DE2439847C3 - Medizinisches radiographisches Gerät zur Untersuchung von Querschnittsscheiben des Körpers eines Patienten - Google Patents
Medizinisches radiographisches Gerät zur Untersuchung von Querschnittsscheiben des Körpers eines PatientenInfo
- Publication number
- DE2439847C3 DE2439847C3 DE2439847A DE2439847A DE2439847C3 DE 2439847 C3 DE2439847 C3 DE 2439847C3 DE 2439847 A DE2439847 A DE 2439847A DE 2439847 A DE2439847 A DE 2439847A DE 2439847 C3 DE2439847 C3 DE 2439847C3
- Authority
- DE
- Germany
- Prior art keywords
- radiation
- absorption
- detectors
- rays
- beams
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010521 absorption reaction Methods 0.000 claims description 68
- 230000005855 radiation Effects 0.000 claims description 52
- 230000015654 memory Effects 0.000 claims description 33
- 238000012545 processing Methods 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 25
- 238000009826 distribution Methods 0.000 claims description 18
- 239000013078 crystal Substances 0.000 claims description 16
- 239000011159 matrix material Substances 0.000 claims description 7
- 238000003860 storage Methods 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims 2
- 230000035699 permeability Effects 0.000 claims 2
- 230000002093 peripheral effect Effects 0.000 claims 1
- 230000000007 visual effect Effects 0.000 claims 1
- 230000009102 absorption Effects 0.000 description 60
- 239000004020 conductor Substances 0.000 description 9
- 238000006073 displacement reaction Methods 0.000 description 7
- WPWMAIDTZPLUGB-IUCAKERBSA-N (5S)-5-[(1S)-1-hydroxyhexyl]oxolan-2-one Chemical compound CCCCC[C@H](O)[C@@H]1CCC(=O)O1 WPWMAIDTZPLUGB-IUCAKERBSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012432 intermediate storage Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
- A61B6/4035—Arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/006—Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G1/00—X-ray apparatus involving X-ray tubes; Circuits therefor
- H05G1/08—Electrical details
- H05G1/26—Measuring, controlling or protecting
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- High Energy & Nuclear Physics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pulmonology (AREA)
- Algebra (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Toxicology (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Measurement Of Radiation (AREA)
Description
Ie und der Detektor in einer Ebene hin- und herbewegt und um eine zu dieser Ebene senkrechte Achse gedreht.
Die verschiedenen Positionen liegt somit in einer Ebene des Körpers, über der die Verteilung der Absorptionskoeffizienten für die verwendete Strahlung durch die
von dem Detektor gelieferten Strahlabsorptionsdaten durch Datenverarbeitung abgeleitet wird. Die Datenverarbeitung
erfolgt so, daß die schließlich angezeigte Verteilung der Absorption das Ergebnis von aufeinander
folgenden Annäherungen ist. ι ο
Die in der erwähnten britischen Patentschrift beschriebene Anordnung hat sich bei der Erzeugung
von Querschnittsbildern des Körpers, beispielsweise des Kopfes, als erfolgreich erwiesen. In der DE-OS
24 20 500 ist ein weiteres Verfahren und Gerät vorgeschlagen, bei dem die Datenerfassung in der
gleichen Weise wie bei der erwähnten britischen Patentschrift erfolgt, während die Verarbeitung der
Daten flexibler ist und sich in sofern von der britischen Patentschrift unterscheidet, als die Datenverarbeitung
auf einer Konvolutionstechnik beruht.
Ein Vorteil bei Verwendung einer Konvoiutionstechnik zur Ableitung eines Bildes der Absorptionsverteilung
der untersuchten Ebene besteht darin, daß im Gegensatz zu der iterativen Methode der Rekonstruktion,
die in der britischen Patentschrift beschrieben ist, keine Notwendigkeit besteht, das gesamte Absorptionsschema in der untersuchten Ebene zu rekonstruieren,
wenn nur ein Teilbereich dieser Ebene von Interesse ist, so daß auf wirtschaftliche Weise nur der interessierende
Bereich rekonstruiert zu werden braucht. Die Möglichkeit der Rekonstruktion des Absorptionsschemas in
einem interessierenden begrenzten Bereich ist insbesondere von Vorteil bei der Untersuchung von
Körperteilen, die einen großen Querschnittsbereich aufweisen, wie beispielsweise der Rumpf des menschlichen
Körpers.
Dadurch, daß der zu untersuchende menschliche Körper sich in der Regel über den begrenzten
interessierenden Bereich hinauserstreckt, ergibt sich die Schwierigkeit, daß die Daten wenigstens einiger der
durch den interessierenden begrenzten Bereich hinweg verlaufenden Strahlenwege durch Informationen beeinträchtigt
werden, die sich auf Teile des Körpers außerhalb des begrenzten Bereiches beziehen, die die
auf diesen Wegen verlaufende Strahlung ebenfalls durchquert. Um die Auswirkungen dieser Beeinträchtigung
zu beseitigen oder zu unterdrücken hat sich die Notwendigkeit ergeben, zusätzliche Absorptionsdaten
zu gewinnen, die sich auf von der Strahlung durchlaufene
Wege beziehen, die nur durch Körperteile außerhalb des begrenzten Bereiches verlaufen. Wenn man solche
zusätzlichen Daten mit derselben Genauigkeit erzeugen würde wie die Absorptionsdaten, die durch den
interessierenden begrenzten Bereich verlaufen, müßte j5
man beträchtliche Kosten aufwenden, obwohl diese zusätzlichen Daten lediglich für die Beseitigung der
srwähnten Beeinträchtigung benötigt werden. Der Erfindung liegt die Aufgabe zugrunde, diese zusätzlichen
Daten ohne großen Aufwand in kostensparender Weise zu erzeugen.
Die gestellte Aufgabe wird gemäß der Erfindung dadurch gelöst, daß die Mittellinien von ersten Strahlenbündeln,
die durch einen ausgewählten Bereich innerhalb des Körpers verlaufen, einen engeren Abstand
voneinander aufweisen, als die Mittellinien von außerhalb des ausgewählten Bereiches verlaufenden zweiten
Strahlenbündeln.
Es hat sich nämlich gezeigt, daß hinsichtlich der Daten, die für Korrekturzwecke aus den Bereichen
gewonnen werden, die außerhalb des interessierenden Bereiches des zu untersuchenden Körpers liegen, der
apparative Aufwand verringert werden kann, da die Möglichkeit besteht, den Abstand der Strahlen in diesen
Bereichen zu verringern und ggfs. die Strahlen breiter zu machen, so daß hinsichtlich des Aufwandes an
Detektoren einerseits und andererseits auch hinsichtlich der erforderlichen Dosis für die Bestrahlung des
Patienten eine erhebliche Verminderung möglich isi.
Vorzugsweise sind dabei die Kollimatoren so ausgebildet, daß die zu messende Breite der Strahlen mit
größer werdendem Abstand der Strahlen-Mittellinien zunimmt.
Die Quelle kann so ausgebildet sein, daß die Intensität der auf die Detektoren auftreffenden Strahlen mit
zunehmender Breite der Strahlen abnimmt. Hierdurch entsteht der zusätzliche Vorteil, daß die vom Patienten
aufgenommene Röntgenstrahlendosis vermindert wird.
Wenn bei einem Gerät zwischen c·. ■ Detektoranordiiung
und der Rechenschaltung zur Herstellung der bildlichen Darstellung der Absorptionsverteilung ein
Adressenwähler und ein Datenspeicher zur Speicherung der Detektorausgangssignale geschaltet ist, ist es zur
Vereinfachung der Verarbeitung von Vorteil, wenn dem Datenspeicher ein weiterer Adressenwähler nachgeschaltet
ist, durch den die von den einen weiteren Abstand aufweisenden Strahlen abgeleiteten Daten so
der Rechenschaltung zugeführt werderi, daß sie Daten
von Strahlen entsprechen, die den engeren Abstand voneinander aufweisen.
Um bei einer Detektoranordnung, die mehrere Szintillationskristalle enthält, die jeweils mit einem
Fotovervielfacher gekuppelt sind, eine größere Zahl von Fotovervielfachern bequem in dem Gerät unterbringen
zu können, werden die Fotovervielfacher abwechselnd auf beiden Seiten der Ebene des
Strahlungsfächers gegeneinander versetzt angeordnet.
Die Erfindung wird nachfolgend anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher
erläutert. In der Zeichnung bedeutet
Fig. 1 eine Seitenansicht des erfindungsgemäßen Gerätes,
F i g. 2 das Gerät in Vorderansicht,
F i g. 3 und 4 Teile des Gerätes in Verbindung mit der Verwendung eines flüssigen Mediums, das den Körper
des Patienten in der Nachbarschaft des untersuchten Bereichs umgibt,
Fig.5 und 6 Detektormittel zur Feststellung der Strahlung nach Durchtritt durch den Körper des
Patienten,
F i g. 7 ein Diagramm, Jas sich auf die Verteilung der zahlre'chen Bestrahlungs-Feslstellungsvorrichtungen
bezieht, die bei den in Fig. 5 und 6 beschriebenen Detektormitteln vei wendet werden,
Fig.8 ein Blockschaltbild des gesamten Gerätes einschließlich der Teile, die zur Verarbeitung der
Absorptionsdaten dienen,
Fig. 9 eine Anordnung mit verschiebbarer Strahlungsquelle,
die eine Verringerung der einzusetzenden Detektoren ermöglicht und
Fig. 10 ein Blockschaltbild zur Ableitung der Absorptionsdaten in geeigneter Form für die Datenverarbeitung.
In F i g. I liegt ein Patient 1 auf einer aus zwei Teilen 2
und 3 bestehenden Unterlage, und sein Körper wird einer Untersuchung durch die mit der eestrichelten
Linie A angedeutete Röntgenstrahlung unterworfen. Diese Strahlung wird von einer Punktquelle 5 erzeugt
und bildet einen Fächer, der sich in einer zur Papierebene senkrechten Ebene ausbreitet. Es sei
bemerkt, daß die Unterlage für den Patienten so lang ist. daß jeder gewünschte Querschnitt des Körpers eines
Patienten in die Ebene der Röntgenbestrahlung gebrachi werden kann.
Im Bereich der untersuchenden Strahlung ist der Körper des Patienten von einem flüssigen Medium 6
umgeben, das aus Wasser bestehen kann, und das einen
Absorptions-Koeffi/ienten für die Strahlung h;it. tier
sehr ähnlich dem Absorplions-Koeffizienten des Körpergewebes
ist. Das flüssige Medium 6 befindet sich in einer Umhüllung oder einem Beutel 7. Die Umhüllung 7
befindet sich in einem ringförmigen Körper 8 aus Metall, beispielsweise aus einer Aluminium-Legierung.
Der ringförmige Körper 8 wird von in der Zeichnung
wesentliches Merkmal dieser Mittel bestellt darin, daß
sie eine Verschiebung des ringförmigen Körpers 8 zusammen mit dem Patienten in Achsrichtung des
Ringes zulassen und darüberhinaus auch eine Verschiebung dieses Korpers in der Ebene des Strahlungsfächers
in jeder Richtung ermöglichen. Somit kann ein bestimmter Querschnitt des Körpers eines Patienten für
die Untersuchung durch Längsverschiebiing des ringförmigen
Körpers 8 und des Patienten ausgewählt werden. Die in Richtung senkrecht zur Achse des ringförmigen
Körpers mögliche Verschiebung erlaubt die Untersuchung eines örtlichen Bereiches des ausgewählten
Querschnittes in Einzelheiten, was nachfolgend naher erläutert wird.
