DE2550056C2 - - Google Patents

Info

Publication number
DE2550056C2
DE2550056C2 DE2550056A DE2550056A DE2550056C2 DE 2550056 C2 DE2550056 C2 DE 2550056C2 DE 2550056 A DE2550056 A DE 2550056A DE 2550056 A DE2550056 A DE 2550056A DE 2550056 C2 DE2550056 C2 DE 2550056C2
Authority
DE
Germany
Prior art keywords
layer
substrate
active layer
gaas
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE2550056A
Other languages
English (en)
Other versions
DE2550056A1 (de
Inventor
George A. Palo Alto Calif. Us Antypas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intevac Inc
Original Assignee
Varian Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Associates Inc filed Critical Varian Associates Inc
Publication of DE2550056A1 publication Critical patent/DE2550056A1/de
Application granted granted Critical
Publication of DE2550056C2 publication Critical patent/DE2550056C2/de
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/12Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/051Etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/072Heterojunctions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/135Removal of substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/97Specified etch stop material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/977Thinning or removal of substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer III-V-Photokathode nach dem Oberbegriff des Anspruchs 1. Ein solches Verfahren ist aus der US-PS 37 69 536 bekannt.
GaAs-Photokathoden für den Transmissionsbetrieb bestehen im allgemeinen aus einer aktiven GaAs-Schicht auf einem transparenten Substrat. Für maximalen Wirkungsgrad sollte die aktive Schicht dünn sein (2 Mikrometer) und hohe Qualität haben. Um die Defektdichte an der Grenzschicht zwischen aktiver Schicht und Substrat zu minimieren, sollten die aktive Schicht und das Substrat hinsichtlich der Gitter­ konstanten eng angepaßt sein. Bisher sind GaAs-Transmissions- Photokathoden durch Epitaxie aus der Dampfphase auf transparente Substrate wie Al2O3, MgAl2O4 und GaP hergestellt worden. Die Gitter-Fehlanpassung zwischen der aktiven GaAs-Schicht und den Substraten sorgt für einen sehr schlechten Wirkungsgrad solcher Bauelemente. Es wurde festgestellt, daß eine GaAs-AlGaAs-Heterogrenz­ schicht, die durch Epitaxie aus der flüssigen Phase präpariert ist, sowohl transparent gegen sichtbare Strahlung ist als auch niedrige Defektdichte hat. Bisher sind entsprechend der vorgenannten US-PS 37 69 536 GaAs-AlGaAs-Photokathoden auf temporären Substraten gebildet worden, und die temporären Substrate sind durch mechanisches und chemisches Polieren entfernt worden. Diese bekannten Techniken sind hauptsächlich auf Elemente mit kleinen Oberflächen ohne kritische Oberflächenforderungen anwendbar, und im allgemeinen ergeben sie in Verbindung mit Photokathoden keine zufriedenstellenden Resultate.
Mechanisches Polieren erfolgt im allgemeinen mit progressiv kleinerer Körnung, und die kleineren Körner entfernen im allgemeinen nicht die anfänglichen Oberflächenkratzer, die von den größeren Körnern hervorgerufen sind. Die oberflächliche Beschädigung streut Licht in optischen Anwendungsfällen und behindert ein epitaktisches Wachsen zusätzlicher Schichten. Bei Transmissions-Photokathoden- Anwendungen sind Oberflächenfehler besonders unerwünscht, weil die Unregelmäßigkeiten Elektronen einfangen, dunkle Flecken im Bild verursachen, aber auch Emissionspunkte erzeugen können, die helle Flecken im Bild verursachen.
Es sind Versuche gemacht worden, die Oberflächen von III-V-Elementen dadurch zu präparieren, daß ein Teil einer Schicht weggeätzt wird. Wenn jedoch versucht wird, erhebliches Material von einer Schicht durch Ätzen zu entfernen, ergibt sich im allgemeinen, daß zu viel Material an den Kanten weggeätzt und die Oberfläche abgerundet wird. Darüber hinaus ist eine genaue Dickenkontrolle beim Ätzen schwierig, und Versuche, dünne Schichten zu ätzen, können darin resultieren, daß eine ganze Schicht versehentlich entfernt wird. Entsprechendes gilt, wenn man in bekannter Weise (DE-OS 23 59 072) die aktive Schicht aus GaAs auf ein Substrat aus dem gleichen Material aufwachsen läßt, das dann später in Form einer Fensters weggeätzt wird.
