DE112006000597B4 - Elektrochemische Zelle - Google Patents
Elektrochemische Zelle Download PDFInfo
- Publication number
- DE112006000597B4 DE112006000597B4 DE112006000597T DE112006000597T DE112006000597B4 DE 112006000597 B4 DE112006000597 B4 DE 112006000597B4 DE 112006000597 T DE112006000597 T DE 112006000597T DE 112006000597 T DE112006000597 T DE 112006000597T DE 112006000597 B4 DE112006000597 B4 DE 112006000597B4
- Authority
- DE
- Germany
- Prior art keywords
- electrochemical cell
- hollow housing
- lines
- materials
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003792 electrolyte Substances 0.000 claims abstract description 32
- 239000010410 layer Substances 0.000 claims description 60
- 239000000463 material Substances 0.000 claims description 37
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 20
- 239000000919 ceramic Substances 0.000 claims description 15
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- 239000010937 tungsten Substances 0.000 claims description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052737 gold Inorganic materials 0.000 claims description 8
- 239000010931 gold Substances 0.000 claims description 8
- 239000011229 interlayer Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 239000011733 molybdenum Substances 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 6
- 239000002356 single layer Substances 0.000 claims description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052863 mullite Inorganic materials 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims 2
- 239000010408 film Substances 0.000 description 45
- -1 polytetrafluoroethylene Polymers 0.000 description 43
- 230000001681 protective effect Effects 0.000 description 38
- 239000003990 capacitor Substances 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 14
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 238000007789 sealing Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 229910000679 solder Inorganic materials 0.000 description 7
- 238000005476 soldering Methods 0.000 description 7
- 238000003466 welding Methods 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 229910000833 kovar Inorganic materials 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 241001136792 Alle Species 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000011245 gel electrolyte Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 238000007751 thermal spraying Methods 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229910017944 Ag—Cu Inorganic materials 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- PXELHGDYRQLRQO-UHFFFAOYSA-N 1-butyl-1-methylpyrrolidin-1-ium Chemical compound CCCC[N+]1(C)CCCC1 PXELHGDYRQLRQO-UHFFFAOYSA-N 0.000 description 1
- REACWASHYHDPSQ-UHFFFAOYSA-N 1-butylpyridin-1-ium Chemical compound CCCC[N+]1=CC=CC=C1 REACWASHYHDPSQ-UHFFFAOYSA-N 0.000 description 1
- FUZQTBHDJAOMJB-UHFFFAOYSA-N 1-ethyl-2-methylpyridin-1-ium Chemical compound CC[N+]1=CC=CC=C1C FUZQTBHDJAOMJB-UHFFFAOYSA-N 0.000 description 1
- OIDIRWZVUWCCCO-UHFFFAOYSA-N 1-ethylpyridin-1-ium Chemical compound CC[N+]1=CC=CC=C1 OIDIRWZVUWCCCO-UHFFFAOYSA-N 0.000 description 1
- OLRSYSUCJIKFOL-UHFFFAOYSA-N 1-hexyl-2-methylpyridin-1-ium Chemical compound CCCCCC[N+]1=CC=CC=C1C OLRSYSUCJIKFOL-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- 241001133760 Acoelorraphe Species 0.000 description 1
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018131 Al-Mn Inorganic materials 0.000 description 1
- 229910016467 AlCl 4 Inorganic materials 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminium flouride Chemical compound F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- 229910018182 Al—Cu Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910018461 Al—Mn Inorganic materials 0.000 description 1
- 229910017008 AsF 6 Inorganic materials 0.000 description 1
- 229910002708 Au–Cu Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910018286 SbF 6 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- YZSKZXUDGLALTQ-UHFFFAOYSA-N [Li][C] Chemical compound [Li][C] YZSKZXUDGLALTQ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 239000006183 anode active material Substances 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- WBXLKYWOSANNMW-UHFFFAOYSA-N gold nickel tungsten Chemical compound [W][Ni][Au] WBXLKYWOSANNMW-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/08—Housing; Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/74—Terminals, e.g. extensions of current collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/78—Cases; Housings; Encapsulations; Mountings
- H01G11/82—Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/08—Housing; Encapsulation
- H01G9/10—Sealing, e.g. of lead-in wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/14—Structural combinations or circuits for modifying, or compensating for, electric characteristics of electrolytic capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/109—Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/562—Terminals characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/571—Methods or arrangements for affording protection against corrosion; Selection of materials therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/08—Structural combinations, e.g. assembly or connection, of hybrid or EDL capacitors with other electric components, at least one hybrid or EDL capacitor being the main component
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/78—Cases; Housings; Encapsulations; Mountings
- H01G11/80—Gaskets; Sealings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/103—Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/172—Arrangements of electric connectors penetrating the casing
- H01M50/174—Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
- H01M50/176—Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/547—Terminals characterised by the disposition of the terminals on the cells
- H01M50/548—Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/547—Terminals characterised by the disposition of the terminals on the cells
- H01M50/55—Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/552—Terminals characterised by their shape
- H01M50/553—Terminals adapted for prismatic, pouch or rectangular cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/584—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
- H01M50/586—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
Description
- TECHNISCHES GEBIET
- Die vorliegende Erfindung betrifft eine elektrochemische Zelle, die an einer Fläche anbringbar ist.