Bei Verschiebung des ringförmigen Korpers 8
senkrecht zu seiner Achse wird durch geeigne: Mittel
dafür gesorgt, daß die Teile 2 und 3 der Auflagt. ::" den
Patienten eine ahnliche Verschiebung erfahrt·: Eine
ι nterstützung 9 ermöglich: dies fiir den Teil 2 durch in
■der Zeichnung nicht dargestellte MimcI. Der Te1I 5 'st an
seinem vom ringförmigen Körper 8 entfernten Ende auf einer oder mehreren Rollen IO gelagert. Die Rollen IO
sitzen auf einem Achskorper II. um dessen Achse die Umlaufbewegung der Röntgensirjhienqueile 5 erfolgt.
was nachfolgend noch naher erläutert wird. Die Auflage
des Teils 3 auf den Roller. 10 erlaubt die Verschiebung des Teils 3 gemeinsam mit dem Ringkörper 8. wenn der
örtliche Untersuchungsbereich ausgewählt wird. Der Teil 3 ist an seinem von den Rollen 10 abgekehrten Ende
bei 12 an den Haltemitteln für den Ringkörper angelenkt, so daß eine vertikale Verlagerung des
Ringkörpers 8 fi:' die Auswahl des örtlichen Bereiches
möglich ist.
Wenn sich der Körper des Patienten in dem Gerät
befindet, wird er von einem zylindrischen Rahmen 13 umgeben, dessen Achse mit der Achse des Achskörpers
!1 übereinstimmt. Der Rahmen ist an seinem dem Achskörper benachbarten Ende geschlossen und über
ein Lager 14 auf dem Achskorper 11 gelagert. Am anderen Ende ist der Rahmen 13 offen, so daß der
Patient eingeführt werden kann, und an diesem Ende ruht er auf Rollen 15. die ortsfeste Lager haben. Die
Rollen 15 sind so angeordnet, daß der Rahmen 13 frei um seine Achse rotieren kann, die zugleich die Achse ist.
um die die Umlaufbewegung der Strahlenquelle 5 stattfindet Die Quelle 5 ist am Rahmen 13 über eine
Halterung 16 befestigt. Unmittelbar gegenüber der Quelle 5 sind mittels einer Halterung 17 am Rahmen 13
ein oder mehrere Detektoren 18 angebracht, die die Strahlungs-Absorptionsdaten des Körpers des Patienten
in der von der Quelle 5 überstrichenen Strahlungsebene feststellen.
Der Achskorper 11 sitzt in einem Lager 19 und neben
dem Lager 19 ist ein den Achskorper 11 umgebender Spulenkörper 20 vorgesehen. Der Spulenkörper 20 ist
am Lager 19 befestigt und auf ihn sind Leitungsdrähte 21 und 22 aufgewickelt, über die die Absorptionsdaten
vom Detektor 18 zur Verarbeitungseinheit und die Energieversorgung für die Röntgenstrahlenquelle 5
geleitet werden Bei der Umlaufbewegung der Quelle und der Detektoi mittel wickeln sich die Leitungsdrähte
auf den Spulenkörper auf bzw. ab. Sie werden dem Spulenkörper über Führungen 23 und 24 im Rahmen 13
zugeführt. Der Rahmen kann eine oder mehrere Umlaufbewegungen durchführen, und die Leitungsdrähte
wickeln sich entsprechend auf den Spulenkörper 20 auf oder von diesem ab. Die Leitungsdrähte sind am
entsprechenden Anschlußeinheiten, nämlich zu der erwähnten Datenverarbeitungseinheit und zu einer
S inim Versorgungseinheit.
F i g. 2 zeigt eine Vorderansicht auf die in F i g. 1
dargestellte Vorrichtung. In F i g. 2 ist der Ort der Umlaufachse 30 und der Umriß 31 des der Strahlung
ausgesetzten Querschnitts des Körpers des Patienten dargestellt. Der in diesem Querschnitt liegende Kreis 32,
desser Mittelpunkt mit der Umlaufachse 30 zusammenfällt,
bestimmt einen ausgewählten örtlichen Bereich. nämlich den in ihm enthaltenen Bereich, über den die
Verarbeitungseinheit, die die ve η den Detektormitteln
18 abgeleiteten Absorptionsdatcn verarbeitet, wirkt, um
eine Information mit hoher Auflösung zu gewinnen, die der Absorptionsverteilung in dem untersuchten Querschnitt
des Körpers des Patienten entspricht. Die Auswahl dieses örtlichen Bereiches wird — wie schon
zuvor erwähnt wurde — durch einen geeigneten Versatz des Körpers des Patienten in einer Rieht mg
senkrecht zur Umlaufachse des Gerätes bewirkt, wobei der Versatz in F i g. 2 im wesentlichen seitlich erfolgt ist.
F i g. 2 zeigt von der Quelle 5 ausgehende Strahlen 33, 34, 35 und 36. Die Strahlen 33 und 34 verlaufen
tangential zum Kreis 32 und schließen den ausgewählten örtlichen Bereich ein. während die Strahlen 35 und 36 an
den Außenrändern des Strahlungsfächers der Quelle 5 liegen. Hierbei werden die zwischen den durch die
Strahlen 33 und 34 gesetzten Grenzen liegenden Strahlen in schmale, zur Erzeugung der Absorptionsdaten
dienende Strahlen unterteilt, während außerhalb dieser Grenzen die Strahlung in breitere Strahlen
unterteilt wird. Aus der Zeichnung ist ersichtlich. v.dß die
Detektoren 18 sich über die gesamte Fächerbreite der
Strahlung erstrecken, nämlich vom Strahl 35 am einen Ende bis zum Strahl 36 am anderen Ende.
In F i g. 3 ist der ringförmige Körper 8 und das flüssige
Medium 6 zur Positionierung des Patienten in dem Gerät in bezug aui den Rahmen 13 gegenüber Fig. 1
größer mit Einzelheiten dargestellt. Gemäß Fig.3 ist
der ringförmige Körper 8 an seinen Enden mit Flanschen 40 versehen, um seine Steifigkeit zu erhöhen,
und er ist bei 41 in zwei Hälften unterteilt, nämlich in eine untere Hälfte 81 und in eine obere Hälfte 82, wobei
die Hälften durch geeignete, in eier Zeichnung nicht
dargestellte Mitte!, z. B. Stifte zusammengehalten werden. Das flüssige Medium 6, das wie zuvor erwähnt
aus Wasser bestehen kann, befindet sich innerhalb einer Umhüllung oder eines Beutels 42 entsprechend dem
Beutel 7 in Fig. 1. Dieser Beutel 42 wird durch den
zylindrischen Teil des ringförmigen Körpers 8 zwischen den mit Flanschen versehenen Enden lokalisiert. Der
innerhalb des Beutels und des Ringkörpers enthaltene Körper des Patienten nimmt zwangsläufig innerhalb des
Rahmens 13 die versetzte Position ein, wenn zur Untersuchung bestimmter Einzelheiten der entsprechende
Bereich ausgewählt wird.
In * ig. 4 ist die obere Hälfte 82 des ringförmigen
Körpers 8 entfernt und der Beutel 42 liegt unaufgewikkelt auf der unteren Hälfte 8i des ringförmigen Körpers, to
die in bezug auf den Rahmen 13 nicKt exzentrisch
verlagert dargestellt ist. Die dargestellte Anordnung entspricht etwa dem Zustand unmittelbar vor der
Einführung des Patienten in das Genii. Nach der Einführung wird der Beutel 42 um den für die
Untersuchung benötigten Bereich des Patienten gcwikkelt.
Jie obere Hälfte des ringförmigen Körpers 8 aufgesetzt und in ihrer Lage gesichert und der Beutel
den gesamten Raum zwischen dem Korper des Patienten und dem ringförmigen Körper ausfüllt. Der
Patient wird dann zusammen mit dem ringförmigen Körper in Achsrichtung des Rahmens 13 bewegt, bis der
Untersuchungsbereich sich unter der Röntgenstrahlenqiielle
5 befindet. Anschließend werden der Patient und der ringförmige Körper senkrecht zur Achse des
Rahmens 13. d. h. zur orbitalen Achse des Gerätes, verlagert, um den benötigten örtlichen Bereich auszuwählen.
Es können mehrere solcher ringförmiger Körper 8 mit unterschiedlichem Durchmesser verwendet
.verden. wobei der jeweils dem Umfang des Patienten am besten angepaßte Körper verwendet wird,
so daß eine minimale Absorption der Röntgen- oder y-Strahlen im flüssigen Medium 6 auftritt.
Insbesondere bei einem extremen Versatz des κ untersuchten Querschnittes in einer von der Umlaufachse
des Gerätes fortweisenden Richtung werden einzelne Strahlen des Strahlungsfächers im Verlauf der orbitalen
Bewegung des Gerätes starken Änderungen der Gesamtabsorption unterworfen. Um diese Wirkung
abzuschwächen, sind absorbierend Mittel in form von profilierten Blöcken 69 aus Acrylglas angeordnet
(F ig. 8).
F i g. 5 zeigt die Anordnung der in [-i g. 1 und 2 erwähnten Detektoren 18. Diese Detektoren dienen zur
Messung der Absorptionswerte, die nach geeigneter Verarbeitung in der nachfolgend beschriebenen Weise
die Möglichkeit geben, ein Abbild des Querschnitts des Körpers eines Patienten zu rekonstruieren, der durch
die von einer Punktquelle ausgehende Strahlung untersucht wird. In F i g. 5 läuft der Ausgangspunkt X
der Strahlung um die Achse 0 des Gerätes um. In dieser Figur ist durch eine gestrichelte Linie die äußere,
kreisförmige Begrenzung 13' dargestellt, deren Mittelpunkt auf der Achse 0 liegt und in der der Körper des
Patienten sich in irgendeiner möglichen Stellung befindet. Der Kreis 32 stellt die Begrenzung des
Bereiches dar, in dem die Bildrekonstruktion mit hoher Auflösung bewirkt wird. Der Mittelpunkt des Kreises 32
liegt ebenfalls auf der Achse 0. und alle Querschnittsbereiche des Körpers des Patienten, die mit hoher
Auflösung rekonstruiert werden sollen, müssen notwendigerweise innerhaib des Kreises 32 liegen.
Schematisch sind mehrere Strahlen dargestellt, die vom Ausgangspunkt X der Punktquelle ausgehen und 6ä
nach Passieren des Bereiches innerhalb der Begrenzung 13' auf zahlreiche strahlungsempfindliche Detektoren
43 und 44 fallen. In der Darstellung verlaufen verhältnismäßig viele Strahlen von der Quelle durch den
vom Kreis 32 begrenzten Bereich, während die nicht durch den Kreis 32 verlaufenden und mehr an den
Grenzen des Fächers liegenden Strahlen zahlenmäßig geringer sind und voneinander einen größeren Abstand
aufweisen. Insoweit zeigt diese Figur schematisch das zuvor erwähnte Prinzip, daß der ausgewählte Querschnittsbereich
des Körpers des Patienten, von dem genaue Informationen benötigt werden, durch eng
benachbarte, schmale Strahlen untersucht wird, während Bereiche außerhalb dieses ausgewählten Bereiches
durch verhältnismäßig breite Strahlen mit großem Abstand untersucht werden. Hierbei definieren die
strahlungscmpfindlichen Detektoren 43 und 44. auf die Photonen der Strahlung auftreffen, jeweils einen Strahl.