Bekannt ist es auch (DE-OS 24 04 016 und 22 61 757), zur Herstellung von Photokathoden eine aktive Schicht auf ein permanentes Substrat aufwachsen zu lassen, das wiederum durch epitaktisches Wachsen auf ein zusätzliches Substrat entstanden ist. Durch selektives Ätzen eines zentralen Teils wird das zusätzliche Substrat anschließend mit einem Fenster versehen, so daß nur noch ein tragender Rahmen stehen bleibt.
Der Erfindung liegt die Aufgabe zugrunde, das bekannte Verfahren nach dem Oberbegriff des Anspruchs 1 so abzuwandeln, daß auch groß­ flächige Photokathoden mit einer sehr dünnen aktiven Schicht hoher Qualität hergestellt werden können. Die Lösung der Aufgabe ist im Patentanspruch 1 gekennzeichnet.
Das Hilfssubstrat kann dann mit einem Ätzmittel weggeätzt, das von der Stoppschicht gestoppt wird, und danach die Stoppschicht durch Ätzen mit HF entfernt werden. Das Material der aktiven Schicht wirkt dabei als chemischer Stopp für die HF, und dementsprechend stoppt der Ätzprozeß automatisch an der Grenze der aktiven Schicht, so daß diese Schicht in der dünnen Form hoher Qualität verbleibt, in der sie gewachsen ist. Die Ätzrate der Stoppschicht kann durch den Anteil an Al in dieser Schicht kontrolliert werden.
Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.
So werden mit Vorteil die Schichten durch epitaktisches Wachsen aus der flüssigen Phase gebildet. Zur chemischen Passivierung kann zweckmäßig vor dem Binden der Passivierungsschicht aus AlGaAs an das transparente Substrat auf der Passivierungsschicht eine zusätzliche Passivierungs­ schicht aus SiO2 gebildet werden.
Es zeigen
Fig. 1a bis 1d schematisch die Bildung einer III-V-Photokathode gemäß der Erfindung;
Fig. 2 ein Flußdiagramm der Verfahrensschritte, mit denen die III-V-Photokathode nach Fig. 1a bis 1d gebildet wird;
Fig. 3 graphisch den Zusammenhang zwichen Bandlücke und Gitterkonstante für eine Anzahl von III-V-Verbindungen; und
Fig. 4 graphisch die Beziehung zwischen der Aluminiumkonzentration und der Ätzrate in einer III-V-Verbindung.
Gemäß Fig. 1 und 2 wird eine III-V- Photokathode dadurch hergestellt, daß ein temporäres Hilfssubstrat 10 vorgesehen wird, auf dem temporären Substrat eine Stoppschicht 11 gebildet wird, die Al enthält, eine aktive III-V-Schicht 12 auf der Stoppschicht gebildet wird, eine elektrisch passivierende Schicht 13 auf der aktiven Schicht gebildet wird, eine chemisch passivierende Schicht 14 auf der Schicht 13 ge­ bildet wird, und die passivierende Schicht 14 mit einem perma­ nenten Substrat 15 verbunden wird. Danach wird das temporäre Hilfs­ substrat mit einem Ätzmittel entfernt, das von der Stoppschicht gestoppt wird, und dann wird die Stoppschicht mit HF mit einer Rate weggeätzt, die durch den Anteil von Al in dieser Schicht festgelegt ist.
Wie noch näher erläutert wird, hat die aktive III-V-Schicht einer Photokathode vorzugsweise eine Dicke in der Größenordnung von 2 Mikrometer. Es wurde festgestellt, daß Schichten hoher Quali­ tät und solcher Stärke durch Flüssigphasen-Epitaxie auf Substrat­ materialien gewachsen werden können, die hinsichtlich der Gitter­ kontanten eng an das aktive Schichtmaterial angepaßt sind. Die tatsächliche Forderung an die Anpassung hängt mit der Chemie des Bauelementes, der Wachstumstemperatur und -rate und den Qualitäts­ forderungen zusammen, im allgemeinen ergeben jedoch Gitter­ konstantenanpassungen innerhalb etwa 0,1% befriedigende Resultate für Photokathoden. Für die Zwecke der Erfindung muß die aktive Schicht 12 eng an die Stoppschicht 11 angepaßt sein, die ihrerseits eng an das temporäre Hilfssubstrat 10 angepaßt sein muß. Bei der bevorzugten Ausführungsform enthalten das temporäre Hilfssubstrat und die aktive Schicht die gleichen Elemente, und die Stoppschicht enthält diese gleichen beiden Elemente plus Aluminium. Aus Fig. 3 ist erkennbar, daß geeignete Kombinationen GaAs und AlGaAs, GaP und AlGaP, und GaSb und AlGaSb umschließen. Die verschiedenen III-V-Verbindungen haben hohe Absorptionskoeffizienten bei unter­ schiedlichen Wellenlängen, und die Verbindung für einen speziellen Anwendungsfall muß entsprechend den Wellenlängenanforderungen ausgewählt werden. Für eine Photokathode wird GaAs als Verbindung bevorzugt, da es für Photonen mit Wellenlängen kürzer als 0,9 Mikrometer am empfindlichsten ist.