- HINTERGRUND
- Eine an einer Fläche anbringbare elektrochemische Zelle (elektrischer Doppelschichtkondensator und Batterie) wird in einer Notstromversorgung für einen Uhrenfunktionsbereich, in einer Notstromversorgung für einen Halbleiterspeicherbereich und dergleichen eingesetzt. In solchen elektrochemischen Zellen verringert sich der Bedarf an größeren Kapazitäten und größere Ströme entsprechend den Fortschritten, die bei der Nichtverflüchtigung von Halbleiterspeichern und abnehmendem Leistungsverbrauch von Elementen des Uhrenfunktionsbereichs erzielt werden. Aufgrund von Umweltbelangen und einer Miniaturisierung der angebrachten Vorrichtungen nehmen jedoch die Anforderungen an die Widerstandsfähigkeit beim Reflow- bzw. Aufschmelzlöten, die Anforderungen an die Verringerung der Anbringfläche und dergleichen zu.
- Beim Anbringen einer elektrochemischen Zelle wird vorab Lötpaste etc. auf denjenigen Abschnittsbereich eines gedruckten Substrats aufgebracht, der einer Lötung unterworfen werden soll. Die elektrochemische Zelle wird an diesem Abschnittsbereich befestigt. Alternativ wird eine kleine Lötkugel (Löttropfen) auf dem Abschnitt aufgebracht, der einer Lötung unterworfen wird, nachdem die elektrochemische Zelle auf dem gedruckten Substrat angebracht wurde. Das gedruckte Substrat, an dem die elektrochemische Zelle befestigt ist, wird dann durch einen Ofen transportiert, der eine Atmosphäre hat, die eine solche hohe Temperatur hat, dass der zu verlötende Bereich heißer als oder zumindest so heiß wird wie der Schmelzpunkt des Lötmittels (z. B. 200°C-260°C). Dadurch schmilzt das Lötmittel und verlötet die elektrochemische Zelle. Es ist deshalb absolut notwendig, dass die elektrochemische Zelle im Hinblick auf das Aufschmelzlöten wärmefest ist und eine ausreichende mechanische Festigkeit hat.
- Des Weiteren umfasst im Stand der Technik eine elektrochemische Zelle ein Gehäuse mit runder Form wie die eines Geldstücks oder eines Knopfs. In einer solchen elektrochemischen Zelle müssen Anschlüsse und dergleichen vorab an die Außenfläche des Gehäuses angeschweißt werden. Außerdem muss auf dem gedruckten Substrat Platz für die Anschlüsse geschaffen sein. Deswegen hat die Miniaturisierung der anzubringenden Vorrichtungen verstärkt dazu geführt, dass die Anbringfläche immer kleiner wird.
- Die elektrochemische Zelle des Patents 1 verwendet als Gehäuse einen hohlen keramischen Behälter (hiernach als hohles Gehäuse bezeichnet) und Elektroden und Elektrolyt sind in dem Hohlraum (Aufnahmeraum) untergebracht, um den Anforderungen wie Wärmefestigkeit und Flächenreduzierung gerecht zu werden. Eine Metallfolie, die auf der Außenfläche des Bodens des hohlen Gehäuses angeordnet ist, wird als Anschluss verwendet.
- Die Anschlüsse des Patents 1 umfassen einen inneren Anschluss, der in dem Hohlraum ausgebildet ist, und äußere Anschlüsse, die an der Außenfläche des hohlen Gehäuses ausgebildet sind. Die in dem Hohlraum angeordnete Kathode und die äußeren Anschlüsse sind elektrisch verbunden. Solche Anschlüsse werden in der nachfolgend beschriebenen Weise unter Verwendung einer plattenförmigen und einer rahmenförmigen ungesinterten Keramiklage, die den hohlen Gehäuse bilden, geschaffen. Auf der Oberseite der plattenförmigen ungesinterten Keramiklage wird ein Muster aus einem Material aufgedruckt, das hauptsächlich auf Wolfram oder Molybdän mit hohem Schmelzpunkt basiert. Die rahmenförmige ungesinterte Keramiklage wird auf der plattenförmigen ungesinterten Keramiklage, die das Muster aufweist, aufgelegt, und die zwei Lagen werden bei ungefähr 1500°C zusammengesintert. Dadurch werden sowohl die inneren als auch die äußeren Anschlüsse geformt.