Vor den strahlungsempfindlichen Detektoren sind Kollimatoren angeordnet, die die Abcrturen der
Detektoren und die entsprechenden Strahlen festlegen.
IJ-JC *ΐί Γι! llliiMgÜCiTlpl iMVlllCl ICH LvCtCri lOrCn TJ Ιΐίΐΐ'νΠ
Aperturen νο·ι verhältnismäßig geringer Breite aber
sind mit großer Dichte angeordnet. Sie definieren zahlreiche, durch den ausgewählten Bereich im Kreis 32
verlaufende Strahlen. Die restlichen strahlungsempfindlichcn Detektoren 44 haben Aperturen mit verhältnismäßig
großer Breite und definieren breitere Strahlen. Die Breite der verschiedenen, in der zuvor beschriebenen
Weise definierten Strahlen wird nachfolgend in Einzelheiten erläutert.
Die äußeren Strahlen können auch eine beträchtlich geringere Intensität aufweisen, so daß als zusätzlicher
Vorteil die vom Patienten aufgenommene Röntgenstrahlendosis vermindert wird. Hierdurch und durch die
Rekonstruktion eines detaillierten Absorptionsschemas in nur einem begrenzten Beieich wird die Dosis im
Vergleich mit der Rekonstruktion des gesamten Querschnittsbereiches etwa im Verhältnis 4 : 1 vermindert.
Die strahlungsempfindlichen Detektoren 43 und 44 bestehen aus sogenannten .Szintiliationskristallen. denen
jeweils ein Fotovervielfacher zugeordnet ist. Die entsprechenden Fotovervielfacher sind in F i g. 5 der
Einfachheit halber nicht dargestellt. Die elektrischen Ströme am Ausgang der Fotovervielfacher werden der
Verarbeitungsvorrichtung für die Bildrekonstruktion zugeführt.
Die jeweils den Szintiliationskristallen der Detektormittel zugeordneten Fotovervielfacher sind verhältnismäßig
massig. Es ergibt sich dadurch das Problem, eine größere Zahl Fotovervielfacher bequem im Gerät
unterzubringen.
F i g. 6 zeigt eine Möglichkeit, wie die Fotovervielfacher
angeordnet werden können.
Bei dieser Figur ist angenommen, daß die Strahlungsquelle
rechts liegt, wobei die Strahlen 101, 102, 103 ... repräsentativ für die verhältnismäßig schmalen, in
F i g. 5 auf die Szintiüationskristaüe 43 fallenden Strahlen sind. Der Strahl 101 sei ein äußerer Strahl der
Strahlengruppe. Der auf ihm markierte Ort 111 ist als der Ort des Szintillationskristall anzusehen, auf den der
Strahl auftrifft. Zentriert auf diesen Ort 111 ist der zu diesem Szintillationskristall gehörende Fotovervielfacher
11 Γ. Der Fotovervielfacher 11Γ ist mit voll
ausgezogener Linie dargestellt. Hierdurch soll angezeigt werden, daß der Fotovervielfacher auf einer
bestimmten Seite der Ebene der untersuchenden Strahlen Hegt. Der benachbarte Strahl 102 fällt auf einen
entsprechenden Szintillationskristall der am Ort 112
angeordnet ist und mit einen Fotovervielfacher 112'
versehen ist. Dieser Fotovervielfacher ist in gestrichelten Linien dargestellt, um anzuzeigen, daß er auf der
anderen Seite der Ebene der untersuchenden Strahlen wieder Fotovervielfacher 111' liegt. Der Strahl 103 fällt
auf einen Szintillationskristall am Ort 113, der mit einem
Fotovervielfacher 113' gekoppelt ist. Dieser Fotovervielfacher
liegt auf derselben Seite der untersuchenden Strahlen wie III'. Der Strahl 104 fällt auf einen
Szintillationskristall am Ort 114, der mit dem Fotovervielfacher
114' versehen ist. Dieser Fotovervielfacher ist
auf der Seite der Strahlen angeordnet, die vom Fotovervielfacher 111' und 113 abgekehrt ist. Das
Schema dieser Anordnung setzt sich in gleicher Weise für die Strahlen 105, 106, 107, 108 fort, aber beim Strahl
109 ist der Szintillationskristall in gleicher Weise wieder '5
Szintillationskristall beim Strahl 101 angeordnet. In
soweit wiederholt sich der Zyklus der Anordnung der Fotovervielfacher, und diese Wiederholung setzt sich
fort, bis alle die schmalen Strahlen darstellenden Siiiiliicn
F i g. 7 zeigt die Verteilung von relativ schmalen und relativ breiten Strahlen über dem von der Quelle 5
ausgesendeten Strahlungsfächer. Dabei ist zu beachten, daß die von der Quelle 5 ausgesendeten Sirahlen
untereinander divergieren, aber wie nachfolgend noch näher erläutert wird, werden die Daten in Gruppen so
zusammengefaßt, daß jede Gruppe Absorptionswerten paralleler Strahlenwege entspricht. Die Datenverarbeitung
erfolgt dabei auf der Basis von parallelen .Strahlengruppen. Aus diesem Grunde ist in F i g. 7 die W
Anordnung der Strahlen auch so dargestellt, als seien sie tatsachlich parallel. Unter Berücksichtigung dieses
Gesichtspunktes veranschaulicht die F i g. 7 den Durchgang einer Gruppe paralleler Strahlen durch den
Bereich innerhalb eines Umkreises 13'. in dem der 3'
Querschnitt des Patienten liegen muß.
Wie in Fig. 5 bezeichnet 0 den Ort der Achse der orbitalen Drehung und 32 den Kreis, innerhalb von
welchem die Bildrekonstruktion eines ausgewählten Bereiches des Querschnitts des Körpers in Einzelheiten *°
erfolgen soll. Konzentrisch zum Kreis 32 und innerhalb dieses Kreises befindet sich ein Kreis 45. und innerhalb
dieses Kreises besitzt die Bildrekonstruktion ein besonderes Maß an Genauigkeit unabhängig davon, ob
absorbierendes Material außerhalb der Grenzen des Kreises 32 vorhanden ist.
Die Linie 46 stelle eine Begrenzung dar. die tangential zum Kreis 45 verläuft, und in gleicher Weise ist die Linie
46' eine zum Kreis 45 tangentiale Begrenzung auf der gegenüberliegenden Seite. Zwischen den Begrenzungen M
46 und 46' befinden sich insgesamt achtzig parallele Strahlen, die jeweils bei diesem Ausführungsbeispiel der
Erfindung eine mittlere Breite von 1 mm besitzen. Die zur Begrenzung 46 parallele Begrenzung 47 verläuft
tangential zum Kreis 32 auf derselben Seite der Achse 0 wie die Begrenzung 46. In gleicher Weise verläuft die
zur Begrenzung 46' parallele Begrenzung 47' tangential zum Kreis 32 auf der der Begrenzung 47 gegenüberliegenden
Seite. Zwischen den Begrenzungen 46 und 47 und zwischen den Begrenzungen 46' und 47' sind bei W
dem vorliegenden Beispiel insgesamt jeweils dreizehn parallele Strahlen mit einer mittleren Breite von 1 mm
vorhanden. Parallel zur Begrenzung 47 ist auf derselben Seite der Achse 0 eine Begrenzung 48 dargestellt und
auf der anderen Seite der Achse befindet sich in gleicher Beziehung zur Begrenzung 47' die Begrenzung 48'.
Zwischen diesen beiden Paaren von Begrenzungen befindet sich jeweils ein einzelner Strahl mit einer
mittleren Breite von 3 mm. Ferner liegt parallel zur Begrenzung 48 "uf derselben Seite der Achse 0 eine
Begrenzung 49, während eine Begrenzung 49' auf der anderen .Seite der Achse in gleicher Beziehung zur
Begrenzung 48' angeordnet ist. Zwischen diesen beiden Paaren von Begrenzungen befindet sich jeweils ein
Strahl mit einer mittleren Breite von 10 mm. Schließlich berührt die zur Begrenzung 49 parallele äußere
Begrenzung gerade den Kreis 13' auf derselben Seite der Achse, während auf der anderen Seite die
Begrenzung 50' in gleicher Beziehung zur Begrenzung 49' angeordnet ist. Zwischen diesen beiden Paaren von
Begrenzungen befindet sich ein Strahl mit einer mittleren Breite von 55 mm. Bei den in Verbindung mit
F i g. 7 als parallel bezeichneten Strahlen soll unter der Parallelität die Parallelität der Strahlen untereinander
verstanden werden und nicht, daß jeder Strahl selbst seitlich parallele Grenzen hat. Die zuvor erwähn'i
Breite der Strahlen ist die von den Kollimatoren bestimmte Breite gemessen entlang einer i.inie. die
senkrecht zu einem durch die Achse 0 verlaufenden mittleren Strahl liegt. Die Mittellinien von benachbarten
schmalen Strahlen in der mittleren Zone sind ferner 2 mm voneinander entfernt, und die Zwischenräume
/wischen ihnen werden durch andere Strahlen ausgefüllt, was nachfolgend noch erläutert wird. Tatsachlich
ist die wirksame Strahlenbreite großer als I mm, weil eine Spreiziing durch das Vorhandensein einer »Abtast-Apertur«
verursacht wird.
Es sei hervorgehoben, daß andere Verteilungen von schmalen und breiten Strahlen verwendet werden
können. Ferner kann jeder breite Strahl durch einen einzelnen schmalen Strahl ersetzt werden. In diesem
Falle würde die durch einen solchen schmalen Strahl gemessene Absorption als Absorptionswert für die
einzelnen Strahlen dienen, die sonst den Bereich des breiten Strahls bedeckt haben würden. Eine solche
Anordnung würde ebenfalls zu der oben erwähnten Verminderung der Röntgenstrahlcnintensität führen.
Fig. 8 zeigt schematisch das Gerät, sowie ein Blockschaltbild der für die Bildrekonstruktion verwendeten
Schaltungselemente.
Auch in dieser Figur bedeuten wiederum: X den Emmissionspunkt der Röntgenstrahlung von der Quelle
5. 0 die Umlaufachse, der Kreis 32 den Bereich hoher Auflösung, der Bereich 13' den Bereich, innerhalb von
dem der interessierende Querschnitt angeordnet werden muß, 18 Detektoren zur Erzeugung von Absorptionsdaten
für die Verarbeitung und 69 die bereits erwähnten aber in den beschriebenen Figuren nicht
dargestellten profilierten Blöcke bzw. Absorptionsausgleichskörper.
Die Einheit 51 stellt einen Speicher und Hilfskompo- nenten zum Empfang und zur Speicherung der
Absorptionsdaten dar, die von dem Detektoren 18 im Verlauf der orbitalen Bewegung des Gerätes erzeugt
werden. Die Einheit 51 enthält entsprechende Verstärker 56 für die Ausgangsströme von den verschiedenen
Fotovervielfachern der Detektoren 18, die der Einheit 51 zugeführt werden. Die Verstärkung ist individuell so
eingestellt, daß die unterschiedlichen Empfindlichkeiten der Szintillationskristalle der Detektoren 18 kompensiert sind. Die Ausgangsströme der einzelnen Verstärker werden in Miller-Integratoren 57 integriert, und die
Ausgänge dieser Schaltungen werden jeweils vor der Speicherung durch Umsetzer 58 von analoger ir. digitale
Form umgesetzt. Ggf. können die Verstärkungen der Verstärker gemeinsam gesteuert werden, um etwaige
Schwankungen der Emissionsintensitäl der Röntgenstrahlungsquelle
zu kompensieren.
