprodukte nicht aufweisen, wenn man kurzkettige Veretherungsprodukte des Hexandiols mit geeigneten Derivaten der Kohlensäure zu längerkettigen Polyether-Polycarbonat-Diolen umsetzt.
Ein Gegenstand der vorliegenden Erfindung sind somit Hydroxyl-Endgruppen aufweisende Polyether-Polycarbonate mit MG von 500-12 000, vorzugsweise 700-6000, bestimmt durch Messung der OH-Zahl, bei denen Hexamethylengruppen und gegebenenfalls bis zu 50 Mol-% der Hexamethylengruppen Penta-, Hepta-, Octa-, Nona- oder Decamethylengruppen, vorzugsweise aber ausschließlich Hexamethylengruppen statistisch, alternierend oder blockweise durch Ether- und Carbonatgruppen verknüpft sind, wobei das Verhältnis von Ethergruppen zu Carbonatgruppen von 5 : 1 bis 1 : 5, vorzugsweise 3 :1 bis 1 : 3 beträgt.
Ein weiterer Gegenstand der Erfindung sind Verfahren zur Herstellung der neuen Polyether-Polycarbonate, die dadurch gekennzeichnet sind, daß man in der ersten Reaktionsstufe Polyetherdiole mit MG von 150-500, vorzugsweise 180-400, durch an sich bekannte Veretherung von Hexandiol-1,6 und gegebenenfalls Heptandiol-1,7, Octandiol-1,8, Nonandiol-1,9, vorzugsweise ausschließlich Hexandiol-1,6, oder durch Einwirkung von Basen auf entsprechende Gemische von α,ω-Diolen, α,ω-Halogenalkoholen und α,ω-Dihalogenalkanen herstellt und in der 2. Reaktionsstufe die Polyetherdiole in an sich bekannter Weise, gegebenenfalls zusammen mit Pentandiol-1,5, Hexandiol-1,6, Heptandiol-1,7, Octandiol-1,8, Nonandiol-1,9 oder Decandiol-1,10, vorzugsweise ausschließlich die Polyetherdiole, gegebenenfalls im Gemisch mit Hexandiol-1,6, mit Diarylcarbonaten, Dialkylcarbonaten, Dioxolanonen, Hexandiol-bischlorkohlensäureestern, Phosgen oder Harnstoff, vorzugsweise mit Diphenylcarbonat, zu Polyether-Polycarbonaten mit MG von 500-12 000, vorzugsweise 700-6000 umsetzt, wobei der Gesamtanteil der aliphatischen Reste außer Hexamethylenresten in den beiden Reaktionsstufen höchstens 50 Mol-% ausmachen darf.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Herstellung von gegebenenfalls geschäumten Polyurethan-Kunststoffen durch Umsetzung von höhermolekularen, mindestens zwei Hydroxylgruppen enthaltenden Verbindungen gegebenenfalls weiteren niedermolekularen Di- und Polyolen, niedermolekularen Kettenverlängerern und gegebenenfalls Treibmitteln mit Di- und/oder Polyisocyanaten nach dem Ein- oder Zweistufenverfahren, gegebenenfalls in inerten Lösungsmitteln oder in wäßriger Emulsion und üblichen Hilfs- und Zusatzstoffen, dadurch gekennzeichnet, daß die höhermolekularen Hydroxyverbindungen, zumindest zu 50 Gew.-% aus den erfindungsgemäßen Polyether-Polycarbonaten bestehen.
Ausgangsprodukte für die Herstellung der erfindungsgemäßen Polyether-Polycarbonat-Diole sind:
  • 1. Für die Polyetherdiole:
    Hexandiol-1,6, Heptandiol-1,7, Octandiol-1,8, Nonandiol-1,9, Decandiol-1,10, 6-Chlorhexanol, 6-Bromhexanol, 1,6-Dichlorhexan, 1,6-Dibromhexan, vorzugsweise ausschließlich Hexandiol-1,6.
  • 2. Als Katalysatoren für die Veretherung der Diole können
    Schwefelsäure, Butansulfonsäure, Perfluorbutansulfonsäure, Benzol- und Toluolsulfonsäure, Benzol- und Naphthalindisulfonsäuren, saure Ionenaustauscher mit Sulfonsäuregruppen, saure Tonerden eingesetzt werden. Vorzugsweise wird Naphthalin-1,5-disulfonsäure in Anteilen von 0,1 bis 2, vorzugsweise 0,2 bis 1 Gew.-% eingesetzt.
  • 3. Als gegebenenfalls zusammen mit den Polyethern der ersten Reaktionsstufe in der zweiten Reaktionsstufe weitere einsetzbare Polyole:
    Pentandiol-1,5, Hexandiol-1,6, Heptandiol-1,7, Octandiol-1,8, Nonandiol-1,9, Decandiol-1,10, Oligomere des Ethylenoxids und 1,2-Propylenoxids wie Di-, Tri- und Tetraethylenglykol, Di- und Tetrapropylenglykol.
    Zur Verzweigung können auch geringe Mengen an Trimethylolethan und -propan sowie Pentaerythrit eingesetzt werden.
    Vorzugsweise werden keine weiteren Polyole oder nur Hexandiol-1,6 mitverwendet.
  • 4. Zur Umsetzung mit den Polyethern der ersten Reaktionsstufen können folgende Verbindungen verwendet werden:
    Diarylcarbonate wie Diphenyl-, Ditolyl-, Dixylyl-, Dinaphthyl-carbonat, Dialkylcarbonate wie Diethyl-, Dipropyl-, Dibutyl-, Diamyl-, Dicyclohexyl-carbonat, Dioxolanone wie Ethylen- und Propylencarbonat, Hexandiol-1,6-bischlorkohlensäureester, Phosgen und Harnstoff.
    Bevorzugt wird Diphenylcarbonat verwendet.
Die erfindungsgemäßen Polyether-Polycarbonate können in allgemeiner Weise wie folgt hergestellt werden:
Hexandiol, gegebenenfalls im Gemisch mit einem der angeführten a,ω-Diole, wird mit dem Katalysator, bevorzugt Naphthalin-1,5-disulfonsäure, auf 150-200°C erhitzt. Dabei wird in 3 bis 16 Stunden je nach Temperatur und Katalysatormenge die dem angestrebten Molekulargewicht (150-490) entsprechende Wassermenge abdestilliert. Die Kondensation kann entweder bei Normaldruck unter Überleiten von Stickstoff oder unter Einleiten eines Inertgases (Na₂ oder CO₂) in die Schmelze und/oder unter Verwendung eines Schleppmittels zur Aceotropen Abdestillation des Wassers oder im Vakuum (50-200 mbar) durchgeführt werden. Mit dem Kondensationswasser und gegebenenfalls dem Schleppmittel destilliert als Nebenprodukt Oxepan (Hexamethylenoxid) ab, dessen Menge je nach Kondensationsdauer und -Temperatur 2-6 Mol-% des eingesetzten Hexandiols beträgt.
Die niedrigste Nebenproduktbildung und auch die besten Farbzahlen für die Polyether werden durch aceotrope Abdestillation des Wassers erreicht. Als Schleppmittel können z. B. Toluol, Xylol, Benzinfraktion, Cyclohexan, Chlorbenzol verwendet werden. Besonders gut ist das Oxepan selbst geeignet, da dessen Anwesenheit seine Neubildung aus Hexandiol etwas zurückdrängt. Die Menge des Schleppmittels wird so bemessen, daß das Reaktionsgemisch bei der Reaktionstemperatur dauernd am Sieden gehalten wird. Für Qualität und Ausbeute der Polyether ist es günstiger, bei niedrigeren Temperaturen zu arbeiten und dafür längere Reaktionszeiten in Kauf zu nehmen (z. B.: 170°C/16 Stunden).
Nach Erreichen des angestrebten Kondensationsgrades (ermittelbar aus der abdestillierten Wassermenge) wird das Reaktionsgemisch auf unter 100°C abgekühlt und mit 5-10 Gew.-% Wasser zur Hydrolyse etwaig gebildeter Sulfonsäureestergruppen 1-3 Stunden am Rückfluß gekocht. Danach wird der saure Katalysator mit wäßrigem Alkali oder mit Ammoniak neutralisiert. Nach Abdampfen von Wasser, Lösungsmittel und Ringether im Vakuum werden die festen, unlöslichen Salze der Sulfonsäure abfiltriert.
Man erhält leicht gelb gefärbte Flüssigkeiten oder niedrigschmelzende Wachse mit Molekulargewichten von 150-500, bestimmt nach der OH-Zahl, vorzugsweise mit MG von 180-400. Gegebenenfalls können die Polyether durch Destillation oder fraktionierte Extraktion in 1,6-Hexandiol, ω,ω-Dihydroxydihexylether und höhere Oligomere aufgetrennt werden.
Ebenso ist es möglich, das Molekulargewicht der Polyether durch Abdestillieren eines Teiles des nicht umgesetzten Hexandiols auf einen gewünschten höheren Wert einzustellen.
Die Polyether werden dann in der zweiten Reaktionsstufe bei Temperaturen von 120-220°C, vorzugsweise von 130-200°C, und Drucken von 200 bis 1 mbar, mit Diphenyl-carbonat, unter Abdestillieren von Phenol kondensiert. Hierzu kann der Polyether aus der ersten Stufe gegebenenfalls nach einer der oben beschriebenen Vorbehandlung und/oder nach Vermischen mit Hexandiol und/oder gegebenenfalls einem weiteren Polyol eingesetzt werden. Die carbonatbildende Verbindung wird in einem definierten Unterschuß eingesetzt, so daß das angestrebte Molekulargewicht gemäß folgender Gleichung resultiert:
MG (Polycarbonat) = n × MG (Diol) + (n-1) × 26
Dabei bedeutet n die Molzahl des eingesetzten Diols und (n-1) die Molzahl der eingesetzten carbonatbildenden Verbindung. 26 ist das MG der Carboxylgruppe vermindert um 2.
Die Umsetzung in der zweiten Reaktionsstufe kann durch Basen oder Übergangsmetallverbindungen katalysiert werden.
Die erhaltenen Polyethercarbonate sind relativ niedrigviskose Flüssigkeiten oder niedrigschmelzende Wachse. Wird als Polyolkomponente nur 1,6-Hexandiol verwendet, so hängen die Erweichungspunkte der resultierenden Polyether-Polycarbonate vom Verhältnis Carbonatgruppen zu Ethergruppen ab. Beträgt dieses etwa 1,25 : 1, so wird ein Schmelzpunktminimum bei 18-22°C (je nach Molgewicht) erreicht, d. h. solche Produkte sind bei Raumtemperatur flüssig und daher leicht handhabbar. Sie sind die bevorzugten Polyetherpoly-carbonate gemäß der vorliegenden Erfindung.
Die erfindungsgemäßen Polyether-Polycarbonate können insbesondere zu PU-Kunststoffen verarbeitet werden, die günstige Eigenschaften aufweisen. Neben den günstigen Verarbeitungseigenschaften der Polyetherpolycarbonate wegen ihrer relativ niedrigen Viskosität, insbesondere bei der Verarbeitung zu Polyisocyanat-Präpolymeren, ergeben sie PU mit sehr guter Elastizität, Zugfestigkeit, Weiterreißfestigkeit und Bruchdehnung. Außerdem PU mit einer guten Flexibilität bei niedrigen Temperaturen und sehr niedrigen Einfriertemperaturen. Solche PU erhält man auch beim Einsatz von Polyether-Polycarbonaten, deren Erweichungspunkte oberhalb 30°C liegen. Außerdem zeigen die PU eine gute Resistenz gegen hydrolytische und bakterielle Einflüsse.
I. Zur Herstellung der Polyurethan-Kunststoffe werden neben den erfindungsgemäßen Polyether-Polycarbonaten, gegebenenfalls als höhermolekulare Hydroxylverbindungen, folgende Verbindungen eingesetzt:
Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen von einem Molekulargewicht in der Regel von 400-10 000. Hierunter versteht man neben Aminogruppen, Thiolgruppen oder Carboxylgruppen aufweisenden Verbindungen vorzugsweise Hydroxylgruppen aufweisende Verbindungen, insbesondere zwei bis acht Hydroxylgruppen aufweisende Verbindungen, speziell solche vom Molekulargewicht 500 bis 8000, vorzugsweise 700 bis 6000, z. B. mindestens zwei, in der Regel 2 bis 8, vorzugsweise aber 2 bis 4, Hydroxylgruppen aufweisende Polyester, Polyether, Polythioether, Polyacetale, Polycarbonate und Polyesteramide, wie sie für die Herstellung von homogenen und von zellförmigen Polyurethanen an sich bekannt sind:
  • a) Die in Frage kommenden Hydroxylgruppen aufweisenden Polyester sind z. B. Umsetzungsprodukte von mehrwertigen, vorzugsweise zweiwertigen und gegebenenfalls zusätzlich dreiwertigen Alkoholen mit mehrwertigen, vorzugsweise zweiwertigen, Carbonsäuren. Anstelle der freien Polycarbonsäuren können auch die entsprechenden Polycarbonsäureanhydride oder entsprechende Polycarbonsäureester von niedrigen Alkoholen oder deren Gemische zur Herstellung der Polyester verwendet werden. Die Polycarbonsäuren können aliphatischer, cycloaliphatischer, aromatischer und/oder heterocyclischer Natur sein und gegebenenfalls, z. B. durch Halogenatome, substituiert und/oder ungesättigt sein.
    Als Beispiele für solche Carbonsäuren und deren Derivate seien genannt:
    Bernsteinsäure, Adipinsäure, Korksäure, Azelainsäure, Sebacinsäure, Phthalsäure, Isophthalsäure, Trimellitsäure, Phthalsäureanhydrid, Tetrahydrophthalsäureanhydrid, Hexahydrophthalsäureanhydrid, Tetrachlorphthalsäureanhydrid, Endomethylentetrahydrophthalsäureanhydrid, Glutarsäureanhydrid, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, dimerisierte und trimerisierte ungesättigte Fettsäuren, gegebenenfalls in Mischung mit monomeren ungesättigten Fettsäuren, wie Ölsäure; Terephthalsäuredimethylester und Terephthalsäure-bis-glykolester. Als mehrwertige Alkohole kommen z. B. Ethylenglykol, Propylenglykol-(1,2) und -(1,3), Butylenglykol-(1,4) und -(2,3), Hexandiol-(1,6), Octandiol-(1,8), Neopentylglykol, 1,4-Bis-hydroxymethylcyclohexan, 2-Methyl-1,3-propandiol, Glycerin, Trimethylolpropan, Hexantriol-(1,2,6), Butantriol-(1,2,4), Trimethylolethan, Pentaerythrit, Chinit, Mannit und Sorbit, Formit, Methylglykosid, ferner Diethylenglykol, Triethylenglykol, Tetraethylenglykol und höhere Polyethylenglykole, Dipropylenglykol und höhere Polypropylenglykole sowie Dibutylenglykol und höhere Polybutylenglykole in Frage. Die Polyester können anteilig endständige Carboxylgruppen aufweisen. Auch Polyester aus Lactonen, z. B. ε-Caprolacton, oder aus Hydroxycarbonsäuren, z. B. ω-Hydroxycapronsäure, sind einsetzbar.
  • b) Auch die erfindungsgemäß in Frage kommenden, mindestens zwei, in der Regel zwei bis acht, vorzugsweise zwei bis drei, Hydroxylgruppen aufweisenden Polyether sind solche der an sich bekannten Art und werden z. B. durch Polymerisation von Epoxiden wie Ethylenoxid, Propylenoxid, Butylenoxid, Tetrahydrofuran, Styroloxid oder Epichlorhydrin mit sich selbst, z. B. in Gegenwart von Lewis-Katalysatoren wie BF₂, oder durch Anlagerung dieser Epoxide, vorzugsweise von Ethylenoxid und Propylenoxid, gegebenenfalls im Gemisch oder nebeneinander, an Startkomponenten mit reaktionsfähigen Wasserstoffatomen wie Wasser, Alkohole, Ammoniak oder Amine, z. B. Ethylenglykol, Propylenglykol-(1,3) oder -(1,2), Trimethylolpropan, Glycerin, Sorbit, 4,4'-Dihydroxydiphenylpropan, Anilin, Ethanolamin oder Ethylendiamin hergestellt. Auch Sucrosepolyether, wie sie z. B. in den DE-Auslegeschriften 11 76 358 und 10 64 938 beschrieben werden, sowie auf Formit oder Formose gestartete Polyether (DE-Offenlegungsschriften 26 39 983 bzw. 27 37 951), kommen erfindungsgemäß in Frage. Vielfach sind solche Polyether bevorzugt, die überwiegend (bis zu 90 Gew.-%, bezogen auf alle vorhandenen OH-Gruppen im Polyether) primäre OH-Gruppen aufweisen. Auch OH-Gruppen aufweisende Polybutadiene sind erfindungsgemäß geeignet.
  • c) Unter den Polythioethern seien insbesondere die Kondensationsprodukte von Thiodiglykol mit sich selbst und/oder mit anderen Glykolen, Dicarbonsäuren, Formaldehyd, Aminocarbonsäuren oder Aminoalkoholen angeführt. Je nach den Co-Komponenten handelt es sich bei den Produkten z. B. um Polythiomischether, Polythioetherester oder Polythioetheresteramide.
  • d) Als Polyacetale kommen z. B. die als Glykolen, wie Diethylenglykol, Triethylenglykol, 4,4'-Dioxethoxydiphenyldimethylmethan, Hexandiol und Formaldehyd herstellbaren Verbindungen in Frage. Auch durch Polymerisation cyclischer Acetale wie z. B. Trioxan (DE-Offenlegungsschrift 16 94 128) lassen sich erfindungsgemäß geeignete Polyacetale herstellen.