III-V-Verbindungen guter Qualität sind kommerziell verfügbar und zur Verwendung als temporäres Hilfssubstrat 10 geeignet. Die Dicke dieses Substrats ist nicht kritisch, und eine Dicke in der Größen­ ordnung von 0,5 mm (0,020″) hat gute Ergebenisse geliefert. Da in der bevorzugten Ausführungsform das temporäre Hilfssubstrat schließlich durch Ätzen entfernt wird, können Ätzzeit und -Material dadurch gespart werden, daß das Substrat nicht zu dick gemacht wird.
Die Stoppschicht 11 wird epitaktisch auf die Oberfläche 16 des temporären Hilfssubstrats 10 aufgewachsen. Wie bereits erwähnt, enthält diese Schicht Al und sie wirkt als chemischer Stopp für das Ätzmittel, das dazu verwendet wird, das temporäre Substrat zu entfernen. Die Aluminiumkonzentration in Schicht 11 bestimmt die Rate, mit der diese Schicht im letzten Schritt des Verfahrens weggeätzt wird. Fig. 4 zeigt die Beziehung zwischen der Ätzrate und der Aluminiumkonzentration für Al x Ga1- x As, das bei Zimmer­ temperatur mit einer HF-Wasser-Lösung mit einer HF-Konzentration von 0,49 geätzt wird, wobei x die Aluminiumkonzentration ist. Da die Ätzrate bei Aluminiumkonzentrationen unter 0,3 sehr niedrig ist, wird eine Aluminiumkonzentration von wenigstens 0,3 bevor­ zugt.
Da die exponierte Oberfläche 17 der Stoppschicht 11 die Oberfläche für epitaktisches Wachsen der aktiven Schicht 12 bildet, spiegelt sich die Qualität der Oberfläche 17 in der Kristallqualität der aktiven Schicht wider, insbesondere im zunächst gewachsenen Teil. Eine Oberfläche hoher Qualität kann dadurch gewährleistet werden, daß die Schicht 11 dick genug gemacht wird, um die Effekte von Problemen, wie eine geringe Fehlanpassung zwischen Substrat 10 und Schicht 11 oder ein Substratmaterial von schlechterer als gewünschter Qualität, zu überwinden. Gleichzeitig werden unnötig dicke Schichten vermieden, um Zeit und Material beim Wachsen und in der Ätzphase des Verfahrens zu sparen. Es wurde festgestellt, daß eine Stoppschicht-Dicke in der Größenordnung von 0,5-5 Mikrometer besonders befriedigende Resultate ergibt.
Wie bereits angedeutet, wird die aktive Schicht 12 epitaktisch auf die Oberfläche 17 der Stoppschicht 11 aufgewachsen. Die Dicke der Schicht 12 kann auf weniger als 0,1 Mikrometer genau dadurch be­ stimmt werden, daß die Temperaturänderung und die Zeit für das epitaktische Wachsen kontrolliert werden. Eine Dicke der aktiven Schicht von 2-5 Mikrometer wird für Photokathoden bevorzugt, weil die Elektronendiffusionslängen in diesem Bereich liegen. Für andere Anwendungsfälle können jedoch aktive Schichten hoher Qualität von nur 0,1 Mikrometer Stärke erzeugt werden.
Zusätzlich zu den binären III-V-Verbindungen, die oben erwähnt sind, können auch andere Verbindungen, deren Gitterkonstante ausreichend an die Gitterkonstante der Schicht 11 angepaßt ist, in der aktiven Schicht verwendet werden. Solche Verbindungen sind die ternären Verbindungen AlGaAs, InGaAs, GaAsP und GaAsSb. Die Verwendung von drei Elementen in der aktiven Schicht erlaubt eine engere Gitterkonstantenanpassung an die Stoppschicht als es mit binären Verbindungen möglich ist. Wenn Al in der aktiven Schicht benutzt wird, soll seine Konzentration in dieser Schicht erheblich niedriger sein als seine Konzentration in der Stoppschicht, um eine versehentliche Erosion der aktiven Schicht während des Ätzens der Stoppschicht zu verhindern.
Die Passivierungsschicht 13 wird epitaktisch auf die Oberfläche 18 der aktiven Schicht 12 aufgewachsen. Sie wird aus einem Material wie AlGaAs gebildet, dessen Gitterkonstante eng an die der aktiven Schicht angepaßt ist, und das für Lichtenergie der gewünschten Wellenlänge transparent ist. Diese Schicht arbeitet als elektrischer Passivator und gewährleistet eine Bindung hoher Qualität zwischen der aktiven Schicht und dem permanenten Substrat. Geeignete Stärken für Schicht 13 liegen in der Größenordnung von 2-5 Mikrometer.
Die Passivierungsschicht 14 wird auf der Oberfläche 19 der Schicht 13 gebildet, um eine Diffusion von unerwünschten Substanzen während der Bindung am Substrat 15 in die aktive Schicht 12 zu ver­ hindern. Bei der bevorzugten Ausführungsform wird die Schicht 14 aus SiO2 in einer Stärke in der Größenordnung von 0,2 Mikrometer gebildet, und zwar durch Hochfrequenz-Zerstäubung auf die Oberfläche 19. Die Dicke der Schicht 14 ist nicht kritisch, sie soll jedoch wenigstens 0,01 Mikrometer betragen, um einen adäquaten Schutz gegen Diffusion zu schaffen, und kleiner sein als 0,4 Mikrometer, um Komplikationen aufgrund thermischer Dehnung zu vermeiden.