Es ist erwünscht, daß die endgültige Bildrekonstruktion
die Verteilung des Absorptionskoeffizienten über dem Bereich des untersuchten Querschnitts darstellt.
Dieser Absorptionskoeffizient ist die Absorption pro Längeneinheit in der unmittelbaren Nachbarschaft eines
gegebenen Punktes, die ein durch diesen Punkt laufender Strahl erfährt. Um das erforderliche Ergebnis
zu erzielen, müssen die von den Detektoren 18 to abgeleiteten Ausgangssignale in ihre logarithmischc
Form umgesetzt werden. Hierfür enthält die Finheit il
einen logarithmischen Umsetzer 59, der die bekannten
logarithniischen Nachschlagetabelle!! umial.il Jede1·
vom Integrator klimmende und in digitalen ( uile
umgesetzte Signal wird somit durch ilen Umsetzer 59 in
seinen Logarithmus umgesetzt und dann in ilen Speicher
61 als Logarithmus in digitalen) Code eingegeben. Die Adresse im Speicher wird durch Lilien Adrcssenwähler
6ö ausgewählt.
Nach Beendigung der logarithniischen Speicherung in der Finheit >l werden Daten aus dem Speicher durch
die Verarbciuingseinheit 52 abgerufen. Beschaffenheit
und Wirkungsweise dieser Einheit ist vollständig in der erwahiren alteren Patentanmeldung beschrieben. Die
darin erläuterte Technik für die Verarbeitung durch die Einheit 52 kann als Erzeugung eines korrigierten
Schichtdiagramms angesehen werden. Die Einheit ruft Daten vom Speicher 61 in parallelen Gruppen wie zu\ or
erwähnt mittels des Adressci.^ählers 62 ab und w
verarbeitet diese Gruppen gleichzeitig, wobei !ede
Gruppe gliedweise in einem Dateruerarbeiter 63 verarbeitet wird. Da die Verarbeitung jeder Gruppe
stattfindet, werden die verarbeiteten Daten gliedweise in einem Speicher 64 für verarbeitete Daten in einer
Einheit 53 gespeichert, wobei der Speicher verschiedene Abschnitte hat, die jeweils zur Speicherung der von
einer entsprechenden Gruppe abgeleiteten Daten dienen.
Die Einheit 54 zur Aufnahme der gespeicherten Daten von der Einheit 53 enthält einen sogenannten
Ausgangsmatrixspeicher 65. in dem die Daten nach vollständiger Verarbeitung in einer Form gespeichert
werden, die unmittelbar die Verteilung der Absorptionskoeffizienten über dem untersuchten Querschnitte-
reich darstellen. Die Adressen des Speichers entsprechen den Maschen eines beispielsweise kartesischen
Netzwerkes, wobei jede Masche unmittelbar einen bestimmten elementaren Bereich des untersuchten
Querschnittes darstellt und alle Maschen zusammen ohne Diskontinuität angeordnet sind, so daß sie den
gesamten, zumindest aber den interessierenden Bereich
des untersuchten Querschnittes erfassen. An der Adresse jeder Masche ist schließlich ein Signal
gespeichert, das entsprechend dem durch das Gerät zugelassenen Grad an Genauigkeit den Absorptionsko
effizienten des Körpermaterials darstellt, das in diesem elementaren Bereich der jeweiligen Masche liegt. Wenn
die Speicherung für alle Maschen vollständig ist kann
das Bild beispielsweise durch eine Kathodenstrahlröhre oder durch eine Druckvorrichtung dargestellt werden
und zusätzlich oder als Alternative auf einem Magnetband gespeichert werden. Bei jeder dieser Möglichkeiten oder einer Kombination davon bewirkt eine Einheit
55 bestimmungsgemäß den Abruf von Daten aus dem Matrixspeicher 65 und deren Verwendung für die
gewählte Form der Darstellung.
Genauigkeit erforderlirh ist, wird in der Einheit 54 eine
Interpolation durch einen Interpolator 66 durchgeführt, von dem die in den jeweiligen Speichern 64 der Einheit
53 gespeicherten verarbeiteten Daten dem Ausgangsmatrixspeicher 65 zugeführt werden. Die Interpolation
wird durch Zusammenwirkung zwischen einen) Adress?nwähler 67 und einem Strahlwcg-Datenspeicher 68
bewirkt, was in der erwähnten älteren Anmeldung beschrieben ist.
Bei dem beschriebenen Gerät sind die schmalen, I mm breiten Strahlen 2Zn eines Grades voneinander
gelrennt, und Ausgangssignale werden von den Detektoren nach jeder Winkelverschiebung der Quelle
i nun -Vi; (irad um die Achse 0 abgeleitet. Nach leder
Drehung um eine Stufe dieser Groüe nimmt leder
schmale Strahl eine Lage ein, die parallel zu der Lage "/.
■ lie einer seiner benachbarten Strahlen ν or der Drehung
um diese Stufe eingenommen hat.
Es ist daher durch geeigente zeitliche Wahl moglieh.
Strahlabsorptions-Datensignale für Gruppen von parallelen Strahlen zusammenzustellen. Es lassen sich
dadurch Signale erzeugen, die Gruppen von parallelen Strahlen entsprechen, die winkclmäßig um -V1; eines
Grades voneinander getrennt sind. Die bei dem beschriebenen Beispiel verwendete Datenverarbeitung
ist jedoch so ausgerichtet, daß die Gruppen zueinander
um -Vi eines Grades verlagert sind. Dies wird
nachfolgend noch naher erläutert.
Das Signalverarbe tungssystem. das in Verbindung
mit der vorliegenden Erfindung verwendet wird.bedien!
sich des vorgeschlagenen Konvolutionsverfahrens. das
in verschiedenen Formen in der Eingangs genannten deutschen Offenlegungsschrift beschrieben ist. Diese
Technik besteht im wesentlichen darin, die untersuchenden Strahlen η Gruppen anzuordnen, die auf Zonen
bezogen sind, welche konzentrisch zu einem Punkt liegen, für den ein Absorptionswert berechnet werden
soll. Dies Gruppen werden so gewählt, daß eine erste
Gruppe durch alle solche Zonen verläuft, eine zweite Gruppe durch alle Zonen nut Ausnahme der mittleren
Zone, eine dritte Gruppe durch alle Zonen mit Ausnahme der beiden inneren Zonen usw. Die
Absorptionswerte der Strahlen in jeder Gruppe werden dann für diese Gruppe zusammengezählt u ;J mit
entsprechenden Zonenfaktoren, die auch »/.-F/vtoren«
genannt werden, multipliziert. Die Summe der zusammengezählten,
so bewerteten Größen ist p-oportional zur Absorption des Materials in der untersuchten Ebene
und bei dem gewählten Auswertungsrankt. Mehrere solcher Werte für eine geeignete Anz;; -1 von Auswertungspunkten
dienen dann zum Aufbau des gewünschten Abbildes.
Der dem Vorschlag nach der Eingangs genannten Offenlegungsschrift werden zur Erzeugung einer
brauchbaren Bildrekonstruktion aus den bei der Verarbeitung gewonnenen Strahlabsorptionsdaten nur
Strahlen von jeweils gleicher Breite verwendet. Die angegebene Technik kann bei den schmalen Strahlen,
die anhand der F i g. 9 beschrieben werden, angewendet
werden.
Die erwähnten breiteren Strahlen dienen dazu, kleine
endgültige Korrekturen hinzuzufügen, und auf sie brauchen keine Verfahren großer Genauigkeit angewendet zu werden. Ein Verfahren zu ihrer Behandlung
besteht darin, daß jeder als eine Gruppe von aneinander angrenzenden dünnen Strahlen behandelt wird, wobei
die Absorption des breiten Strahls gleichmäßig auf ,Hi?
angenommenen dünnen Strahlen verteilt wird. Stattdes-
sen kann in der zuvor erwähnten Weise auch ein einzelner dünner Strahl zur Gewinnung eines Absorptionswertes
verwendet werden, der der angenommenen Strahlen zugeordnet wird. Dieser einzelne dünne Strahl
kann vorzugsweise in der Mitte des äquivalenten breiten Strahls ingeordnet werden. Die Gruppe der
/.-Faktoren für die dünnen Strahlen wird dann auf die
angenommenen dünnen Strahlen erstreckt. Wenn die Multiplikation der Absorptionswerte mit den /.-Faktoren
sehr rasch durchgeführt werden kann, beispielsweise mit einer speziellen Schaltung, die in der erwähnten
deutschen Offenlegungsschrift vorgeschlagen ist, dann sollte dieses Verfahren angewendet werden. Andererseits
kann mit langsameren Verfahren der Rechnung Yerarbeitungszeii eingespart werden, indem bestimmte
L-Faktoren breiten Zonen zugeordnet werden, die breiten Strahlen entsprechen.
Ein bestimmter Fall tritt bei dieser Technik dann ein, wenn der Punkt im Querschnitt, bei dem die Absorption
abgeschätzt werden soll, auf der Umlaufachse liegt In diesem Fall erstrecken sich entsprechend F i g. 7 die der
dünner. Strahlbreite entsprechenden ringförmigen Zonen vom Punkt 0 bis zum Kreis 32. Die nächste Zone hat
eine Breite, die gleich dem Abstand zwischen den Begrenzungen 47 und 48 ist. Die nächste Zone hat eine
Breite, die dem Abstand zwischen den Begrenzungen 48 und 49 entspricht und schließlich folgt eine Zone, deren
Breite gleich dem Abstand der Begrenzung 50 von der begrenzung 49 ist.
Es sei zunächst die innere breite Zone betrachtet, die durch den Kreis 32 gebildet ist. Die der dünnen
Strahlbreite entsprechenden ringförmigen Zonen, deren Breiten geringer als der Durchmesser des Kreises 32
sind, erstrecken sich von der Achse 0 bis zum Kreis 32. Man kann sich somit die innere breite Zone als drei um
die Achse 0 konzentrische Zonen zusammengesetzt denken, die sich innerhalb des Kreises 32 befinden. Es
muß nun aber dieser inneren breiten Zone noch ein /.-Faktor zugeordnet werden, der sich aus den
jeweiligen /.-Faktoren der drei um die Achse 0 «o
konzentrischen Zonen zusammensetzt, welche zusammen die innere breite Zone bilden. Es werden also nicht
die zuletzt genannten einzelnen /.-Faktoren unmittelbar
angewandt. Vielmehr wird anstelle dieser einzelnen /.-Faktoren der drei um die Achse 0 konzentrischen «
Zonen ihr Durchschnittswert ermittelt. Dieser Durchschnittswert bildet den /.-Faktor der inneren breiten
Zone und wird bei dem oben erwähnten Sonderfall zur Multiplikation der Absorption des inneren breiten
Strahls verwendet.
In der gleichen Weise wird auch ein /.-Faktor der
nächsten breiten Zone zugeordnet, und in gleicher Weise wird auch ein entsprechender /.-Faktor für die
breite Zone am Ende bestimmt. Ein Beispiel für einen typischen Wert des /.-Faktors für die erste breite Zone
ist 0,001, während der /.-Faktor für die nächste Zone
0,0006 und für die letzte Zone 0,0005 ist. Weil das Maß der von dem breiten Strahl bewirkten Korrektur klein
ist, brauchen nur die /.-Faktoren für die breiten Strahlen
nicht mit großer Präzision bestimmt zu werden. Wenn man ferner nur wenige breite Strahlen in Betracht zieht,
ist es nicht schwierig, Werte für die L-Faktoren für breite Zonen ggf. durch empirische Ermittlungsverfahren
zu finden.