- Durch das Laden oder Entladen von Strom wird jedoch das Material, das die Anschlüsse bildet, korrodiert, wenn ein Elektrolyt wie beispielsweise eine Flüssigkeit die Anschlüsse kontaktiert. Bei fortschreitender Korrosion kann es schlussendlich zu einem Leitungsbruch kommen und das Funktionieren hindern.
- Dieses Problem wird als vermeidbar erachtet, in dem man auf einen Schutz vertraut, der durch einen Schutzfilm geschaffen wird, der auf den inneren Anschlüssen ausgebildet ist, um diese inneren Anschlüsse vor dem Elektrolyt zu schützen. Als Schutzfilm finden Materialien Verwendung, die hauptsächlich auf Aluminium oder Kohlenstoff basieren. Und der Schutzfilm wird durch ein Verfahren wie Aufdampfen, Sputtern, thermisches Spritzen, Injizieren, Aufbringen einer Paste und dergleichen gebildet. Es können sich aber mikroskopisch kleine Löcher bilden, da der Film bei jedem dieser Verfahren durch das Ablagern von Partikeln erzielt wird. Wenn der Schutzfilm keine kleinen Löcher aufweist, können infolgedessen über eine lange Zeitspanne zufriedenstellende Eigenschaften realisiert werden. Wenn der Schutzfilm aber kleine Löcher aufweist, kann Elektrolyt nach und nach in den Schutzfilm eindringen und schlussendlich die inneren Anschlüsse derart korrodieren, dass es zu einem Leitungsbruch in den Anschlüssen kommt. Das Entstehen von kleinen Löchern kann dadurch reduziert werden, dass die Dicke des Schutzfilms erhöht wird. Diese Maßnahme würde aber die zur Ausbildung des Films notwendige Zeitspanne verlängern und würde bewirken, dass die elektrochemische Zelle teuer wird. Außerdem muss die Elektrodendicke um einen der Schutzfilmdicke entsprechenden Betrag verringert werden. Dies würde die Kapazität der elektrochemischen Zelle verringern.
Patentdokument 1: Offengelegte japanische PatentveröffentlichungJP 2001-216952 A -
US 6,529,365 B1 beschreibt einen Kondensator, der ein Gehäuse, eine innerhalb des Gehäuses angeordnete gewickelte Folie und eine Anschlusskonfiguration in Form eines Chipgehäuses mit Lötpunkten (BGA), die mit der Folie gekoppelt ist und sich von dem Gehäuse erstreckt, umfasst. -
DE 198 51 571 A1 beschreibt einen elektrischen Doppelschichtkondensator mit Elektrodenklemmen, welche an einer metallischen Abdeckplatte in einem elektrisch isolierten Zustand befestigt sind, wobei jede der Elektrodenklemmen eine integral mit einem Schaftabschnitt der Elektrodenklemme gebildete Eingriffsplatte aufweist, um mit einer innerhalb der metallischen Abdeckplatte angeordneten elektrischen Isolierplatte in Eingriff zu treten, wobei eine Drehbewegung der Klemme bezüglich ihrer axialen Richtung verhindert wird. -
EP 1 553 649 A2 betrifft eine elektrochemische Zelle, die eine positive Elektrode, einen Stromkollektor für die positive Elektrode, der von einem Abdeckungsabschnitt bedeckt ist, der ein Metall umfasst, das ein oder mehrere Element(e) umfasst, das bzw. die aus der Gruppe, bestehend aus Aluminium, Tantal, Niob, Titan, Hafnium und Zirkonium, ausgewählt ist bzw. sind, und mittels des Abdeckungsabschnitts elektrisch mit der positiven Elektrode verbunden ist, eine negative Elektrode, einen Elektrolyten, einen Behälter, in dem die positive Elektrode, die negative Elektrode und der Elektrolyt aufgenommen sind, und einen Deckel zum Verschließen des Behälters umfasst. -
