DE2442402A1 - Verfahren zur chlorierung organischer verbindungen - Google Patents

Verfahren zur chlorierung organischer verbindungen

Info

Publication number
DE2442402A1
DE2442402A1 DE2442402A DE2442402A DE2442402A1 DE 2442402 A1 DE2442402 A1 DE 2442402A1 DE 2442402 A DE2442402 A DE 2442402A DE 2442402 A DE2442402 A DE 2442402A DE 2442402 A1 DE2442402 A1 DE 2442402A1
Authority
DE
Germany
Prior art keywords
hydrogen chloride
benzene
chlorine
hydrochloric acid
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE2442402A
Other languages
English (en)
Other versions
DE2442402B2 (de
DE2442402C3 (de
Inventor
Walter H Dr Prahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of DE2442402A1 publication Critical patent/DE2442402A1/de
Publication of DE2442402B2 publication Critical patent/DE2442402B2/de
Application granted granted Critical
Publication of DE2442402C3 publication Critical patent/DE2442402C3/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

PATENTANWÄLTE 2 4 A 2 4 O'2
DR. JABGBR & GRAMS
DlPL -CHEM. DR. KLAUS JAEGER 8032 MÜNCHEN-GRÄFELFING TELEPHON : 854 27 01
DIPL-ING. KLAUS D GRAMS ARIBOSTRASSE 47 TELEX : 5 212 544 isar d
PRA 1
Dr0 Walter H. Prahl
75 Karlsruhe 41, Pfaffstrasse 16
Verfahren zur Chlorierung organischer Verbindungen
Die Erfindung betrifft ein Verfahren zur Chlorierung organischer Verbindungen mit Chlorwasserstoff in Gegenwart von Sauerstoff»
Die Chlorierung organischer Verbindungen zahlt zu den Grundoperationen in der chemischen Industrie. Sie wird beispielsweise zur Herstellung von Lösungsmitteln, wie Trichloräthylen, zur Herstellung von Monomeren für die Kunststoffproduktion, beispielsweise für die Herstellung von Vinylchlorid, oder bei der Herstellung von Zwischenprodukten für die Glykolsynthesen eingesetzt. Bei diesen Chlorierungen werden im wesentlichen zwei Nebenprodukte
509815/1243
2U2402
gebildet: Chlorwasserstoff und chlorhaltige organische Abfallprodukte, wobei diese Abfallprodukte in der Regel einen relativ hohen Chlorgehalt und ein relativ hohes Molekulargewicht in Verbindung mit anderen unerwünschten Eigenschaften aufweisen. Diese chlorhaltigen organischen Abfallprodukte sind im folgenden kurz als "Chlorabfall" bezeichnete
Bei den meisten Chlorierungen wird bis zur Hälfte des verbrauchten Chlors in Chlorwasserstoff überführt. Die Hauptmenge dieses Chlorwasserstoffs kann nach Reinigung, Verflüssigung, Kompression oder Absorption in Wasser in marktgerechte Chlorprodukte überführt werden, und zwar in verflüssigten Chlorwasserstoff, Chlorwasserstoffgas oder in konzentrierte Salzsäure. Ein nicht unerheblicher restlicher Anteil des bei den Chlorierungen gebildeten Chlorwasserstoffs kann jedoch auch bei günstigster Verfahrensführung nur in Form verdünnter Salzsäure aufgefangen werdeno Aufgrund des azeotropen Verhaltens des Systems HCl - Wasser kann aus einer verdünnten Salzsäure mit einem Chlorwasserstoffgehalt von weniger als etwa 20 % weder durch eine einfache Destillation noch durch andere billige Verfahren Chlorwasserstoff in einer der vorgenannten marktgerechten Formen gewonnen werden. Salzsäure mit einem Gehalt von weniger als etwa 20 % HCl ist also ebenfalls lediglich als Abfallprodukt zu betrachten.
Die Beseitigung dieser beiden Abfallprodukte, der verdünnten Salzsäure und des Chlorabfalls, ist insbesondere im Hinblick auf die praktisch unvermeidliche Umweltbelastung ein ernstes Problem.
Die verdünnte Salzsäure wird gewöhnlich mit Kalk neutralisiert und als Calciumchloridlösung abgelassen. In der Regel ist jedoch auch das Ablassen selbst sorgfältig neutralisierter Dünnsäuren aus ökologischen Gründen oder
509815/1243
aufgrund von Immissionsvorschriften im näheren Bereich der Produktionsstätte nicht möglich.
Die Beseitigung des Chlorabfalls ist weit schwieriger. Da er nicht abbaubar und giftig ist, verbietet sich seine Ablagerung auf Abfallkippen. Bei seiner Verbrennung entstehen Chlorwasserstoff und Chlor, zwei chemisch aggressive umweltfeindliche Gase. Weiterhin entstehen diese Gase bei der Verbrennung des Chlorabfalls in Verdünnung mit grossen Mengen von Verbrennungsgasen, vor allem Stickstoff, Kohlendioxid und Wasser. Die bei der Verbrennung des Chlorabfalls entstehenden Abgase enthalten einerseits zu grosse Mengen Chlorwasserstoff und Chlor, um die Verbrennungsgase sinnvoll einzusetzen, und sei es nur zum Wärmeaustausch, und enthalten andererseits einen zu grossen Anteil von Verbrennungsgasen, um den Chlorwasserstoff und das Chlor aufzuarbeiten. Die bei der Verbrennungs des Chlorabfalls gebildeten Abgase sind daher für die Industrie bisher ebenfalls Abfallprodukte. '
Bei der gebräuchlichen Verbrennung des ChlorabfalIs gehen also sowohl der Chlorgehalt des Abfalls als auch sein Wärmeinhalt verloren. Ausserdem müssen teure Vorkehrungen für eine sichere Beseitigung dieser Verbrehnungsabgase getroffen werden. Ein Verfahren besteht darin, sie fern von bewohnten Plätzen in die Atmosphäre zu entlassen. So wird der Chlorabfall beispielsweise in den Tanks von mit Brennern ausgerüsteten Schiffen gesammelt, in wenig befahrene Teile des offenen Meeres gebracht und dort verbranntw Die bei der Verbrennung gebildete Salzsäure und das gebildete Chlor sollen vom Meer absorbiert werden. Die im Umweltschutz begründeten Bedenken, die technischen sowie die wirtschaftlichen Bedenken gegen ein solches Verfahren sind offenkundig.
Nach einem anderen Verfahreh wird■versucht, bei der Verbrennung des Chlorabfalls die Bildung von Cl- zu vermeiden
509815/1243
24424
und den gebildeten Chlorwasserstoff durch Absorption in Wasser als verdünnte Salzsäure zu gewinnen (Chemical Engineering Progress, 6_9 (1973), 68 - 74). Dieses Verfahren ist umweltfreundlicher und scheint t auf den ersten Blick auch wirtschaftlicher zu sein, da die Salzsäure wiedergewonnen wird. In der Praxis wird dagegen durch dieses Verfahren lediglich ein Abfallprodukt durch ein anderes ersetzt. Der Chlorgehalt des Chlorabfalls wird dazu benutzt, verdünnte Salzsäure herzustellen, die besonders dort, wo der Chlorabfall anfällt, selbst als Abfallprodukt auftritt und Beseitigungsprobleme aufwirft. Ausserdem bleibt bei diesem Verfahren der Energiegehalt des Chlorabfalls ungenutzt.
Es zeigt sich also, dass die chlorverarbeitende Industrie nach wie vor vor zwei Problemen steht: a) den Chlorabfall so zu beseitigen, dass sowohl sein Energie- als auch sein Chlorgehalt wirtschaftlich genutzt werden können, und b) die ebenfalls als Abfallprodukt auftretende verdünnte Salzsäure wirtschaftlich zu verwerten.
Andererseits ist seit langem die Oxychlorierung bekannt, die als eine Abwandlung des DEACON-Verfahrens angesehen werden kann. Nach dem DEACON-Verfahreη wird das Chlor der Salzsäure zn Cl2 oxidiert: 4 HCl + O2 2 Cl3 + 2 H3O. Dazu wird ein Gemisch aus HCl und Sauerstoff bei erhöhter Temperatur über einen in der Regel Kupfer enthaltenden Katalysator geleitet. Der praktische Wert des DEACON-Verfahrens ist durch die Gleichgewichtsverhältnisse begrenzt. Nur beim Einsatz der Ausgangssubstanzen in ausserordentlich hoher Konzentration können im Produkt annehmbare Konzentrationen von Cl2 erhalten werden. Insbesondere durch die Gegenwart von Wasser wird die Reaktion ungünstxg beeinflusst. Dieses Erfordernis des wasserfreien Arbeitens gilt auch für die Oxychlorierung, bei der dem Gemisch der Ausgangskomponenten des DEACON-Verfahrens eine organische Verbindung zugesetzt wird. Durch die Chlorierung der zugesetzten organischen
815/1243
- 5 - .2442^02
Verbindung wird das Chlor aus dem DEACON-Gleichgewicht genommen, so dass der Ablauf der Oxidation der Salzsäure zum Chlor dadurch begünstigt wird.
Die Oxychlorierung wurde als Verfahren vor etwa 40 Jahren vom Erfinder der vorliegenden Erfindung in die chemische Industrie eingeführt, und zwar für die grosstechnische Herstellung von Chlorbenzol gemäss der Reaktion
CÄHÄ + HCl + 1/20« = C1-H1-Cl + H_0
DO ZOO Δ
als Teil des sogenannten RASCHIG-Phenolverfahrens (US—PS 1 963 761).
Seit dem ist die Oxychlorierung auf die Herstellung vieler anderer chlorierter Verbindungen ausgedehnt worden. Auch chlorierte Methane, Chloräthane und andere aliphatische chlorsubstituierte Verbindungen werden nach diesem Verfahren hergestellt. Dichloräthan, das in einer anschliessenden Stufe zu Vinylchlorid gespalten wird, wird ebenfalls in grosstechnischen Anlagen durch die Oxychlorierung hergestellt, und zwar durch die Anlagerung von Chlor an Äthylen:
2 HCl + 1/2 O2 + C3H4 = C2H4Cl2 +H2O
Auch aromatische Chlorierungsprodukte, insbesondere chloriertes Naphthalin oder chloriertes Diphenyl, werden durch Oxychlorierung im Produktionsmaßstab erhalten. In der folgenden Beschreibung sind die organischen Verbindungen, die der Oxychlorierung unterworfen werden sollen, als "organisches Substrat" oder kurz als "Substrat" bezeichnet.
Die Oxychlorierung ist zwar gegen die Anwesenheit von Wasser oder gegen eine Verdünnung des Reaktionsausgangsgemisches durch andere Stoffe nicht so empfindlich wie das DEACON-Verfahren,
509815/12 4 3
unterliegt jedoch prinzipiell den gleichen einschränkenden Gleichgewichtsprinzipien.
Die bei der Verbrennung des Chlorabfalls entstehenden Verbrennungsgase enthalten HCl in relativ niedriger Konzentration, verdünnt mit grossen Mengen von Stickstoff, Kohlendioxid, Wasser und anderen Abgaskomponenten. Beim Verdampfen von verdünnter Salzsäure enthält die Dampfphase neben Chlorwasserstoff grosse Mengen Wasserdampf. Die Durchführung-einer Oxychlorierung ist bisher niemals auch mit nur entfernt so verdünnten Chlorwasserstoffgemischen durchgeführt worden. Insbesondere ist eine Oxychlorierung in Gegenwart von Verbrennungsgasen als Verdünnungsgasen nicht durchgeführt worden. 40 Jahre Praxis haben gezeigt, dass der Fachmann die Oxychlorierung in stärkerer Verdünnung der Reaktionsteilnehmer und in Gegenwart von Wasser für praktisch und industriell undurchführbar hält.
Eine Beschränkung der Möglichkeiten der klassischen Oxychlorierung liegt weiterhin in der geringen Selektivität der Reaktion. Bei fast jeder Oxychlorierung wird ein Gemisch praktisch aller theoretisch möglichen Chlorierungsstufen und Chlorierungsisomeren erhalten. Zur Steuerung der Selektivität der klassischen Oxychlorierung ist bislang mit massigem Erfolg lediglich eine Regelung des Mengenverhältnisses von Substrat zu HCl bekannt und eingesetzt worden. In der Praxis führt jede gebräuchliche Oxychlorierung zu einem Gemisch von Verbindungen, von denen in der Regel mehrere, wenn nicht gar die meisten, unerwünschte Nebenprodukte sind. So ist es beispielsweise bei der Oxychlorierung von Benzol möglich. Monochlorbenzol als Hauptprodukt zu erhalten, wenn man relativ grosse Mengen Benzol mit relativ kleinen Mengen HCl und O2 umsetzt. Beispielsweise sind dazu Mengenverhältnisse von 10 : 1 oder 20 : 1 einzustellen. Selbst unter diesen Bedingungen werden jedoch im Produktgemisch beachtliche Mengen
509815/1243
Dichlorbenzol und höher chlorierte Benzole als Nebenprodukte erhalten. Obwohl es unter den genannten Einschränkungen zwar möglich ist, durch die Oxychlorierung Monochlorbenzol zumindest als Hauptkomponente herzustellen," so ist es jedoch nicht möglich, Zwischenstufen der Chlorferung, beispielsweise p-Dichlorbenzol, als Hauptproduktkomponente einer klassischen Oxychlorierung zu erhalten. Selbst unter günstigster Reaktionsführung erhält man mehr Nebenprodukte als Hauptprodukt. Gerade aber die gezielte billige Herstellung von p-Dichlorbenzol ist angesichts seiner Kristalle als Mottenschutzmittel durchaus von Interesse.
Angesichts dieses Standes der Technik liegt der Erfindung die Aufgabe zugrunde, die bei den industriellen Chlorierungsreaktionen entstehenden Abfallprodukte, insbesondere den Chlorabfall und die verdünnte Salzsäure, im Hinblick auf ihren Chlorgehalt und ihren Energiegehalt wirtschaftlich zu nutzen und dabei gleichzeitig das Problem ihrer Beseitigung zu lösen; gleichzeitig liegt der Erfindung die Aufgabe zugrunde, die Möglichkeiten der Oxychlorierung in der Weise zu erweitern, dass auch feuchte und stark mit Inertanteilen verdünnte Gemische der Ausgangsreaktionskomponenten eingesetzt werden können, und zwar unter gewünscht enf a Ils wesentlicher Erhöhung der Selektivität der Reaktion, wobei auch Zwischenstufen der Chlorierung abfangbar werden sollen.
Zur Lösung dieser Aufgabe wird ein Verfahren zur Chlorierung organischer Verbindungen vorgeschlagen, das erfindungsgemäss dadurch gekennzeichnet ist, dass man ein Gemisch aus Verbrennungsgasen, Chlorwasserstoff, Sauerstoff und den zu chlorierenden organischen Verbindungen in der Dampfphase mit einem Oxychlorierungskatalysator in Berührung bringto
Mit anderen Worten beruht die Erfindung in der Kombination
50981 5/1243
einer Verbrennung, insbesondere einer Verbrennung von Chlorabfällen, mit der Oxychlorierung»
Durch eine solche Kombination lassen sich nämlich eine Reihe unerwarteter Kombinationen der einzelnen Verfahrenskomponenten herstellen, durch die überraschende Vorteile erzielt werdeno So können beispielsweise durch diese Kombination unerwartet und ungebräuchlich hohe Endkonzentrationen an HCl aufrechterhalten werden, kann nicht verbrauchter Chlorwasserstoff ohne zusätzliche Kosten in das Verfahren zurückgeführt werden und kann die erforderliche Verdampfungswärme ohne eine zusätzliche Wärmezufuhr von aussen durch die freiwerdende Verbrennungswärme gedeckt werden. Durch Rückführung des nicht umgesetzten Chlorwasserstoffs in die Verbrennungskammer wird eine praktisch quantitative Ausnutzung des Chlorgehaltes der Chlorabfälle erzielt. Bei Rückführung auch der organischen zu chlorierenden Verbindung bzw. der Verbindungen werden Ausbeuten im Bereich von 95 - 100 % der theoretischen Ausbeuten, bezogen auf die organischen Verbindungen, erhalten.
Nach einer bevorzugten Ausbildung des Verfahrens werden, wie bereits betont, die Verbrennungsgase durch Verbrennen oder Mitverbrennen chlorhaltiger organischer Abfallprodukte erzeugt.
Nach einer weiteren Ausbildung der Erfindung werden die Verbrennungsgase durch Verbrennung üblicher organischer, in der Regel fossiler Brennstoffe erzeugt und wird der Chlorwasserstoff durch Verdampfen von Salzsäure, insbesondere verdünnter Salzsäure, in die heissen Verbrennungsgase hinein geliefert. Die Verbrennung der Brennstoffe kann dabei unter Mitverbrennung chlorhaltiger organischer Abfallprodukte erfolgen. Bei grösseren Mengen zur Verfügung stehender Chlorabfälle aus der industriellen Chlorierung wird das Verfahren der Erfindung vorzugsweise und in besonders wirtschaftlicher Weise so geführt, dass die Chlorabfälle der einzige Lieferant des bei der Oxy-
$09815/120
Chlorierung verbrauchten Chlorwasserstoffs sind.
Das Verfahren der Erfindung wird besonders vorteilhaft zur Chlorierung von Kohlenwasserstoffen, und zwar sowohl von einzelnen Kohlenwasserstoffen als auch von Kohlenwasserstoff geraischen der verschiedensten Art, verwendete
Durch die Erfindung können insbesondere in den Produktionsanlagen der Grosschemie durch die gleichzeitige Lösung brennender Abfallbeseitigungsprobleme und der Lösung von Selektivitatsproblemen eines an sich bekannten, bewährten und wirtschaftlichen Verfahrens unvermutete Vorteile erzielt werden.
Weitere Vorteile der Erfindung sind aus Gründen des besseren Verständnisses im Zusammenhang mit den Ausführungsbeispielen näher beschrieben.
Die Erfindung ist im folgenden in Verbindung mit den Zeichnungen anhand von Beispielen näher erläutert. Es zeigen:
Fig. 1 eine Anlage zur Durchführung des
Verfahrens der Erfindung;
Fig. 2 den Reaktorteil einer modifizierten
Anlage der in Fig. 1 gezeigten Art und
Fig. 3 eine weitere Modifikation des Reaktorteils einer Anlage zur Durchführung des Verfahrens der Erfindung unter Rückführung der erhitzten nichtchlorierten oder nur teilchlorierten organischen Phase.
Beispiel 1
Es werden der Chlorgehalt und der Wärmeinhalt eines Chlorabfalls
50981 5/12^3
nutzbar gemacht, der ungefähr 63,2 % Chlor enthält und mit einer Durchsatzleistung von 580,5 kg/h anfällt. Der Chlorabfall wird verbrannt, und sein Chlorgehalt wird zur Oxychlorierung von Benzol zu Monochlorbenzpl als Hauptkomponente mit geringen Anteilen höher chlorierter Benzole genutzt. Sowohl Monochlorbenzol als auch die höher chlorierten Benzole dienen in der Industrie als Lösungsmittel, Zwischenprodukte und für viele andere Zwecke.