Die Situation ist im allgemeinen nicht so einfach wie in dem gerade betrachteten Fall, wenn nämlich der
Punkt des Körperquerschnitts, dessen Absorption abgeschätzt werden soll, nicht auf der Umlaufachse
liegt Das Verfahren, das auch dann noch eine brauchbare Zeiteinsparung bei der Verarbeitung erlaubt,
kann sehr einfach durch Annahme der äquivalenten /.-Faktoren-Multiplikation erklärt werden, die
zweckmäßigerweise in der Praxis angewendet wird und die nachfolgend näher erläutert wird. Es wurde bereits
erklärt, daß die L-Faktor-Multiplikation ein Verfahren
darstellt, bei dem die Absorptionswerte in Zonen summiert und die Absorptionssummen jeweils mit dem
entsprechenden /.-Faktor multipliziert werden, worauf
alle so bewerteten Summen dann addiert werden. Es ist ein äquivalentes Verfahren, die L-Faktorgruppen nicht
auf der oben erwähten zonalen Basis auszumultiplizieren,
sondern jeweils zur Zeit eine parallele Gruppe von Absorptionsdaten zu nehmen, um die L-Faktorgruppen
mit den Absorptionswerten der Gruppe in einer sonst identischen Weise auszumulliplizieren. Es ist dann
notwendig, die Multiplikationsprodukte in Zwischenspeichern zu speichern. Im Augenblick genügt jedoch
die Betrachtung, daß beim Vorgehen mit einer parallelen Gruppe lineare Intervalle vorhanden sind, die
den zonalen Intervallen entsprechen und gleich den Zonenbreiten sind, wobei die L-Faktoren nun in bezug
auf die linearen Intervalle und nicht in bezug auf die Zonen verteilt sind. Mit der Einführung von L-Faktoren
für breite Strahlen werden diese Faktoren den Breitstrahl-Intervallen zugeordnet, so wie die L-Faktoren
für die schmalen Strahlen den Intervallen für die schmalen Strahlen zugeordnet werden.
Es ist ersichtlich, daß es bei der Multiplikation mit einer parallelen Gruppe geschehen kann, daß eine
Gruppe von Intervallen schmaler Strahlen vollkommen auf einem breiten Strahl liegt. In diesem Falle wird der
Absorptionswert des breiten Strahls in eine Folge von angenommenen Absorptionsdaten für feine Strahlen
aufgelöst, deren Wert insgesamt gleich dem Wert des breiten Strahls ist. Wenn die Gruppe von feinen
Strahlen nur teilweise auf dem breiten Strahl liegt, dann wird der breite Strahl nur hinsichtlich dieses Teils in
bezug; auf die Gruppe schmaler Strahlen für die Multiplikation der feinen Strahlen aufgelöst, wobei ein
Rest und ein benachbarter angenommener breiter Strahl übrigbleibt. Der Absorptionswert, der diesem
angenommmenen breiten Strahl zugeordnet werden soll, wird dementsprechend bei der L-Faktor-Multiplikation
für den breiten Strahl verwendet. Beispielsweise kann der Strahlabsorptionswert einem anderen, von
einem benachbarten breiten Strahl abgeleiteten konstruierten Wert hinzugefügt werden, wobei der
Summenwert durch einen entsprechenden L-Faktor für einen, breiten Strahl multipliziert wird. Wenn ein
Intervall für einen breiten Strahl über schmale Strahlen fällt, werden die Daten der feinen Strahlen summiert um
eine Absorption zu konstruieren, die einem angenommenen breiten Strahl mit der Breite des Intervalls
entspricht, und diese Absorption wird dann mit dem L-Faktor für das Intervall multipliziert. Auf diese Weise
kann die Absorption in bezug auf jeden Punkt des untersuchten Querschnitts abgeschätzt werden, und
zwar mit einer Zeitersparnis für die Verarbeitung im Vergleich zur Verarbeitung von nur dünnen Strahlen.
Unabhängig davon, ob bei der Datenverarbeitung von L-Faktoren für breite Strahlen Gebrauch gemacht
wird oder nicht, kann festgestellt werden, daß die Verwendung von breiten Strahlen deswegen besonders
vorteilhaft ist. weil sie zu einer Einsparung der Zahl der Sziniillationskristalle und der entsprechenden Fotovervielfacher
führt.
Hinsichtlich des in F i g. 7 dargestellten Strahlenschemas sei bemerkt, daß von den Strahlen nicht nur
angenommen wurde, daß sie parallel sind, sondern daß sie auch eine gleichförmige Breite besitzen. Bei dem in
Fig. I und 2 dargestellten Gerät haben die durch die Detektoren bestimmten Strahlen jedoch nicht diese
Eigenschaft, sondern sie sind auf der einen Seite des untersuchten Bereiches breiter als auf der anderen. Die
Wirkung dieser Abweichung wird jedoch bei dem beschriebenen Gerät dadurch auf ein Minimum
reduziert, daß die orbitale Bewegung nicht auf den theoretischen Bereich von 180 Grad beschränkt wird
sondern sich bis zu 360 Grad fortsetzen kann, so daß sich für jede Strahlanordnung bei den ersten 180 Grad
der Abtastung eine zweite Anordnung ergibt, die mit Ausnahme der umgekehrten Richtung der Strahlung
und damit des Sinnes der Abweichung identisch ist. Es wird dann der Durchschnitt der beiden Strahlabsorptionen
verwendet, um Daten zu erzeugen, die einem Strahl von scheinbar gleichförmiger Breite entsprechen.
Die weitere Ausdehnung der orbitalen Bewegung dient ferner zur Verringerung der Zahl der Szintillationskristalle
und der entsprechenden Fotovervielfacher, die in Verbindung mit der großen Zahl der
schmalen Strahlen verwendet wird. Die Zahl der Paare von Kristallen und Fotovervielfachem wird halbiert,
indem ein Spalt mit einer Strahlbreite zwischen jedem aufeinanderfolgenden Paar gelassen wird, und die
demzufolge in der Gruppe der schmalen Strahlen vorhandenen Zwischenräume werden durch einen
seitlichen Versatz der Röntgenstrahlenquelle und der Detektoren um das Maß eines schmalen Strahls ersetzt.
Eine weitere orbitale Drehung um 360 Grad besorgt danr die fehlende Information. Dies zeigt F i g. 9, in der
für die erste von zwei orbitalen Umläufen die Lage der Röntgenstrahlenquelle 5 und der Kollimatoren der
Detektoren 18 dargestellt sind. Diese Figur zeigt ferner in gestrichelten Linien die Position 5| der Röntgenstrahlenquelle
und die Position 18| der Kollimatoren bei der zweiten orbitalen Drehung, und die gestrichelten Linien
zeigen den Versatz der Strahlen, die den Zwischenraum zwischen den durch voll ausgezogenen Linien dargestellten
Strahlen ausfüllen.
Diese Technik kann jedoch entfallen, wenn dicht nebeneinander angeordnete Fotovervielfacher und
Kristalle oder Mehrkanalvorrichtungen verwendet werden. Umgekehrt kann diese Technik aber auch
dahingehend ausgedehnt werden, daß das Weglassen weiterer Kristalle und Fotovervielfacher ausgeglichen
wird. Beispielsweise kann ein Verfahren mit einer dreifachen Umdrehung verwendet werden. Wenn
jedoch das Gerät zur Untersuchung von Bereichen des Körpers eines Patienten verwendet werden soll, in
denen die Atmung des Patienten unerwünschte Körperbewegungen des untersuchten Querschnitts
verursachen kann, wenn der Patient nicht zeitweilig den Atem anhält, sollte die Umlaufzeit kurz sein. Damit ist
die Zahl der möglichen Umläufe stark begrenzt. Die in Fig. 9 dargestellte Technik bildet einen Teil des
Vorschlags nach der DE-OS 24 34 224.
Nach Entscheidung über die Verwendung einer bestimmten Gruppe von L-Faktoren und unter der
Annahme der in logarithmischer Form in der zuvor beschriebenen Weise gewonnenen Sirahlabsorption
und der Verfügbarkeit in Form paralleler Gruppen kann die von der Einheit 131 in F i g. 8 durchzuführende
Verarbeitung mittels eines entsprechend programmierten Rechners oder den speziellen Schaltungen durchgeführt
werden, wie sie in der eingangs genannten DE-OS 24 20 500 vorgeschlagen sind.
Wie zuvor in Verbindung mit den schmalen Strahlen erwähnt wurde, wird für das Winkelintervall zwischen
den einen gleichmäßigen Abstand voneinander aufweisenden paraHelen Datengruppen V3 Grad gewählt Es
sei angenommen, daß die Detektoren in Intervallen von 2h Grad um die orbitale Achse angeordnet sind. Es ist
ersichtlich, daß sich dann die Ausgänge der aufeinanderfolgenden Detektoren auf eine parallele Gruppe
beziehen, wenn diese jeweils nach aufeinanderfolgenden Bewegungen von 2I3 Grad ausgewertet werden.
Eine weitere parallele Gruppe kann vom ersten Detektor nach der ersten Bewegung von 2Z3 Grad
gestartet werden, wobei diese zweite Gruppe um 2h
Grad zur ersten Gruppe geneigt ist usw. bis schließlich bei allen erforderlichen Winkeln Gruppen gewonnen
worden sind. Bei den verhältnismäßig schmalen Strahlen, die bei dem erfindungsgemäßen Gerät
verwendet werden, sind vier Detektoren zwischen jedem Paar mit einem Winkelabstand von 2I3 Grad
angeordnet, wobei die Anordnung so getroffen ist, daß zwischen den Detektoren ein Winkelintervall von 2Im
Grad besteht. Es sei nun Fig. 10 betrachtet, die die Komponenten der Einheit 51 in F i g. 8 in näheren
Einzelheiten darstellt. Von den Detektoren 18 wird angenommen, daß sie in eine von fünf verschiedenen
Kategorien fallen. Die Kategorie eins kann als Anfangsfolge von Detektoren betrachtet werden,
zwischen der die anderen vier Detektoren angeordnet sind. Die Detektoren der Kategorie eins bilden somit die
erste von aufeinanderfolgenden Gruppen mit fünf Detektoren. Die Detektoren der Kategorie zwei bilden
die zweite Gruppe, die Detektoren der Kategorie drei die dritte Gruppe usw. Die Ausgänge der Detektoren
von unterschiedlichen Kategorien werden dann entsprechend ihrer Kategorie zu verschiedenen Zeiten
aufgetastet. Detektoren der Kategorie zwei werden um eine Zeit Tspäter als die der Kategorie eins aufgetastet,
während die Detektoren der Kategorie drei um eine Zeit 2T später aufgetastet werden usw., wobei der
Auftastzyklus die Zeit 5 Γ umfaßt. Diese Zeit ist gleich der Dauer der Abtastung der orbitalen Bewegung über
Vj Grad. Man sieht, daß bei Verwendung der Daten von
den Detektoren, die nun als Detektoren der Kategorie 1 eingestuft sind, parallele Gruppen von Daten mit einem
Winkelintervall von 2I3 Grad konstruiert werden
können. In jeder auf diese Weise konstruierten Gruppe entsprechen die Daten Strahlen, die voneinander durch
Intervalle getrennt sind, deren Größe Jer Ausdehnung
von vier dazwischen liegenden Strahlen mit dem Abs land von dünnen Strahlen entspricht. Daten, die den
Orten der dazwischen liegenden Strahlen entsprechen, werden durch Auftastung der Ausgänge der Detektoren
der Kategorien 2, 3, 4 und 5 abgeleitet, um volle Gruppen zu erzeugen.