US 4,916,576 A betrifft einen Matrixkondensator für Hochfrequenzanwendungen, wobei der Kondensator eine erste Elektrode, die eine Anode definiert, eine zweite Elektrode, die eine Kathode definiert, ein dielektrisches Material, wobei die erste und die zweite Elektrode angrenzend aneinander und nahe beieinander vorliegen und durch das dielektrische Material getrennt sind, wodurch ein kapazitives Element gebildet wird, eine erste Einrichtung zum Verbinden mit der ersten Elektrode, wobei die erste Verbindungseinrichtung entlang der ersten Elektrode verteilt ist und eine Mehrzahl von einzelnen Verbindungspunkten mit der ersten Elektrode definiert, und eine zweite Einrichtung zum Verbinden mit der zweiten Elektrode umfasst, wobei die zweite Verbindungseinrichtung entlang der zweiten Elektrode verteilt ist und eine Mehrzahl von einzelnen Verbindungspunkten mit der zweiten Elektrode definiert. -
US 2005/0 037 258 A1 -
US 6,445,566 B2 betrifft ein Stromquellenelement mit einem Behälter, der aus einem Isoliermaterial hergestellt ist, wobei der Behälter einen Innenraum aufweist, der ein aktives Anodenmaterial, ein aktives Kathodenmaterial, das von dem aktiven Anodenmaterial beabstandet ist, und ein Elektrolytmaterial umfasst, wobei ein erster Stromkollektor auf einer Innenbasisoberfläche des Behälters angeordnet ist, ein erster Verbindungsanschluss auf einer Außenbasisoberfläche des Behälters angeordnet und mit dem ersten Stromkollektor elektrisch verbunden ist, ein zweiter Stromkollektor mit dem Behälter verbunden ist, und ein zweiter Verbindungsanschluss auf der Außenbasisoberfläche des Behälters angeordnet und mit dem zweiten Stromkollektor elektrisch verbunden ist. - DARSTELLUNG DER ERFINDUNG
- Es ist eine Aufgabe der vorliegenden Erfindung, die obigen Probleme zu lösen und eine elektrochemische Zelle bereitzustellen, die eine hohe Zuverlässigkeit und eine hohe Kapazität aufweist.
- Zur Lösung dieser Aufgabe stellt die vorliegende Erfindung eine elektrochemische Zelle gemäß den Ansprüchen 1 und 2 bereit.
- Weiterbildungen der vorliegenden Erfindung sind in den abhängigen Ansprüchen angegeben.
- KURZE BESCHREIBUNG DER ZEICHNUNGEN
-
1 ist eine Querschnittsansicht einer elektrochemischen Zelle gemäß einer ersten Ausführungsform der vorliegenden Erfindung, -
2 ist eine perspektivische Ansicht, die ein hohles Gehäuse in der ersten Ausführungsform der vorliegenden Erfindung zeigt, -
3 ist eine Explosionsdarstellung, die die elektrochemische Zelle gemäß der ersten Ausführungsform der vorliegenden Erfindung zeigt. -
4 ist eine perspektivische Ansicht, die ein hohles Gehäuse in einem Vergleichsbeispiel zeigt, -
5 ist eine Querschnittsansicht einer elektrochemischen Zelle gemäß einer zweiten Ausführungsform der vorliegenden Erfindung, -
6 ist eine perspektivische Ansicht, die ein hohles Gehäuse in der zweiten Ausführungsform der vorliegenden Erfindung zeigt, -
7 ist eine Unteransicht, die die elektrochemische Zelle gemäß der zweiten Ausführungsform der vorliegenden Erfindung zeigt, und -
8 ist eine Explosionsdarstellung, die die elektrochemische Zelle gemäß der zweiten Ausführungsform der vorliegenden Erfindung zeigt. - BESTE AUSFÜHRUNG DER VORLIEGENDEN ERFINDUNG
- (Erste Ausführungsform)
- Eine elektrochemische Zelle (elektrischer Doppelschichtkondensator und Batterie) gemäß einer ersten Ausführungsform der vorliegenden Erfindung wird nun anhand der
1 bis4 beschrieben.1 ist eine Querschnittsansicht der elektrochemischen Zelle. Die2 ist eine perspektivische Ansicht eines hohlen Gehäuses, der die elektrochemische Zelle bildet, und die3 ist eine Explosionsdarstellung der elektrochemischen Zelle. - Wie in