Die Reaktion wird in der in Fig. 1 gezeigten Anlage durchgeführt. Die Verbrennung findet in einer Verbrennungskammer A statt, die mit feuerfesten Ziegeln ausgekleidet ist. Der mit einer Durchsatzleistung von 580,5 kg/h über die Leitung dem Brenner B zugeführte Chlorabfall wird im Brenner mit 3442 kg/h Luft verbrannt, die dem Brenner über die Leitung zugeführt wird. Über die Leitung 3 mit einer Durchsatzleistung von etwa 1322 kg/h wird eine etwa 2,85 %ige Salzsäure durch die Sprühdüsen C in die Verbrennungskammer A gesprüht. Die versprühte Salzsäure trifft auf die heissen Verbrennungsgase und verdampft. Eine Ziegelmauer D mit versetzten Durchlässen oder ein anders aufgebauter feuerfester Tropfenscheider fängt die nicht verdampften Salzsäuretropfchen auf und schirmt die stromabwärts gelegenen Teile der Anlage gegen die Brennertemperatur ab.
Durch die Verdampfung der Säure werden die Verbrennungsgase auf etwa 600 0C abgekühlt. Durch eine nach der Scheidewand D in die Kammer ragende zweite Anordnung von Sprühdüsen E werden über eine Zuleitung 4 4580 kg/h Benzol in den heissen Gasstrom gesprühto Die vorzugsweise aus Ziegeln erstellte Scheidewand F dient dazu, eine vollständige Verdampfung und Mischung der Komponenten im mittleren Teil der Kammer zu gewährleisten. Die nach der Scheidewand F aus der Verbrennungskammer A über eine Austragsleitung 5 austretenden Gase haben nunmehr eine Temperatur von etwa 200 0C. Das Gasgemisch tritt mit etwa dieser Temperatur in den mit dem Katalysator
50981 5/1243
-ii- 2A42A02
beschickten Reaktor G ein. In diesem Reaktor durchströmt das Gasgemisch etwa 20 m eines sogenannten DEACON-Katalysators, wie er beispielsweise in der DT-PS 539 176 beschrieben isto
Etwa 90 % der in den Reaktor G eintretenden Salzsäure wird zur Chlorierung des Benzols verbraucht, wobei 941 kg/h Monochlorbenzol, 122 kg/h Dichlorbenzol, 12 kg/h Trichlorbenzol und etwa 1 kg/h höhere Chlorbenzole.gebildet werden. Das den Reaktor G über eine Austragsleitung 6 verlassende Reaktionsgemisch wird anschliessend in Produktkomponenten und nicht umgesetzte Komponenten sowie weiter in die einzelnen Produktkomponenten aufgetrennt.
Vorzugsweise wird für die Produktisolierung eine mit säurefesten Steinen ausgekleidete Kolonne H eingesetzt. Die Kolonne hat einen lichten Durchmesser von etwa 1,5 m, die etwa 6 m hoch mit Füllkörpern gefüllt ist. Als Füllkörper werden vorzugsweise etwa 50 mm grosse sattelförmige Porzellanformkörper verwendet. Die Füllung wird über die Leitung 7 mit ungefähr 1215 l/h Wasser aus dem Tank I und mit etwa 15 000 l/h Benzol aus dem Tank K berieselt. Das Wasser wird über eine Leitung, und das Benzol über eine Leitung 9 in die Rieselleitung 7 eingeführt.
Die am Fuss der Kolonne H austretende flüssige Phase wird über eine Leitung 10 in ein Trenngefäss L überführt. Dort . werden die wässrige und die organische Phase voneinander getrennt. Die abgetrennte wässrige Phase enthält praktisch den gesamten nicht umgesetzten Chlorwasserstoff und etwa 1285 kg/h Wasser. Diese wässrige Phase fliesst durch eine Leitung 11 in einen Säuretank M0 Von dort wird sie durch die Leitung 3 zur Verbrennungskammer A zurückgeführt.
Die im Trenngefäss L abgetrennte organische Phase, die im wesentlichen das gesamte chlorierte Benzol und etwa 907 kg/h Benzol enthält, wird über eine Leitung 12 einer nachgeschalteten
50981S/12U
an sich bekannten Trennung zugeführt. Beispielsweise durch eine fraktionierte Destillation kann das Benzol in einfacher Weise von den chlorierten Benzolen abgetrennt und dem Verfahren wieder zugeführt werden. Die chlorierten Produktbenzole werden in üblicher Weise getrennt und der industriellen Nutzung zugeführt.
Die den Kopf der Kolonne H verlassenden Gase führen etwa 725 kg/h Kohlendioxid, 1488 kg/h Wasserdampf, 2645 kg/h Stickstoff, 32 kg/h Sauerstoff und 15 000 kg/h Benzol. Über eine Abzugslei-tung 13 gelangt die Dampfphase zunächst in einen Kondensator N, wo sie durch Kühlturmwasser auf etwa 30 C gekühlt wirdo Dabei wird der grösste Teil des Benzols verflüssigt. Die nicht kondensierte Phase wird anschliessend in einen zweiten Kondensator O überführt, wo sie durch gekühltes Wasser auf 15 0C abgekühlt wird. Die Kondensate der Kondensatoren N und 0 werden über Leitungen 20,21 und 15 in einem zweiten Trenngefäss R vereinigt.
Das bei etwa 15 0C mit Benzol und Wasser gesättigte Gas, das den Kondensator O verlässt, wird über eine Leitung in ein an sich bekanntes Absorptionssystem überführt. Das Gas strömt dabei in einer Kolonne P aufwärts. Das mitgeführte Benzol wird in an sich bekannter Weise durch eine Waschflüssigkeit ausgewaschen. Vorzugsweise wird dazu o-Dichlorbenzol verwendet, das aus dem Tank S entnommen und über eine Leitung 23, einen Wärmeaustauscher T und einen Kühler U mit einer Endtemperatur von etwa 10 0C auf den Kopf der Kolonne P gepumpt wird.
Das das absorbierte Benzol enthaltende o-Dichlorbenzol geht von der Kolonne P über die Leitung 24 zum Ausgleichstank V. Von dort wird es durch die Leitung 25 und den Wärmeaustauscher P zum Kopf der Reinigungskolonne Q gepumpte Für den Fall, dass eine Rückführung geringer Mengen von
50 981S71243
Dichlorbenzol unerwünscht ist, wird die Leitung 25 vorzugsweise etwas unterhalb des Kolonnenkopfes eingeführt. Ein Teil des Benzols aus der Leitung 28 kann dabei als Rückflussphase verwendet werden.
Die Kolonne Q wird vorzugsweise unter vermindertem Druck, insbesondere bei etwa 300 mmHg , , betrieben» Beim Ablaufen durch die Kolonne Q wird das Dichlorbenzol durch die im Gegenstrom aufsteigenden Dichlorbenzoldämpfe, die im Verdampfer W erzeugt werden, vom absorbierten Benzol befreit. Das vom Benzol befreite Dichlorbenzol fliesst durch die Leitung 26 in den Tank S und wird von dort erneut in den Kreislauf geführt. Das in der Kolonne Q abgetriebene Benzol wird über die Leitung 27 zum Kondensator X geführt und kehrt über die Leitungen 28, 21 und 15 in das System zurück. Die Kondensate aus den Kondensatoren Ν, 0 und X gelangen über die Leitungen 28,21 bzw. 15 in das Trenngefass R, in dem sie in Benzol und Wasser geschieden werden. Sie werden über die Leitungen 17 bzw. 16 dem Benzoltank K bzw. dem Wassertank I zugeführt. Die Füllhöhe im Benzoltank wird dadurch aufrechterhaIten t dass über die Leitung 18 etwa 737 kg/h Benzol dem Tank K zugeführt werden. Die Füllhöhe im Wassertank I wird dadurch aufrechterhalten, dass dem Tank etwa 181 kg/h Wasser über die Leitung 19 entnommen werdeno
In der beschriebenen Anlage wird das im Chlorabfall enthaltene Chlor praktisch quantitativ zur Chlorierung des Benzols ausgenutzt. Die Ausbeute in bezug auf das Benzol ist eine Funktion der im Einzelfall gewählten Verfahrensparameter, liegt in der Regel jedoch mindestens bei 95 % der theoretischen Ausbeute.
Unter Bezug auf die vorstehend im Beispiel 1 beschriebene Verfahrensweise sind im folgenden die auch allgemein gültigen Vorteile der Erfindung insbesondere im Hinblick
509815/1243
auf den nichtkombinierten Einzelbetrieb einer Verbrennung und einer Oxychlorierung nebeneinander diskutiert.
Verbrennung;
Um eine Korrosion der Anlage zu vermeiden und den Katalysator auf Reaktionstemperatür aufzuheizen, wird die Verbrennungs vorzugsweise mit einem üblichen Brennstoff eingeleitet. Als Brennstoff zum Vorwärmen der Anlage dienen vorzugsweise Gas oder Öl. Nachdem in der Anlage etwa Betriebstemperaturen erreicht sind, wird der Brenner auf die Verbrennung oder Mitverbrennung des Chlorabfalls umgestellt. In geeignet ausgelegten Brennern kann in der Regel noch ein Chlorabfall glatt verbrannt werden, der bis zu 65 % Chlor enthält. Bei höherem Chlorgehalt oder bereits vorhandenen, zur Verbrennung von reinem Chlorabfall nicht optimal ausgelegten Brennern oder bei Anfall des Chlorabfalls mit zu geringer Durchsatzleistung werden der Verbrennung des Chlorabfalls vorzugsweise übliche Brennstoffe, insbesondere Erdgas oder Heizöl, zugesetzt.
Falls keine zusätzlichen speziellen Vorkehrungen zum Schutz des Katalysators getroffen sind, muss darauf geachtet werden, dass weder der Chlorabfall noch der Brennstoff wesentliche Mengen Schwefel enthalten. Schwefel ist für die meisten DEACON-Katalysatoren ein Katalysatorgift.
Bereits in der Verbrennung machen sich wesentliche Vorteile der Kombination einer Verbrennung und der Oxychlorierung bemerkbar. Einöai der Verbrennung des Chlorabfalls eingesetzter Luftüberschuss begünstigt die Bildung von Cl» gegenüber der Bildung von HCl. Bei der gebräuchlichen Wiedergewinnung des Chlors aus Chlorabfall in Form wässriger Salzsäure führt dagegen die Gegenwart von Cl2 und seine Disproportionierung bei der Absorption im Wasser zu Schwierigkeiten. Die bekannten Verfahren zur Verbrennung des Chlorabfalls müssen
509815/1243
2U2402
daher Kompromisse zwischen der Chlorbildung bei· einer Verbrennung mit Luftüberschuss und einer unvollständigen Verbrennung bei Luftunterschuss schliessen. Zu diesem Kompromiss ist man bei der erfindungsgemässen Kombination der Verbrennung mit einer Oxychlorierung nicht gezwungen. Bei der Oxychlorierung spielt es prinzipiell keine Rolle, ob das Chlor in Form von HCl oder als Cl2 vorliegto Beide Komponenten reagieren mit praktisch gleicher Leichtigkeit in der Oxychlorierung. Das Verfahren der Erfindung ermöglicht daher die problemlose vollständige Verbrennung der Chlorabfälle mit einem ausreichenden Luftüberschusso Vorzugsweise wird der Luftüberschuss»wie im Beispiel 1 beschrieben, so gewählt, dass die Verbrennungsgase noch ausreichend 0~ enthalten, um den Sauerstoffbedarf der Oxychlorierung zu deckenο Gewünschtenfalls kann jedoch auch mit einem geringeren Luftüberschuss verbrannt werden, wobei der in der anschliessenden Oxychlorierung benötigte Sauerstoff an beliebiger Stelle vor oder im Katalysator als Luft, reiner Sauerstoff oder in anderer Form zugesetzt werden kann.
Ablöschung;
Die Verbrennungsgase verlassen den Brenner normalerweise mit einer Temperatur von wesentlich über 1000 0C. Viele organische Substrate vertragen diese Temperatur nicht und wurden bei Zumischung zu derart heissen Flammgasen zersetzt werden. Die Flammgase müssen also, bevor sie mit dem Substrat vermischt werden, zumindest auf eine Temperatur abgekühlt werden, die vom Substrat ohne wesentliche Zersetzung vertragen wird. Diese Temperatur ist im folgenden als "ToIeranztemperatur" bezeichnete Beispielsweise beträgt die Toleranztemperatur für Benzol etwa 600 C. Andere Substrate und andere Betriebsbedingungen sind durch andere Toleranztemperaturen gekennzeichnet.
Die Verbrennungsgase müssen bis zur oder unter die Toleranz-
509ΒΊ5/1243
temperatur gekühlt werden, ehe ihnen das Substrat zugemischt wird. In dem zuvor beschriebenen Beispiel 1 werden sie nur bis zur Toleranztemperatur gekühlt, um die Temperaturdifferenz zwischen der Toleranztemperatur und der Reaktionstemperatur zur Verdampfung des Benzols und zu seiner Erwärmung auf die erforderliche Reaktionstemperatur nutzbar zu machen. Diese Verfahrensweise wird vorzugsweise allgemein angewendet, kann jedoch insbesondere auch bei niedrig siedenden Substraten ohne weiteres verlassen werden. Wenn das Substrat überhaupt keine Verdampfung erfordert, beispielsweise also ein Gas, wie Methan oder Äthan, ist, können die Verbrennungsgase bis nahe an die Reaktionstemperatur heruntergekühlt werden.
Die Kühlung der Verbrennungsgase kann in an sich bekannter Weise erfolgen. Vorzugsweise werden sie jedoch durch Einsprühen verdünnter Salzsäure gekühlt, wobei ihre Energie der Verdampfung der eingesprühten verdünnten Salzsäure dient< Die verdünnte Salzsäure dient dabei als Ablöschflüssigkeit„ Die Berührung zwischen den heissen Verbrennungsgasen und der AbJ.öschflüssigkeit kann, wie im Beispiel 1 beschrieben, vorzugsweise durch Versprühen der Flüssigkeit in den Gasstrom erfolgen. Die Temperaturregelung erfolgt vorzugsweise durch einfache Steuerung der Durchsatzleistung der eingeführten Ablöschflüssigkeit.
Zum Ablöschen werden vorteilhafterweise weiterhin Tauchbrenner oder mit der Ablöschflüssigkeit berieselte Füllkörper eingesetzte Insbesondere bei diesen Verfahren wird in der Regel eine Abkühlung bis nahe an die Gleichgewichtstemperatur erreicht. Wenn höhere Temperaturen, beispielsweise im Bereich der Toleranztemperatür,.erwünscht sind, werden vorzugsweise andere Verfahren zur Temperaturregelung eingesetzt, vorzugsweise eine Verzweigung des Gasstromes, Kühlen des einen Teilstroms und anschliessendes Mischen des gekühlten Stromes mit dem ungekühlten Strom.
509815/1243
Wärmebilanz;
Die Wärmebilanz des Verfahrens der Erfindung ist durch folgende Merkmale gekennzeichnet:
Wärme wird frei
I) während der Verbrennung und steht in zwei Stufen zur Verfügung,und zwar
a) nach Massgabe der Differenz von der Verbrennungstemperatur zur Toleranztemperatur und
b) nach Massgabe der Differenz von der Toleranztemperatur zur Reaktionstemperatur und
II) während der Oxychlorierung und durch die Oxidation, Wärme wird verbraucht
A) bei der Verdampfung des in der Oxychlorierung nicht umgesetzten Chlorwasserstoffs, der als verdünnte Salzsäure rückgeführt wird, und bei seiner Erwärmung auf Reaktionstemperatür;
B) bei der Verdampfung gegebenenfalls zusätzlich in den Prozess eingeführter Salzsäure und deren Erwärmung auf Reaktionstemperatur sowie
G) bei der Verdampfung des organischen Substrates, soweit es sich bei diesem um flüssige Phasen handelt und bzw. oder deren Erwärmung auf Reaktxonstemperatur.
In der vorstehend skizzierten Wärmebilanz steht die in der Stufe Ia) freiwerdende Wärme nicht für die Stufe C) zur Verfügung. Sie wird vorzugsweise für die Stufe A) verwendet.
509815/1243
Der Teil der in der Stufe la) freiwerdenden Wärme, die nicht für die Stufe A) benötigt wird, steht für die Stufe B) zur Verfügung.
Die in der Stufe Ib) freiwerdende Wärme wird vorzugsweise und in erster Linie für die Stufe C eingesetzt. Ein verbleibender Überschuss kann dann ebenfalls in die Stufe B) geführt werden o Im einzelnen wird die Wärmebilanz nach folgenden prinzipiellen Gesichtspunkten geregelt:
Je niedriger das Verhältnis von HCl zu Substrat ist, um so höher ist das Verhältnis von niederchlorierten zu höherchlorierten Verbindungen. So wird beispielsweise im Beispiel 1, in dem als Hauptproduktkomponente Monochlorbenzol hergestellt werden soll, die gesamte Energie aus Ib) und möglichst sogar die gesamte Energie aus der Stufe II) zur Verdampfung des Benzols verwendet, um ein Minimum an HCl mit einem Maximum an Benzol in der Dampfphase zur Reaktion zu bringeno
Wenn dagegen beispielsweise bei der Verwendung gasförmiger Substrate nicht der volle Wärmebetrag aus der Stufe Ib) für die Stufe C) verbraucht wird, kann der ungenutzte Teil der Wärmeenergie aus der Stufe Ib) und bzw. oder aus der Stufe II) vorteilhaft in der Stufe B) eingesetzt werden,,
Der für die Chlorierung nicht verbrauchte Teil des Chlorwasserstoffs kann theoretisch in Form einer bis zu etwa 20 %igen Salzsäure gewonnen werden. Im allgemeinen ist es jedoch wirtschaftlicher, diesen Chlorwasserstoffanteil in geringer Konzentration, vorzugsweise höchstens 10- bis 15 %ig* aufzufangen. Im Beispiel 1 beträgt die durch Auffangen des nicht umgesetzten Chlorwasserstoffs erzeugte Salzsäure nur 2,85 %a Bei diesem Verfahren wird keine Salzsäure von aussen zu der in der Verbrennung erzeugten Salzsäure hinzugefügt.
509815/1243
ZU 2 4
Insbesondere in grossen Produktionsanlagen kann jedoch der Fall eintreten, dass als Abfalldünnsäure aus irgendwelchen Prozessen eine beispielsweise 20 %ige Salzsäure verfügbar ist, während aus dem Verfahren der Erfindung eine beispielsweise nur etwa 10 %ige Salzsäure aus dem nicht umgesetzten Chlorwasserstoff resultiert. Es widerspricht nicht dem Geiste dieser Erfindung und insbesondere nicht der Wirtschaftlichkeit des Verfahrens, wenn man in solchen Fällen die stärkere Abfallsäure in das Verfahren der Erfindung einführt und den nicht umgesetzten Chlorwasserstoffanteil in Form der dünneren Dünnsäure verwirfto Im Rahmen grösserer Produktionsanlagen bedeutet das immerhin eine Halbierung der Konzentration der zu vernichtenden Abfailsäure und bedeutet unter !anständen einen wesentlichen wirtschaftlichen Vorteil. Ein Verfahren dieser Art ist im Beispiel 3 beschrieben.