Das permanente Substrat 15 wird aus einem Material gebildet, das transparent für Photonen ist und auch thermische Dehnungseigen­ schaften ähnlich denen der aktiven Schicht 12 hat. Eine bevor­ zugte Photokathode hat eine aktive GaAs-Schicht und ein Borsilikat­ glas-Substrat. Die Dicke des Glassubstrats ist unkritisch und kann in der Größenordnung von 0,5 mm bis 6,5 mm (0,020-0,250″) liegen. Die Baueinheit, die aus dem temporären Hilfssubstrat 10 und den Schichten 11-14 besteht, wird in der in der US-Patentschrift 37 69 536 beschriebenen Weise durch Wärme an das Substrat 15 gebunden. Kurz gesagt, wie zum Binden die Oberfläche 20 der Passivierungsschicht 14 mit einer Oberfläche des Substrats 15 in Berührung gebracht. Die Temperatur wird auf etwa die Entspannungstemperatur (strain point) des Glassubstrats erhöht und bei einem Druck in der Größenordnung von 1000 Pa zehn Minuten lang gehalten. Die Zeit, die dazu notwendig ist, wärmezubinden, hängt von der Entspannungstemperatur des Substrats, der Temperatur beim Wärmebinden und dem Druck ab, der die Passivierungsschicht gegen das Substrat drückt.
Nach dem Wärmebinden wird das temporäre Substrat 10 mit einem geeigneten Ätzmittel weggeätzt, beispielsweise NH4OH-H2O2. Stopp­ schicht 11 dient als chemischer Stopp für dieses Ätzmittel und verhindert ein Ätzen über die Grenzschicht von Substrat 10 und Schicht 11 hinaus.
Wenn das Substrat 10 entfernt worden ist, wird die Schicht 11 mit HF weggeätzt. Die aktive Schicht 12 dient als chemischer Stopp für das Ätzmittel HF, und das Ätzen stoppt an der Grenzschicht zwischen Schicht 11 und Schicht 12. Es wird ein Produkt in Form eines III-V-Bauelementes erhalten, das aus einer aktiven Schicht 12, Passivierungsschichten 13 und 14 und Substrat 15 besteht, wobei die aktive Schicht 12 die gleiche hohe Qualität hat, mit der sie aufgewachsen wurde.
Beispiel
Die Oberfläche eines im Handel erworbenen GaAs-Substrats mit einem Durchmesser von 19 mm (0,75″) und einer Stärke von 0,5 mm (0,020″) wurde für epitaktisches Wachsen dadurch präpariert, daß sie mit einer Brom-Methylalkohol-Lösung geätzt wurde, die 1% Brom bei Zimmertemperatur enthielt. Das Substrat wurde dann in ein Graphitschiffchen gebracht, und das Schiffchen und das Substrat wurden in eine interte Atmosphäre von mit Pd gereinigtem H2 in einem Kristallwachsofen mit einer ersten Schmelze von Ga-Al-As mit einem Gewichtsverhältnis Al-Ga von 3 × 10-3, einer zweiten Schmelze von GaAs und einer dritten Schmelze von Al-Ga-As mit einer geeigneten Aluminiumzusammensetzung gebracht, um Al x Ga1- x As mit geeigneter Bandlücke für den gewünschten Anwendungsfall zu erzeugen, wobei jede Schmelze 5 g Ga enthielt. Die Temperatur im System wurde auf 900°C gebracht. Das Substrat wurde mit der ersten Schmelze in Kontakt gebracht und dort gehalten, bis das System auf 895°C abgekühlt war, wobei eine Al0,5Ga0,5As-Stoppschicht mit einer Dicke von 4 Mikrometer gebildet wurde. Die Stoppschicht wurde mit der GaAs-Schmelze in Berührung gebracht und dort gehalten, während das System auf 893°C abkühlte, wobei eine aktive GaAs- Schicht mit einer Dicke von 2 Mikrometer gebildet wurde. Die aktive Schicht wurde dann mit der dritten Schmelze in Berührung gebracht und dort gehalten, während das System auf 883°C abkühlte, wobei eine AlGaAs-Passivierungsschicht mit einer Dicke von 5 Mikrometer ge­ bildet wurde. Das Substrat und die daraufgewachsenen Schichten wurden aus dem Ofen herausgenommen und eine 0,2 Mikrometer starke Schicht aus SiO2 wurde auf der Oberfläche der AlGaAs-Passivierungs­ schicht durch Hochfrequenz-Zerstäubung gebildet. Das Substrat und die Schichten wurden dann an ein Glassubstrat wärmegebunden, das eine Dicke von 1,3 mm (0,05″) hatte und einen Dehnungs­ koeffizienten, der eng an den des GaAs angepaßt war. Die Wärme­ bindung wurde bei einer Temperatur von 680°C durchgeführt, bei einem Druck von etwa 1000 Pa und für eine Zeit in der Größenordnung von 10 Minuten. Die gebundene Baueinheit wurde auf Zimmertemperatur abgekühlt und das GaAs-Substrat wurde mit NH4OH-H2O₂ weggeätzt, und die AlGaAs- Stoppschicht wurde mit HF mit einer Konzentration von 0,49 wegge­ ätzt. Die aktive GaAs-Schicht des erhaltenen Bauelementes hatte eine Oberflächengleichförmigkeit in der Größenordnung von 0,1 Mikrometer.