  • e) Als Hydroxylgruppen aufweisende Polycarbonate kommen solche der an sich bekannten Art in Betracht, die z. B. durch Umsetzung von Diolen wie Propandiol-(1,3), Butandiol-(1,4) und/oder Hexandiol-(1,6), Diethylenglykol, Triethylenglykol, Tetraethylenglykol oder Thiodiglykol mit Diarylcarbonaten, z. B. Diphenylcarbonat, oder Phosgen hergestellt werden können (DE-Auslegungsschriften 16 94 080, 19 15 908 und 22 21 751; DE-Offenlegungsschrift 26 05 024).
  • f) Zu den Polyesteramiden und Polyamiden zählen z. B. die aus mehrwertigen gesättigten oder ungesättigten Carbonsäuren bzw. deren Anhydriden und mehrwertigen gesättigten oder ungesättigten Aminoalkoholen, Diaminen, Polyaminen und deren Mischungen gewonnenen, vorwiegend linearen Kondensate.
  • g) Auch bereits Urethan- oder Harnstoffgruppen enthaltende Polyhydroxylverbindungen sowie gegebenenfalls modifizierte natürliche Polyole, wie Rizinusöl oder Kohlenhydrate, z. B. Stärke, sind verwendbar. Auch Anlagerungsprodukte von Alkylenoxiden an Phenol-Formaldehyd-Harze oder auch an Harnstoff-Formaldehyd-Harze sind erfindungsgemäß einsetzbar.
  • h) Die genannten Polyhydroxylverbindungen können vor ihrer Verwendung im Polyisocyanat-Polyadditionsverfahren noch in der verschiedensten Weise modifiziert werden: So läßt sich gemäß DE-Offenlegungsschriften 22 10 839 (US-Patentschrift 38 49 515) und 25 44 195 ein Gemisch aus verschiedenen Polyhydroxylverbindungen (z. B. aus einem Polyether- und einem Polyesterpolyol) durch Veretherung in Gegenwart einer starken Säure zu einem höhermolekularen Polyol kondensieren, welches aus über Etherbrücken verbundenen verschiedenen Segmenten aufgebaut ist. Es ist auch möglich, z. B. gemäß DE-Offenlegungsschrift 25 59 372 in die Polyhydroxylverbindungen Amidgruppen oder gemäß DE-Offenlegungsschrift 26 20 487 durch Umsetzung mit polyfunktionellen Cyansäureestern Triazingruppen einzuführen. Durch Umsetzung eines Polyols mit einer weniger als äquivalenten Menge eines Diisocyanatocarbodiimids und anschließende Reaktion der Carbodiimidgruppe mit einem Amin, Amid, Phosphit oder einer Carbonsäure erhält man Guanidin-, Phosphonoformamidin- bzw. Acylharnstoffgruppen aufweisende Polyhydroxylverbindungen (DE-Offenlegungsschriften 27 14 289, 27 14 292 und 27 14 293). Von besonderem Interesse ist es in manchen Fällen, die höhermolekularen Polyhydroxylverbindungen durch Reaktion mit Isatosäureanhydrid vollständig oder teilweise in die entsprechenden Anthranilsäureester überzuführen, wie es in den DE-Offenlegungsschriften 20 19 432 und 26 19 840 bzw. den US-Patentschriften 38 08 250, 39 75 428 und 40 16 143 beschrieben ist. Man erhält auf diese Weise höhermolekulare Verbindungen mit endständigen aromatischen Aminogruppen.
    Durch Umsetzung von NCO-Präpolymeren mit Hydroxylgruppen aufweisenden Enaminen, Aldiminen oder Ketiminen und anschließende Hydrolyse erhält man gemäß DE-Offenlegungsschrift 25 46 536 bzw. US-Patentschrift 38 65 791 höhermolekulare, endständige Aminogruppen aufweisende Verbindungen. Weitere Herstellungsverfahren für höhermolekulare Verbindungen mit endständigen Aminogruppen oder Hydrazidgruppen werden in der DE-Offenlegungsschrift 16 94 152 (US-Patentschrift 36 25 871) beschrieben.
  • i) Erfindungsgemäß können gegebenenfalls auch Polyhydroxylverbindungen eingesetzt werden, in welchen hochmolekulare Polyaddukte bzw. Polykondensate oder Polymerisate in feindisperser oder gelöster Form enthalten sind. Derartige Polyhydroxylverbindungen werden z. B. erhalten, wenn man Polyadditionsreaktionen (z. B. Umsetzungen zwischen Polyisocyanaten und aminofunktionellen Verbindungen) bzw. Polykondensationsreaktionen (z. B. zwischen Formaldehyd und Phenolen und/oder Aminen) in situ in den oben genannten, Hydroxylgruppen aufweisenden Verbindungen ablaufen läßt. Derartige Verfahren sind beispielsweise in den DE-Auslegeschriften 11 68 075 und 12 60 142, sowie den DE-Offenlegungsschriften 23 24 134, 24 23 984, 25 12 385, 25 13 815, 25 50 796, 25 50 797, 25 50 833, 25 50 862, 26 33 293 und 26 39 254 beschrieben. Es ist aber auch möglich, gemäß US-Patentschrift 38 69 413 bzw. DE-Offenlegungsschrift 25 50 860 eine fertige wäßrige Polymerdispersion mit einer Polyhydroxylverbindung zu vermischen und anschließend aus dem Gemisch das Wasser zu entfernen.
Auch durch Vinylpolymerisate modifizierte Polyhydroxylverbindungen, wie sie z. B. durch Polymerisation von Styrol und Acrylnitril in Gegenwart von Polyethern (US-Patentschriften 33 83 351, 33 04 273, 35 23 093, 31 10 695; DE-Auslegeschrift 11 52 563) oder Polycarbonatpolyolen (DE-Patentschrift 17 69 795; US-Patentschrift 36 37 909) erhalten werden, sind für das erfindungsgemäße Verfahren geeignet. Bei Verwendung von Polyetherpolyolen, welche gemäß den DE-Offenlegungsschriften 24 42 101, 26 44 922 und 26 46 141 durch Pfropfpolymerisation mit Vinylphosphonsäureestern sowie gegebenenfalls (Meth)acrylnitril, (Meth)acrylamid oder OH-funktionellen (Meth)acrylsäureestern modifiziert wurden, erhält man Kunststoffe von besonderer Flammwidrigkeit. Polyhydroxylverbindungen, in welche durch radikalische Pfropfpolymerisation mittels ungesättigter Carbonsäuren sowie gegebenenfalls weiterer olefinisch ungesättigter Monomerer Carboxylgruppen eingeführt werden (DE-Offenlegungsschriften 27 14 291, 27 39 620 und 26 54 746) können mit besonderem Vorteil in Kombination mit mineralischen Füllstoffen eingesetzt werden.
Bei der Verwendung von modifizierten Polyhydroxylverbindungen der oben genannten Art als Ausgangskomponente im Polyisocyanat-Polyadditionsverfahren entstehen in vielen Fällen Polyurethankunststoffe mit wesentlich verbesserten mechanischen Eigenschaften.
Vertreter der genannten erfindungsgemäß zu verwendenden Verbindungen sind z. B. in High Polymers, Vol. XVI, "Polyurethanes, Chemistry and Technology", verfaßt von Saunders-Frisch, Interscience Publishers, New York, London, Band I, 1962, Seiten 32-42 und Seiten 44-54 und Band II, 1964, Seiten 5-6 und 198-199, sowie im Kunststoff-Handbuch, Band VII, Vieweg-Höchtlen, Carl-Hanser-Verlag, München, 1966, z. B. auf den Seiten 45-71, beschrieben. Selbstverständlich können Mischungen der obengenannten Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen mit einem Molekulargewicht von 400-10 000, z. B. Mischungen von Polyethern und Polyestern, eingesetzt werden.
Von besonderem Vorteil ist es dabei in manchen Fällen, niedrigschmelzende und hochschmelzende Polyhydroxylverbindungen miteinander zu kombinieren (DE-Offenlegungsschrift 27 06 297).
II. Gegebenenfalls als niedermolekulare Kettenverlängerer:
Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen und einem Molekulargewicht von 32 bis 400. Auch in diesem Fall versteht man hierunter Hydroxylgruppen und/oder Aminogruppen und/oder Thiolgruppen und/oder Carboxylgruppen aufweisende Verbindungen, vorzugsweise Hydroxylgruppen und/oder Aminogruppen aufweisende Verbindungen, die als Kettenverlängerungsmittel oder Vernetzungsmittel dienen. Diese Verbindungen weisen in der Regel 2 bis 8, vorzugsweise 2 bis 4, gegenüber Isocyanaten reaktionsfähige Wasserstoffatome auf.
Auch in diesem Fall können Mischungen von verschiedenen Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen mit einem Molekulargewicht von 32 bis 400 verwendet werden.
Als Beispiele für derartige Verbindungen seien genannt:
Ethylenglykol, Propylenglykol-(1,2) und -(1,3), Butylenglykol-(1,4) und -(2,3), Pentandiol-(1,5), Hexandiol-(1,6), Octandiol-(1,8), Neopentylglykol, 1,4-Bis-hydroxymethyl-cyclohexan, 2-Methyl-1,3-propandiol, Dibrombutendiol (US-Patentschrift 37 23 392), Glycerin, Trimethylolpropan, Hexantriol-(1,2,6), Trimethylolethan, Pentaerythrit, Chinit, Mannit und Sorbit, Ricinusöl, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, höhere Polyethylenglykole mit einem Molekulargewicht bis 400, Dipropylenglykol, höhere Polypropylenglykole mit einem Molekulargewicht bis 400, Dibutylenglykol, höhere Polybutylenglykole mit einem Molekulargewicht bis 400, 4,4'-Dihydroxy-diphenylpropan, Di­ hydroxymethyl-hydrochinon, Ethanolamin, Diethanolamin, N-Methyldietanolamin, Triethanolamin und 3-Aminopropanol.
Als niedermolekulare Polyole kommen erfindungsgemäß auch die Gemische von Hydroxyaldehyden und Hydroxyketonen ("Formose") bzw. die hieraus durch Reduktion erhaltenen mehrwertigen Alkohole ("Formit") in Frage, wie sie bei der Selbstkondensation von Formaldehydhydrat in Gegenwart von Metallverbindungen als Katalysator und von zur Endiolbildung befähigten Verbindungen als Co-Katalysator entstehen (DE-Offenlegungsschriften 26 39 084, 27 14 084, 27 14 104, 27 21 186, 27 38 154 und 27 38 512). Um Kunststoffe mit verbesserter Flammwidrigkeit zu erhalten, setzt man diese Formosen mit Vorteil in Kombination mit Aminoplastbildnern und/oder Phosphiten ein (DE-Offenlegungsschriften 27 38 513 und 27 38 532). Auch Lösungen von Polyisocyanatpolyadditionsprodukten, insbesondere von ionische Gruppen aufweisenden Polyurethanharnstoffen und/oder von Polyhydrazodicarbonamiden, in niedermolekularen, mehrwertigen Alkoholen kommen erfindungsgemäß als Polyolkomponente in Betracht (DE-Offenlegungsschrift 26 38 759).
Erfindungsgemäß geeignete aliphatische Diamine sind beispielsweise Ethylendiamin, 1,4-Tetramethylendiamin, 1,11-Undecamethylendiamin, 1,12-Dodecamethylendiamin sowie deren Gemische, 1-Amino-3,3,5-Trimethyl-5-aminomethylcyclohexan ("Isophorondiamin"), 2,4- und 2,6-Hexahydrotoluylendiamin sowie deren Gemische, Perhydro-2,4′-diaminodiphenylmethan, p-Xylylendiamin, Bis-(3-aminopropyl)-methylamin, Diamino-perhydroanthrazene (DE-Offenlegungsschrift 26 38 731) und cycloaliphatische Triamine gemäß DE-Offenlegungsschrift 26 14 244. Auch Hydrazin und substituierte Hydrazine, z. B. Methylhydrazin, N,N′-Dimethylhydrazin und deren Homologe sowie Säuredihydrazide kommen erfindungsgemäß in Betracht, z. B Carbodihydrazid, Oxalsäuredihydrazid, die Dihydrazide von Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, β-Methyladipinsäure, Sebazinsäure, Hydracrylsäure und Terephthalsäure; Semicarbazido-alkylen-hydrazide wie z. B. β-Semicarbazido-propionsäurehydrazid (DE-Offenlegungsschrift 17 70 591), Semicarbazido-alkylencarbazinester wie z. B. 2-Semicarbazidoethyl-carbazinester (DE-Offenlegungsschrift 19 18 504) oder auch Amino-semicarbazid-Verbindungen wie z. B. b-Aminoethyl-semicarbazido-carbonat (DE-Offenlegungsschrift 19 02 931). Zur Steuerung ihrer Reaktivität können die Aminogruppen ganz oder teilweise durch Aldimin- bzw. Ketimin-Gruppen blockiert sein (US-Patentschrift 37 34 894; DE-Offenlegungsschrift 26 37 115).
Als Beispiele für aromatische Diamine seien Bisanthranilsäureester gemäß den DE-Offenlegungsschriften 20 40 644 und 21 60 590, 3,5- und 2,4-Diaminobenzoesäureester gemäß DE-Offenlegungsschrift 20 25 900, die in den DE-Offenlegungsschriften 18 03 635 (US-Patentschriften 36 81 290 und 37 36 350), 20 40 650 und 21 60 589 beschriebenen estergruppenhaltigen Diamine, die Ethergruppen aufweisenden Diamine gemäß DE-Offenlegungsschriften 17 70 525 und 18 09 172 (US-Patentschriften 36 45 364 und 37 36 295), gegebenenfalls in 5-Stellung substituierte 2-Halogen-1,3-Phenylendiamine (DE-Offenlegungsschriften 20 01 772, 20 25 896), 3,3′-Dichlor-4,4′-diamino-diphenylmethan, Toluylendiamin, 4,4′-Diaminodiphenylmethan, 4,4′-Diaminodiphenyldisulfide (DE-Offenlegungsschrift 24 04 976) Diaminodiphenyldithioether (DE-Offenlegungsschrift 25 09 404), durch Alkylthiogruppen substituierte aromatische Diamine (DE-Offenlegungsschrift 26 38 760), Diaminobenzolphosphonsäureester (DE-Offenlegungsschrift 24 59 491), Sulfonat- oder Carboxylatgruppen enthaltende aromatische Diamine (DE-Offenlegungsschrift 27 20 166) sowie die in der DE-Offenlegungsschrift 26 35 400 aufgeführten hochschmelzenden Diamine genannt. Beispiele für aliphatisch-aromatische Diamine sind die Aminoalkylthioaniline gemäß DE-Offenbarungsschrift 27 34 574.
Als Kettenverlängerungsmittel können erfindungsgemäß auch Verbindungen wie 1-Mercapto-3-aminopropan, gegebenenfalls substituierte Aminosäuren, z. B. Glycerin, Alanin, Valin, Serin und Lysin sowie gegebenenfalls substituierte Dicarbonsäuren, beispielsweise Bernsteinsäure, Adipinsäure, Phthalsäure, 4-Hydroxyphthalsäure und 4-Aminophthalsäure verwendet werden.
Ferner können gegenüber Isocyanaten monofunktionelle Verbindungen in Anteilen von 0,01 bis 10 Gew.-%, bezogen auf Polyurethanfeststoff, als sogenannte Kettenabbrecher mitverwendet werden. Derartige monofunktionelle Verbindungen sind z. B. Monoamine wie Butyl- und Dibutylamin, Octylamin, Stearylamin, N-Methylstearylamin, Pyrrolidin, Piperidin und Cyclohexylamin, Monoalkohole wie Butanol, 2-Ethylhexanol, Octanol, Dodecanol, die verschiedenen Amylalkohole, Cyclohexanol, Ethylenglykolmonoethylether.
Als weitere erfindungsgemäß geeignete niedermolekulare Polyole vom Molekulargewicht bis 400 Esterdiole der allgemeinen Formeln
HO-(CH₂) x -CO-O-(CH₂) y -OH
und
HO-(CH₂) x -O-CO-R-CO-O-(CH₂) x -OH
in denen
Reinen Alkylenrest mit 1-10, vorzugsweise 2-6, C-Atomen bzw. einen Cycloalkylen- oder Arylenrest mit 6-10 C-Atomen, X= 2-6 und Y= 3-5
bedeuten,
z. B. δ-Hydroxybutyl-ε-hydroxy-capronsäureester, ω-hydroxyhexyl-γ-hydroxybuttersäureester, Adipin­ säure-bis-(β-hydroxyethyl)ester und Terephthal­ säure-bis-(b-hydroxyethyl)ester;
Diolurethane der allgemeinen Formel
HO-(CH₂) x -O-CO-NH-R′-NH-CO-O-(CH₂) x -OH
in der
R′einen Alkylrest mit 2-15, vorzugsweise 2-6, C-Atomen oder einen Cycloalkylen- oder Arylenrest mit 6-15 C-Atomen und xeine Zahl zwischen 2 und 6
darstellen,
z. B. 1,6-Hexamethylen-bis-(β-hydroxyethylurethan) oder 4,4′-Diphenylmethan-bis-(δ-hydroxybutylurethan); sowie Diolharnstoffe der allgemeinen Formel
in der
R′′einen Alkylenrest mit 2-15, vorzugsweise 2-9, C-Atomen oder einen Cycloalkylen- oder Arylenrest mit 6-15 C-Atomen, R′′′Wasserstoff oder eine Methylgruppe und xdie Zahlen 2 oder 3
bedeuten,
z. B. 4,4′-Diphenylmethan-bis-(β-hydroxyethylharnstoff) oder die Verbindung
Für manche Zwecke ist es vorteilhaft, Polyole einzusetzen, welche Sulfonat- und/oder Phosphonatgruppen enthalten (DE-Offenlegungsschrift 27 19 372), vorzugsweise das Addukt von Bisulfit an Butandiol-1,4 bzw. dessen Alkoxylierungsprodukte.
III. Als Di- und/oder Polyisocyanate:
Aliphatische, cycloaliphatische, araliphatische, aromatische und heterocyclische Polyisocyanate, wie sie z. B. von W. Siefken in Justus Liebigs Annalen der Chemie, 562, Seiten 75 bis 136, beschrieben werden, beispielsweise solche der Formel
Q(NCO) n
in der
n = 2-4, vorzugsweise 2,
und
Q einen aliphatischen Kohlenwasserstoffrest mit 2-18, vorzugsweise 6-10 C-Atomen,