1 gezeigt, enthält die elektrochemische Zelle ein hohles Gehäuse1 . Wie in2 gezeigt, ist das hohle Gehäuse1 als kastenförmiges Keramikgehäuse ausgebildet, das eine offene Oberseite hat und das einen rechteckigen, plattenförmigen Boden1a und einen rechteckigen rahmenförmigen Wandteil1b , der entlang des Umfangs des Bodens1a verläuft, enthält. Eine Keramik, die wenigstens eines der nachfolgenden Materialien: Aluminiumoxid, Siliziumnitrid, Zirkonium, Siliziumkarbid, Aluminiumnitrid, Mullit und eine Mischung dieser Materialien enthält, wird für das hohle Gehäuse1 verwendet. Ein wärmebeständiges Material, beispielsweise Glas und Glaskeramik, kann ebenfalls für das hohle Gehäuse1 verwendet werden. Das hohle Gehäuse1 , das aus solchen Materialien besteht, hat eine überragende Wärmebeständigkeit in Bezug auf ein mögliches Reflow-Löten und verbessert die hermetische Abdichtung des hohlen Bereichs (Aufnahmeraum). In3 ist das hohle Gehäuse1 ein Schichtkörper, der durch Laminieren von ungesinterten Keramiklagen entsprechend dem Boden1a und ungesinterten Keramiklagen entsprechend den Wandteilen1b geformt ist und bei dem dann die Lagen zusammengesintert werden. - Wie in
1 gezeigt, ist ein rechteckförmiger rahmenartiger Dichtring2 an die Öffnung des hohlen Gehäuses1 angeklebt. Für den Dichtring2 wird Kovar etc. verwendet, das einen Wärmeausdehnungskoeffizienten nahe dem Wärmeausdehnungskoeffizienten von Keramik hat. Der Dichtring2 ist mittels eines Lötzinns wie beispielsweise eine Ag-Cu-Legierung oder eine Au-Cu-Legierung an das hohle Gehäuse1 gebunden. Ein rechteckförmiger plattenförmiger Deckel3 wird auf die Oberseite des Dichtrings2 gelegt. Eine Legierung wie beispielsweise Kovar oder eine 42-Legierung, die einen Wärmeausdehnungskoeffizienten nahe dem Wärmeausdehnungskoeffizienten von Keramik hat und einer Nickelplattierung unterworfen wurde, wird für den Deckel3 benutzt. Der Deckel3 , der aus diesen Materialien besteht, wird durch Widerstandsnahtschweißen, Lasernahtschweißen, Elektronenstrahlschweißen oder dergleichen an dem Dichtring2 angeschweißt. Dies verbessert die hermetische Abdichtung des Hohlraums. - Von der Bodenfläche in dem Hohlraum (Aufnahmeraum) des Hohlgehäuses
1 ausgehend sind eine Kathode7 , ein Separator8 und eine Anode6 aufeinandergeschichtet, und der Hohlraum ist mit Elektrolyt10 gefüllt. - Wenn die elektrochemische Zelle als elektrischer Doppelschichtkondensator eingesetzt wird, kann aktiviertes Kohlenstoffpulver, das durch Ausführen einer Aktivierungsbehandlung auf Sägespäne, Palmrinde, Pech etc. erhalten und mit einem geeigneten Bindemittel unter Druck geformt oder in einer Mühle gerollt wird, für die Anode
6 und die Kathode7 verwendet werden. Alternativ können Phenol-, Rayon-, Acryl- oder Pechfasern oder dergleichen in aktiviertem Kohlenstoff oder in aktivierten Kohlenstofffasern eingebunden werden, indem eine Behandlung ausgeführt wird, die Kohlenstoff unlöslich macht und aktiviert. Und die Verwendung kann in Gestalt eines Filz-, Faser- oder Papierkörpers oder eines gesinterten Körpers erfolgen. Es können ebenfalls Polyanilin (PAN) oder Polyacen verwendet werden. - Wenn die elektrochemische Zelle als Batterie verwendet wird, können für die Anode
6 bekannte aktive Substanzen wie z. B. Kohlenstoff Lithiumlegierung einschließlich Lithium-Aluminium, Silizium oder Siliziumoxid, gemischt mit einem geeigneten Bindemittel und Graphit, bei dem es sich um ein leitfähiges Hilfsmittel handelt, verwendet werden. - Wenn die elektrochemische Zelle als Batterie verwendet wird, können für die Kathode
7 bekannte aktive Substanzen wie z. B. ein Manganoxid, das Lithium enthält, ein Cobaltoxid, das Lithium enthält, ein Nickeloxid, das Lithium enthält, ein Titanoxid, das Lithium enthält, Molybdäntrioxid, Niobpentoxid, gemischt mit einem geeigneten Bindemittel und Graphit, bei dem es sich um ein leitfähiges Hilfsmittel handelt, verwendet werden. - Für den Separator