Claims (6)

1. Verfahren zur Herstellung einer III-V-Photokathode, bei dem auf einem Hilfssubstrat aus GaAs eine aktive Schicht aus GaAs und auf der aktiven Schicht eine Passivierungsschicht gebildet werden, das Hilfssubstrat mit den darauf gebildeten Schichten an ein für Photonen transparentes Substrat gebunden wird, wobei sich die Passivierungsschicht dem transparenten Substrat am nächsten befindet, und das Hilfssubstrat entfernt wird, dadurch gekennzeichnet,
daß auf dem Hilfssubstrat zunächst eine Stopp­ schicht aus AlGaAs, die aktive Schicht und darauf die Passivierungsschicht aus AlGaAs gebildet werden und
daß nach dem Entfernen das Hilfssubstrats auch die Stoppschicht entfernt wird, und zwar durch Ätzen mit HF.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Schichten durch epitaktisches Wachsen aus der flüssigen Phase gebildet werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß vor dem Binden an das transparente Substrat auf der erstgenannten Passivierungsschicht eine zusätzliche Passivierungs­ schicht aus SiO2 gebildet wird.
4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß das Hilfssubstrat durch Ätzen entfernt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Stoppschicht aus Al x Ga1- x As mit x größer als 0,3 gebildet wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die aktive Schicht aus GaAs einen Anteil Al, In oder Sb enthält.
DE19752550056 1974-11-18 1975-11-07 Iii-v-photokathode und verfahren zu ihrer herstellung Granted DE2550056A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/524,691 US3959045A (en) 1974-11-18 1974-11-18 Process for making III-V devices

Publications (2)

Publication Number Publication Date
DE2550056A1 DE2550056A1 (de) 1976-05-26
DE2550056C2 true DE2550056C2 (de) 1989-02-09