Oxidation;
Die durch das Verfahren der Erfindung eröffnete Möglichkeit, den nicht umgesetzten Anteil Chlorwasserstoff als Salzsäure in das Verfahren zurückzuführen, eröffnet überraschende Vorteile für die Oxychlorierung. Zur Erklärung: dieses Vorteils sei zunächst kurz eine spezielle Eigenschaft der Oxychlorierungsreaktion dargestellt.
In jeder Oxychlorierung sind die Oxidation .der Salzsäure durch den Sauerstoff und die Oxidation des Substrats durch den Sauerstoff im Reaktionsgemisch Konkurrenzreaktionen. Für Benzol lautet die Konkurrenzreaktion zur Oxidation der Salzsäure beispielsweise CgH6 + 7,5 0, = 6 CO2 +. 3 H3O. Dem steht die erwünschte Oxychlorierung des Benzols gemäss C6H6 + HCl + 0,5 O2 = C6H5Cl + H2O entgegen. Das Verhältnis der Reaktionsgeschwindigkeiten dieser beiden Konkurrenzreaktionen wird von vielen Faktoren beeinflusst, insbesondere von der Art des Substrates, den Eigenschaften des
509815/1243
2U2402
Katalysators und der Reaktionstemperatur. Als wichtigste einzelne Einflussgrösse tritt jedoch die Konzentration der HCl in Erscheinung. Unter sonst gleichen Bedingungen nimmt die Oxidation des Substrates mit sinkender HCl-Konzentration schnell zu. Die Zunahme der Reaktionsgeschwindigkeit ist der HCl-Konzentration umgekehrt proportional, und zwar mindestens umgekehrt quadratisch proportional. Häufig werden auch Funktionen höherer Potenzen der HCl-Konzentration beobachtet.
Bei der klassischen Oxychlorierung ist daher der Grad der Ausnutzung der HCl ein Kompromiss.zwischen dem Verlust von nicht umgesetzter HCl und einer Zunahme der anfallenden Abfalldünnsäure einerseits und einem Verlust des organischen Substrats andererseits, das infolge der niedrigen Endkonzentration der HCl in der Reaktion verbrannt wird.
Bei der gebräuchlichen Oxychlorierung von Benzol lässt man daher beispielsweise mindestens etwa 2 % HCl unverbraucht, um die Verbrennung des Benzols in Grenzen zu halten. Auf empfindlichere organische Verbindungen, beispielsweise substituierte Benzole, kann die klassische Oxychlorierung aus diesen Gründen nicht angewendet werden. Durch die leichte Oxidierbarkeit dieser Verbindungen wird die Ausbeute, bezogen auf die HCl, unvertretbar niedrig.
Das Verfahren der Erfindung ist dieser Beschränkung nicht unterworfen. Der nicht umgesetzte Chlorwasserstoff kann vollständig als Ablöschflüssigkeit in die Reaktion zurückgeführt werden. Die Ausnutzung der Salzsäure wird dadurch auf praktisch 100 % erhöht, und zwar unabhängig davon, ob beim einmaligen Durchgang durch den Katalysator zwei oder zwanzig oder fünfzig Prozent des Chlorwasserstoffs unverbraucht bleiben. Die Wirkung d-er Ablöschflüssigkeit wird nicht dadurch beeinflusst, ob die Ablöschflüssigkeit nun Wasser oder eine Salzsäure mehr oder minder hoher Konzentration ist ο
509815/1 2U
2U2402
Die Verbrennung des Chlorabfalls liefert HCl in weit niedrigerer Konzentration als für die bekannte Oxychlorierung erforderlich. Um eine übermässige Oxidation zu verhindern, muss die Endkonzentration des Chlorwasserstoffs auf einem der gebräuchlichen Oxychlorierung entsprechenden Niveau gehalten werden. Durch dies Erfordernis ist der Grad der Umsetzung des Chlorwasserstoffs je Durchgang notwendigerweise geringer. Das könnte die Anwendung der Oxychlorierung auf die Verbrennungsgase von Chlorabfall unwirtschaftlich werden lassen, wenn die Kombination der Erfindung nicht den Vorteil böte» dass ein sehr hoher Prozentsatz des Chlorwasserstoffs ohne zusätzliche Kosten rückgeführt werden kann. Diese Rückführung verursacht vor allem 'deshalb keinerlei zusätzliche Kosten, weil die Verbrennungsgase ohnehin abgelöscht werden müssen und die Konzentration der rückgeführten Salzsäure dabei praktisch bedeutungslos ist.
Im Beispiel 1 beträgt der nicht verbrauchte Anteil des Chlorwasserstoffs etwa 10 % der dem Katalysator zugeführten Chlorwasserstoffmenge. Er ist also etwa 5 mal so hoch wie bei der gebräuchlichen Oxychlorierung von Benzol* Der Prozentsatz an verbranntem Benzol wird dadurch auf ein Minimum gedrückt. Bei der Oxychlorierung von Substraten, die leichter oxidierbar als Benzol sind, kann der Prozentsatz des nicht umgesetzten Chlorwasserstoffs problemlos auf bis zu 50 % oder darüber erhöht werden, ohne dass die Wirtschaftlichkeit des Verfahrens darunter leidet.
Durch die durch das Verfahren der Erfindung eröffnete Möglichkeit, die Oxychlorierung so zu führen, dass auch mit niedrigeren Umsätzen des Chlorwasserstoffs je Durchgang gearbeitet werden kann, bietet sich ein weiterer bedeutender wirtschaftlicher Vorteil. Die zur Umsetzung einer gegebenen Menge Chlorwasserstoff in einer gegebenen Zeiteinheit erforderliche Katalysatormenge ist der Konzentration des Chlorwasserstoffs umgekehrt proportional. Im Verfahren der
509815/12^3
Erfindung wird daher beispielsweise eine gegenüber der gebräuchlichen Oxychlorierung um den Faktor 5 geringere Anfangskonzentration durch eine um den Faktor 5 höhere Endkonzentration kompensiert. Im Vergleich zur gebräuchlichen Oxychlorierung bleibt das Volumen des Katalysators daher näherungsweise unverändert. Diese durch das Verfahren der Erfindung eröffnete Möglichkeit, einen sehr hohen Prozentsatz des unverbrauchten Chlorwasserstoffs wirtschaftlich in das Verfahren zurückzuführen, infolgedessen eine nur geringe Oxidation des organischen Substrates in Kauf nehmen zu müssen,und gleichzeitig eine praktisch 100 %ige Ausnutzung der Salzsäure ohne Veränderung des gebräuchlichen Katalysatorvolumens wird als der wohl wichtigste Vorzug des Verfahrens der Erfindung angesehen, die die Anwendung der Oxychlorierung auf Verbrennungsgase ermöglicht.
Einführung des organischen Substrates;
Das Substrat muss mit dem Katalysator als Dampf oder Gas in Berührung gebracht werden» Falls das Substrat als Flüssigkeit aufgegeben wird, wird die Differenz zwischen der Toleranztemperatur und der Reaktionstemperatur vorzugsweise voll für die Verdampfung des Substrats nutzbar gemacht. Im Fall von Benzol entspricht diese Energie der Differenz von einer Toleranztemperatur von etwa 600 0C und einer Reaktionstemperatur von etwa 200 C.
In der im Beispiel 1 beschriebenen Weise wird flüssiges Benzol in das teilweise abgelöschte Verbrennungsgas gesprüht, wobei die Menge so geregelt ist, dass die Temperatur des Verbrennungsgases von etwa 600 0C auf etwa 200 C erniedrigt wirdo Das gleiche Ergebnis kann erzielt werden« wenn man die Gase beispielsweise durch eine mit Benzol berieselte Beschickung leitet oder nach irgendeinem anderen an sich bekannten Verfahren zum direkten Wärmeaustausch zwischen Flüssigkeiten und Gasen. Es sei darauf hingewiesen.
509815/1243
244 24Q2
dass auch dadurch wiederum die Verbrennungswärme der Chlorabfälle nutzbar gemacht wird. So wie die höheren Temperaturen für die Verdampfung der Salzsäure genutzt werden, so werden die niedrigeren Temperaturen zur Verdampfung des Substra tesjeingesetzt.
Katalysatorraum;
Sowohl die Oxychlorierung als auch die Oxidation sind exotherme Reaktionen. Bei der gebräuchlichen Oxychlorierung wird der Katalysatorraum gekühlt, um zu verhindern, dass das Reaktionsgemisch eine Temperatur erreicht, bei der die Oxidation des Substrates vorherrschend wird. Gleichzeitig soll dadurch im Katalysator die Bildung von Uberhitzungsstellen verhindert werden, an denen durch lokale temporäre Überhitzung die Oxidation des Substrates begünstigt wurde» wodurch eine weitere Temperatursteigerung an diesen. Überhitzungsstellen erzeugt wird.
Die erforderliche Kühlung kann durch äusseren oder inneren Wärmeentzug bewirkt werden. Bei äusserer Kühlung werden die Platten oder Rohre, die den im Festbett liegenden Katalysator aufnehmen, durch Luft, hochsiedende Flüssigkeiten oder andere an sich bekannte Mittel, gekühlt. Bei Einsatz des Katalysators im Wirbelbett wird dieser vorzugsweise durch eine Kühlzone geführt. Die innere Kühlung kann in der Weise bewirkt werden, dass der Katalysatorraum in verschiedene Lagen oder Zonen unterteilt wird, die das Reakti ons gemisch nacheinander durchfliesst«, Zwischen diesen Lagen werden einer oder mehrere der Reaktionsteilnehmer oder ein inertes Kühlmittel in flüssiger oder gasförmiger Phase in das Reaktionsgemisch eingeführt. Als flüssiges Kühlmittel kann beispielsweise Wasser, das flüssige,organische Substrat oder Salzsäure eingesetzt werden. Als nichtkondensiertes Kühlmittel werden vorzugsweise das gas- oder dampfförmige Substrat, ein Teil des gekühlten
509815/12
24424
Reaktionsgemisches oder Stickstoff oder ein anderes an sich bekanntes Kühlmittel eingesetzt. In jedem Fall wird bei der klassischen Oxychlorierung eine Kühlung benötigt, und tragen die dazu erforderlichen zusätzlichen Kosten dazu bei, die Oxychlorierung technisch aufwendiger zu machen.
Bei dem Verfahren gemäss der Erfindung verursacht dagegen eine gegebene Wärmemenge einen nur wesentlich geringeren Temperaturanstieg, da das Verhältnis der gesamten Masse des Reaktionsgemisches zur reagierenden Masse grosser ist als bei der klassischen Oxychlorierung. Weiterhin verringert die niedrige Konzentration an Sauerstoff, Substrat und Chlorwasserstoff die Gefahr der Bildung lokaler Uberhitzungsstellen. Ausserdem bewirkt die wesentlich erhöhte Endkonzentration des Chlorwasserstoffs die Oxidationsbeständigkeit des Gemisches auch bei höheren Temperaturen. Aus diesen Gründen kann in vielen Anlagen zur Durchführung des Verfahrens der Erfindung auf die Kühlung entweder ganz verzichtet werden oder braucht diese nur einfacher und wesentlich preiswerter ausgelegt zu werden.
Bei einer herkömmlichen Oxychlorierung von Benzol würde beispielsweise ohne Kühlung die Temperatur des Reaktionsgemisches um etwa 300 0C über die durch Kühlung eingestellte Reaktionstemperatur ansteigen. Im Rahmen des im Beispiel 1 beschriebenen Verfahrens beträgt dieser Temperaturanstieg jedoch nur etwa 140 0C. Für eine herkömmliche Oxychlorierung wäre jedoch bereits ein solcher Temperaturanstieg zu hoch. Unter den im Beispiel 1 beschriebenen Betriebsbedingungen ist er jedoch durchaus zulässig, ohne dass dadurch die Wirtschaftlichkeit des Verfahrens beeinträchtigt wird. Die niedrige Sauerstoffkonzentration und besonders die hohe Endkonzentration des Chlorwasserstoffs im Reaktionsgemisch verhindern eine unwirtschaftlich starke Oxidation des Substrats. Andererseits kann jedoch auch im Verfahren der Erfindung die Ausbeute verbessert werden, wenn der Katalysator-
B0981S/12A3
raum zusätzlich beispielsweise in der in Abbildung 2 gezeigten Weise gekühlt wird.
Katalysator:
Zur Durchführung des Verfahrens der Erfindung kann im Prinzip jeder hochaktive Katalysator vom DEACON-Typ verwendet werdeno Das in der DT-PS 539 176 beschriebene auf hochaktivem Aluminiumhydroxid gefällte Kupferhydroxid ist wahrscheinlich einer der besten allgemein verwendbaren Katalysatorend Bei der Oxychlorierung von Äthan und insbesondere für die Herstellung von Äthylendichlorid scheint die Gegenwart von Seltenerdmetallen Vorteile zu bieten (GB-PSen 932 130 und 907 435). Zur Verringerung der ohnehin nur geringen Flüchtigkeit von Kupfer wird ein Zusatz von Alkalimetallen empfohlen. In der umfangreichen einschlägigen Patentliteratur werden zahlreiche Modifikationen des DEACON-Katalysators für viele Spezialfälle beschrieben. Alle diese an sich bekannten Katalysatoren können vorteilhaft auch im Rahmen der Erfindung eingesetzt werden. Zu beachten ist dabei allerdings, dass die meisten der beschriebenen Katalysatoren auf eine Verminderung der Oxidation des Substrates und eine mögliche Herabsetzung der Endkonzentration des Chlorwasserstoffs abzielen. Diese Ziele sind jedoch für das vorliegende Verfahren von untergeordneter Bedeutung.
Kolonne:
Die verhältnismässig grosse Menge an Gasen und Dämpfen, die mit erhöhter Temperatur den Katalysatorraum verlassen, führt eine beträchtliche Wärmemenge mit sicho Diese Wärmemenge wird zweckmässig zur ersten Trennung der Produkte in einer Gegenstromanlage, vorzugsweise in einer Gegenstromkolonne, ausgenutzt. Infolge des niedrigen Dampfdruckes von Chlorwasserstoff über verdünnter Salzsäure ist es in den
509815/1243
meisten Fällen möglich und ratsam, praktisch den gesamten nicht umgesetzten Chlorwasserstoff aus der am Fuss der Kolonne abgezogenen flüssigen Phase zurückzugewinnen. Dabei können Konzentrationen von 10 - 15 % oder mehr im Regelfall erzielt werden, ohne dass mehr als Spuren von Chlorwasserstoff am Kopf der Kolonne auftreten.
Normalerweise hat das Substrat nach der Chlorjarung einen niedrigeren Dampfdruck als das unchlorierte Substrat. In einigen Fällen ist es daher möglich, alles oder zumindest doch den grössten Teil der Chlorierungsprodukte in der Bodenflüssigkeit der Kolonne in guter Konzentration zu gewinnen. Ein solches Beispiel ist im Beispiel 1 beschrieben. Prinzipiell aber ist die Isolierung und Gewinnung der Produkte des Verfahrens der Erfindung nicht wesentlich von den entsprechenden Verfahrensschritten bei der herkömmlichen Oxychlorierung verschieden.
Kondensation;
Das gleiche gilt für die Behandlung des am Kopf der Kolonne austretenden Gemisches. Die Dämpfe werden kondensiert, und zwar vorzugsweise fraktioniert. Nach der Kondensation, vorzugsweise fraktionierten Kondensation, in der Gasphase verbleibende nichtchlorierte oder chlorierte organische Verbindungen werden in an sich bekannter Weise wiedergewonnen. Dazu können beispielsweise eine weitere Abkühlung, Absorption in Waschflüssigkeiten oder Adsorption an festen Phasen, vorzugsweise Aktivkohle, dienen.
Im Beispiel 1 werden dazu wie auch bei der Oxychlorierung von Benzol vorzugsweise Kühlung und Kondensation der Hauptmenge des Benzols bis auf etwa 30 0C mittels Kühlturmwasser, anschliessende Kühlung auf etwa 15 0C mit gekühltem Wasser und schliesslich Absorption in o-Dichlorbenzol bevorzugt. Das o-Dichlorbenzol ist eines der weniger erwünschten Produkte
5 09815/1243
der Oxychlorierung von Benzol, und seine Verwendung als Waschflüssigkeit ist vielleicht eine seiner zweckmässigeren Nutzbarmachungen.
Transportenergie:
Die zur Förderung des Reaktionsgemisches durch die Anlage erforderliche Druckdifferenz wird in an sich bekannter Weise erzeugt, vorzugsweise durch ein Druckgebläse odereinen entsprechenden Druckgenerator für die Verbrennungsluft oder mittels eines Sauggebläses oder eines entsprechenden Unterdruckgenerators in der Nähe des Austritts der Gase in die Atmosphäre.
Beispiel 2
Als Substrat dient Benzol. Als Chlorwasserstoffquelle dienen Chlorabfall mit 81 % Chlor und eine 20 %ige Salzsäure. Als Wärmequelle dienen der Chlorabfall und Heizöl. Als Kühlmittel wird Benzol verwendet.
In dem im Beispiel 1 beschriebenen Verfahren werden der gesamte Chlorwasserstoff und die gesamte Prozesswärme aus der Verbrennung des Chlorabfalls gewonnen. Die Ablöschwärme von der Toleranztemperatur zur Reaktionstemperatur diente lediglich der Verdampfung des als Salzsäure rückgeführten Chlorwasserstoffs. Die im Katalysatorraum freigesetzte Reaktionswärme bleibt praktisch ungenutzt, wenn man ihre indirekte Nutzung zur ersten Fraktionierung unberücksichtigt lässt.
Im vorliegendeniBeispiel sind dagegen die Ablöschwärme und die Reaktionswärme genutzt. Zum Vergleich sind die Verfahrensparameter entsprechend den auch im Beispiel 1 verwendeten Verfahrensparametern angepasst. Die Ablöschwärme dient der Verdampfung der als zusätzliche Chlorwasserstoffquelle
509815/1243
2 A A 2 A O
eingesetzten Salzsäure, während die Reaktionswärme der Verdampfung des als zusätzliches Substrat eingeführten Benzols dient. Die erhöhte Belastung würde in dem hier beschriebenen Verfahren zu einem zu starken Temperaturanstieg im Katalysatorbett führen= Der Katalysatorraum muss daher gekühlt werden. Als im Rahmen der Erfindung und über den Rahmen dieses Beispiels hinaus besonders bevorzugtes Verfahren dient die Verdampfung einer Flüssigkeit zwischen voneinander getrennten Katalysatorlagen. Prinzipiell ist jedoch auch jedes andere an sich bekannte Verfahren zur Temperaturregelung bei katalytischen Reaktionen einsetzbaro