8 wird ein isolierender Film verwendet, der eine große Innendurchlässigkeit aufweist und mit einer mechanischen Festigkeit ausgestattet ist. Für den Separator8 können Glasfasern verwendet werden, die eine hervorragende Wärmebeständigkeit und mechanische Beständigkeit aufweisen, wenn das Anbringen in dem Reflow-Ofen und der nachteilige thermische Effekt des Verschweißens des Deckels3 berücksichtigt werden. Es kann jedoch auch ein Harz wie z. B. Polyphenylensulfid, Polyamid, Polyimid, Polytetrafluorethylen oder dergleichen verwendet werden. - Der Elektrolyt
10 liegt vorzugsweise in der Form einer Flüssigkeit oder eines Gels vor, die bzw. das in bekannten elektrischen Doppelschichtkondensatoren und Sekundärbatterien mit nicht-wässrigem Elektrolyten verwendet wird. - In dem Flüssigkeits- und Gelelektrolyten
10 wird ein organisches Lösungsmittel, einschließlich Acetonitril, Diethylether, Diethylcarbonat, Dimethylcarbonat, 1,2-Dimethoxyethan, Tetrahydrofuran, Propylencarbonat (PC), Ethylencarbonat (EC), γ-Butyrolacton (γBL) und dergleichen eingesetzt. - Die Materialien, die in dem Flüssigkeits- und Gelelektrolyten
10 enthalten sind, umfassen (C2H5)4PBF4, (C3H7)4PBF4, (CH3)(C2H5)3NBF4, (C2H5)4NBF4, (C2H5)4PPF6, (C2H5)4PCF3SO4, (C2H5)4NPF6, Lithiumperchlorat (LiClO4), Lithiumhexafluorophosphat (LiPF6), Lithiumtetrafluoroborat (LiBF4), Lithiumhexafluoroarsenat (LiAsF6), Lithiumtrifluormetasulfonat (LiCF3SO3), Bistrifluormethylsulfonylimidlithium [LiN(CF3SO2)2], Thiocyansalz, Aluminiumfluoridsalz, Lithiumsalz und dergleichen, jedoch sind sie nicht auf diese Materialien beschränkt. Der Gelelektrolyt umfasst ein Material, das durch Eintauchen eines Polymergels in eine Flüssigkeit erhalten wird. Geeignete Polymergele umfassen Polyethylenoxid, Polymethylmethacrylat oder Polyvinylidenfluorid, jedoch sind sie nicht auf diese Materialien beschränkt. - Für den Elektrolyten kann auch ein bei Raumtemperatur geschmolzenes Salz, das auch als ionische Flüssigkeit bezeichnet wird, verwendet werden. Ein bei Raumtemperatur geschmolzenes Salz weist eine geringe Flüchtigkeit auf und verhindert folglich eine Verflüchtigung des Elektrolyten, wenn während des Verschweißen des Deckels
3 Wärme erzeugt wird. Das bei Raumtemperatur geschmolzene Salz kann mit einem organischen Lösungsmittel gemischt werden, um die elektrische Leitfähigkeit bei Raumtemperatur oder niedrigen Temperaturen einzustellen. Das bei Raumtemperatur geschmolzene Salz wird aus einer Kombination der nachstehend beschriebenen Kationen und Anionen gebildet. - Geeignete, bei Raumtemperatur geschmolzene Salze, die in einem elektrischen Doppelschichtkondensator verwendet werden, umfassen ein Imidazoliumkation, Tetraalkylammoniumkation, Pyridiniumkation, Pyrazoliumkation, Pyrroliumkation, Pyrroliniumkation, Pyrrolidiniumkation.
- Von diesen Materialien ist ein 1-Ethyl-3-methylimidazoliumkation (EMI+), das eine besonders hohe elektrische Leitfähigkeit aufweist, für den Kondensatorelektrolyten geeignet.
- Imidazoliumkationen umfassen ein Dialkylimidazoliumkation und ein Trialkylimidazoliumkation. Insbesondere können ein 1,3-Dimethylimidazoliumkation (DMI+), 1-Ethyl-3-methylimidazoliumkation (EMI+), 1-Methyl-3-ethylimidazoliumkation (MEI+), 1-Methyl-3-butylimidazoliumkation (MBI+), 1-Butyl-3-methylimidazoliumkation (BMI+), 1,2,3-Trimethylimidazoliumkation (TMI+), 1,2-Dimethyl-3-ethylimidazoliumkation (DMEI+), 1,2-Dimethyl-3-propylimidazoliumkation (DMPI+), 1-Butyl-2,3-dimethylimidazoliumkation (BDMI+) oder dergleichen verwendet werden, sind jedoch nicht auf diese Materialien beschränkt.