Family

ID=24090286

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19752550056 Granted DE2550056A1 (de) 1974-11-18 1975-11-07 Iii-v-photokathode und verfahren zu ihrer herstellung

Country Status (6)

Country Link
US (1) US3959045A (de)
JP (1) JPS5951700B2 (de)
DE (1) DE2550056A1 (de)
FR (1) FR2291610A1 (de)
GB (1) GB1492215A (de)
NL (1) NL7513489A (de)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198263A (en) * 1976-03-30 1980-04-15 Tokyo Shibaura Electric Co., Ltd. Mask for soft X-rays and method of manufacture
DE2909985C3 (de) * 1979-03-14 1981-10-22 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur Herstellung eines Halbleiter-Glas-Verbundwerkstoffs und Verwendung eines solchen Verbundwerkstoffes
DE3067381D1 (en) * 1979-11-15 1984-05-10 Secr Defence Brit Series-connected combination of two-terminal semiconductor devices and their fabrication
US4286373A (en) * 1980-01-08 1981-09-01 The United States Of America As Represented By The Secretary Of The Army Method of making negative electron affinity photocathode
EP0193830A3 (de) * 1980-04-10 1986-10-01 Massachusetts Institute Of Technology Sonnenzellenvorrichtung mit mehreren einzelnen Sonnenzellen
US4372803A (en) * 1980-09-26 1983-02-08 The United States Of America As Represented By The Secretary Of The Navy Method for etch thinning silicon devices
US4445965A (en) * 1980-12-01 1984-05-01 Carnegie-Mellon University Method for making thin film cadmium telluride and related semiconductors for solar cells
US4427714A (en) * 1981-01-16 1984-01-24 Pa Management Consultants Limited Thin films of compounds and alloy compounds of Group III and Group V elements
FR2507386A1 (fr) * 1981-06-03 1982-12-10 Labo Electronique Physique Dispositif semi-conducteur, emetteur d'electrons, dont la couche active possede un gradient de dopage
US4596626A (en) * 1983-02-10 1986-06-24 The United States Of America As Represented By The United States National Aeronautics And Space Administration Method of making macrocrystalline or single crystal semiconductor material
DE3321535A1 (de) * 1983-04-22 1984-10-25 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zum herstellen einer halbleiterphotokathode
US4599792A (en) * 1984-06-15 1986-07-15 International Business Machines Corporation Buried field shield for an integrated circuit
US4649627A (en) * 1984-06-28 1987-03-17 International Business Machines Corporation Method of fabricating silicon-on-insulator transistors with a shared element
US4859633A (en) * 1985-01-31 1989-08-22 Texas Instruments Incorporated Process for fabricating monolithic microwave diodes
DE3524765A1 (de) * 1985-07-11 1987-01-22 Licentia Gmbh Verfahren zum herstellen einer durchsichtphotokathode
EP0213488A2 (de) * 1985-08-26 1987-03-11 Itt Industries, Inc. Verfahren zur Herstellung von Mikrowellen-monolithischen integrierten Schaltungen aus Galliumarsenid
US4908325A (en) * 1985-09-15 1990-03-13 Trw Inc. Method of making heterojunction transistors with wide band-gap stop etch layer
JPH0716077B2 (ja) * 1985-10-11 1995-02-22 三菱電機株式会社 半導体レーザ装置の製造方法
US4829018A (en) * 1986-06-27 1989-05-09 Wahlstrom Sven E Multilevel integrated circuits employing fused oxide layers
US4902641A (en) * 1987-07-31 1990-02-20 Motorola, Inc. Process for making an inverted silicon-on-insulator semiconductor device having a pedestal structure
US4876212A (en) * 1987-10-01 1989-10-24 Motorola Inc. Process for fabricating complimentary semiconductor devices having pedestal structures
IL84118A (en) * 1987-10-07 1991-03-10 Semiconductor Devices Tadiran Process for ii-vi compound epitaxy
US4929867A (en) * 1988-06-03 1990-05-29 Varian Associates, Inc. Two stage light converting vacuum tube
US5032543A (en) * 1988-06-17 1991-07-16 Massachusetts Institute Of Technology Coplanar packaging techniques for multichip circuits
JPH0712094B2 (ja) * 1988-10-19 1995-02-08 信越半導体株式会社 発光半導体素子用エピタキシャルウェーハの製造方法
US4891329A (en) * 1988-11-29 1990-01-02 University Of North Carolina Method of forming a nonsilicon semiconductor on insulator structure