einen cycloaliphatischen Kohlenwasserstoffrest mit 4-15, vorzugsweise 5-10 C-Atomen,
einen aromatischen Kohlenwasserstoffrest mit 6-15, vorzugsweise 6-13 C-Atomen
oder einen araliphatischen Kohlenwasserstoffrest mit 8-15, vorzugsweise 8-13 C-Atomen,
bedeuten, z. B. Ethylendiisocyanat, 1,4-Tetramethylendiisocyanat, 1,6-Hexamethylendiisocyanat, 1,12-Dodecandiisocyanat, Cyclobutan-1,3-diisocyanat, Cyclohexan-1,3- und -1,4-diisocyanat sowie beliebige Gemische dieser Isomeren, 1-Isocyanato- 3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (DE-Auslegeschrift 12 02 785, US-Patentschrift 34 01 190), 2,4- und 2,6-Hexahydrotoluylendiisocyanat sowie beliebige Gemische dieser Isomeren, Hexahydro-1,3- und/oder -1,4-phenylendiisocyanat, Perhydro-2,4′- und/oder -4,4′-diphenylmethan-diisocyanat, 1,3- und 1,4-Phenylendiisocyanat, 2,4- und 2,6-Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren, Diphenylmethan-2,4′- und/oder -4,4′-diisocyanat, Naphthylen-1,5-diisocyanat.
Ferner kommen beispielsweise erfindungsgemäß in Frage: Triphenylmethan-4,4′′-triisocyanat, Polyphenyl-polymethylen-polyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung erhalten und z. B. in den GB-Patentschriften 8 74 430 und 8 48 671 beschrieben werden, m- und p-Isocyanatophenylsulfonyl-isocyanate gemäß der US-Patentschrift 34 54 606, perchlorierte Arylpolyisocyanate, wie sie z. B. in der DE-Auslegeschrift 11 57 601 (US-Patentschrift 32 77 138) beschrieben werden, Carbodiimidgruppen aufweisende Polyisocyanate, wie sie in der DE-Patentschrift 10 92 007 (US-Patentschrit 31 52 162) sowie in den DE-Offenlegungsschriften 25 04 400, 25 37 685 und 25 52 350 beschrieben werden, Norboran-Diisocyanate gemäß US-Patentschrift 34 92 330, Allophanatgruppen aufweisende Polyisocyanate, wie sie z. B. in der GB-Patentschrift 9 94 890, der BE-Patentschrift 7 61 626 und der NL-Patentanmeldung 71 02 524 beschrieben werden, Isocyanuratgruppen aufweisende Polyisocyanate, wie sie z. B. in der US-Patentschrift 30 01 973, in den DE-Patentschriften 10 22 789, 12 22 067 und 10 27 394 sowie in den DE-Offenlegungsschriften 19 29 034 und 20 04 048 beschrieben werden, Urethangruppen aufweisende Polyisocyanate, wie sie z. B. in der BE-Patentschrift 7 52 261 oder in den US-Patentschriften 33 94 164 und 36 44 457 beschrieben werden, acylierte Harnstoffgruppen aufweisende Polyisocyanate gemäß der DE-Patentschrift 12 30 778, Biuretgruppen aufweisende Polyisocyanate, wie sie z. B. in den US-Patentschriften 31 24 605, 32 01 372 und 31 24 605 sowie in der GB-Patentschrift 8 89 050 beschrieben werden, durch Telomerisatinsreaktionen hergestellte Polyisocyanate, wie sie z. B. in der US-Patentschrift 36 54 106 beschrieben werden, Estergruppen aufweisende Polyisocyanate, wie sie z. B. in den GB-Patentschriften 9 65 474 und 10 72 956, in der US-Patentschrift 35 67 763 und in der DE-Patentschrift 12 31 688 genannt werden, Umsetzungsprodukte der obengenannten Isocyanate mit Acetalen gemäß der DE-Patentschrift 10 72 385 und polymere Fettsäureester enthaltende Polyisocyanate gemäß der US-Patentschrift 34 55 883.
Es ist auch möglich, die bei der technischen Isocyanatherstellung anfallenden, Isocyanatgruppen aufweisenden Destillationsrückstände, gegebenenfalls gelöst in einem oder mehreren der vorgenannten Polyisocyanate, einzusetzen. Ferner ist es möglich, beliebige Mischungen der vorgenannten Polyisocyanate zu verwenden.
Bevorzugt werden in der Regel die technisch leicht zugänglichen Polyisocyanate, z. B. das 2,4- und 2,6-Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren ("TDI"), Polyphenyl-polymethylenpolyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung hergestellt werden ("rohes MDI") und Carbodiimidgruppen, Urethangruppen, Allophanatgruppen, Isocyanuratgruppen, Harnstoffgruppen oder Biuretgruppen aufweisenden Polyisocyanate ("modifizierte Polyisocyanate"), insbesondere solche modifizierten Polyisocyanate, die sich vom 2,4- und/oder 2,6-Toluylendiisocyanat bzw. vom 4,4′- und/oder 2,4′-Diphenylmethandiisocyanat ableiten.
Besonders bevorzugt werden Naphthalin-1,5-diisocyanat, 4,4′-Diphenylmethan-diisocyanat und Toluylendiisocyanat (80% 2,4- und 20% 2,6-Isomeres).
IV. Gegebenenfalls als Hilfs- und Zusatzmittel:
  • a) Wasser und/oder leicht flüssige anorganische oder organische Substanzen als Treibmittel. Als organische Treibmittel kommen z. B. Aceton, Ethylacetat, halogensubstituierte Alkane wie Methylenchlorid, Chloroform, Ethylidenchlorid, Vinylidenchlorid, Monofluortrichlormethan, Chlordifluormethan, Dichlordifluormethan, ferner Butan, Hexan, Heptan oder Diethylether, als anorganische Treibmittel z. B. Luft, CO₂ oder N₂O in Frage. Eine Treibwirkung kann auch durch Zusatz von bei Temperaturen über Raumtemperatur unter Abspaltung von Gasen, beispielsweise von Stickstoff, sich zersetzenden Verbindungen, z. B. Azoverbindungen wie Azodicarbonamid oder Azoisobuttersäurenitril, erzielt werden. Weitere Beispiele für Treibmittel sowie Einzelheiten über die Verwendung von Treibmitteln sind im Kunststoff-Handbuch, Band VII, herausgegeben von Vieweg und Höchtlen, Carl-Hanser-Verlag, München 1966, z. B. auf den Seiten 108 und 109, 453 bis 455 und 507 bis 510 beschrieben.
  • b) Katalysatoren der an sich bekannten Art, z. B. tertiäre Amine, wie Triethylamin, Tributylamin, N-Methyl-morpholin, N-Ethyl-morpholin, N,N,N′,N′-Tetramethyl-ethylendiamin, Pentamethyl-Diethylentriamin und höhere Homologe (DE-Offenlegungsschriften 26 24 527 und 26 24 528), 1,4-Diaza-bicyclo-(2,2,2)-octan, N-Methyl-N′-dimethylaminoethylpiperazin, Bis-(dimethylaminoalkyl)-piperazine (DE-Offenlegungsschrift 26 36 787), N,N-Dimethylbenzylamin, N,N-Dimethylcyclohexylamin, N,N-Diethylbenzylamin, Bis-(N,N-diethylaminoethyl)-adipat, N,N,N′,N′-Tetramethyl-1,3-butandiamin, N,N-Dimethyl-β-phenylethylamin, 1,2-Dimethylimidazol, 2-Methylimidazol, monocyclische und bicyclische Amidine (DE-Offenlegungsschrift 17 20 633), Bis-(dialkylamino)alkylether (US-Patentschrift 33 30 782, DE-Auslegeschrift 10 30 558, DE-Offenlegungsschriften 18 04 361 und 26 18 280) sowie Amidgruppen (vorzugsweise Formamidgruppen) aufweisende tertiäre Amine gemäß den DE-Offenlegungsschriften 25 23 633 und 27 32 292). Als Katalysatoren kommen auch an sich bekannte Mannichbasen aus sekundären Aminen, wie Dimethylamin, und Aldehyden, vorzugsweise Formaldehyd, oder Ketonen wie Aceton, Methylethylketon oder Cyclohexanon und Phenolen, wie Phenol, Nonylphenol oder Bisphenol, in Frage.
    Gegenüber Isocyanatgruppen aktive Wasserstoffatome aufweisende tertiäre Amine als Katalysator sind z. B. Triethanolamin, Triisopropanolamin, N-Methyl-diethanolamin, N-Ethyl-diethanolamin, N,N-Dimethylethanolamin, deren Umsetzungsprodukte mit Alkylenoxiden wie Propylenoxid und/oder Ethylenoxid sowie sekundär-tertiäre Amine gemäß DE-Offenlegungsschrift 27 32 292.
    Als Katalysatoren kommen ferner Silaamine mit Kohlenstoff-Silizium-Bindungen, wie sie z. B. in der DE-Patentschrift 12 29 290 (entsprechend der US-Patentschrift 36 20 984) beschrieben sind, in Frage, z. B. 2,2,4-Trimethyl-2-silamorpholin und 1,3-Di­ ethylaminomethyl-tetramethyl-disiloxan.
    Als Katalysatoren kommen auch stickstoffhaltige Basen wie Tetraalkylammoniumhydroxide, ferner Alkalihydroxide wie Natriumhydroxid, Alkaliphenolate wie Natriumphenolat oder Alkalialkoholate wie Natriummethylat in Betracht. Auch Hexahydrotriazine können als Katalysatoren eingesetzt werden (DE-Offenlegungsschrift 17 69 043).
    Die Reaktion zwischen NCO-Gruppen und Zerewitinoff-aktiven Wasserstoffatomen wird auch durch Lactame und Azalactame stark beschleunigt, wobei sich zunächst ein Assoziat zwischen dem Lactam und der Verbindung mit acidem Wasserstoff ausbildet. Derartige Assoziate und ihre katalytische Wirkung werden in den DE-Offenlegungsschriften 20 62 289, 21 17 576 (US-Patentschrift 37 58 444), 21 29 198, 23 30 175 und 23 30 211 beschrieben.
    Erfindungsgemäß können auch organische Metallverbindungen, insbesondere organische Zinnverbindungen, als Katalysatoren verwendet werden. Als organische Zinnverbindungen kommen neben schwefelhaltigen Verbindungen wie Di-n-octyl-zinn-mercaptid (DE-Auslegeschrift 17 69 367; US-Patentschrift 36 45 927) vorzugsweise Zinn(II)-salze von Carbonsäuren wie Zinn(II)-acetat, Zinn(II)-octoat, Zinn(II)-ethylhexoat und Zinn(II)-laurat und die Zinn(IV)-Verbindungen, z. B. Dibutylzinnoxid, Dibutylzinndichlorid, Dibutylzinndiacetat, Dibutylzinndilaurat, Dibutylzinnmaleat oder Dioctylzinndiacetat in Betracht.
    Selbstverständlich können alle obengenannten Katalysatoren als Gemische eingesetzt werden. Von besonderem Interesse sind dabei Kombinationen aus organischen Metallverbindungen und Amidinen, Aminopyridinen oder Hydrazinopyridinen (DE-Offenlegungsschriften 24 34 185, 26 01 082 und 26 03 834).
    Weitere Vertreter von erfindungsgemäß zu verwendenden Katalysatoren sowie Einzelheiten über die Wirkungsweise der Katalysatoren sind im Kunststoff-Handbuch, Band VII, herausgegeben von Vieweg und Höchtlen, Carl-Hanser-Verlag, München 1966, z. B. auf den Seiten 96 bis 102 beschrieben.
    Die Katalysatoren werden in der Regel in einer Menge zwischen etwa 0,001 und 10 Gew.-%, bezogen auf die Gesamtmenge an Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen, eingesetzt.
  • c) Oberflächenaktive Zusatzstoffe, wie Emulgatoren und Schaumstabilisatoren. Als Emulgatoren kommen z. B. die Natriumsalze von Ricinusöl-sulfonaten oder Salze von Fettsäuren mit Aminen wie ölsaures Dieethylamin oder stearinsaures Diethanolamin in Frage. Auch Alkali- oder Ammoniumsalze von Sulfonsäuren wie etwa von Dodecylbenzolsulfonsäuren oder Dinaphtylmethandisulfonsäure oder von Fettsäuren wie Ricinolsäure oder von polymeren Fettsäuren können als oberflächenaktive Zusatzstoffe mitverwendet werden.
    Als Schaumstabilisatoren kommen vor allem Polyethersiloxane, speziell wasserlösliche Vertreter, in Frage. Diese Verbindungen sind im allgemeinen so aufgebaut, daß ein Copolymerisat aus Ethylenoxid und Propylenoxid mit einem Polydimethylsiloxanrest verbunden ist. Derartige Schaumstabilisatoren sind z. B. in den US-Patentschriften 28 34 748, 29 17 480 und 36 29 308 beschrieben. Von besonderem Interesse sind vielfach über Allophanatgruppen verzweigte Polysiloxan-Polyoxyalkylen-Copolymere gemäß DE-Offenlegungsschrift 25 58 523.
  • d) Reaktionsverzögerer, z. B. sauer reagierende Stoffe wie Salzsäure oder organische Säurehalogenide, ferner Zellregler der an sich bekannten Art wie Paraffine oder Fettalkohole oder Dimethylpolysiloxane sowie Pigmente oder Farbstoffe und Flammschutzmittel der an sich bekannten Art, z. B. Tris-chlorethylphosphat, Trikresylphosphat oder Ammoniumphosphat und -polyphosphat, ferner Stabilisatoren gegen Alterungs- und Witterungseinflüsse, Weichmacher und fungistatisch und bakteriostatisch wirkende Substanzen sowie Füllstoffe wie Bariumsulfat, Kieselgur, Ruß oder Schlämmkreide.
    Weitere Beispiele von gegebenenfalls erfindungsgemäß mitzuverwendenden oberflächenaktiven Zusatzstoffen und Schaumstabilisatoren sowie Zellreglern, Reaktionsverzögerern, Stabilisatoren, flammhemmenden Substanzen, Weichmachern, Farbstoffen und Füllstoffen sowie fungistatisch und bakteriostatisch wirksamen Substanzen sowie Einzelheiten über Verwendungs- und Wirkungsweise dieser Zusatzmittel sind im Kunststoff-Handbuch, Band VII, herausgegeben von Vieweg und Höchtlen, Carl-Hanser-Verlag, München 1966, z. B. auf den Seiten 103 bis 113 beschrieben.
Zur Herstellung der Polyurethan-Kunststoffe werden die Reaktionskomponenten nach dem an sich bekannten Einstufenverfahren, dem Prepolymerverfahren oder dem Semiprepolymerverfahren, zur Umsetzung gebracht, wobei man sich oft maschineller Einrichtungen bedient, z. B. solcher, die in der US-Patentschrift 27 64 565 beschrieben werden. Einzelheiten über Verarbeitungseinrichtungen, die auch erfindungsgemäß in Frage kommen, werden im Kunststoff-Handbuch, Band VII, herausgegeben von Vieweg und Höchtlen, Carl-Hanser-Verlag, München, 1966, z. B. auf den Seiten 121 bis 205 beschrieben.
Bei der Schaumstoffherstellung kann erfindungsgemäß die Verschäumung auch in geschlossenen Formen durchgeführt werden. Dabei wird das Reaktionsgemisch in eine Form eingetragen. Als Formmaterial kommt Metall, z. B. Aluminium, oder Kunststoff, z. B. Epoxidharz, in Frage. In der Form schäumt das schaumfähige Reaktionsgemisch auf und bildet den Formkörper. Die Formverschäumung kann dabei so durchgeführt werden, daß das Formteil an seiner Oberfläche Zellstruktur aufweist, sie kann aber auch so durchgeführt werden, daß das Formteil eine kompakte Haut und einen zelligen Kern aufweist. Erfindungsgemäß kann man in diesem Zusammenhang so vorgehen, daß man in die Form so viel schäumfähiges Reaktionsgemisch einträgt, daß der gebildete Schaumstoff die Form gerade ausfüllt. Man kann aber auch so arbeiten, daß man mehr schäumfähiges Reaktionsgemisch in die Form einträgt, als zur Ausfüllung des Forminneren mit Schaumstoff notwendig ist. Im letztgenannten Fall wird somit unter "overcharging" gearbeitet; eine derartige Verfahrensweise ist z. B. aus den US-Patentschriften 31 78 490 und 31 82 104 bekannt.
Bei der Formverschäumung werden vielfach an sich bekannte "äußere Trennmittel", wie Siliconöle, mitverwendet. Man kann aber auch sogenannte "innere Trennmittel", gegebenenfalls im Gemisch mit äußeren Trennmitteln, verwenden, wie sie z. B. aus den DE-Offenlegungsschriften 21 21 670 und 23 07 589 bekanntgeworden sind.
Erfindungsgemäß lassen sich auch kalthärtende Schaumstoffe herstellen (bgl. GB-Patentschrift 11 62 517, DE-Offenlegungsschrift 21 53 086).
Selbstverständlich können aber auch Schaumstoffe durch Blockverschäumung oder nach dem an sich bekannten Doppeltransportbandverfahren hergestellt werden.
Die nach der Erfindung erhältlichen Produkte finden z. B. folgende Anwendung:
Walzenbeläge, vor allem in der Druckindustrie, Hydrozyklone, Rohrauskleidungen, Verschleißschutz in wäßrigen Medien.
Beispiele Ether-Vorprodukte (Polyether) Beispiel I