Die vorliegend in Betracht kommenden Kühlflüssigkeiten sind Abfallsalzsäure und bzwo oder Benzol. Im Rahmen dieses Beispiels wird Benzol als Kühlmittel verwendet, da dadurch das Benzol/Salzsäure-Verhältnis verbessert und die Abscheidung des Wassers in der Kolonne erleichtert wird.
Der für die Durchführung des im Rahmen dieses Ausführungsbeispiels 2 beschriebenen Verfahrens vorzugsweise eingesetzte Reaktorteil einer Anlage ist in der Fig. 2 schematisch dargestellt. Die Bezugszeichen entsprechen den in der Figo verwendeten Zeichen. Die Zahlenangaben sind als angenäherte Richtwerte, nicht als exakt optimierte Prozessparameter zu verstehen.
453,6 kg/h Chlorabfall werden mit 127 kg/h Heizöl gemischt, zum Brenner B gepumpt und mit 4263,8 kg/h Luft verbrannt. 738 kg/h Salzsäure mit einem Chlorwasserstoffgehalt von 20 % werden dem Salzsäuretank M durch die Leitung 23 zugeführt. Die Ablöschflüssigkeit, die über die Leitung 3 den Sprühdüsen C zugeführt wird, führt 215,5 kg/h HCl und 976,1 kg/h Wasser. 4989,6 kg/h Benzol werden über die Leitung 4 und die Sprühdüsen E zugeführt. Dadurch wird die Temperatur der Verbrennungsgase auf 200 0C erniedrigte Das über die Leitung in den Katalysatorraum strömende Gemisch führt 593,3 kg/h
50981S/12U
HCl, 709 kg/h CO3, 1061,4 kg/h H3O, 328.8,6 kg/h N31 .399,2 kg/h Ο- und 4989,6 kg/h Benzol.
Der Katalysatorraum enthält 3 Schichten des DEACON-Katalysators die nacheinander vom Reaktionsgemisch durchströmt werden. Die Höhe der einzelnen Betten beträgt etwa O16 m, 0,9 m bzw. 1,5 m. Geregelt durch die Ventile 30 und 31 werden etwa 3311,3 kg/h Benzol in das Reaktionsgemisch zwischen den Katalysatorbetten eingeführt, so dass die Eintrittstemperatur des Gemisches in die zweite und dritte Katalysatorschicht auf etwa 200 C gesenkt wird. Die nach der Reaktion durch die Leitung 6 den Katalysatorraum verlassende Mischung besteht aus 68 kg/h HCl, 753 kg/h CO3, 1329 kg/h H3O, 3288,6 kg/h N3, 129,3 kg/h O3, 7257,6 kg/h Benzol und etwa 1542,2 kg/h chlorierte Benzole etwa der gleichen Zusammensetzung wie im Beispiel 1. In der Kolonne H wird dieses Gemisch in 68 kg/h HCl, 385,6 kg/h H-O, 907,2 kg/h Benzol und 1542,2 kg/h Chlorbenzole getrennt, die am Fuss der Kolonne über die Leitung 10 in das Trenngefäss L abgezogen werden. Aus dem Trenngefäss L wird die wässrige Phase über die Leitung 11, den Säuretank M und die Leitung 3 zur Verbrennungskainmer zurückgeführt. Die organische Phase wird über die Leitung zur Trennung, beispielsweise zu einer Destillation, geführt. Etwa 1066 kg/h Benzol werden über die Leitung 18 dem Tank K zugeführt. Zur Berieselung der Kolonne H dienen 9300 kg/h Benzol und 589,7 kg/h Wasser.
Die Gestaltung des Katalysatorraumes G verfolgt den Zweck, etwa gleichen Temperaturanstieg, in diesem Fall von etwa 60 °C, in jeder der Schichten aufrechtzuerhalten. Die zu diesem Zweck benötigte Reaktionsgeschwindigkeit in der einzelnen Schicht wird durch Regelung der Einlasstemperatur eingestellt. Man kann beispielsweise je nach dem Alter des Katalysators, der Höhe des Bettes und vieler anderer Einflussfaktoren ermitteln, dass das erste Bett, um einen Temperaturanstieg von beispielsweise 60 C zu zeigen, eine
509 8 15/12U
2U2402
Einlasstemperatur von beispielsweise 190 0C erfordert. Die durch die Leitung 4 eingeführte Benzolmenge wird dann so geregelt, dass diese Temperatur in der Leitung 5 aufrechterhalten wird. Die zweite Schicht kann dann beispielsweise, um einen Temperaturanstieg von ebenfalls 60 0C zu liefern, eine Einlasstemperatur von beispielsweise 215 0C verlangeno Diese Temperatur wird durch das Ventil 30 eingestellt. Die dritte Katalysatorschicht schliesslich mag eine Einlasstemperatur von 200 0C benötigen. Die erforderliche Temperatur wird durch die eingesprühte Benzolmenge am Ventil 31 geregelt.
Beispiel 3
Als Substrat dient Benzol. Der Chlorwasserstoff stammt aus einer Abfallsalzsäure mit 15,5 % Chlorwasserstoff. Als Wärmequelle dient Erdgas. Kühlmittel ist Benzolo Der im Verfahren nicht umgesetzte Chlorwasserstoff wird verworfen.
In dem im Beispiel 1 beschriebenen Verfahren stammt der gesamte Chlorwasserstoff aus dem Chlorabfall. Im Beispiel 2 ist ein Verfahren beschrieben, bei dem der Überschuss der Verbrennungswärme dazu benutzt wird, zusätzliche Salzsäure, die als zusätzliche Chlorwasserstoffquelle in das Verfahren eingeführt wird, zu verdampfeno Im Beispiel 3 ist dagegen die von aussen dem Verfahren zugeführte Abfallsalzsäure die alleinige Chlorwasserstoffquelle.
Wie bereits im allgemeinen Teil beschrieben, braucht die zur Verdampfung der Salzsäure benötigte Wärme nicht notwendigerweise aus der Verbrennung von Chlorabfall zu stammen. Nach dem Verfahren der Erfindung kann die Salzsäure auch in ein beliebiges anderes heisses Verbrennungsgas hinein verdampft werden, beispielsweise in ein Verbrennungsgas hinein, das durch Verbrennen von Heizöl, Erdgas oder Koks sowie durch Verbrennen anderer üblicher Brennstoffe erzeugt
509815/1243
"™ «3 JL ^™
wird. Technisch bietet dieses Verfahren keine speziellen. Schwierigkeiten. Wirtschaftlich scheinen die Vorteile des beschriebenen Ausführungsbeispiels gegenüber der gebräuchlichen Verdampfung der Salzsäure durch Prozessdampf nicht so überzeugend wie im Fall der Erzeugung der Verdampfungswärme durch die Verbrennung von Chlorabfall zu sein. Zusätzliche Randbedingungen können jedoch auch ein Verfahren nach diesem Ausführungsbeispiel im Gesamtrahmen einer grosser en Anlage oder eines Produktionsbetriebes durchaus wirtschaftlich werden lassen, so bei spiels weiss insbesondere dann, wenn bei einer mit Chlorabfall gefahrenen Anlage zwischenzeitlich ein starker Abfall der Durchsatzleistung des Chlorabfalls eintritt. Auch beim Anfahren oder Abfahren des Betriebes nach der in den Beispielen 1 und 2 beschriebenen Weise ist das im Beispiel 3 beschriebene Verfahren eine wirtschaftliche Kombination. Unabhängig davon kann das hier beschriebene Ausführungsbeispiel jedoch auch direkt wirtschaftlich vorteilhaft sein, und zwar beispielsweise stets dann, wenn der zur Verfugung stehende Prozessdampf teuer ist, wenn die Erstellung einer Anlage zum Verdampfen von Salzsäure im Rahmen der gegebenen Möglichkeiten zu teuer ist oder aus vielen entsprechenden im Einzelfall abzuwägenden Gründen.
Das hier im Rahmen des Beispiels 3 beschriebene Verfahren stellt gleichzeitig einen Fall dar, wie er bereits zuvor erwähnt wurde, bei dem es nämlich infolge des Einbringens grosser Wassermengen in die Reaktion, durch die Verbrennung von Erdgas und durch die Verwendung schwacher Salzsäure durchaus wirtschaftlich und vorteilhaft ist, den unverbrauchten Chlorwasserstoff nicht in das Verfahren zurückzuführen, sondern zu verwerfen. Die Wirtschaftlichkeit "dieses Verfahrens liegt im Prinzip darin, dass alle verfügbare Wärme für die Verdampfung der zugeführten Abfallsalzsäure zur Verfügung steht, die stärker als die aus dem nicht umgesetzten Chlorwasserstoff wiedergewonnene Salzsäure ist.
509815/1243 ;
2A424Q2
In der in der Fig. 2 gezeigten Anlage werden 340f2 kg/h Erdgas, das 68 Gew.-% Methan, 29 Gew.-% Äthan und 3 Gew.-%
Stickstoff enthält, mit 6645t2 kg/h Luft verbrannt. 3220,6 kg/h 15,5 %ige Salzsäure werden in die Verbrennungsgase
hinein verdampft, wodurch die Temperatur der Verbrennungsgase auf 600 C erniedrigt wird. 7938 kg/h Benzol werden über die Leitung 4 zugesetzt. Das in den Katalysatorraum eintretende Gemisch führt 7938 kg/h Benzol, 499 kg/h HCl,
923,5 kg/h CO2, 3418,8 kg/h H3O, 5103 kg/h N3 und 254 kg/h 0„. Die Temperatur wird in der im Beispiel 2 beschriebenen Weise durch Einführung von 2526,6 kg/h Benzol zwischen die Katalysatorschichten geregelt. 45,4 kg/h nicht umgesetzter Chlorwasserstoff und 1580,8 kg/h Wasser werden über die
Leitung 11 abgezogen und verworfen. In diesem Fall wird der Brennstoff lediglich seines Heizwertes wegen verbrannt, so dass es wirtschaftlicher ist, diese Wärme zur Verdampfung
der 15,5 %igen Abfallsalzsäure einzusetzen als sie zur
Verdampfung der 2,8 %igen Salzsäure zu verwenden, die durch das Auffangen des nicht umgesetzten Chlorwasserstoffs erhalten wird. Das am Fuss der Kolonne H abgezogene Produkt
enthält 1315,4 kg/h chlorierte Benzole von etwa der gleichen Zusammensetzung wie in den vorhergehenden Beispielen. Die
in der Reaktion verbrauchte Benzolmenge beträgt etwa 891,3 kg/h. Die Ausbeute in bezug auf die Salzsäure ist in diesem Fall natürlich geringer. Sie liegt bei etwa 91 %.
Beispiel 4
Das Substrat ist Benzol. Der Chlorwasserstoff stammt aus einer 18 %igen Abfallsalzsäure. Als Wärmequelle dient Koks. Kühlmittel ist Benzolο Der unverbrauchte Chlorwasserstoff wird zurückgeführte
Die Verbrennung von Koks führt wenig Wasser in das Reaktionsgemisch ein und erlaubt daher die Rückführung des unverbrauchten Chlorwasserstoffs·
509815/1243
453,6 kg/h Koks werden mit 7166,9 kg/h Luft auf einem Kettenrost verbrannt. Der Kettenrost ersetzt den in den Figuren 1 und 2 gezeigten Brenner B. 2985,6 kg/h Salzsäure mit einem Chlorwasserstoffgehalt von 18 % werten dem Tank M (Fig. 2) zugeführt. Diese Salzsäure wird mit 697t6 kg/h 13 %iger-Salzsäure gemischt, die den in der Kolonne H aufgefangenen und durch die Leitungen 10 und 11 dem Tank M zugeführten nicht umgesetzten Chlorwasserstoff enthält. Diese Säure wird über die Leitung 3 und durch die Sprühdüsen C in die Verbrennungsgase eingesprüht, die dadurch auf 6oo C abgekühlt werdenο Etwa 7031 kg/h Benzol werden vom Tank K über die Leitung 4 und durch die Sprühdüsen E in das Gemisch eingesprüht, wodurch dessen Temperatur auf 200 °C erniedrigt wird. Beim Durchgang durch den Katalysatorraum wird das Gemisch durch Einführen von 2667,2 kg/h Benzol über die Leitung 29 und die Ventile 30 und 31 gekühlt. Die Zufuhr des Benzols wird so geregelt, dass die im Beispiel 2 beschriebenen Temperaturverhältnisse eingestellt werden. Das Reaktionsgemisch wird anschliessend in an sich bekannter und üblicher Weise ausgearbeitet. Aus 1088,6 kg/h Benzol und 2965,6 kg/h 18 %iger Salzsäure werden 1560,4 kg/h chlorierte Benzole von etwa der Zusammensetzung wie im Beispiel 1 erhalten. Die Ausbeute in bezug auf die Salzsäure beträgt fast 100 %. Die Ausbeute in bezug auf das Benzol beträgt über 95 % der theoretischen Ausbeutet,
In den vorhergehenden Beispielen 1 bis 4 ist das Verfahren der Erfindung am Beispiel des Benzols als Substrat beschrieben. An diesen Beispielen sind die allgemein gültigen Vorteile der Nutzbarmachung des Chlorgehaltes von Abfallprodukten in wirtschaftlicher Weise, die Verbrennung mit einem bequemen Luftüberschuss, die vollständige Ausnutzung des Chlorwasserstoffs, die geringe Substratoxidation, die ermöglichte einfachere Konstruktion des Katalysatorraumes, die Anwendbarkeit des Verfahrens auch auf leicht oxidierbare
50981 5/1243
2U2402
Substrate, die Möglichkeit, das Verfahren auch ohne Wärmezufuhr von aussen zu führen, und andere Vorteile dargestellt.
Wie bereits eingangs dargestellt, ermöglicht das Verfahren der Erfindung jedoch gegenüber der klassischen Oxychlorierung auch eine wesentlich höhere Selektivität und ein Abfangen von Zwischenprodukten. Im Gegensatz zur klassischen Oxychlorierung ermöglicht die Kombination einer Verbrennung mit der Oxychlorierung zu einem einheitlichen Verfahren die Herstellung jeder gewünschten einzelnen Verbindung oder Gruppe von Verbindungen unter Ausschluss der unerwünschten Konkurrenzprodukte. Diese Selektivität des Verfahrens wird dadurch ermöglicht, dass alle Nebenprodukte, die einen gleichen oder höheren Chlorgehalt als das Sollprodukt aufweisen, als Chlorabfall im Sinne der Erfindung behandelt werden, während alle Nebenprodukte mit einem niedrigeren Chlorgehalt als das Sollprodukt als Substrat im Sinne der Erfindung in das Verfahren zurückgeführt werden.
Beispiel 5
Es wird ausschliesslich Monochlorbenzol hergestellt. Als Substrat dient Benzol. Der Chlorwasserstoff stammt aus industriellem Chlorabfall mit 81 % Chlor. Als Wärmequelle dienen der Chlorabfall und öl. Ein Kühlmittel wird nicht.eingesetzt. Das nicht umgesetzte Benzol wird zurückgeführt.
Das hier beschriebene Verfahren ist nicht auf die Chlorierung von Benzol beschränkt, sondern wird in gleicher Weise in all den Fällen eingesetzt, in denen die Sollverbindung die niedrigste Chlorierungsstufe aufweist und als ausschliessliches Endprodukt entnommen werden soll. Die dazu erforderliche Verfahrensweise wird hier am Beispiel der Herstellung von 1165,8 kg/h Monochlorbenzol aus 453,6 kg/h Chlorabfall be sehr i eben o
509 815/1243
Um in der Reaktion von vornherein den grösstmöglichen Anteil der niedrigsten Chlorxerungsstufe zu erhalten, muss das Verhältnis Substrat zu HCl so gross wie möglich eingestellt werden. Um in bezug auf die verfübare Wärme die grösstmögliche Menge Benzol in die Reaktion einzuführen, wird das Benzol vorzugsweise in Dampfform eingeleitet. Dies geschieht vorzugsweise durch Rückführung eines Teils der am Kopf der Kolonne abgezogenen Dampfphase.
In der Fig. 3 ist eine schematische Darstellung des Reaktorteils der für Reaktionen der vorstehend beschriebenen Art vorzugsweise eingesetzten Anlage dargestellt. Die in der Fig. verwendeten Bezugszeichen entsprechen den auch in den Figuren 1 und 2 verwendeten Bezugszeichen.
453,6 kg/h des auch im Beispiel 2 eingesetzten Chlorabfalls werden mit dem Rückstand der Destillation gemischt, die zur Trennung des Monochlorbenzols von den höher chlorierten Benzolen durchgeführt wird. Dieser Rückstand führt im wesentlichen 71,2 kg/h Dichlorbenzole und 5,9 kg/h Trichlorbenzole. Um den Chlorgehalt des Gemisches auf etwa 65 % herabzusetzen, werden 92,5 kg/h Heizöl zugesetzt. Das Gemisch wird über die Leitung 1 in den Brenner B gepumpt. Durch die Leitung 2 werden dem Brenner 3597 kg/h Luft zugeführt. Die Verbrennungsgase werden mit etwa 2,9 %iger Salzsäure gekühlt, die durch die Sprühdüsen C mit einer Durchsatzleistung von 1572,2 kg/h eingesprüht werden. Die Temperatur der Verbrennungsgase wird dadurch auf 600 0C gesenkt. Diese eingesprühte Säure ist die wässrige Phase, die am Fuss der Kolonne H entnommen, im Trenngefäss L getrennt und über die Leitung in den Tank M geführt wird. Sie wird von dort über die Leitung 3 zu den Düsen C gepumpt. Diese eingesprühte Phase führt 45,4 kg/h Chlorwasserstoff und 1526,8 kg/h Wasser.
Etwa die Hälfte der am Kopf der Kolonne H über die Leitung entnommenen Dampfphase wird durch das Gebläse Z über die Rückführungsleitung 32 in die zweite Teilkammer der Verbrennungskammer A rückgeführt und dort mit den auf 600 C
509815/1243
— JO —
abgekühlten Verbrennungsgasen gemischt. Die Temperatur der Verbrennungsgase wird dadurch auf 200 C erniedrigte Das in den Katalysatorraum G eintretende Gemisch führt 461,8 kg/h HCl, 1460,6 kg/h CO2, 2955,2 kg/h H2O, 5480,8 kg/h N3, 301,6 kg/h O3 und 13901,5 kg/h Benzol. Die Reaktion verbraucht etwa 858,2 kg/h Benzol, wobei etwa 1165,8 kg/h Monochlorbenzol, 71,2 kg/h Dichlorbenzole und 5,9 kg/h Trichlorbenzol© gebildet werden. Daneben entstehen nur Spuren höher chlorierter Benzole. Nach der Reaktion tritt das Gemisch mit einer Temperatur von etwa 265 0C durch die Entnahmeleitung 6 aus dem Katalysatorraum aus und wird in die Kolonne H überführt. Die Berieselung der Kolonne H mit etwa 1378,9 kg/h Wasser und 18388,9 kg/h Benzol durch die Leitung 7 wird so eingestellt, dass im wesentlichen der gesamte nicht umgesetzte Chlorwasserstoff und alle Chlorierungsprodukte zusammen mit etwa 907,2 kg/h Benzol am Fuss der Kolonne austreten. Am Kopf der Kolonne werden die Gase und ein azeotropes Benzol-Wasser-Gemisch in Dampfform entnommen. Der nicht über das Gebläse Z und die Rückführungsleitung 32 in die zweite, mittlere Teilkammer der Verbrennungskainmer A zurückgeführte Teil der Dampfphase wird in üblicher Weise, beispielsweise in der im Beispiel 1 beschriebenen Weise, zur Wiedergewinnung des Benzols weiterverarbeitet. Die am Fuss der Kolonne abgezogene und abgetrennte organische Phase wird in an sich bekannter Weise, beispielsweise durch fraktionierte Destillation, in seine Bestandteile zerlegt. Das dabei erhaltene Benzol wird über den Tank K in das Verfahren zurückgeführt. Das isolierte Monochlorbenzol wird als Produkt entnommen. Der Destillationsrückstand wird in der eingangs beschriebenen Weise mit dem Chlorabfall und dem Öl gemischt und verbrannt. Insgesamt werden also aus 453,6 kg/h Chlorabfall und 858,2 kg/h Benzol 1165,8 kg/h Monochlorbenzol erhalten. Die Ausbeute in bezug auf das Benzol beträgt etwa 94 %, während die auf den Chlorwasserstoff bezogene Ausbeute etwa