Im allgemeinen können Strahlen eines Fächers mit einem winkelmäßigen Abstand von λ in n-Kategorien
zusammengefaßt werden, um parallele Gruppen mit einem Winkelabstand net zu erzeugen. Jede solche
Gruppe hat die η-fache Zahl von Strahlen, die mit gleichem Abstand bei einem Fächer mit Strahlen des
Abstandes nix vorhanden sind. Bei dem oben beschriebenen Fall ist η gleich I und λ beträgt 2As Grad. Daher
ist na ebenfalls 1I \$ Grad. Bei dem Beispiel gemäß
Fig. 10 ist η = 5 und net. beträgt daher V3 Grad. Die
Dauer der Auftastung beim Auftasten der Dctektorausgänge ist jeweils so, daß sie dem Abstand dünner
230 227/148
Strahlen entspricht, um unter Berücksichtigung des »Apertur-Effektes« die wirksame Verteilung der Strahlungsdichte
über dem Strahl so auszudehnen, daß die gesamte wirksame Ausdehnung des Strahls doppelt so
groß wie dar Abstand der Strahlen einer schließlich abgeleiteten parallelen Gruppe ist. Die- Auftastung wird
dadurch bewirkt, daß die oben erwähnten Miller-Integratoren 57 veranlaßt werden, die Integration zu
gegebenen Zeiten zu beginnen und zu beenden und ihre integrierten Ausgänge abzuleiten. Die Mil.'er-Integratoren
werden somit für ihre bekannte Rolle als Analog-Speicher verwendet, in der sie auftasten und
halten und anschließend zurückgestellt werden, um für eine weitere Auftastung wieder verfügbar zu sein. Die
abgeleiteten parallelen Datengruppen werden in entsprechenden Speichern gespeichert, so daß sie unmittelbar
tür die Konvolution verfügbar sind.
In 10 übertragen die von den Detektoren 18 ausgehenden Leiter 70 die die Absorptionsinformation
für schmale Strahlen bildenden Ausgänge dieser Detektoren, woLei jedem Detektor ein Leiter zugeordnet
ist Die Leiter 70 sind entsprechend den Detektorkategorien 1, 2, 3, 4, 5 getrennt dargestellt. In dieser
Klassifizierung verlaufen die Leiter in die Verarbeitungs-und Speichereinheit 51. .
Die Ausgänge der Detektoren für die breiten Strahlen entsprechend jeweils den angenommenenen feinen
Strahlen, in die man sich die breiten Strahlen aufgelöst vorstellt. Beispielsweise wird ein breiter Strahl von
10 mm Breite als in zehn angenommene feine Strahlen aufgelöst betrachtet. Im Prinzip führt der Detektor, der
die Absorption mißt, die der breite Strahl erfährt, die Ausgangssignale zehn getrenne Kanälen für feine
Strahlen zu, wobei jedem Kanal die Signale über einen getrennten Ausgang zugeführt werden. Da jedoch alle
diese Signale gleich sein müssen, speist in der Praxis jeder Breitstrahl-Detektor nur einen Ausgangsleiter
und einen entsprechenden Kanal. Bei dieser Betrachtungsweise wird die Arbeitsweise dieser Kanäle bei der
weiteren Beschreibung des Gerätes in bezug auf die Ausgänge der Detektoren, die Informationen über die
Absorption der dünnen Strahlen geben, klar. Der Einfachheit halber sind daher Detektorausgangsleiter,
die sich auf die breiten Strahlen beziehen, in Fig. 10
nicht dargestellt, und aus dem gleichen Grunde ist nur ein typischer Kanal für einen dünnen Strahl in dieser
Figur dargestellt. Dieser entspricht dem Ausgangsleiter 70 des Detektors für einen dünnen Strahl.
Nach anfänglicher Verarbeitung werden die Daten auf die Abschnitte 1,2,3... η des Speichers 61 (F i g. 10) so
verteilt, dem entsprechend die von allen anderen Leitern abgeleiteten Daten zugeführt werden, so daß in
jedem Speicher die Daten einer parallelen Gruppe gehalten werden, wobei für jede Gruppe ein Speicher
verwendet wird.
Der in Fig. 10 mit 70* bezeichnete typische Leiter
führt dem Eingang des in seiner Verstärkung geregelten Verstärkers 56« Ströme zu. Die Verstärkung dieses
Verstärkers ist, wie schon früher erwähnt wurde — einstellbar, so daß die relativen Empfindlichkeiten der
verschiedenen Detektoren kompensiert und auch die Unterschiede in der Emission von der Röntgenstrahlenquelle
kompensiert werden können. Die Verstärkungsregelung kann auch ggf. Mittel zur Kompensation einer
Drift der relativen Empfindlichkeit im Verlauf der Abtastung enthalten. Die Verstärkung der Verstärker
56k wird von einer Verstärkungsregeleinheit 71 gesteuert.
Der Ausgang des Verstärkers 56* wird dem
Analog-Speicher 57^· zugeführt, der, wie oben erwähnt,
aus einem Miller-Integrator zum Auftasten und Halten besteht. Die Auftastung durch die Schaltungen 57k
erfolgt durch zeitliche Steuerung der Zeitgebereinheit 72, die auch die Zeit der Ausgabe und der Rückstellung
dieser Schaltungen steuert. Die Ausgabe von der Schaltung 572K wird durch die Schaltung 58k von
analoger in digitale Form umgesetzt und der Verteilerschaltung 60* zugeführt, die mit den verschiedenen
Abschnitten 1, 2,3 ... η des Speichers 61 in Verbindung
steht. Für den Fall, daß alle von den verschiedenen Detektoren abgeleiteten aufgetasteten Daten sich auf
parallele Strahlen beziehen — was tatsächlich nicht der Fall ist, da die Strahlen entsprechend dem Strchlungsfä-
:her divergieren — würden alle Verteiler, von denen
hier aus Gründen der Übersichtlichkeit nur der eine Verteiler 60k dargestellt ist, zu irgendeiner Zeit Daten
nur an einen Speicherabschnitt entsprechend einem bestimmten Winkel der umlaufenden Abtastung verteilen.
Dieser Speicher würde dann zu dieser Zeit vollständig gefüllt, wobei der Einfachheit halber die
beschriebenen Entwicklungen unbeachtet bleiben, die die Nicht-Parallelität der einzelnen Strahlen in Betracht
ziehen, und durch die die Zahl der verwendeten Detektoren um den Faktor 2 reduziert werden kann.
Diese Maßnahmen führen — wie oben erwähnt wurde — zu einer Abtastung über zwei Umdrehungen anstelle
einer Abtastung von 180 Grad, wobei im Prinzip nur die
letztere notwendig ist. Jedoch wird kein Speicherabschnitt in einem einzelnen Füllvorgang mit Daten
gefüllt, selbst wenn die angenommenen Maßnahmen das Gerät auf eine einfache 180 Grad Abtastung reduzieren.
Vielmehr werden Beiträge zu einer gegebenen parallelen Gruppe über einen Bereich von Auftastzeiten in der
erwähnten Weise von einem Bereich unterschiedlicher Detektoren erzeugt. Bei einem solchen zeitlichen
Programm tragen die Verteilerschaltungen wie z. B. 60k unter der Steuerung der Einheit 72 zur Speicherung der
parallelen Gruppen bei.
Die so in den Speicherabschnitten 1, 2, 3 ... π gespeicherten Daten der parallelen Gruppen stehen für
die Weiterleitung zur Konvolutionsverarbeitungseinheit nach logarithmischer Umsetzung zur Verfügung.
Um diese Umsetzung durchzuführen, und da die Daten in den Adressen der Speicher für die parallelen Gruppen
vorliegen, werden diese der logarithmischen Umsetzereinheit 59 zugeführt, um sie in dieselbe Adresse, aus der
sie abgerufen wurden, in logarithmischer Form neu einzuschreiben. Dies wird unter der Zeitsteuerung der
Einheit 72 durchgeführt. Es sei bemerkt, daß bei dem beschriebenen Gerät jede Adresse zwei Beiträge erhält,
von denen einer der einen Übertragungsrichtung des relevanten Strahls und der andere dem Strahl mit 180
Grad Versatz entspricht. Die Daten sind an einer Adresse nicht vollständig, bis beide Beiträge geliefert
worden sind, und die logarithmische Umsetzung kann vorher nicht bewirkt werden.
Es sei bemerkt, daß die vorliegende Erfindung bei jeder Abtastvorrichtung anwendbar ist, die für Geräte
geeignet ist, die in der oben erwähnten GB-PS und der DE-Anmeldung beschrieben sind, insbesondere bei
einer Überlagerung einer linearen Abtastung und einer orbitalen Abtastung. Was die beschriebene Technik zur
Auswahl von Gruppen paralleler Strahlen aus einer größeren Gruppe bei zahlreichen Winkelstellungen
betrifft, sind auch andere Verfahren zum Aufbau solch einer größeren Gruppe bekannt. Bei einem Verfahren
wird eine fächerförmige Verteilung von Strahlen einer linearen Abtastung und ferner einem Umlauf unterzogen,
um die Abtastung bei verschiedenen Winkeln zu wiederholen. Es hat sich jedoch gezeigt, daß extreme
Positionen der linearen Abtastung nicht genug individuelle Strahlen liefern, um alle parallelen Gruppen zu
vervollständigen. In solchen Fallen wird gemäß der
Erfindung eine Absorptionsinformation, die für eine Anordnung nötig ist, bei der ein Strahl fehlt, durch einen
anderen Strahl aufgefüllt, der ausreichend nahe bei der erforderlichen Anordnung liegt.
Hierzu 6 Blatt Zeichnungen
Claims (6)
1. Medizinisches radiographisches Gerät zur Untersuchung von Querschnittsscheiben des Körpers
eines Patienten mittels durchdringender Strahlung, insbesondere Röntgen- oder Gamma-Strahlung,
mit einem drehbaren Element, das eine öffnung aufweist, in die der Körper in Richtung der
Drehachse des drehbaren Elementes einführbar ist, m mit einer Aufnahmevorrichtung zur Positionierung
des Körpers in der öffnung, mit einer auf dem drehbaren Element auf einer Seite der öffnung
angebrachten Strahlungsquelle und einer dieser zugeordneten Kollimatoranordnung zur Erzeugung
und Bündelung der Strahlung zu einem ebenen Strahlungsfächer, der einen Bereich einer Querschnittsscheibe
durchdringt, mit Antriebsmitteln zur Erzeugung einer Drehbewegung des Elementes und
damit der Strahlungsquelle um den Körper, mit einer aus mehreren Detektoren und zugeordneten Kollimatoren
bestehenden Strahlendetektoranordnung auf der anderen Seite der öffnung, wobei die
Kollimatoren und Detektoren seitlich gegeneinander auf die Strahlungsquelle ausgerichtet in der
Ebene des Fächers angeordnet sind, und von den Detektoren Ausgangssignale abgeleitet sind, die die
Durchlässigkeit bzw. die Gesamtabsorption entlang zugehöriger Strahlenwege unterschiedlicher Richtungen
darstellen, mit einer Verarbeitungschaltung für die Detektorausgangssignale, mit einem Ausgangs-Matrix-opeicher,
und mit einer Rechenschaltung zur selektiven Verteilung der verarbeiteten
Signale auf unterschiedene Speicherstellen des Ausgangs-Matrix-Speichers für ei-e Darstellung der
Absorption der Querschnittsscheibe des Körpers in bezug auf die Strahlung, dadurch gekennzeichnet,
daß die Mittellinien von ersten Strahlenbündeln (92), die durch einen ausgewählten Bereich
(32) innerhalb des Körpers (31) verlaufen, einen engeren Abstand voneinander aufweisen als
die Mittellinien von außerhalb des ausgewählten Bereiches (32) verlaufenden zweiten Strahlenbündeln
(93).