In einem 100-l-Rührwerksbehälter aus V4A-Stahl mit geregelter Dampf-Mantelheizung, Kolonne und Aceotropabscheider wurden 70,8 kg (600 Mol) Hexandiol-1,6, 0,5 kg Schwefelsäure und 3,5 l Toluol zum Sieden erhitzt. Ab 160°C Sumpftemperatur begann im Destillat die Ausscheidung von Wasser. Durch Einstellen der Toluolmenge wurde die Sumpftemperatur konstant auf 170°C gehalten. Im Verlauf von 11 h wurden 6,41 kg (365 Mol) Kondensationswasser erhalten. Dann wurde auf 90°C abgekühlt und mit 5 l Wasser 3 h lang verrührt. Nach Neutralisation mit 20%iger Natronlauge auf pH 7 wurden im Vakuum bis zu einer Temperatur von 130°C (15 mbar) alle flüchtigen Bestandteile abdestilliert. Danach wurde durch Druckfiltration Natriumsulfat abgetrennt. Man erhielt eine bei Raumtemperatur langsam erstarrende ölige, gelbliche Flüssigkeit mit einer OH-Zahl von 424,4, entsprechend einem Molekulargewicht von 264,4 und einem Ethergruppengehalt von 1,969 Mol pro Produkt. Ausbeute 62,8 kg (96,8% d. Th.).
Ein Anteil von 8 kg wurde der fraktionierten Destillation bei 0,5 mbar unterworfen und ergab: 1,45 kg Hexandiol (18,13%), 3,18 kg Dihydroxy-dihexylether (39,8%) und 3,37 kg Oligoether.
Beispiel II
In einem 6-l-Vierhalskolben mit Rührer, Kontaktthermometer, Kolonne und Wasserabscheider wurden 1770 g (15 Mol) Hexandiol-1,6 und 2400 g (15 Mol) Nonandiol-1,9 zusammen mit 12 g Naphthalin-1,5-disulfonsäure und Toluol (wiedergewonnen aus Beispiel I mit einem Gehalt von etwa 20% Oxepan) erhitzt. Durch Zugabe oder Abnahme von Lösungsmittel wurde die Temperatur im Verlauf von 12 h unter dauerndem Sieden auf 175-177°C gehalten. Dabei wurden 252 g (14 Mol) Wasser im Abscheider erhalten. Nach Abkühlen wurde der Kolbeninhalt mit 200 ml Wasser 2 h bei 90°C verrührt und dann durch Einleiten von Ammoniak-gas neutralisiert. Nach Abdampfen aller flüchtigen Bestandteile bis 130°C, 12 mbar, wurde das Ammoniumsulfonat abfiltriert. Es wurde ein helles, niedrigschmelzendes Wachs der OH-Zahl 452 (Molekulargewicht 248) erhalten.
Ethergruppen-Gehalt: 0,92 Mol pro Mol Produkt.
Beispiel III-VIII
Analog Beispiel I bzw. II wurden die in der folgenden Tabelle I zusammengefaßten Ausgangsprodukte im 100-l-Kessel hergestellt. Als Ausgangsprodukt wurde ausschließlich Hexandiol-1,6 und als Katalysator jeweils 0,37 Gew.-% Naphthalin-1,5-disulfonsäure eingesetzt. Das Lösungsmittel Toluol wurde jeweils wieder eingesetzt, wobei der Anteil an Oxepan jeweils in abnehmendem Maße anstieg.
Die Produktionsausbeuten betrugen 96,5-98% (je nach MG). Die Neutralisation erfolgte in allen Fällen mit Ammoniak.
Tabelle I
Herstellung der Polyether-Polycarbonate Beispiel 1
In einem 100-l-Rührwerksbehälter aus V4A-Stahl mit regelbarer Dampf-Mantelbeheizung, Füllkörperkolonne (2 m Höhe, 10 cm Durchmesser), auf 50°C beheiztem Kondensator und Vorlage wurden 55,524 kg (210 Mol) Ether-Vorprodukt I und 38,52 kg (180 Mol) Diphenylcarbonat mit 1 g Dibutylzinnoxid als Katalysator bei 15 mbar erhitzt. Ab einer Sumpftemperatur von 135°C begann Phenol abzudestillieren. Die Kondensation wurde nun etwa 6 h bei dieser Temperatur vorangetrieben. In dieser Phase destillierte etwa die Hälfte der theoretischen Menge Phenol ab. Danach wurde während weiterer 6 h die Temperatur allmählich auf 200°C gesteigert und so lange auf dieser Höhe belassen (2 h), bis kein Phenol mehr abdestillierte (Menge bis dahin; 32,9 kg = 97,2%). Anschließend wurde mittels Ölpumpe der Druck auf 2 mbar abgesenkt und in weiteren 3 h bei 200°C unter Vervollständigung der Kondensation restliches Phenol abdestilliert.
Man erhielt ein niedrigschmelzendes, schwach verfärbtes Wachs mit folgenden Daten:
OH-Zahl: 55,8
Molekulargewicht: 2011
Erweichungspunkt: 31°C
Verhältnis von Ethergruppen zu Carbonatgruppen: 1 : 0,585
Viskosität: 8440 mPa · s bei 50°C
Beispiel 2
Analog Beispiel 1 wurden im 4-l-Vierhalskolben 1809 g (8,3 Mol) Dihydroxy-dihexylether aus Beispiel I mit 1562 g (7,3 Mol) Diphenylcarbonat kondensiert. Man erhielt ein fast farbloses Wachs mit folgenden Daten:
OH-Zahl: 56,3
Molekulargewicht: 20000
Erweichungspunkt: 32°C
Verhältnis von Ethergruppen zu Carbonatgruppen: 1 : 0,875
Ether- und Carbonatgruppen sind in dem Produkt alternierend angeordnet. Der Erweichungspunkt ist wegen des regelmäßigen Aufbaus etwas höher als bei Produkten mit vergleichbarer aber statistischer Anordnung der Gruppierungen.
Beispiel 3
Analog Beispiel 1 wurden 2684 kg (10 Mol) Ether-Vorprodukt aus Beispiel IV und 624 kg (6 Mol) Pentandiol-1,5 mit 2996 g (14 Mol) Diphenylcarbonat kondensiert. Man erhielt ein Polyether-Polycarbonat mit folgenden Daten:
OH-Zahl: 61,2
Molekulargewicht: 1840
Erweichungspunkt: <21°C (schmalzartig)
Verhältnis von Ethergruppen zu Carbonatgruppen: 1 : 0,93
Viskosität: 3400 mPa · s bei 50°C
Beispiel 4
Analog Beispiel 1 wurden 2480 g (10 Mol) Ether-Vorprodukt aus Beispiel II mit 1712 g (8 Mol) Diphenylcarbonat kondensiert. Man erhielt ein Polyether-Polycarbonat mit folgenden Eigenschaften:
OH-Zahl: 83,5
Molekulargewicht: 1340
Erweichungspunkt: 26°C
Verhältnis von Ethergruppen zu Carbonatgruppen: 1 : 0,87
Viskosität: 1200 mPa · s bei 50°C
Beispiele 5-10
Die folgenden Produkte wurden alle im 100 l Kessel analog Beispiel 1 hergestellt. Variiert wurden das Molekulargewicht und Verhältnis von Ethergruppen zu Carbonatgruppen. Zum Einsatz gelangten die Vorprodukte der Beispiele III bis VIII und Hexandiol-1,6 in Abmischungen (Ausnahme Beispiel 5). Anstelle der Absolutmengen sind in der folgenden Tabelle 2 die Molverhältnisse der Reaktionspartner angegeben:
Tabelle 2
Herstellung von Polyurethanelastomeren Beispiele A-G
PU-Elastomeren mit guter Belastbarkeit, Verschleißfestigkeit, Hydrolysenbeständigkeit und gleichzeitig gutem Tieftemperaturverhalten wurden unter Verwendung der erfindungsgemäßen Polyether-Polycarbonatdiolen und Naphthylen-1,5-diisocyanat hergestellt.
Beispiel A
960 g (0,5 Mol) des in Beispiel 8 beschriebenen Diols wurden auf ca. 125°C erwärmt, mit 210 g (1,00 Mol) Naphthylen-1,5-diisocyanat versetzt, sofort intensiv verrührt und nach 2 Minuten im Vakuum entgast. In einer exothermen Reaktion entstand nach ca. 15 Minuten ein NCO-Prepolymer. In dieses Prepolymer wurden als Vernetzer 33 g (0,733 Mol) 1,4-Butandiol eingerührt. Das reagierende Gemisch wurde innerhalb von 1 Minute in auf 110°C vorgewärmte Formen gegossen und erstarrte darin nach wenigen Minuten.
Das resultierende Elastomer wurde 24 Stunden bei 110°C nachgetempert und anschließend 7 Tage bei Raumtemperatur gelagert.
Es entstand ein Elastomer mit den in Tabelle 3 wiedergegebenen Eigenschaften.
Beispiel B
960 g (0,5 Mol) des in Beispiel 6 beschriebenen Diols wurden auf ca. 125°C erwärmt, mit 210 g (1,00 Mol) Naphthylen-1,5-diisocyanat versetzt, sofort intensiv verrührt und nach 2 Minuten im Vakuum entgast. In einer exothermen Reaktion entstand nach ca. 15 Minuten ein NCO-Prepolymer. In dieses Prepolymer wurden als Vernetzer 33 g (0,733 Mol) 1,4-Butandiol eingerührt. Das reagierende Gemisch wurde innerhalb von 1 Minute in auf 110°C vorgewärmte Formen gegossen und erstarrte darin nach wenigen Minuten.
Das resultierende Elastomer wurde 24 Stunden bei 110°C nachgetempert und anschließend 7 Tage bei Raumtemperatur gelagert.
Es entstand ein Elastomer mit den in Tabelle 3 wiedergegebenen Eigenschaften.
Beispiel C
890 g (0,5 Mol) des in Beispiel 9 beschriebenen Diols wurden auf ca. 125°C erwärmt, mit 180 g (0,857 Mol) Naphthylen-1,5-diisocyanat versetzt, sofort intensiv verrührt und nach 2 Minuten im Vakuum entgast. In einer exothermen Reaktion entstand nach ca. 15 Minuten ein NCO-Prepolymer. In dieses Prepolymer wurden als Vernetzer 20 g (0,444 Mol) 1,4-Butandiol eingerührt. Das reagierende Gemisch wurde innerhalb von 1 Minute in auf 110°C vorgewärmte Formen gegossen und erstarrte darin nach wenigen Minuten.
Das resultierende Elastomer wurde 24 Stunden bei 110°C nachgetempert und anschließend 7 Tage bei Raumtemperatur gelagert.
Es entstand ein Elastomer mit den in Tabelle 3 wiedergegebenen Eigenschaften.
Die Elastomeren nach Beispielen A-C besitzen eine bemerkenswert niedrige Glasübergangstemperatur, hohen Weiterreißwiderstand, extrem geringen Abrieb sowie gute Dämpfungs- bzw. Modulwerte und eine sehr gute Hydrolysenbeständigkeit. Quellungsversuche in verschiedenen Chemikalien (Tabelle 4) zeigen eine insgesamt gute Quellbeständigkeit. Außer in Aromaten (Toluol, ASTM ÖL III) ist das Quellverhalten Esterurethanen (Vergleichsbeispiele α und β) überlegen oder ebenbürtig.
Vergleichsbeispiel a
1000 g (0,5 Mol) eines Polyethylenadipatdiols mit einem mittleren Molgewicht von 2000 wurden auf ca. 125°C erwärmt, mit 180 g (0,857 Mol) Naphthylen-1,5-diisocyanat versetzt, sofort intensiv verrührt und nach 2 Minuten im Vakuum entgast. In einer exothermen Reaktion entstand nach ca. 15 Minuten ein NCO-Prepolymer. In dieses Prepolymer wurden als Vernetzer 20 g (0,444 Mol) 1,4-Butandiol eingerührt. Das reagierende Gemisch wurde innerhalb von 1 Minute in auf 110°C vorgewärmte Formen gegossen und erstarrte darin nach wenigen Minuten.
Das resultierende Elastomer wurde 24 Stunden bei 110°C nachgetempert und anschließend 7 Tage bei Raumtemperatur gelagert.
Es entstand ein Elastomer mit den in Tabelle 3 wiedergegebenen Eigenschaften.
Vergleichsbeispiel β
1000 g (0,5 Mol) eines hydroxyfunktionellen Polyesters, hergestellt aus Adipinsäure, 1,6-Hexandiol und Neopentylglykol mit einem mittleren Molgewicht von 2000, wurden auf ca. 125°C erwärmt, mit 180°C (0,857 Mol) Naphthylen-1,5-diisocyanat versetzt, sofort intensiv verrührt und nach 2 Minuten im Vakuum entgast. In einer exothermen Reaktion entstand nach ca. 15 Minuten ein NCO-Prepolymer. In dieses Prepolymer wurden als Vernetzer 20 g (0,444 Mol) 1,4-Butandiol eingerührt. Das reagierende Gemisch wurde innerhalb von 1 Minute in auf 110°C vorgewärmte Formen gegossen und erstarrte darin nach wenigen Minuten.
Das resultierende Elastomer wurde 24 Stunden bei 110°C nachgetempert und anschließend 7 Tage bei Raumtemperatur gelagert.
Es entstand ein Elastomer mit den in Tabelle 3 wiedergegebenen Eigenschaften.
Tabelle 3
Tabelle 4
Quellung in Lösungsmitteln (28 d Immersion)
Stopfen 29 mm Durchmesser, 12,5 mm hoch
Beispiel D
Herstellung eines sehr harten Elastomers mit guter Belastbarkeit, Hydrolysenbeständigkeit und gleichzeitig gutem Tief- und Hochtemperaturverhalten unter Verwendung der erfindungsgemäßen Polyether-Polycarbonatdiolen und 4,4′-Diphenylethandiisocyanat (MDI).
Beispiel D₁
Herstellung eines Präpolymers aus dem in Beispiel 1 beschriebenen Polyethercarbonatdiol (1000-0,5 Mol) und MDI (610 g - 2,44 Mol).
Flüssiges MDI wurde bei 70°C vorgelegt das Polyol (40°C) langsam unter Rühren zugegeben und 3 h nachgerührt. Die Temperatur stieg nicht über 85°C.
Das fertige Präpolymer wurde anschließend unter Vakuum bei 85°C entgast.
NCO-Gehalt
  theoretisch10%   gefunden 9,76%
Beispiel D₂
1000 g (2,324 Mol NCO) des oben beschriebenen Präpolymers D₁ wurden auf ca. 100°C erwärmt und unter Vakuum entgast. In dieses Präpolymer wurden als Vernetzer (260 g) 4-Chlor-3,5-diaminobenzoesäureisobutylester bei 90°C eingerührt. Das reagierende Gemisch wurde innerhalb von 1 Minute in auf 110°C vorgewärmte Formen gegossen und erstarrte darin nach wenigen Minuten.
Das resultierende Elastomer wurde 24 h bei 110°C nachgetempert und anschließend 7 Tage bei Raumtemperatur gelagert. Es entstand ein Elastomer mit den in Tabelle 5 wiedergegebenen Eigenschaften. Das Elastomer besitzt eine bemerkenswert niedrige Glasübergangstemperatur, hohen Weiterreißwiderstand, relativ geringen Abrieb sowie gute Dämpfungs- bzw. Modulwerte. Die Wärmebeständigkeit und Hydrolysenbeständigkeit sind außerordentlich gut.
Tabelle 5
Eigenschaften der Elastomere basierend auf MDI
Beispiele E und F
Herstellung von Elastomeren mit guter Belastbarkeit, Verschleißfestigkeit, Hydrolysenbeständigkeit und gleichzeitig gutem Tieftemperaturverhalten unter Verwendung der erfindungsgemäßen Polyether-Polycarbonatdiolen und Toluenediisocyanat (TDI).
Beispiel E₁
Es wurde aus dem in Beispiel 7 beschriebenen Polyethercarbonatdiol ein Prepolymer durch Umsetzung mit überschüssigem TDI (80% 2,4 TDI und 20% 2,6 TDI) hergestellt. Um den Gehalt an freiem TDI möglichst niedrig zu halten, wurde das Prepolymer anschließend gedünnschichtet.
Kenndaten
  NCO-Gehalt4,30%   Viskosität bei 70°C2,250 mPa · s   freies TDI0,2%
Beispiel E₂
1000 g des in Beispiel E₁ beschriebenen Präpolymers wurden auf ca. 100°C erwärmt und mit (122,5 g) 4-Chlor-3,5-diaminobenzoesäure Isobutylester (90°C) als Vernetzer vermischt. Das reagierende Gemisch wurde innerhalb von 1 Minute in auf 110°C vorgewärmte Formen gegossen und erstarrte darin nach wenigen Minuten.
Das resultierende Elastomer wurde 24 h bei 110°C nachgetempert und anschließend 7 Tage bei Raumtemperatur gelagert. Es entstand ein Elastomer mit den in Tabelle 6 wiedergegebenen Eigenschaften.
Beispiel F₁
Es wurde aus dem in Beispiel 10 beschriebenen Polyether-Polycarbonatdiol ein Präpolymer durch Umsetzung mit überschüssigem TDI (80% 2,4 TDI und 20% 2,6 TDI) hergestellt. Um den Gehalt an freiem TDI möglichst niedrig zu halten wurde das Präpolymer anschließend gedünnschichtet.
Kenndaten
  NCO-Gehalt6,1%   Viskosität bei 70°C1500 mPa · s   freies TDI0,3%
Beispiel F₂
1000 g des in Beispiel F₁ beschriebenen Präpolymers wurden auf ca. 100°C erwärmt und mit (165 g) 4-Chloro-3,5-diaminobenzoesäure Isobutylester (90°C) als Vernetzer vermischt. Das reagierende Gemisch wurde innerhalb von 1 Minute in auf 110°C vorgewärmte Formen gegossen und erstarrte darin in wenigen Minuten.
Das resultierende Elastomer wurde 24 h bei 110°C nachgetempert und anschließend 7 Tage bei Raumtemperatur gelagert.
Es entstand ein Elastomer mit den in Tabelle 6 wiedergegebenen Eigenschaften.
Vergleichsbeispiel γ und δ
Ähnliche monomerenarme Polyester-TDI-Präpolymere:
Desmodur VP PU 0137® und
Desmodur VP PU 0127®.
Kenndaten:
PU 0137
  NCO-Gehalt3,4 ± 0,2%   Viskosität bei 70°Cca. 2500 mPa · s   freies TDIunter 0,5%
PU 0127
  NCO-Gehalt6,8 ± 0,3%   Viskosität bei 70°Cca. 1500 mPa · s   freies TDIunter 0,5%
Durch Abmischung dieser zwei Präpolymere kann der NCO-Gehalt im Bereich von 3,4% und 6,8% beliebig eingestellt werden. So weist z. B. eine Mischung von PU 0137 (3) : PU 0127 (1) einen NCO-Gehalt von 4,7% auf (entspricht ungefähr dem Präpolymer in Beispiel E) und eine Mischung von PU 0127 (3) : PU 0137 (1) weist einen NCO-Gehalt von ca. 5,8% auf (entspricht dem NCO-Gehalt in Beispiel F).
Vergleichsbeispiel δ
Analog Beispiel E wurde die obige Mischung mit 4,7% NCO (1000 g) mit (113 g) 4-Chloro-3,5-diamonobenzoesäure Isobutylester umgesetzt.
Vergleichsbeispiel δ
Analog Beispiel F wurde die obige Mischung mit 5,8% NCO (1000 g) mit 4-Chloro-3,5-diaminobenzoesäure-isobutylester umgesetzt.
Tabelle 6
Eigenschaften der Elastomere basierend auf TDI