509 815/12
100 % beträgt. Im Verfahren fallen keine Nebenprodukte an.
Beispiel 6
Es wird ausschliesslich p-Dichlorbenzol hergestellt. Als Substrat dient Benzol. Als Chlorwasserstoffquelle dient eine 18 %ige Abfallsalzsäure. Als Wärmequelle dient Chlorabfall. Ein Kühlmittel wird nicht verwendet. Der nicht umgesetzte Chlorwasserstoff wird rückgeführt.
Das Verfahren dieses Beispiels belegt die Möglichkeit des Verfahrens der Erfindung, spezifische Zwischenprodukte der Chlorierung abzufangen. Aus Gründen des Vergleiches mit den vorhergehenden Beispielen dient ebenfalls Benzol als Substrat. Die dem Verfahren entnommene einzige Produktphase ist p-Dichlorbenzol. Durch seine Bewährung als Mottenschutzmittel ist das p-Dichlorbenzol von der Marktseite her wahrscheinlich wertvollste Chlorierungsprodukt des Benzols. Andererseits ist es aber auch unter stark veränderten Marktbedingungen recht unwahrscheinlich, dass sich keines der anderen Chlorierungsprodukte wirtschaftlicher als durch Verbrennung verwerten lassen sollte. Von diesem Gesichtspunkt aus ist das hier beschriebene Ausführungsbeispiel in der vorliegenden Form wirtschaftlich unrealistisch. Es dient jedoch dem Zweck zu zeigen, dass die ausschliessliche Produktion eines einer Zwischenstufe einer Chlorierung entsprechenden Produktes, hier das p-Diohlorbenzols, technisch durch Einsatz des Verfahrens der Erfindung problemlos möglich ist. Es ist Frage wirtschaftlicher und nicht technischer Überlegungen, wann und wo das hier am Beispiel der Benzolchlorierung beschriebene technisch vorteilhafte Verfahren auch wirtschaftlich einzusetzen ist.
In dem hier beschriebenen Beispiel ist die Menge des zur Verbrennung zurückgeführten Chlorabfalls so gross und sein
5098 15/1243
Chlorgehalt so niedrig» dass wesentlich mehr Wärme,als zur Verdampfung des nicht umgesetzten und rückgeführten Chlorwasserstoffs erforderlich ist, erzeugt wird. Dieser Wärmeüberschuss steht zur Verdampfung von verdünnter Abfallsalzsäure zur Verfügung, die als einzige Chlorquelle eingesetzt wird.
Das Verfahren wird in einer Anlage ausgeführt, die im wesentlichen der in Fig. 1 gezeigten Anlage entspricht. In dieser Anlage wird ein Gemisch von 151 kg/h o-Dichlorbenzol, 45,4 kg/h Trichlorbenzol und 49,9 kg/h höhere Chlorbenzole mit ungefähr 1969,5 kg/h Luft verbrannt. 626 kg/h 18 %ige Salzsäure werden von aussen her dem Tank M zugeführt. Zusammen mit 22,7 kg/h unverbrauchtem Chlorwasserstoff in 220,9 kg/h Wasser wird diese Salzsäure vom Tank M über die Leitung 3 zu den Sprühdüsen C gepumpt. Beim Einsprühen werden die Verbrennungsgase auf 600 C gekühlt. 1179,4 kg/h Benzol und 3175,2 kg/h Monochlorbenzol werden vom Tank K über die Leitung 4 durch die Sprühdüsen E eingeführt. Ihre Verdampfung kühlt das Gemisch auf 200 0C. Beim Durchgang durch den Katalysatorraum G erhöht sich die Temperatur des Gemisches auf etwa 275 C. Dieser Temperaturanstieg ist unter den gegebenen Umständen durchaus annehmbar, so dass eine Kühlung nicht erforderlich ist. Als Katalysatorraum kann wie auch im Beispiel 1 ein einfacher Stahltank verwendet werden.
Das durch die Entnahmeleitung 6 aus dem Katalysatorraum G austretende Gemisch führt 22,7 kg/h HCl, 420,5 kg/h CO2, 875 kg/h H3O, 1510,5 kg/h N2, 27,2 kg/h O3, 934,4 kg/h Benzol, 3175,2 kg/h Monochlorbenzol, 226,8 kg/h p-Dichlorbenzol, 151 kg/h o-Dichlorbenzol, eine Spur m-Dichlorbenzol, 45,4 kg/h Trichlorbenzole und 49,9 kg/h Tetrachlorbenzole, Pentachlorbenzole und Hexachlorbenzol. In der Kolonne H wird das Gemisch in üblicher Weise getrennt. Dabei wird eine
509815/12 A 3
flüssige Phase erhalten, die 22,7 kg/h unverbrauchte HCl, 220,9 kg/h Wasser, 453,6 kg/h Monochlorbenzol und im wesentlichen sämtliche Anteile der höheren Chlorbenzole enthält. Die organische Phase wird im Trenngefäss L abgetrennt und in an sich bekannter und üblicher Weise weiterverarbeitet. Wenn dazu beispielsweise die fraktionierte Destillation eingesetzt wird, erhält man als erste Fraktion Monochlorbenzol im Gemisch mit geringen Anteilen Benzol. Dieses Gemisch wird in den Tank K zurückgeführt. Die zweite Fraktion enthält die Dichlorbenzole. Diese Fraktion wird vorzugsweise durch Kühlen und fraktionierte Kristallisation getrennt. Dabei werden kristallines p-Dichlorbenzol und eine Mutterlauge erhalten, die geringe Mengen p-Dichlorbenzol und praktisch das gesamte o-Dichlorbenzol und m-Dichlorbenzol enthält. Das p-Dichlorbenzol wird daraus durch Destillation abgetrennt. Der Destillationsrückstand wird dann in der zu Beginn dieses Beispiels beschriebenen Weise zum Brenner B zurückgeführt. Insgesamt werden also in dem hier beschriebenen Verfahren 626 kg/h einer 18 %igen Salzsäure und 244,9 kg/h Benzol mit einer Durchsatzleistung von 226,8 kg/h in kristallines p-Dichlorbenzol überführt, ohne dass irgend welche Nebenprodukte ausser Wasser und Kohlendioxid gebildet werdeno In bezug auf den Chlorwasserstoff ist die Ausbeute praktisch quantitativ. Bezogen auf das Benzol wird jedoch nur eine Ausbeute von etwa 50 % erhalten. Einerseits kann dieser Wert durch einen entsprechenden Aufwand für die Verfahrensoptimierung noch verbessert werden, andererseits ist das hier beschriebene Beispiel jedoch nicht zur Demonstration der wirtschaftlichen Vorteile des Verfahrens der Erfindung beschrieben, sondern zur Glaubhaftmachung und Darstellung der prinzipiellen technischen Vorteile, die das Verfahren der Erfindung insbesondere im Vergleich zur Oxychlorierung bietet. -.'.·..
In den vorstehenden Beispielen Ibis 6 ist das Verfahr eri der Erfindung, die Kombination einer Verbrennung und der
50 9815/12 A3
Oxychlorierung, seinem Sinn nach im Hinblick auf die verschiedenen Anwendungsmethoden und im Hinblick auf die prinzipiell erzielbaren technischen und wirtschaftlichen Vorteile beschrieben. Aus Gründen der besseren Übersichtlichkeit und der Zusammengehörigkeit der Beispiele 1 bis 6 sind diese auf die Oxychlorierung von Benzol beschränkt.
In der folgenden Beschreibung ist die chemische Seite der Erfindung in den Vordergrund gerückt. Es wird die Oxychlorierung von anderen Substraten als Benzol beschrieben. Es werden die in den Figuren 1 und 2 gezeigten Anlagen in ihrer einfachsten Betriebsart verwendet. Diese Beschränkung in der Darstellung dient wiederum der verständlicheren Beschreibung der Erfindung. Es wird dem Fachmann keine Schwierigkeiten bereiten, unter Anleitung der vorstehend beschriebenen Beispiele auch die nachstehend beschriebenen Beispiele 7 bis 9 in beliebiger Kombination zu modifizieren. Gleichfalls wird es dem Fachmann auch keine über sein Durchschnittskönnen hinausgehenden Schwierigkeiten bereiten, unter Anleitung der folgenden Beispiele 7 bis 9 das Verfahren der Erfindung auf prinzipiell beliebige andere chlorierbare organische Substrate auszudehnen. Als Beispiele für weitere organische Substrate, die dem Verfahren der Erfindung zugänglich sind, ist nachstehend die Oxychlorierung von Naphthalin, Erdgas und Äthylen im Sinne bevorzugter Beispiele beschrieben.
Beispiel 7
In der in Fig. 1 dargestellten Anlage werden 580,6 kg/h des auch im Verfahren nach Beispiel 1 eingesetzten Chlorabfalls mit 3628,8 kg/h Luft verbrannt. Durch die Zulaufleitung 3 werden 37,6 kg/h unverbrauchter Chlorwasserstoff und 1524,1 kg/h Wasser eingeführt.
509815/1243
Bei dieser Verfahrensführung und der Verwendung, des genannten Chlorabfalls steht ein recht grosser Wärmeüberschuss zur Verfügung. Dieser Wärmeüberschuss kann zur Verdampfung von aussen zugeführter Salzsäure dienen. Diese Verfahrensweise empfiehlt sich insbesondere dann, wenn eine höhere Chlorierung des Naphthalins erzielt werden soll. Auch kann zusätzlich von aussen Salzsäure dann zugeführt werden, wenn sie einen Teil des Chlorabfalls als Chlorwasserstoffquelle ersetzen kann oder soll.
Über die Leitung 4 werden ungefähr 5443,2 kg/h geschmolzenes Naphthalin eingeführt. Die Temperatur der Verbrennungsgase wird dadurch auf etwa 230 C erniedrigt. In der Reaktion werden 1270,1 kg/h Naphthalin zu. ungefähr 1360,8 kg/h a-Chlornaphthalin, 154,2 kg/h ß-Chlornaphthalin und 11,3 kg/h höherchlorierten Naphthalinen umgesetzto In der Kolonne H wird das Gemisch in eine wässrige und eine organische Phase getrennt. Die wässrige Phase führt 37,6 kg/h HCl und.1524,1 kg/h Wasser, die über die Leitung 11 und den Tank M sowie die Rückführungsleitung 3 in die Brennkammer A zurückgeführt werden. Die organische Phase führt 3492,7 kg/h Naphthalin und 1612,5 kg/h chlorierte Naphthaline, die über die Leitung 12 einer Trennung, vorzugsweise der Destillation, zugeführt werden. Am Kopf der Kolonne werden über die Entnahmeleitung 13 die flüchtigen Komponenten abgezogen, die 748,4 kg/h CO2, 3878,3 kg/h H2O, 2785,1 kg/h N3, 52,2 kg/h O3 und 648,6 kg/h Naphthalin führen. Der grösste Teil des Naphthalins wird durch Kühlung bis kurz über den Schmelzpunkt des Naphthalins zurückgewonnen. Der Rest wird nach den in der teerverarbeitenden Industrie üblichen Verfahren aufgearbeitet. Die Kolonne H wird mit etwa 3583,4 kg/h Wasser und 907,2 kg/h · Naphthalin berieselt. Dazu wird vorzugsweise das am Fuss der Kolonne abgezogene Kondensat verwendet. Die Ausbeute des Verfahrens in bezug auf die.Salzsäure ist praktisch quantitativ. Die auf das eingesetzte Naphthalin bezogene
5 0 9 8 1 5 / 1 2
£442402
Ausbeute liegt über 95 %.
Beispiel 8
Als Substrat für das Verfahren der Erfindung dient Erdgas· Als Chlorwasserstoffquelle wird eine 15 %ige Salzsäure eingesetzt. Das Erdgas dient gleichzeitig als Wärmequelle. Als Kühlmittel wird Salzsäure eingesetzt. Der unverbrauchte Chlorwasserstoff wird als Kühlmittel verwendet.
In einer Anlage, die im wesentlichen der in Fig. 2 gezeigten Anlage entspricht, werden 45,4 kg/h Erdgas, das zu etwa 68 Gew.-% aus Methan, 29 Gew.-% aus Ä'than und 3 Gew.-% aus Stickstoff besteht, im Brenner B mit 1134 kg/h Luft verbrannt. Durch Einsprühen von 610,5 kg/h 15 %iger Salzsäure über die Düsen C werden die Verbrennungsgase auf 250 0C gekühlt. Über die Leitung 4 und eine zum Mischen von Gasen geeignete Vorrichtung, die die in der Anlage nach Fig. 2 gezeigten Düsen E ersetzt, werden 90,7 kg/h Erdgas zugeführt. Das Gemisch strömt mit einer Anfangstemperatur von etwa 240 0C durch die drei Katalysatorschichten im Katalysatorraum G. Auf ihrem Weg von der untersten zur zweiten und von der zweiten zur dritten Stufe wird das durch die Reaktion aufgeheizte Gemisch auf etwa 240 0C zurückgekühlt. Dazu werden insgesamt 226,8 kg/h 10 %ige Salzsäure über den Zulauf 29 und die Ventile 30 und 31 eingeführt. Die Kolonne H wird mit Wasser berieselt, so dass die etwa 22,7 kg/h unverbrauchter Chlorwasserstoff in 204,1 kg/h Wasser absorbiert werden. Die dabei erhaltene verdünnte Salzsäure wird zur Kühlung zwischen den Schichten des Katalysators verwendet. Die Dämpfe am Kopf der Kolonne H enthalten das Produkt in Form verschiedener Chlorderivate des Methans und des Ä'thans sowie deren Hydrolyseprodukte. Die Zusammensetzung der Produktphase entspricht im wesentlichen der auch bei der herkömmlichen Oxychlorierung von Methan, Ä'than und deren Gemischen erhaltenen Zusammensetzung. Ihre Aufarbeitung und die Isolierung der einzelnen
509815/12U
Verbindungen erfolgt in an sich bekannter Weise. Beispiel 9
Zur Herstellung von 1,2-Dichloräthan dient Äthylen als Substrat. Der Chlorwasserstoff stammt aus Polyvinylchloridabfällen und einer 15 %igen Abfallsalzsäure,, Als Wärmequelle wird der Polyvinylchloridabfall eingesetzt. Das Kühlmittel ist 16 %ige -Salzsäure. Der unverbrauchte Chlorwasserstoff wird zurückgeführt.
Symmetrisches Dichloräthan ist ein wichtiges Zwischenprodukt bei der Herstellung von Vinylchlorid. Grosse Mengen Dichloräthan werden im wesentlichen durch die Oxychlorierung von Äthylen, aber auch durch die Oxychlorierung von Äthan hergestellt. Grosse Mengen von Polyvinylchlorid werden in Form von Folien, Flaschen und anderen Produkten der Kunststoff Industrie als Abfall oder Müll verworfen und verbrannt. Der Gehalt der Verbrennungsgase an HCl und Cl- verursacht erhebliche Umweltprobleme. Diese Probleme werden durch die Erfindung in der Weise gelöst, dass der Chlor- und Wärmegehalt des Polyvinylchloridabfalls zur Herstellung eines Zwischenproduktes der Polyvinylchloridherstellung genutzt werden,,
Selbstverständlich kann die bei der Verbrennung des Polyvinylchloridabfalls frei werdende Verbrennungswärme ausschliesslich zur Verdampfung des rückgeführten nicht umgesetzten Chlorwasserstoffs verwendet werden, wobei dann der Chlorgehalt des PVC-Abfalls ausschliesslich als Chlorwasser stoff quelle dient. Der Wärmegehalt des PVC-Abfalls ist jedoch so gross, dass er in wirtschaftlicher Weise zur Verdampfung weiterer Mengen von Abfallsalzsäure dienen' kann. Dieser Fall ist im hier beschriebenen Ausführungsbeispiel dargelegt, das die Ausnutzung von 226,7 kg/h Polyvinylchloridabfall beschreibt.
50 9 81.5/1,243 ...
2A42A02
Diese 226,8 kg/h Polyvxnylchloridabfall liefern 132,5 kg/h HCl. Der Wärmegehalt des Polyvinylchloridabfalls dient der Verdampfung von insgesamt 163,3 kg/h HCl, bestehend aus 45,4 kg/h unverbrauchtem Chlorwasserstoff, der in Form einer 10 %igen Salzsäure zurückgeführt wird, und 117,9 kg/h Chlorwasserstoff, der in Form von 15 %iger Abfallsalzsäure in das Verfahren eingeführt wird. Ungefähr zwei Drittel der durch die Oxychlorierung und Oxidation entwickelten Wärmemenge werden dazu benutzt, weitere 113,4 kg/h HCl zu verdampfen, die in Form einer 16 %igen salzsäure als Kühlmittel zwischen den Katalysatorschichten dem Reaktionsgemisch zugesetzt werden. Der Chlor- und Wärmegehalt von 226,8 kg/h Polyvxnylchloridabfall wird also dazu benutzt, insgesamt 363,8 kg/h Chlorwasserstoff in 482,2 kg/h Dichloräthan zu überführen.
Das Verfahren wird in der in Abbildung 2 dargestellten Anlage ausgeführt. 226,8 kg/h Polyvxnylchloridabfall in geschmolzener oder in Pulverform werden mit 1837,1 kg/h Luft verbrannt. Die Verbrennungsgase werden auf etwa 235 C abgelöscht, und zwar durch Einführen von 163,3 kg/h HCl und 1076,4 kg/h Wasser durch die Sprühdüsen C. 158,8 kg/h Äthylen werden mit einer an sich bekannten Gasmischvorrichtung dem Strom beigemischt. Die Gasmischvorrichtung tritt an die Stelle der Düsen E in der in Fig. 2 dargestellten Anlage. Die in den Katalysatorraum G eintretende Mischung führt dann 283,5 kg/h HCl, 319,3 kg/h CO,, 1141,7 kg/h H2O, 1410,7 kg/h N2, 136,1 kg/h O2 und 158,8 kg/h C2H4. Die Temperatur beim Eintritt in die drei Katalysatorschichten wird so geregelt, dass jede Schicht einen angenähert gleichen Temperaturanstieg von etwa 60 0C aufweist. Die Eintrittstemperatur in die erste Schicht wird durch die Menge der durch die Zulaufleitung 3 in die Verbrennungskammer eingeführten Salzsäure geregelt, die der zweiten Schicht durch Regelung der unter Steuerung durch das Ventil 30 eintretenden Salzsäure, und die der dritten Schicht durch Regelung der durch das Ventil 31 eintretenden Salzsäure.
509815/1243
Nach der Reaktion wird das Gemisch über die Entnahmeleitung am Fuss in die Kolonne H eingeführt. Die Kolonne "dient hier lediglich der Abtrennung der Salzsäure. Praktisch die gesamte Produktphase ist in der am Kopf der Kolonne H über die Entnahmeleitung 13 abgezogenen Dampfphase enthalten. Sie wird in eines der an sich bekannten und üblichen Kondensationsund Reinigungssysteme überführt.
Die Kolonne wird mit etwa 907,2 kg/h Wasser berieselt, das aus dem Kondensationssystem zurückgeführt wird. Die Menge des Rieselwassers wird im einzelnen so geregelt, dass praktisch der gesamte unverbrauchte Chlorwasserstoff, der in einer Menge von etwa 45,4 kg/h anfällt, in Form einer etwa 10 %igen Salzsäure abgeführt wird.
Die Ausbeute dieses Verfahrens in bezug auf den Chlorwasserstoff beträgt praktisch 100 %. Von den 158,8 kg/h Äthylen gehen etwa 27,7 kg/h Äthylen mit dem Abgas aus der Anlage. Die 482,2 kg/h Produkt enthalten etwa 82 % symmetrisches Dichloräthan, 14 % Trichloräthan und 4 % hoherchloriertes Athan.
5098 15/1