- Pyridiniumkationen, die verwendet werden können, umfassen ein N-Ethylpyridiniumkation (EP+), N-n-Butylpyridiniumkation, N-s-Butylpyridiniumkation, N-n-Propylpyridiniumkation, 1-Ethyl-2-methylpyridiniumkation, 1-n-Hexyl-2-methylpyridiniumkation, 1-n-Butyl-4-methylpyridiniumkation, 1-n-Butyl-2,4-dimethylpyridiniumkation oder dergleichen, sind jedoch nicht auf diese Materialien beschränkt.
- Pyrazoliumkationen, die verwendet werden können, umfassen ein 1,2-Dimethylpyrazoliumkation, 1-Ethyl-2-methylpyrazoliumkation, 1-Propyl-2-methylpyrazoliumkation, 1-Butyl-2-methylpyrazoliumkation oder dergleichen, sind jedoch nicht, auf diese Materialien beschränkt.
- Pyrroliumkationen, die verwendet werden können, umfassen ein 1,1-Dimethylpyrroliumkation, 1-Ethyl-1-methylpyrroliumkation, 1-Methyl-1-propylpyrroliumkation, 1-Butyl-1-methylpyrroliumkation oder dergleichen, sind jedoch nicht auf diese Materialien beschränkt.
- Pyrroliniumkationen, die verwendet werden können, umfassen ein 1,2-Dimethylpyrroliniumkation, 1-Ethyl-2-methylpyrroliniumkation, 1-Propyl-2-methylpyrroliniumkation, 1-Butyl-2-methylpyrroliniumkation oder dergleichen, sind jedoch nicht auf diese Materialien beschränkt.
- Pyrrolidiniumkationen, die verwendet werden können, umfassen ein 1,1-Dimethylpyrrolidiniumkation, 1-Ethyl-1-methylpyrrolidiniumkation, 1-Methyl-1-propylpyrrolidiniumkation, 1-Butyl-1-methylpyrrolidiniumkation oder dergleichen, sind jedoch nicht auf diese Materialien beschränkt.
- Anionen umfassen AlCl4 –, Al2Cl7 –, HF–, NO2 –, NO3 –, BF4 –, PF6 –, AsF6 –, SBF6 –, NbF6 –, TaF6 –, CH3CO2 –, CF3CO2 –, C3F7CO2 –, CH3SO3 –, CF3SO3 –, C4F9SO3 –, N(CF3SO2)2 –, N(C2F5SO2)2 –, C(CF3SO2)3 –, N(CN)2 –.
- Wie in den
2 und3 gezeigt, sind ein äußerer Kathodenanschluss5b1 , der als gemeinsamer Außenanschluss für die Kathode7 dient, und ein äußerer Anodenanschluss5b2 für die Anode6 an der äußeren Bodenseite des hohlen Gehäuses1 ausgebildet. Der äußere Kathodenanschluss5b1 und der äußere Anodenanschluss5b2 erstrecken sich zum Verbinden mit den jeweiligen Elektroden jeweils von der Bodenfläche des hohlen Gehäuses1 zur Umfangsseite des hohlen Gehäuses. Der äußere Kathodenanschluss5b1 und der äußere Anodenanschluss5b2 sind Anschlüsse, die mit einem gedruckten Substrat (nicht gezeigt) verbunden sind und werden verwendet, wenn die elektrochemische Zelle mittels Reflow-Löten an das bedruckte Substrat gelötet wird. - Wie in der
3 gezeigt, sind zwei Innenschichtleitungen5c auf der Oberseite des Bodens1a ausgebildet, d. h. zwischen dem Boden1a und dem Wandteil1b . Die zwei Innenschichtleitungen5c sind bandförmig und erstrecken sich zum Verbinden mit dem gemeinsamen äußeren Kathodenanschluss5b1 entlang dem äußeren Rand des Bodens1a . - Auf der Oberseite des Bodens
1a oder in dem Bereich, der dem Hohlraum entspricht, sind sechs von einander einen Abstand zueinander aufweisende, bandförmige innere Anschlüsse5a ausgebildet. Die sechs inneren Anschlüsse5a sind in Abständen zueinander und in Richtung der Innenschichtleitung5c ausgerichtet. Jeder der sechs inneren Anschlüsse5a ist an eine der Innenschichtleitungen5c an einer Stelle zwischen dem Boden1a und dem Wandteil1b angeschlossen. - Jeder der sechs inneren Anschlüsse
5a ist in dem Hohlraum des hohlen Gehäuses1a elektrisch isoliert. Die sechs inneren Anschlüsse5a sind an Abschnitten, die nicht mit dem Elektrolyt10 in Kontakt gelangen, gemeinsam an den äußeren Kathodenanschluss5b1 angeschlossen. - Entsprechend halten die sechs inneren Anschlüsse