Claims (5)

1. Hydroxyl-Endgruppen aufweisende Polyether-Polycarbonate mit MG von 500-12 000, bestehend aus Hexamethylengruppen und gegebenenfalls bis zu 50 Mol-% der Hexamethylengruppen aus Penta-, Hepta-, Octa-, Nona- oder Decamethylengruppen, die statistisch, alternierend oder blockweise durch Ether- und Carbonatgruppen verknüpft sind, wobei das Verhältnis von Ethergruppen zu Carbonatgruppen 5 : 1 bis 1 : 5 beträgt.
2. Polyether-Polycarbonate nach Anspruch 1, bestehend ausschließlich aus Hexamethylengruppen.
3. Polyether-Polycarbonate nach Anspruch 1 oder 2, bei denen das Verhältnis von Ether- zu Carbonatgruppen 3 : 1 bis 1 : 3 beträgt.
4. Verfahren zur Herstellung von Polyether-Polycarbonaten nach Ansprüchen 1-3, dadurch gekennzeichnet, daß man in der ersten Reaktionsstufe Polyetherdiole mit MG von 150-500 durch an sich bekannte Veretherung von Hexandiol-1,6 und gegebenenfalls Heptandiol-1,7, Octandiol-1,8, Nonandiol-1,9 oder durch Einwirkung von Basen auf entsprechende Reaktionsgemische von α,ω-Diolen, α,l-Halogenalkoholen und α,ω-Dihalogenalkanen herstellt und in der 2. Reaktionsstufe die Polyetherdiole in an sich bekannter Weise, gegebenenfalls zusammen mit Pentandiol-1,5, Hexandiol-1,6, Heptandiol-1,7, Octandiol-1,8, Nonandiol-1,9 oder Decandiol-1,10, mit Diarylcarbonaten, Dialkylcarbonaten, Dioxolanonen, Hexandiolbischlorkohlensäureestern, Phosgen oder Harnstoff zu Polyether-Polycarbonaten mit MG von 500-12 000 umsetzt, wobei der Anteil der Diole außer Hexandiol höchstens 50 Mol-% in den beiden Reaktionsstufen ausmachen darf.
5. Verfahren zur Herstellung von gegebenenfalls geschäumten Polyurethan-Kunststoffen durch Umsetzung von höhermolekularen, mindestens zwei Hydroxylgruppen enthaltenden Verbindungen, gegebenenfalls weiteren niedermolekularen Di- und Polyolen, niedermolekularen Kettenverlängerern und gegebenenfalls Treibmitteln mit Di- und/oder Polyisocyanaten nach dem Ein- oder Zweistufenverfahren, gegebenenfalls in inerten Lösungsmitteln oder in wäßriger Emulsion und üblichen Hilfs- und Zusatzstoffen, dadurch gekennzeichnet, daß die höhermolekulare Hydroxyverbindung zumindest zu 50 Gew.-% aus Polyether-Polycarbonaten nach Ansprüchen 1-3 bestehen.
DE19873717060 1987-05-21 1987-05-21 Polyether-polycarbonat-diole, ihre herstellung und verwendung als ausgangsprodukte fuer polyurethankunststoffe Withdrawn DE3717060A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE19873717060 DE3717060A1 (de) 1987-05-21 1987-05-21 Polyether-polycarbonat-diole, ihre herstellung und verwendung als ausgangsprodukte fuer polyurethankunststoffe
AT88107467T ATE98273T1 (de) 1987-05-21 1988-05-10 Polyether-polycarbonat-diole, ihre herstellung und verwendung als ausgangsprodukte fuer polyurethankunststoffe.
DE88107467T DE3886094D1 (de) 1987-05-21 1988-05-10 Polyether-Polycarbonat-Diole, ihre Herstellung und Verwendung als Ausgangsprodukte für Polyurethankunststoffe.
ES88107467T ES2059430T3 (es) 1987-05-21 1988-05-10 Dioles de polieter-policarbonato, su obtencion y empleo como productos de partida para materias sinteticas de poliuretano.
EP88107467A EP0292772B1 (de) 1987-05-21 1988-05-10 Polyether-Polycarbonat-Diole, ihre Herstellung und Verwendung als Ausgangsprodukte für Polyurethankunststoffe
US07/193,303 US4808691A (en) 1987-05-21 1988-05-11 Polyether-polycarbonate diols and processes for their production and use
CA000566598A CA1305172C (en) 1987-05-21 1988-05-12 Polyether-polycarbonate diols and processes for their production and use
JP63120819A JP2631507B2 (ja) 1987-05-21 1988-05-19 ポリエーテル−ポリカーボネートジオールおよびそれの製造方法並びに使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19873717060 DE3717060A1 (de) 1987-05-21 1987-05-21 Polyether-polycarbonat-diole, ihre herstellung und verwendung als ausgangsprodukte fuer polyurethankunststoffe