Claims (6)

Patentansprüche
1. Verfahren zur Chlorierung organischer Verbindungen mit Chlorwasserstoff in Gegenwart von Sauerstoff, dadurch gekennzeichnet, dass man ein Gemisch aus Verbrennungsgasen, Chlorwasserstoff, Sauerstoff und den zu chlorierenden organischen Verbindungen in der Dampfphase mit einem Oxychlorierungskatalysator in Berührung bringt.
2ο Verfahren nach Anspruch I1 dadurch gekennzeichnet, dass man die Verbrennungsgase durch Verbrennen oder Mitverbrennen' chlorhaltiger organischer Abfallprodukte erzeugt.
ο Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet t dass man die Verbrennungsgase durch die Verbrennung üblicher Brennstoffe erzeugt»
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man den Chlorwasserstoff durch Verdampfen von Salzsäure in die heissen Verbrennungsgase hinein liefert«
5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die chlorhaltigen organischen Abfallprodukte die einzige Quelle des bei der Oxychlorierung verbrauchten Chlorwasserstoffs sind.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die zu chlorierenden Verbindungen ein Kohlenwasserstoff oder ein aus mehreren Kohlenwasserstoffen bestehendes Gemisch oder ein Kohlenwasserstoffe enthaltendes Gemisch sind.
copy
509815/1243
DE19742442402 1973-09-27 1974-09-04 Verfahren zur Chlorierung organischer, durch Oxychlorierung chlorierbarer Verbindungen Expired DE2442402C3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/401,378 US3950443A (en) 1973-09-27 1973-09-27 Utilization of waste products containing chlorine in the production of chlorinated organic compounds by combination of oxychlorination with combustion
US40137873 1973-09-27