US4943540A (en) * 1988-12-28 1990-07-24 At&T Bell Laboratories Method for selectively wet etching aluminum gallium arsenide
US5130111A (en) * 1989-08-25 1992-07-14 Wayne State University, Board Of Governors Synthetic diamond articles and their method of manufacture
US5013681A (en) * 1989-09-29 1991-05-07 The United States Of America As Represented By The Secretary Of The Navy Method of producing a thin silicon-on-insulator layer
US5110748A (en) * 1991-03-28 1992-05-05 Honeywell Inc. Method for fabricating high mobility thin film transistors as integrated drivers for active matrix display
US5465009A (en) * 1992-04-08 1995-11-07 Georgia Tech Research Corporation Processes and apparatus for lift-off and bonding of materials and devices
US5401983A (en) * 1992-04-08 1995-03-28 Georgia Tech Research Corporation Processes for lift-off of thin film materials or devices for fabricating three dimensional integrated circuits, optical detectors, and micromechanical devices
US5286335A (en) * 1992-04-08 1994-02-15 Georgia Tech Research Corporation Processes for lift-off and deposition of thin film materials
US5455202A (en) * 1993-01-19 1995-10-03 Hughes Aircraft Company Method of making a microelectric device using an alternate substrate
US5358880A (en) * 1993-04-12 1994-10-25 Motorola, Inc. Method of manufacturing closed cavity LED
US5512375A (en) * 1993-10-14 1996-04-30 Intevac, Inc. Pseudomorphic substrates
US5399231A (en) * 1993-10-18 1995-03-21 Regents Of The University Of California Method of forming crystalline silicon devices on glass
US5414276A (en) * 1993-10-18 1995-05-09 The Regents Of The University Of California Transistors using crystalline silicon devices on glass
US5395481A (en) * 1993-10-18 1995-03-07 Regents Of The University Of California Method for forming silicon on a glass substrate
US5488012A (en) * 1993-10-18 1996-01-30 The Regents Of The University Of California Silicon on insulator with active buried regions
US5391257A (en) * 1993-12-10 1995-02-21 Rockwell International Corporation Method of transferring a thin film to an alternate substrate
US6331753B1 (en) * 1999-03-18 2001-12-18 Litton Systems, Inc. Image intensifier tube
JP4766628B2 (ja) * 2000-07-31 2011-09-07 株式会社半導体エネルギー研究所 表示装置および表示装置の製造方法
US6525335B1 (en) 2000-11-06 2003-02-25 Lumileds Lighting, U.S., Llc Light emitting semiconductor devices including wafer bonded heterostructures
US6658041B2 (en) 2002-03-20 2003-12-02 Agilent Technologies, Inc. Wafer bonded vertical cavity surface emitting laser systems
WO2004084275A2 (en) * 2003-03-18 2004-09-30 Crystal Photonics, Incorporated Method for making group iii nitride devices and devices produced thereby
US7202141B2 (en) * 2004-03-29 2007-04-10 J.P. Sercel Associates, Inc. Method of separating layers of material
US7728274B2 (en) * 2007-03-30 2010-06-01 Subrahmanyam Pilla Imaging system with negative electron affinity photocathode
TWI384434B (zh) * 2008-08-28 2013-02-01 Au Optronics Corp 可撓式顯示面板及其製造方法、光電裝置及其製造方法
US10062554B2 (en) * 2016-11-28 2018-08-28 The United States Of America, As Represented By The Secretary Of The Navy Metamaterial photocathode for detection and imaging of infrared radiation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3288662A (en) * 1963-07-18 1966-11-29 Rca Corp Method of etching to dice a semiconductor slice
GB1239893A (en) * 1970-03-05 1971-07-21 Standard Telephones Cables Ltd Improvements in or relating to photocathodes
JPS4936792B1 (de) * 1970-10-15 1974-10-03
US3721593A (en) * 1971-08-13 1973-03-20 Motorola Inc Etch stop for koh anisotropic etch
US3769536A (en) * 1972-01-28 1973-10-30 Varian Associates Iii-v photocathode bonded to a foreign transparent substrate
US3914136A (en) * 1972-11-27 1975-10-21 Rca Corp Method of making a transmission photocathode device
DE2261757A1 (de) * 1972-12-16 1974-06-20 Philips Patentverwaltung Semitransparente photokathode
GB1439822A (en) * 1973-02-06 1976-06-16 Standard Telephones Cables Ltd Gallium arsenide photocathodes