2. Gerät nach Anspruch 1, dadurch gekennzeichnet, daß die ersten Strahlenbündel (92) schmaler als
die zweiten Strahlenbündel (93) sind.
3. Gerät nach Anspruch 1 oder 2, dadurch ^kennzeichnet,
daß die Kollimatoren so ausgebildet sind, daß die zu messende Breite der Strahlen (93) mit
größer werdendem Abstand der Strahlen-Mittellinien zunimmt
4. Gerät nach Anspruch 3, dadurch gekennzeichnet, daß die Quelle (5, X) so ausgebildet ist, daß die
Intensität der auf die Detektoren (43,44) auftreffenden Strahlen (92, 93) mit zunehmender Breite der
Strahlen abnimmt
5. Gerät nach einem der vorhergehenden Ansprüche, bei dem zwischen der Detektoranordnung und
der Rechenschaltung zur Herstellung der bildlichen uarsteliung der Absorptionsverteilung ein Adressenwähler
und ein Datenspeicher zur Speicherung der Detektorausgangssignale geschaltet ist, dadurch
gekennzeichnet, daß dem Datenspeicher (61) ein weiterer Adressenwähler (62) nachgeschaltet ist,
durch den die von den einen weiteren Abstand aufweisenden Strahlen (93) abgeleiteten Daten so
der Rechenschaltung zugeführt werden, daß sie Daten von Strahlen (92) entsprechen, die den
engeren Abstand voneinander aufweisen.
6. Gerät nach einem der vorhergehenden Ansprüche, bei dem die Detektoranordnung mehrere
Szintillationskristalle enthalten, die jeweils mit einem Fotovervielfacher gekuppelt sind, dadurch
gekennzeichnet, daß die Fotovervielfacher (11 ΓΙ
19') abwechselnd auf beiden Seiten der Ebene des Strahlungsfächers gegeneinander versetzt angeordnet
sind.
Die Erfindung betrifft ein medizinisches radiographisches Gerät zur Untersuchung von Querschnittsscheiben
des Körpers eines Patienten mittels durchdringender Strahlung, insbesondere Röntgen- oder Gammastrahlung,
mit einem drehbaren Element, das eine Öffnung aufweist, in die der Körper in Richtung der
Drehachse des drehbaren Elementes einführbar ist, mit einer Aufnahmevorrichtung zur Positionierung des
Körpers in der Öffnung, mit einer auf dem drehbaren Element auf einer Seite der öffnung angebrachten
Strahlungsquelle und einer dieser zugeordneten Kollimatoranordnung zur Erzeugung und Bündelung der
Strahlung zu einem ebenen Strahlungsfächer, der einen Bereich einer Querschnittsscheibe durchdringt, mit
Antriebsmitteln zur Erzeugung einer Drehbewegung des Elementes und damit der Strahlungsquelle um den
Körper, mit einer aus mehreren Detektoren und zugeordneten Kollimatoren bestehenden Strahlendetektoranordnung
aulf der anderen Seite der öffnung, wobei die Kollimatoren und Detektoren seitlich
gegeneinander auf die Strahlungsquelle ausgerichtet in der Ebene des Fächers angeordnet sind, und von den
Detektoren Ausgangssignale abgeleitet sind, die die Durchlässigkeit bzw. die Gesamtabsorption entlang
zugehöriger Strahlenwege unterschiedlicher Richtungen darstellen, mit einer Verarbeitungsschaltung für die
Detektorausgangssignale, mit einem Ausgangs-Matrix-Speicher, und mit einer Rechenschaltung zur selektiven
Verteilung der verarbeiteten Signale auf unterschiedliche Speicherstellen des Ausgangs-Matrix-Speichers für
eine Darstellung der Absorption der Querschnittsscheibe des Körpers in bezug auf die Strahlung.
Die mit dem Gerät erzeugte Verteilung der Absorptionskoeffizienten kann auf einer Kathodenstrahlröhre
sichtbar gemacht werden, wobei ggfs. von der Kathodenstrahlröhre eine Fotografie herstellbar ist,
jedoch kann auch die Verteilung der Absorptionskoeffizienten durch ein an einen Elektronenrechner angeschlossenes
Peripheriegerät ausgedruckt werden.
Bei dem Verfahren und dem Gerät zur Untersuchung eines Körpers, das in der GB-PS 12 83 915 beschrieben
ist, wird Strahlung durch einen Teil des Körpers von einer äußeren Quelle in Form eines dünnen Strahls
geschickt. Dem Strahl wird eine Abtastbewegung erteilt, so daß er nacheinander eine große Anzahl von
verschiedenen Lagen einnimmt, und ein Detektor dient zur Feststellung der Absorption des Strahles in jeder
dieser Positionen, nachdem der Strahl den Körper durchlaufen hat. Damit der Strahl diese verschiedenen
Positionen einnehmen kann, werden die Strahlungsquel-
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB3914573A GB1478123A (en) | 1973-08-18 | 1973-08-18 | Tomography |
Publications (3)
Publication Number | Publication Date |
---|---|
DE2439847A1 DE2439847A1 (de) | 1975-04-03 |
DE2439847B2 DE2439847B2 (de) | 1979-04-12 |
DE2439847C3 true DE2439847C3 (de) | 1982-07-08 |
Family
ID=10407901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE2439847A Expired DE2439847C3 (de) | 1973-08-18 | 1974-08-17 | Medizinisches radiographisches Gerät zur Untersuchung von Querschnittsscheiben des Körpers eines Patienten |
Country Status (10)
Country | Link |
---|---|
US (1) | US3973128A (de) |
JP (2) | JPS5493389A (de) |
CA (1) | CA1048167A (de) |
DE (1) | DE2439847C3 (de) |
FR (1) | FR2240710B1 (de) |
GB (1) | GB1478123A (de) |
HK (1) | HK7978A (de) |
MY (1) | MY7800139A (de) |
NL (1) | NL174427C (de) |
SU (1) | SU657731A3 (de) |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4041315A (en) * | 1972-05-17 | 1977-08-09 | E M I Limited | Computerized tomography comprising laterally shifting detected beams within a rotated fan of radiation |
GB1478124A (en) | 1973-08-31 | 1977-06-29 | Emi Ltd | Apparatus for examining bodies by means of penetrating radiation |
GB1493594A (en) | 1974-01-31 | 1977-11-30 | Emi Ltd | Radiography |
GB1530621A (en) * | 1975-02-08 | 1978-11-01 | Emi Ltd | Radiography |
GB1537487A (en) * | 1975-03-18 | 1978-12-29 | Emi Ltd | Radiography |
DE2517440C3 (de) * | 1975-04-19 | 1981-11-19 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Anordnung zur Ermittlung der Absorption einer Strahlung in einer Ebene eines Körpers |
GB1562196A (en) * | 1975-11-05 | 1980-03-05 | Emi Ltd | Radiography |
IT1069995B (it) * | 1975-11-25 | 1985-03-25 | Philips Med Syst Inc | Procedimento ed apparecchio di tomografia computerizzata |
GB1562199A (en) * | 1975-12-02 | 1980-03-05 | Emi Ltd | Radiography |
GB1562198A (en) * | 1975-12-02 | 1980-03-05 | Emi Ltd | Radiography |
US4149248A (en) * | 1975-12-23 | 1979-04-10 | Varian Associates, Inc. | Apparatus and method for reconstructing data |
US4149247A (en) * | 1975-12-23 | 1979-04-10 | Varian Associates, Inc. | Tomographic apparatus and method for reconstructing planar slices from non-absorbed and non-scattered radiation |
DE2609925C2 (de) * | 1976-03-10 | 1982-06-09 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Anordnung zur Ermittlung der Verteilung der Absorption eines Körpers |
GB1572445A (en) * | 1976-03-18 | 1980-07-30 | Emi Ltd | Radiography |
US4190772A (en) * | 1976-04-19 | 1980-02-26 | Varian Associates, Inc. | Tomographic scanning apparatus having detector signal digitizing means mounted to rotate with detectors |
DE2619468C2 (de) * | 1976-05-03 | 1982-06-09 | Siemens AG, 1000 Berlin und 8000 München | Röntgenschichtgerät zur Herstellung von Transversalschichtbildern |
DE2619482C2 (de) * | 1976-05-03 | 1982-05-06 | Siemens AG, 1000 Berlin und 8000 München | Röntgenschichtgerät zur Herstellung von Transversalschichtbildern |
DE2621308C3 (de) * | 1976-05-13 | 1982-03-04 | Siemens AG, 1000 Berlin und 8000 München | Röntgenschichtgerät zur Herstellung von Transversal-Schichtbildern |
NL7605687A (nl) * | 1976-05-26 | 1977-11-29 | Optische Ind De Oude Delft Nv | Inrichting voor tomografie. |
US4070707A (en) * | 1976-07-12 | 1978-01-24 | General Electric Company | Reduction of offsets in data acquisition systems |
US4068306A (en) * | 1976-07-12 | 1978-01-10 | General Electric Co. | X-ray data acquisition system and method for calibration |
US4149079A (en) * | 1976-07-14 | 1979-04-10 | Elscint, Ltd. | Method of and means for scanning a body to enable a cross-section thereof to be reconstructed |
GB1577172A (en) * | 1976-07-15 | 1980-10-22 | Tokyo Shibaura Electric Co | Tomographing device |
NL7607976A (nl) * | 1976-07-19 | 1978-01-23 | Optische Ind De Oude Delft Nv | Inrichting voor tomografie met voorzieningen waardoor signaalprofielen afgeleid van een di- vergerende stralingsbundel kunnen worden gere- construeerd in signaalprofielen die elk corre- sponderen met een bundel van evenwijdig inval- lende stralen. |
NL7609885A (nl) * | 1976-09-06 | 1978-03-08 | Optische Ind De Oude Delft Nv | Stelsel voor het elementsgewijs reconstrueren van een tomogram van een dwarsdoorsnede van een object. |
NL7609963A (nl) * | 1976-09-08 | 1978-03-10 | Optische Ind De Oude Delft Nv | Signaalverwerkend stelsel. |
CA1111575A (en) * | 1977-01-19 | 1981-10-27 | General Electric Company | Apparatus and method for reconstructing data |
GB1594751A (en) * | 1977-01-31 | 1981-08-05 | Tokyo Shibaura Electric Co | Method and apparatus for tomography by means of penetrating radiation |
US4220863A (en) * | 1977-04-01 | 1980-09-02 | Ohio Nuclear, Inc. | Data channel multiplexing system for CT scanner with rotating source |
DE2718943A1 (de) * | 1977-04-28 | 1978-11-02 | Philips Patentverwaltung | Anordnung zur herstellung von roentgenschichtaufnahmen |
DE2741732C2 (de) * | 1977-09-16 | 1985-01-24 | Siemens AG, 1000 Berlin und 8000 München | Schichtgerät zur Herstellung von Transversalschichtbildern |
NL7711120A (nl) * | 1977-10-11 | 1979-04-17 | Philips Nv | Inrichting voor het bepalen van lokale absorp- tiewaarden in een vlak van een lichaam en een rij van detektoren voor een dergelijke in- richting. |