Publications (3)

Publication Number Publication Date
DE2442402A1 true DE2442402A1 (de) 1975-04-10
DE2442402B2 DE2442402B2 (de) 1976-10-28
DE2442402C3 DE2442402C3 (de) 1977-05-26

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3326090A1 (de) * 1983-07-20 1985-01-31 Uhde Gmbh, 4600 Dortmund Verfahren zur erwaermung von reaktionsluft fuer die oxy-chlorierung von aethylen
EP0132971A2 (de) * 1983-07-27 1985-02-13 Imperial Chemical Industries Plc Herstellung chlorierter Kohlenwasserstoffe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3326090A1 (de) * 1983-07-20 1985-01-31 Uhde Gmbh, 4600 Dortmund Verfahren zur erwaermung von reaktionsluft fuer die oxy-chlorierung von aethylen
EP0132699A1 (de) * 1983-07-20 1985-02-13 Uhde GmbH Verfahren zur Erwärmung von Reaktionsluft für die Oxy-Chlorierung von Äthylen
EP0132971A2 (de) * 1983-07-27 1985-02-13 Imperial Chemical Industries Plc Herstellung chlorierter Kohlenwasserstoffe
EP0132971A3 (de) * 1983-07-27 1985-05-02 Imperial Chemical Industries Plc Herstellung chlorierter Kohlenwasserstoffe