Also Published As

Publication number Publication date
JPS5173379A (en) 1976-06-25
DE2550056A1 (de) 1976-05-26
NL7513489A (nl) 1976-05-20
JPS5951700B2 (ja) 1984-12-15
US3959045A (en) 1976-05-25
FR2291610A1 (fr) 1976-06-11
GB1492215A (en) 1977-11-16
FR2291610B1 (de) 1983-02-18

Similar Documents

Publication Publication Date Title
DE2550056C2 (de)
DE3300131C2 (de) Integriertes optisches Bauelement und Verfahren zu seiner Herstellung
DE19751294B4 (de) Halbleiter-Einrichtung und Verfahren zu ihrer Herstellung
DE112018006528T5 (de) Lichtemittierende halbleitervorrichtung und verfahren zu deren herstellung
DE2153862C3 (de)
DE1814029C3 (de) Verfahren zur Erzeugung einkristalliner und polykristalliner Halbleiterbereiche auf einem inkristallinen Halbleitersubstrat für die Herstellung von Halbleiterbauelementen
DE2239687A1 (de) Verfahren zum beenden des aetzvorganges beim aetzen mit einem fluessigen koh-aetzmittel und aetzbarriere zur durchfuehrung des verfahrens
DE4010889A1 (de) Verfahren zum herstellen einer vergrabenen laserdiode mit heterostruktur
EP0218039B1 (de) Verfahren zur Übertragung feinster Fotolackstrukturen
DE68923765T2 (de) Verfahren zur Herstellung einer Epitaxialscheibe vom doppelten Heteroübergangs-Typ.
DE2522489C3 (de)
DE2627355A1 (de) Lichtabstrahlendes festkoerperelement, insbesondere halbleiterlaser, und verfahren zu dessen herstellung
DE3922009C2 (de) Verfahren zum Herstellen eines verlustarmen, optischen Wellenleiters in einer epitaktischen Silizium-Schicht
DE60311412T2 (de) InP-basierte Hochtemperaturlaser mit InAsP-Quantenschachtschichten und Sperrschichten aus Gax(AIIn)1-xP
DE2100292A1 (de) Halbleiteranordnung mit relativ kleinen geometrischen Abmessungen und Verfahren zur Herstellung derselben
DE2442694C3 (de) Verfahren zur Herstellung eines mit einem Elektronenstrahl abzutastenden Ladungsspeicherschirms einer Farbaufnahmeröhre
DE69124674T2 (de) Verfahren zum Aufwachsen eines Verbundhalbleiters und Verfahren zur Herstellung eines Halbleiterlaser
DE2527528B2 (de) Ladungsspeicherplatte für eine Bildaufnahmeröhre und Verfahren zu ihrer Herstellung
DE4421539C2 (de) Verfahren zur Herstellung eines Halbleiters aus einer Verbindung der Gruppe II-VI
DE2556503C2 (de) Verfahren zum epitaktischen Niederschlagen einer Halbleiterschicht auf einem Substrat
DE3709134A1 (de) Halbleiterbauelement
DE2658304A1 (de) Halbleitervorrichtung
DE69623854T2 (de) Trockenätzverfahren
DE10048475C2 (de) Passivierung der Resonatorendflächen von Halbleiterlasern auf der Basis von III-V-Halbleitermaterial
DE2540901A1 (de) Verfahren zur herstellung eines halbleiterbauelements hoher leistung

Legal Events

Date Code Title Description
OGA New person/name/address of the applicant
8110 Request for examination paragraph 44
8128 New person/name/address of the agent

Representative=s name: BERNHARDT, K., DIPL.-ING., PAT.-ANW., 8000 MUENCHE

D2 Grant after examination
8364 No opposition during term of opposition
8328 Change in the person/name/address of the agent

Free format text: DERZEIT KEIN VERTRETER BESTELLT

8327 Change in the person/name/address of the patent owner

Owner name: INTEVAC, INC., SANTA CLARA, CALIF., US

8328 Change in the person/name/address of the agent

Free format text: BLUMBACH, P., DIPL.-ING., 6200 WIESBADEN WESER, W., DIPL.-PHYS. DR.RER.NAT. KRAMER, R., DIPL.-ING.,8000 MUENCHEN ZWIRNER, G., DIPL.-ING. DIPL.-WIRTSCH.-ING., 6200 WIESBADEN HOFFMANN, E., DIPL.-ING., PAT.-ANWAELTE, 8000 MUENCHEN