Publications (1)

Publication Number Publication Date
DE3717060A1 true DE3717060A1 (de) 1988-12-01

Family

ID=6328051

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19873717060 Withdrawn DE3717060A1 (de) 1987-05-21 1987-05-21 Polyether-polycarbonat-diole, ihre herstellung und verwendung als ausgangsprodukte fuer polyurethankunststoffe
DE88107467T Expired - Fee Related DE3886094D1 (de) 1987-05-21 1988-05-10 Polyether-Polycarbonat-Diole, ihre Herstellung und Verwendung als Ausgangsprodukte für Polyurethankunststoffe.

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE88107467T Expired - Fee Related DE3886094D1 (de) 1987-05-21 1988-05-10 Polyether-Polycarbonat-Diole, ihre Herstellung und Verwendung als Ausgangsprodukte für Polyurethankunststoffe.

Country Status (7)

Country Link
US (1) US4808691A (de)
EP (1) EP0292772B1 (de)
JP (1) JP2631507B2 (de)
AT (1) ATE98273T1 (de)
CA (1) CA1305172C (de)
DE (2) DE3717060A1 (de)
ES (1) ES2059430T3 (de)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0784097A1 (de) 1995-12-21 1997-07-16 Bayer Ag Dispersion nachvernetzbarer Beschichtungsmittel
US6552117B2 (en) 1999-12-23 2003-04-22 Akzo Nobel N.V. Aqueous coating composition comprising an addition polymer and a polyurethane
EP1418192A1 (de) 2002-11-07 2004-05-12 Bayer MaterialScience AG Polyurethanharz mit hohem Carbonatgruppengehalt
EP1614702A1 (de) * 2004-07-05 2006-01-11 Bayer MaterialScience AG Herstellung klarer Isocyanatprepolymere auf Hexandiolethercarbonat-Basis
EP1700873A1 (de) 2005-03-11 2006-09-13 Bayer MaterialScience AG Spezielle Allophanate enthaltende, modifizierte Polyurethane
WO2007068683A1 (en) 2005-12-15 2007-06-21 Akzo Nobel Coatings International B.V. Multilayer coating system
EP2014693A2 (de) 2007-07-11 2009-01-14 Bayer MaterialScience AG Polyurethan- und Polyurethanharnstoffelastomere auf Basis von Polycarbonatpolyolen
DE102007040240A1 (de) 2007-08-25 2009-02-26 Bayer Materialscience Ag Verfahren zur Herstellung von niedrigviskosen Allophanaten mit aktinisch härtbaren Gruppen
EP2031003A1 (de) 2007-08-25 2009-03-04 Bayer MaterialScience AG Verfahren zur Herstellung von niedrigviskosen Allophanaten mit aktinisch härtbaren Gruppen
DE102008034473A1 (de) 2008-07-24 2010-01-28 Bayer Technology Services Gmbh Verfahren zur Herstellung von strahlungshärtbaren, Urethangruppen enthaltenden Präpolymeren
DE102009008569A1 (de) 2009-02-12 2010-08-19 Bayer Materialscience Ag Verfahren zur Herstellung von besonders reaktiven und niedrigviskosen Allophanaten mit aktinisch härtbaren Gruppen und deren Verwendung zur Herstellung besonders kratzfester Beschichtungen
DE102009040333A1 (de) 2009-09-05 2011-03-10 Bayer Materialscience Ag Verfahren zur kontinuierlichen Herstellung von Allophanaten
EP2387900A1 (de) 2010-05-17 2011-11-23 Bayer MaterialScience AG Verfahren zum Zusammenfügen von Bauteilen, insbesondere in der Herstellung von Schuhen
WO2011144530A1 (en) 2010-05-17 2011-11-24 Bayer Materialscience Ag Process for joining together components, in particular in the production of shoes
WO2012022389A1 (en) 2010-08-17 2012-02-23 Clariant International Ltd Stable aqueous wax dispersions
EP2441791A1 (de) 2010-10-14 2012-04-18 Clariant International Ltd. Stabile wässrige Wachsdispersionen
WO2012069414A1 (en) 2010-11-25 2012-05-31 Bayer Materialscience Ag Polyurethane resin with high carbonate group content
WO2012143328A1 (en) 2011-04-19 2012-10-26 Bayer Intellectual Property Gmbh Aqueous resin composition comprising a polyester-polyurethane resin and a dendritic polyol
WO2013010856A1 (en) 2011-07-15 2013-01-24 Bayer Intellectual Property Gmbh Aqueous resin composition comprising a polyester-polyurethane resin including a dendritic polyol
WO2013020950A2 (de) 2011-08-09 2013-02-14 Bayer Intellectual Property Gmbh Verfahren zur verstärkung eines gebäudeteils
DE102012110327A1 (de) 2012-10-29 2014-04-30 Bayer Materialscience Aktiengesellschaft Verformbare Folie
WO2014067873A1 (de) 2012-10-29 2014-05-08 Bayer Materialscience Ag Beschichtungsmittel für mattierbare beschichtungen
WO2014139954A1 (en) 2013-03-14 2014-09-18 Allnex Ip Sarl Methods for making actinic radiation curable elastomers thick films free from oxygen inhibition during curing
WO2016162394A1 (de) 2015-04-07 2016-10-13 Covestro Deutschland Ag Verfahren zum verkleben von substraten mit klebstoffen
WO2016166096A1 (de) 2015-04-13 2016-10-20 Covestro Deutschland Ag Wässrige polyurethan-polyacrylat-dispersionen
EP3085720A1 (de) 2015-04-21 2016-10-26 Covestro Deutschland AG Hydrophil modifizierter polyisocyanuratkunststoff und verfahren zu dessen herstellung
WO2016170060A1 (en) 2015-04-21 2016-10-27 Covestro Deutschland Ag Process for producing polyisocvanurate plastics having functionalized surfaces
WO2016200956A1 (en) 2015-06-08 2016-12-15 Maguire Francis P Process for the preparation of polyurethane solutions based on silicon-polycarbonate diols
WO2016200958A1 (en) 2015-06-08 2016-12-15 Maguire Francis P Synthesis of polycarbonate siloxane diols
WO2017174303A1 (de) 2016-04-04 2017-10-12 Tesa Se Strahlenaktivierbares haftklebeband mit dunkelreaktion und dessen verwendung
EP3502158A1 (de) 2017-12-19 2019-06-26 Covestro Deutschland AG Polycarbonatpolyole, polyisocyanatprepolymere und polyurethan- und polyurethanharnstoffelastomere auf deren basis
WO2019121387A1 (de) 2017-12-21 2019-06-27 Covestro Deutschland Ag Frostbeständige wasserlacke auf basis von polyisocyanaten
WO2019121388A1 (de) 2017-12-21 2019-06-27 Covestro Deutschland Ag Frostbeständige klebstoffe auf basis von polyisocyanaten
US10590226B2 (en) 2015-04-21 2020-03-17 Covestro Deutschland Ag Solids based on polyisocyanurate polymers produced under adiabatic conditions
US10597484B2 (en) 2015-04-21 2020-03-24 Covestro Deutschland Ag Polyisocyanurate plastics having high thermal stability
US10717805B2 (en) 2015-04-21 2020-07-21 Covestro Deutschland Ag Process for producing polyisocyanurate plastics
US10752723B2 (en) 2015-04-21 2020-08-25 Covestro Deutschland Ag Polyisocyanurate polymer and process for the production of polyisocyanurate polymers
US11441048B2 (en) 2018-09-26 2022-09-13 Dvorchak Enterprises Llc One component UV curable compositions and methods for making same
DE102022105185A1 (de) 2022-03-04 2023-09-07 Tesa Se Lösbares Laminat und Verfahren zum Lösen dauerhafter struktureller Verklebungen