Also Published As

Publication number Publication date
DE2442402B2 (de) 1976-10-28
US3950443A (en) 1976-04-13

Similar Documents

Publication Publication Date Title
DE4201494A1 (de) Verfahren zur reinigung von roher salzsaeure
DE3608043C2 (de)
DE2351947C3 (de) Verfahren zur Herstellung von tetrachlorierten Phthalsäuredinitrilen
DE3340624C1 (de) Verfahren zur Herstellung von 1,2-Dichlorethan aus Ethylen und Chlorgas
DE1467142A1 (de) Verfahren zur Abtrennung von Chlorwasserstoffgas aus einem bei der katalytischen Oxydation von Chlorwasserstoffgas mit einem Sauerstoff enthaltenden Gas erhaltenen Gasgemisch
DD201138A5 (de) Verfahren zur herstellung von 1,2-dichlorethan
DE2509966A1 (de) Verfahren zur oxidation von salzschmelzen und rueckgewinnung von chlor
EP0070542A1 (de) Verfahren und Vorrichtung zur Herstellung von Chlordioxid
DE2442402A1 (de) Verfahren zur chlorierung organischer verbindungen
DE2442402C3 (de) Verfahren zur Chlorierung organischer, durch Oxychlorierung chlorierbarer Verbindungen
DE2705427A1 (de) Verfahren zur oxidation einer geschmolzenen salzmischung
DE1793805C3 (de) Verfahren zur Herstellung von Vinylchlorid
DE2922375A1 (de) Verfahren zur herstellung von 1,2-dichlorethan
DE2533508C3 (de) Verfahren zur Herstellung von hochreinem Tetrachlorkohlenstoff
EP0737649B1 (de) Verfahren zum Entsorgen von PVC, vorzugsweise zur Gewinnung von gereinigtem und/oder reinem Chlorwasserstoff
DE1643872A1 (de) Verfahren zur Herstellung von Trichloraethylen,Tetrachloraethylen oder Mischungen daraus
DE3722727C2 (de)
DE1468807C3 (de) Verfahren zur kontinuierlichen Herstellung chlorierter Äthylenderivate
DE2304003A1 (de) Herstellung von propylen
DE2151546B2 (de) Verfahren zum Nutzbarmachen der bei der Herstellung von C tief 1 - und/ oder C tief 2 -Chlorkohlenwasserstoffen anfallenden schweren Rückstände
DE1254136B (de) Kontinuierliches Verfahren zur Herstellung von Tetrachlorkohlenstoff aus Schwefelkohlenstoff
DE1934856C (de) Kontinuierliches Verfahren zur Ruckgewinnung von Chlor und Chlorcyan aus dem bei der katalytischen Herstel lung von Chlorcyan aus Cyanwasserstoff und Chlor und der anschließenden Tnmeri sierung des Chlorcyans zu Cyanurchlorid anfallenden Gasgemisch
DE1468807B2 (de) Verfahren zur kontinuierlichen Herstellung chlorierter Äthylenderivate
DE1768490C3 (de) Verfahren zur gleichzeitigen Herstellung von 1,1-Dichlorethylen, 1,2-Dichloräthylenen und Vinylchlorid
DE2429426A1 (de) Erzeugung von trichloraethylen aus abfall-c tief 2-chlorkohlenwasserstoffen

Legal Events

Date Code Title Description
C3 Grant after two publication steps (3rd publication)
E77 Valid patent as to the heymanns-index 1977
EHJ Ceased/non-payment of the annual fee