US4670892A (en) * | 1977-11-15 | 1987-06-02 | Philips Medical Systems, Inc. | Method and apparatus for computed tomography of portions of a body plane |
DE2844927A1 (de) * | 1978-10-14 | 1980-04-30 | Philips Patentverwaltung | Verfahren zur ermittlung des koerperrandes zur rekonstruktion einer absorptionsverteilung in einem ebenen untersuchungsbereich eines koerpers |
US4504962A (en) * | 1978-12-22 | 1985-03-12 | Emi Limited | Computerized tomography |
DE2920051C2 (de) * | 1979-05-18 | 1984-04-19 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Röntgengerät zur Ermittlung der Absorptionsverteilung in einem ebenen Untersuchungsbereich |
DE2924423A1 (de) * | 1979-06-16 | 1980-12-18 | Philips Patentverwaltung | Verfahren zur ermittlung der raeumlichen verteilung der absorption von strahlung in einem ebenen bereich |
US4292538A (en) * | 1979-08-08 | 1981-09-29 | Technicare Corporation | Shaped detector |
NL7908545A (nl) * | 1979-11-23 | 1981-06-16 | Philips Nv | Inrichting voor het bepalen van een stralingsabsorptie- verdeling in een vlak van een lichaam. |
US4365341A (en) * | 1980-06-09 | 1982-12-21 | The Johns Hopkins University | On-line treatment monitoring for radiation teletherapy |
NL8006304A (nl) * | 1980-11-19 | 1982-06-16 | Philips Nv | Werkwijze en inrichting voor het bepalen van de verdeling van stralingsabsorptie in een vlak van een lichaam. |
EP0100562B1 (de) * | 1982-08-11 | 1987-04-08 | Heimann GmbH | Vorrichtung zur Herstellung von Röntgenbildern von Körpern |
NL8300419A (nl) * | 1983-02-04 | 1984-09-03 | Philips Nv | Roentgen analyse apparaat. |
GB2137453B (en) * | 1983-03-14 | 1987-01-21 | American Science & Eng Inc | Improvements in high energy computed tomography |
US4677554A (en) * | 1983-03-17 | 1987-06-30 | Analogic Corporation | Tomography data acquisition system with variable sampling rate and/or conversion resolution of detector output signals |
US4697280A (en) * | 1984-09-06 | 1987-09-29 | Wisconsin Alumni Research Foundation | Method and apparatus for the measurement of X-ray sources |
US5166961A (en) * | 1988-10-20 | 1992-11-24 | Picker International, Inc. | CT scanner having multiple detector widths |
US4965726A (en) * | 1988-10-20 | 1990-10-23 | Picker International, Inc. | CT scanner with segmented detector array |
US5228070A (en) * | 1988-10-20 | 1993-07-13 | Picker International, Inc. | Constant image quality CT scanner with variable radiation flux density |
FR2696027B1 (fr) * | 1992-09-18 | 1994-10-28 | Commissariat Energie Atomique | Procédé de reconstruction d'images tridimensionnelles d'une région d'intérêt d'un objet, et installation appropriée. |
US5355309A (en) * | 1992-12-30 | 1994-10-11 | General Electric Company | Cone beam spotlight imaging using multi-resolution area detector |
US5651047A (en) * | 1993-01-25 | 1997-07-22 | Cardiac Mariners, Incorporated | Maneuverable and locateable catheters |
US5682412A (en) * | 1993-04-05 | 1997-10-28 | Cardiac Mariners, Incorporated | X-ray source |
US5550378A (en) * | 1993-04-05 | 1996-08-27 | Cardiac Mariners, Incorporated | X-ray detector |
US5822392A (en) * | 1996-12-26 | 1998-10-13 | General Electric Company | Multi-resolution detection for increasing in an x-ray imaging implementation of an object |
US6178223B1 (en) | 1998-10-06 | 2001-01-23 | Cardiac Mariners, Inc. | Image reconstruction method and apparatus |
US6181764B1 (en) | 1998-10-06 | 2001-01-30 | Cardiac Mariners, Inc. | Image reconstruction for wide depth of field images |
US6234671B1 (en) | 1998-10-06 | 2001-05-22 | Cardiac Mariners, Inc. | X-ray system with scanning beam x-ray source below object table |
US6175611B1 (en) | 1998-10-06 | 2001-01-16 | Cardiac Mariners, Inc. | Tiered detector assembly |
US6198802B1 (en) | 1998-10-06 | 2001-03-06 | Cardiac Mariners, Inc. | Scanning beam x-ray source and assembly |
US8111804B2 (en) | 2005-05-31 | 2012-02-07 | Arineta Ltd. | Graded resolution field of view CT scanner |
DE102010009019B4 (de) * | 2010-02-24 | 2012-04-19 | Siemens Aktiengesellschaft | Medizinisches, mit Röntgenstrahlen arbeitendes Gerät sowie Verfahren zum Betreiben eines solchen |
US9417340B2 (en) | 2012-07-06 | 2016-08-16 | Morpho Detection, Llc | Compact geometry CT system |
US8768032B2 (en) | 2012-07-06 | 2014-07-01 | Morpho Detection, Llc | Method for correction of artifacts from edge detectors in compact geometry CT |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3281598A (en) * | 1965-11-19 | 1966-10-25 | Picker X Ray Corp Waite Mfg | Overhead support for a vertically and rotatably movable x-ray tube support arm and cooperating tiltable x-ray table |
US3499146A (en) * | 1966-10-10 | 1970-03-03 | Albert G Richards | Variable depth laminagraphy with means for highlighting the detail of selected lamina |
US3484604A (en) * | 1967-10-17 | 1969-12-16 | Tokyo Shibaura Electric Co | Axial transverse tomography wherein the angle of spread of radiation is controlled |
GB1283915A (en) * | 1968-08-23 | 1972-08-02 | Emi Ltd | A method of and apparatus for examination of a body by radiation such as x or gamma radiation |
FR2054492B1 (de) * | 1969-07-16 | 1974-06-14 | Radiologie Cie Gle | |
US3684886A (en) * | 1970-04-13 | 1972-08-15 | Nuclear Chicago Corp | Tomographic imaging device using a rotating slanted multichannel collimator |
US3714429A (en) * | 1970-09-28 | 1973-01-30 | Afee J Mc | Tomographic radioisotopic imaging with a scintillation camera |
US3742236A (en) * | 1970-10-07 | 1973-06-26 | A Richards | Method and apparatus for variable depth laminagraphy |
US3818220A (en) * | 1971-11-03 | 1974-06-18 | A Richards | Variable depth laminagraphy |
FR2183387A5 (de) * | 1972-05-05 | 1973-12-14 | Radiologie Cie Gle |
-
1973
- 1973-08-18 GB GB3914573A patent/GB1478123A/en not_active Expired
-
1974
- 1974-07-30 CA CA205,973A patent/CA1048167A/en not_active Expired
- 1974-07-31 US US05/493,403 patent/US3973128A/en not_active Expired - Lifetime
- 1974-08-14 FR FR7428268A patent/FR2240710B1/fr not_active Expired
- 1974-08-16 SU SU742057271A patent/SU657731A3/ru active
- 1974-08-17 DE DE2439847A patent/DE2439847C3/de not_active Expired
- 1974-08-19 NL NLAANVRAGE7411077,A patent/NL174427C/xx not_active IP Right Cessation
-
1978
- 1978-02-16 HK HK79/78A patent/HK7978A/xx unknown
- 1978-11-15 JP JP13992378A patent/JPS5493389A/ja active Granted
- 1978-12-30 MY MY139/78A patent/MY7800139A/xx unknown
-
1979
- 1979-08-21 JP JP10560079A patent/JPS5558444A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
DE2439847A1 (de) | 1975-04-03 |
MY7800139A (en) | 1978-12-31 |
GB1478123A (en) | 1977-06-29 |
NL174427C (nl) | 1988-10-17 |
JPS5635455B2 (de) | 1981-08-17 |
FR2240710A1 (de) | 1975-03-14 |
NL7411077A (nl) | 1975-02-20 |
FR2240710B1 (de) | 1980-01-11 |
HK7978A (en) | 1978-02-24 |
DE2439847B2 (de) | 1979-04-12 |
CA1048167A (en) | 1979-02-06 |
NL174427B (nl) | 1984-01-16 |
JPS5558444A (en) | 1980-05-01 |
JPS5493389A (en) | 1979-07-24 |
SU657731A3 (ru) | 1979-04-15 |
US3973128A (en) | 1976-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2439847C3 (de) | Medizinisches radiographisches Gerät zur Untersuchung von Querschnittsscheiben des Körpers eines Patienten | |
DE2551322C3 (de) | Computer-Tomograph | |
DE2503979C3 (de) | Gerät zur Untersuchung eines Körpers mittels durchdringender Strahlung | |
EP0024028B1 (de) | Röntgengerät zur Herstellung von Transversalschichtbildern und Röntgenschattenbildern eines Aufnahmeobjektes | |
DE2503978C3 (de) | Vorrichtung zur Untersuchung eines Körpers mit durchdringender Strahlung | |
DE2731621C2 (de) | Vorrichtung zum Rekonstruieren eines Transversalschichtbildes eines Objektes aus Signalprofilen | |
EP0990892B1 (de) | Computertomographie-Verfahren mit kegelförmigen Strahlenbündel, und Computertomograph | |
DE2709600C2 (de) | Computer-Tomograph | |
EP0242895B1 (de) | Verfahren zur Bestimmung der räumlichen Struktur in einer Schicht eines Untersuchungsbereiches | |
DE2559427C3 (de) | Vorrichtung zur Untersuchung eines Körpers mittels durchdringender Strahlung | |
DE2442009A1 (de) | Geraet zur untersuchung eines koerpers mittels durchdringender strahlung | |
DE2648503C2 (de) | Computer-Tomograph | |
DE2613809A1 (de) | Roentgenschichtgeraet zur herstellung von transversal-schichtbildern | |
DE19905974A1 (de) | Verfahren zur Abtastung eines Untersuchungsobjekts mittels eines CT-Geräts | |
DE2544354A1 (de) | Verfahren zur bestimmung der dichte von koerpern mittels durchdingender strahlen und geraet zu seiner durchfuehrung | |
DE2738045A1 (de) | Geraet zur untersuchung eines koerpers mittels durchdringender strahlung | |
DE2702009A1 (de) | Radiographisches geraet | |
DE2807998C2 (de) | Computer-Tomograph | |
DE2532716C3 (de) | Gerät zur Erzeugung einer Darstellung der Absorptionsverteilung einer Strahlung in einer Querschnittsscheibe eines Körpers | |
EP0026494A1 (de) | Röntgenschichtgerät zur Herstellung von Transversalschichtbildern | |
DE60214022T2 (de) | Verfahren zur verringerung von artefakten in objektbildern | |
DE2611532A1 (de) | Radiographisches geraet | |
DE2836224A1 (de) | Radiographisches geraet | |
DE3037169C2 (de) | ||
DE2655230A1 (de) | Verfahren und einrichtung zur roentgen- und gammastreustrahlen-tomographie |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C3 | Grant after two publication steps (3rd publication) |