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0358555A3 (de) * 1988-09-06 1991-05-08 Daicel Chemical Industries, Ltd. Polycarbonatdiol-Zusammensetzung sowie Polyurethanharz
DE3932949A1 (de) * 1989-10-03 1991-04-11 Bayer Ag Elasthanfasern hoher dehnbarkeit und festigkeit und ein verfahren zu ihrer herstellung
DE3940270A1 (de) * 1989-12-06 1991-06-13 Bayer Ag Verfahren zur herstellung von waermestandfesten polyurethanharnstoff-elastomeren
DE4004882A1 (de) * 1990-02-16 1991-08-22 Basf Ag Polyetherpolycarbonatdiole
JPH03292376A (ja) * 1990-04-10 1991-12-24 Toyobo Co Ltd ガラス飛散防止用コーティング剤
IT1251489B (it) * 1991-09-17 1995-05-15 Enichem Sintesi Policarbonati dioloterminati
EP0674039A3 (de) * 1994-03-22 1999-11-24 Bayer Ag Verfahren zur Textilbeschichtung
US20050043808A1 (en) * 1994-05-06 2005-02-24 Advanced Bio Surfaces, Inc. Knee joint prosthesis
DE19513164A1 (de) * 1995-04-07 1996-10-10 Bayer Ag Polycarbonat-Diole, ihre Herstellung und Verwendung als Ausgangsprodukte für Polyurethan-Kunststoffe
DE19619237A1 (de) 1996-05-13 1997-11-20 Bayer Ag Hydroxyfunktionelle Polyurethancarbonate, ein Verfahren zu deren Herstellung und deren Verwendung
EP1230902A1 (de) * 1996-11-15 2002-08-14 Advanced Bio Surfaces, Inc. Biomateralsystem für in-situ Gewebewiederherstellung
DE19900554A1 (de) * 1999-01-09 2000-07-13 Bayer Ag Verfahren zur Herstellung von aliphatischen Oligocarbonatdiolen aus Dimethylcarbonat und aliphatischen Diolen
US20080125247A1 (en) * 2004-06-02 2008-05-29 Murali Rajagopalan Compositions for Golf Equipment
US7105628B2 (en) * 2002-08-27 2006-09-12 Acushnet Company Compositions for golf equipment
DE10027907A1 (de) 2000-06-06 2001-12-13 Bayer Ag Verfahren zur Herstellung von aliphatischen Oligocarbanatdiolen
EP1315470B1 (de) 2000-08-28 2009-07-15 Disc Dynamics, Inc. System zur wiederherstellung von gelenkoberflächen von säugetieren
JP4200661B2 (ja) * 2001-02-08 2008-12-24 宇部興産株式会社 熱可塑性ポリウレタン
DE60102209T2 (de) * 2000-12-26 2005-02-03 Ube Industries, Ltd., Ube Thermoplastische Polyurethane
US7112693B2 (en) * 2001-06-27 2006-09-26 Bayer Aktiengesellschaft Process for producing aliphatic oligocarbonate diols
DE10130882A1 (de) 2001-06-27 2003-01-16 Bayer Ag Verfahren zur Herstellung von aliphatischen Oligocarbonatdiolen
WO2003053278A2 (en) * 2001-12-19 2003-07-03 Advanced Bio Surfaces, Inc. Bone smoothing method and system
EP1474071B1 (de) * 2002-01-22 2010-05-19 ABS Corporation Interpositioniertes arthroplastiesystem
US7098274B2 (en) * 2002-08-27 2006-08-29 Acushnet Company Compositions for golf equipment
US20060111726A1 (en) * 2002-07-11 2006-05-25 Advanced Bio Surfaces, Inc. Method and kit for interpositional arthroplasty
US7138477B2 (en) * 2002-08-27 2006-11-21 Acushnet Company Compositions for golf equipment
US7378483B2 (en) * 2002-08-27 2008-05-27 Acushnet Company Compositions for golf equipment
US7101951B2 (en) * 2002-08-27 2006-09-05 Acushnet Company Compositions for golf equipment
US7259222B2 (en) * 2002-08-27 2007-08-21 Acushnet Company Compositions for use in golf balls
US7105623B2 (en) * 2002-08-27 2006-09-12 Acushnet Company Compositions for golf equipment
US7138476B2 (en) * 2002-08-27 2006-11-21 Acushnet Company Compositions for golf equipment
US7157545B2 (en) * 2002-08-27 2007-01-02 Acushnet Company Compositions for golf equipment
US7115703B2 (en) * 2002-08-27 2006-10-03 Acushnet Company Compositions for golf equipment
US7138475B2 (en) * 2002-08-27 2006-11-21 Acushnet Company Compositions for golf equipment
DE10303881A1 (de) * 2003-01-31 2004-08-12 Bayer Ag Verfahren zur Herstellung von oligomeren aliphatischen Diolen, darauf basierenden Polycarbonatdiolen und deren Prepolymeren
DE10306243A1 (de) * 2003-02-14 2004-08-26 Bayer Ag Einkomponenten-Beschichtungssysteme
US20110136587A1 (en) * 2003-05-09 2011-06-09 Shawn Ricci Golf balls comprising thermoplastic or thermoset composition having controlled gel time
JP4413226B2 (ja) 2003-09-12 2010-02-10 ビーエーエスエフ ソシエタス・ヨーロピア 高分岐型または超分岐型の高官能性ポリカルボナート、その製造方法および使用方法
DE10343675A1 (de) * 2003-09-18 2005-04-14 Bayer Materialscience Ag Wässrige Klebstoff-Dispersionen
MXPA06002882A (es) * 2003-09-18 2006-06-05 Bayer Materialscience Ag Dispersiones de adhesivo acuosas.
DE102004002525A1 (de) * 2004-01-16 2005-08-04 Bayer Materialscience Ag Beschichtungsmittelzusammensetzung
US7253242B2 (en) * 2004-06-02 2007-08-07 Acushnet Company Compositions for golf equipment
US7253245B2 (en) * 2004-06-02 2007-08-07 Acushnet Company Compositions for golf equipment
US7276570B2 (en) * 2004-06-02 2007-10-02 Acushnet Company Compositions for golf equipment
US7265195B2 (en) * 2004-06-02 2007-09-04 Acushnet Company Compositions for golf equipment
US7256249B2 (en) * 2004-06-02 2007-08-14 Acushnet Company Compositions for golf equipment
US20060282169A1 (en) * 2004-12-17 2006-12-14 Felt Jeffrey C System and method for upper extremity joint arthroplasty
JP2008526373A (ja) * 2005-01-08 2008-07-24 アルファスパイン インコーポレイテッド モジュール式円板装置
DE102005009166A1 (de) 2005-02-25 2006-08-31 Basf Ag Hochfunktionelle, hoch- oder hyperverzweigte Polycarbonate sowie deren Herstellung und Verwendung
US7267690B2 (en) * 2005-03-09 2007-09-11 Vertebral Technologies, Inc. Interlocked modular disc nucleus prosthesis
DE102005031977A1 (de) * 2005-07-08 2007-01-11 Bayer Materialscience Ag Verfahren zur Herstellung von sedimentationsstabilen NCO-Prepolymeren und ihre Verwendung
ATE514726T1 (de) * 2006-11-15 2011-07-15 Basf Se Verfahren zur herstellung von polyurethan- weichschaumstoffen
US9737414B2 (en) 2006-11-21 2017-08-22 Vertebral Technologies, Inc. Methods and apparatus for minimally invasive modular interbody fusion devices
US20090181068A1 (en) * 2008-01-14 2009-07-16 Dunn Richard L Low Viscosity Liquid Polymeric Delivery System
KR101464983B1 (ko) 2008-05-01 2014-11-25 스파인셀 프러프라이어테리 리미티드 조직 보형물의 형성 및 삽입기구 및 그의 시스템 및 방법
DE102010019504A1 (de) * 2010-05-06 2011-11-10 Bayer Materialscience Ag Polyisocyanatprepolymere und deren Verwendung
EP2665787B1 (de) 2011-01-20 2018-08-22 Allnex Netherlands B.V. Nichtwässrige polyurethanbeschichtungszusammensetzungen
CN110713585A (zh) 2011-03-28 2020-01-21 科思创德国股份有限公司 制造聚氨酯-软质泡沫材料的方法
EP2548908A1 (de) 2011-07-18 2013-01-23 Bayer MaterialScience AG Verfahren zur Herstellung von Polyetherpolyolen
WO2013076099A1 (de) 2011-11-24 2013-05-30 Bayer Intellectual Property Gmbh Herstellung und verwendung von hochmolekularen aliphatischen polycarbonaten
US9510953B2 (en) 2012-03-16 2016-12-06 Vertebral Technologies, Inc. Modular segmented disc nucleus implant
US9687436B2 (en) 2013-09-23 2017-06-27 Covestro Deutschland Ag Plasticizers for nail varnish
GB201717441D0 (en) 2017-10-24 2017-12-06 Econic Tech Ltd A polymerisation process
JP6804487B2 (ja) 2018-05-09 2020-12-23 第一工業製薬株式会社 熱可塑性ポリウレタン樹脂製造用2液硬化型組成物、熱可塑性ポリウレタン樹脂および繊維強化樹脂
GB201814526D0 (en) 2018-09-06 2018-10-24 Econic Tech Ltd Methods for forming polycarbonate ether polyols and high molecular weight polyether carbonates
US20220144997A1 (en) * 2019-03-07 2022-05-12 Asahi Kasei Kabushiki Kaisha Polycarbonate diols and their uses
US20230106532A1 (en) 2020-04-07 2023-04-06 Covestro Deutschland Ag Cold-stable nco prepolymers, method for the preparation and use thereof
DE102021109753A1 (de) 2021-04-19 2022-10-20 Voith Patent Gmbh Polyurethan, Walzenbezug und Herstellungsverfahren
JP7054319B1 (ja) * 2021-07-30 2022-04-13 イチカワ株式会社 抄紙器具および抄紙器具の製造方法
JP7045516B1 (ja) * 2021-07-30 2022-03-31 イチカワ株式会社 抄紙器具および抄紙器具の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE857948C (de) * 1943-12-25 1952-12-04 Basf Ag Verfahren zur Herstellung von neutralen Estern der Kohlensaeure
US2492955A (en) * 1946-08-31 1950-01-03 Shell Dev Polyoxyalkylene compounds
NL252985A (de) * 1959-06-30
DE1770245C3 (de) * 1968-04-23 1979-11-15 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von gegebenenfalls vernetzten Polyurethanen
CH525920A (de) * 1969-03-28 1972-07-31 Bayer Ag Verfahren zur Herstellung difunktioneller aliphatischer endständige Hydroxylgruppen aufweisender Polycarbonate
DE1964998C3 (de) * 1969-12-24 1979-02-15 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von Polyurethanelastomeren
DE2221751C3 (de) * 1972-05-04 1978-08-10 Bayer Ag, 5090 Leverkusen Polyurethanharnstoff elastomere
FR2294199A1 (fr) * 1974-12-11 1976-07-09 Poudres & Explosifs Ste Nale Procede perfectionne de preparation de polycarbonates en deux etapes
US4105641A (en) * 1975-05-27 1978-08-08 Bayer Aktiengesellschaft Process for the preparation of aliphatic polycarbonates and polyurethanes therefrom
US4476293A (en) * 1981-11-30 1984-10-09 E. I. Du Pont De Nemours And Company Polymeric carbonate diols of copolyether glycols and polyurethanes prepared therefrom
US4463141A (en) * 1981-11-30 1984-07-31 E. I. Du Pont De Nemours And Company Polyether carbonate diols and polyurethanes prepared therefrom
US4634743A (en) * 1983-08-22 1987-01-06 The Dow Chemical Company Novel polyether polycarbonate block copolymers and polyurethanes prepared therefrom
US4463191A (en) * 1983-09-26 1984-07-31 The Goodyear Tire & Rubber Company Process for the reductive alkylation of aromatic nitro-containing compounds with ketones or aldehydes

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0784097A1 (de) 1995-12-21 1997-07-16 Bayer Ag Dispersion nachvernetzbarer Beschichtungsmittel
US6552117B2 (en) 1999-12-23 2003-04-22 Akzo Nobel N.V. Aqueous coating composition comprising an addition polymer and a polyurethane
EP1418192A1 (de) 2002-11-07 2004-05-12 Bayer MaterialScience AG Polyurethanharz mit hohem Carbonatgruppengehalt
EP1614702A1 (de) * 2004-07-05 2006-01-11 Bayer MaterialScience AG Herstellung klarer Isocyanatprepolymere auf Hexandiolethercarbonat-Basis
EP1700873A1 (de) 2005-03-11 2006-09-13 Bayer MaterialScience AG Spezielle Allophanate enthaltende, modifizierte Polyurethane
WO2007068683A1 (en) 2005-12-15 2007-06-21 Akzo Nobel Coatings International B.V. Multilayer coating system
US7923113B2 (en) 2005-12-15 2011-04-12 Akzo Nobel Coating International B.V. Multilayer coating system
EP2014693A2 (de) 2007-07-11 2009-01-14 Bayer MaterialScience AG Polyurethan- und Polyurethanharnstoffelastomere auf Basis von Polycarbonatpolyolen
DE102007032343A1 (de) 2007-07-11 2009-01-15 Bayer Materialscience Ag Polyurethan- und Polyurethanharnstoffelastomere auf Basis von Polycarbonatpolyolen
US8273846B2 (en) 2007-07-11 2012-09-25 Bayer Materialscience Ag Polyurethane and polyurethane urea elastomers based on polycarbonate polyols
DE102007040240A1 (de) 2007-08-25 2009-02-26 Bayer Materialscience Ag Verfahren zur Herstellung von niedrigviskosen Allophanaten mit aktinisch härtbaren Gruppen
DE102007040239A1 (de) 2007-08-25 2009-05-07 Bayer Materialscience Ag Verfahren zur Herstellung von niedrigviskosen Allophanaten mit aktinisch härtbaren Gruppen
EP2031005A2 (de) 2007-08-25 2009-03-04 Bayer MaterialScience AG Verfahren zur Herstellung von niedrigviskosen Allophanaten mit aktinisch härtbaren Gruppen
EP2031003A1 (de) 2007-08-25 2009-03-04 Bayer MaterialScience AG Verfahren zur Herstellung von niedrigviskosen Allophanaten mit aktinisch härtbaren Gruppen
DE102008034473A1 (de) 2008-07-24 2010-01-28 Bayer Technology Services Gmbh Verfahren zur Herstellung von strahlungshärtbaren, Urethangruppen enthaltenden Präpolymeren
US8283488B2 (en) 2008-07-24 2012-10-09 Bayer Materialscience Ag Process for preparing radiation-curable prepolymers containing urethane groups
DE102009008569A1 (de) 2009-02-12 2010-08-19 Bayer Materialscience Ag Verfahren zur Herstellung von besonders reaktiven und niedrigviskosen Allophanaten mit aktinisch härtbaren Gruppen und deren Verwendung zur Herstellung besonders kratzfester Beschichtungen
US8853295B2 (en) 2009-02-12 2014-10-07 Allnex Ip S.A.R.L. Process for the preparation of particularly reactive and low-viscosity allophanates having actinic-curable groups and the use thereof for the preparation of particularly scratch-resistant coatings
DE102009040333A1 (de) 2009-09-05 2011-03-10 Bayer Materialscience Ag Verfahren zur kontinuierlichen Herstellung von Allophanaten
WO2011026574A2 (de) 2009-09-05 2011-03-10 Bayer Technology Services Gmbh Verfahren zur kontinuierlichen herstellung von allophanat-urethanacrylaten
WO2011144530A1 (en) 2010-05-17 2011-11-24 Bayer Materialscience Ag Process for joining together components, in particular in the production of shoes
EP2387900A1 (de) 2010-05-17 2011-11-23 Bayer MaterialScience AG Verfahren zum Zusammenfügen von Bauteilen, insbesondere in der Herstellung von Schuhen
WO2012022389A1 (en) 2010-08-17 2012-02-23 Clariant International Ltd Stable aqueous wax dispersions
EP2441791A1 (de) 2010-10-14 2012-04-18 Clariant International Ltd. Stabile wässrige Wachsdispersionen
WO2012069414A1 (en) 2010-11-25 2012-05-31 Bayer Materialscience Ag Polyurethane resin with high carbonate group content
WO2012143328A1 (en) 2011-04-19 2012-10-26 Bayer Intellectual Property Gmbh Aqueous resin composition comprising a polyester-polyurethane resin and a dendritic polyol
WO2013010856A1 (en) 2011-07-15 2013-01-24 Bayer Intellectual Property Gmbh Aqueous resin composition comprising a polyester-polyurethane resin including a dendritic polyol
WO2013020950A2 (de) 2011-08-09 2013-02-14 Bayer Intellectual Property Gmbh Verfahren zur verstärkung eines gebäudeteils
USRE48584E1 (en) 2011-08-09 2021-06-08 Covestro Deutschland Ag Method for reinforcing a building component
US9546490B2 (en) 2011-08-09 2017-01-17 Covestro Deutschland Ag Method for reinforcing a building component
WO2014067873A1 (de) 2012-10-29 2014-05-08 Bayer Materialscience Ag Beschichtungsmittel für mattierbare beschichtungen
DE102012110327A1 (de) 2012-10-29 2014-04-30 Bayer Materialscience Aktiengesellschaft Verformbare Folie
WO2014139954A1 (en) 2013-03-14 2014-09-18 Allnex Ip Sarl Methods for making actinic radiation curable elastomers thick films free from oxygen inhibition during curing
WO2016162394A1 (de) 2015-04-07 2016-10-13 Covestro Deutschland Ag Verfahren zum verkleben von substraten mit klebstoffen
WO2016166096A1 (de) 2015-04-13 2016-10-20 Covestro Deutschland Ag Wässrige polyurethan-polyacrylat-dispersionen
US10590226B2 (en) 2015-04-21 2020-03-17 Covestro Deutschland Ag Solids based on polyisocyanurate polymers produced under adiabatic conditions
US11286332B2 (en) 2015-04-21 2022-03-29 Covestro Deutschland Ag Hydrophobically modified polyisocyanurate plastic and method for production thereof
EP3085720A1 (de) 2015-04-21 2016-10-26 Covestro Deutschland AG Hydrophil modifizierter polyisocyanuratkunststoff und verfahren zu dessen herstellung
US10752724B2 (en) 2015-04-21 2020-08-25 Covestro Deutschland Ag Process for producing polyisocvanurate plastics having functionalized surfaces
US11390707B2 (en) 2015-04-21 2022-07-19 Covestro Deutschland Ag Polyisocyanurate polymers and process for the production of polyisocyanurate polymers
US10752723B2 (en) 2015-04-21 2020-08-25 Covestro Deutschland Ag Polyisocyanurate polymer and process for the production of polyisocyanurate polymers
US10717805B2 (en) 2015-04-21 2020-07-21 Covestro Deutschland Ag Process for producing polyisocyanurate plastics
US11286331B2 (en) 2015-04-21 2022-03-29 Covestro Deutschland Ag Hydrophilically modified polyisocyanurate plastic and process for production thereof
WO2016170060A1 (en) 2015-04-21 2016-10-27 Covestro Deutschland Ag Process for producing polyisocvanurate plastics having functionalized surfaces
US10597484B2 (en) 2015-04-21 2020-03-24 Covestro Deutschland Ag Polyisocyanurate plastics having high thermal stability
WO2016200958A1 (en) 2015-06-08 2016-12-15 Maguire Francis P Synthesis of polycarbonate siloxane diols
WO2016200956A1 (en) 2015-06-08 2016-12-15 Maguire Francis P Process for the preparation of polyurethane solutions based on silicon-polycarbonate diols
US11384261B2 (en) 2016-04-04 2022-07-12 Tesa Se Radiation-activatable pressure-sensitive adhesive tape having a dark reaction and use thereof
WO2017174303A1 (de) 2016-04-04 2017-10-12 Tesa Se Strahlenaktivierbares haftklebeband mit dunkelreaktion und dessen verwendung
EP3728385B1 (de) * 2017-12-19 2022-05-11 Covestro Deutschland AG Polycarbonatpolyole, polyisocyanatprepolymere und polyurethan- und polyurethanharnstoffelastomere auf deren basis
WO2019121218A1 (de) 2017-12-19 2019-06-27 Covestro Deutschland Ag Polycarbonatpolyole, polyisocyanatprepolymere und polyurethan- und polyurethanharnstoffelastomere auf deren basis
EP3502158A1 (de) 2017-12-19 2019-06-26 Covestro Deutschland AG Polycarbonatpolyole, polyisocyanatprepolymere und polyurethan- und polyurethanharnstoffelastomere auf deren basis
US11926701B2 (en) 2017-12-19 2024-03-12 Covestro Deutschland Ag Polycarbonate polyols, polyisocyanate prepolymers and polyurethane and polyurethane urea elastomers based thereon
WO2019121388A1 (de) 2017-12-21 2019-06-27 Covestro Deutschland Ag Frostbeständige klebstoffe auf basis von polyisocyanaten
WO2019121387A1 (de) 2017-12-21 2019-06-27 Covestro Deutschland Ag Frostbeständige wasserlacke auf basis von polyisocyanaten
US11441048B2 (en) 2018-09-26 2022-09-13 Dvorchak Enterprises Llc One component UV curable compositions and methods for making same
DE102022105185A1 (de) 2022-03-04 2023-09-07 Tesa Se Lösbares Laminat und Verfahren zum Lösen dauerhafter struktureller Verklebungen

Also Published As

Publication number Publication date
JPS63305127A (ja) 1988-12-13
EP0292772B1 (de) 1993-12-08
ATE98273T1 (de) 1993-12-15
JP2631507B2 (ja) 1997-07-16
DE3886094D1 (de) 1994-01-20
CA1305172C (en) 1992-07-14
EP0292772A3 (en) 1989-11-02
US4808691A (en) 1989-02-28
ES2059430T3 (es) 1994-11-16
EP0292772A2 (de) 1988-11-30

Similar Documents

Publication Publication Date Title
EP0292772B1 (de) Polyether-Polycarbonat-Diole, ihre Herstellung und Verwendung als Ausgangsprodukte für Polyurethankunststoffe
EP0008044B1 (de) Verfahren zur Herstellung von gegenüber Entmischung stabilisierten Füllstoffsuspensionen in Polyolen und deren Verwendung in einem Verfahren zur Herstellung von gegebenenfalls zellförmigen Polyurethankunststoffen
EP0012352B1 (de) Verfahren zur Herstellung von in geschlossenen Formen geschäumten Polyurethan-Kunststoffen
EP0061609A1 (de) Verfahren zur Herstellung von gegebenenfalls zellförmigen Polyurethankunststoffen unter Verwendung von Diolen der Dianhydro-hexit-Reihe
DE3312215A1 (de) Verfahren zur herstellung eines zelligen polyurethans
EP0017111B1 (de) Dispersionen von hochschmelzenden Polyestern in Polyhydroxylverbindungen, Verfahren zu deren Herstellung und deren Verwendung bei der Herstellung von Polyurethankunststoffen
EP0025822A2 (de) Verfahren zur Herstellung von Polysiloxan-Polyoxyalkylen-Mischpolymerisaten und deren Verwendung bei der Herstellung von Polyurethan-Schaumstoffen
DE2720166A1 (de) Verfahren zur herstellung von polyurethanelastomeren
EP0137182B1 (de) Verfahren zur Herstellung von gegebenenfalls zellförmigen Polyurethanen
EP0038486A1 (de) Verfahren zur Herstellung von Polyurethan-Kunststoffen unter Verwendung von cyclischen, N-Hydroxyalkyl-substituierten, Amidingruppen aufweisenden Verbindungen als Katalysatoren
EP0037029B1 (de) Verfahren zur Herstellung von Polyurethanelastomeren
DE2706297A1 (de) Neue segmentierte polyurethankunststoffe
EP0249860B1 (de) Polyurethan(harnstoff)-Schaumstoffe und ein Verfahren zu ihrer Herstellung
EP0017905B1 (de) Neue Polyurethanharnstoffe mit Schwefel enthaltenden aromatischen Harnstoffgruppen und Verfahren zu ihrer Herstellung
DE2559372A1 (de) Verfahren zur herstellung amidgruppen enthaltender polyaetherpolyole
DE2714293A1 (de) Acylharnstoffgruppen enthaltende polyhydroxylverbindungen
DE3134592A1 (de) Verfahren zur herstellung von gegebenenfalls zellfoermigen polyurethanen
DE4030515A1 (de) Neue urethane, ein verfahren zu ihrer herstellung und ihre verwendung als katalysatoren fuer das isocyanat-polyadditionsverfahren
EP0007440A1 (de) Hexahydrotriazincarboxylate, ihre Herstellung und Verwendung als Katalysatoren zur Herstellung von Polyisocyanuratkunststoffen
EP0115293B1 (de) Verfahren zur Herstellung von Formkörpern auf Basis von Polyurethanelastomeren unter Verwendung von Diolen der Anhydro-tetrit-Reihe
DE2623961A1 (de) Verfahren zur herstellung von polyurethanen
DE2638758A1 (de) Stabile dispersionen
DE3429503A1 (de) Verfahren zur herstellung von gegebenenfalls zellfoermigen polyurethanen
DE2714289A1 (de) Phosphono-formamidingruppen enthaltende polyhydroxylverbindungen
DE2744599A1 (de) Neue segmentierte polyurethankunststoffe

Legal Events

Date Code Title Description
8130 Withdrawal