5a die elektrische Verbindung zwischen dem Inneren des hohlen Gehäuses1 und dem äußeren Kathodenanschluss5b1 , sofern nicht alle inneren Anschlüssen5a brechen. - Eine Erhöhung der Anzahl (Stückzahl) der inneren Anschlüsse
5a verringert die Möglichkeit des Eintretens nachteiliger Effekte auf die elektrische Funktion der elektrochemischen Zelle. Wenn die Anzahl (Stückzahl) der inneren Anschlüsse5a zu stark zunimmt, wird allerdings der Abstand zwischen den nebeneinander liegenden inneren Anschlüssen5a zu klein. Wenn der Abstand zwischen den inneren Anschlüssen5a zu klein ist, kann, bedingt durch ein Verschieben der Maske während der Musterausbildung oder aus anderen Gründen, ein Kurzschluss zwischen den inneren Anschlüssen5a auftreten. Die Anzahl (Stückzahl) der inneren Anschlüsse5a wird vorzugsweise im Hinblick auf den Abstand entsprechend der Positionsgenauigkeit der inneren Anschlüsse5a festgelegt. - Die inneren Anschlüsse
5a , der äußere Kathodenanschluss5b1 und die Innenschichtleitungen5c bestehen aus wenigstens einem der nachfolgenden Materialien Wolfram, Molybdän, Nickel, Gold und eine Mischung aus diesen Materialien und können als Einzelschicht oder aus einer Anzahl von Schichten gebildet sein. - Der innere Anschluss
5a , der äußere Kathodenanschluss5b1 und die Innenschichtleitungen5c werden vorzugsweise in der nachfolgenden Weise hergestellt. Wolfram oder Molybdän, die einen hohen Schmelzpunkt haben, wird in einem Muster auf der ungesinterten Keramiklage, die den Boden1a bildet, aufgedruckt. Auf dieser ungesinterten Keramiklage wird die ungesinterte Keramiklage, die den Wandteil1b bildet, aufgelegt. Und die Lagen werden bei hoher Temperatur zusammengesintert. Hierdurch sind die inneren Anschlüsse5a und der äußere freiliegende Kathodenanschluss5b1 zusammen mit den Innenschichtleitungen5c gebildet. Auf den inneren Anschlüssen5a und dem äußeren Kathodenanschluss5b1 , der freiliegt, werden dann eine Nickelplattierung und eine Goldplattierung ausgeführt. Dadurch wird der äußere Kathodenanschluss5b1 , der hervorragende Verlötungseigenschaften und eine hohe elektrische Leitfähigkeit aufweist, und die inneren Anschlüsse5a , die eine hohe elektrische Leitfähigkeit haben, geformt. - In der vorliegenden Ausführungsform werden Anschlüsse durch die inneren Anschlüsse
5a , den äußeren Kathodenanschluss5b1 und die Innenschichtleitungen5c gebildet. - Auf der Bodenfläche des Hohlraums des hohlen Gehäuses
1 wird zwischen den inneren Anschlüssen5a und der Kathode7 ein Schutzfilm9 ausgebildet, wie es in1 gezeigt ist. Der Schutzfilm9 , der ein dünner Film mit hoher Korrosionsbeständigkeit ist und elektrisch leitfähig ist, wird nur auf der Bodenfläche des Hohlraums in dem hohlen Gehäuse1 ausgebildet. Der Schutzfilm9 ist so auflaminiert, dass er die inneren Anschlüsse5a vollständig bedeckt, um so einen Kontakt zwischen jedem inneren Anschluss5a und dem Elektrolyt10 zu verhindern und eine Korrosion der inneren Anschlüsse5a in Folge des Be- und Entladens zu unterdrücken. Für den Schutzfilm9 wird ein Material verwendet, das im Wesentlichen auf Aluminium oder Kohlenstoff basiert und eine hohe Korrosionsbeständigkeit sowie einen niedrigen elektrischen Widerstand aufweist. Der Schutzfilm9 aus Aluminium wird durch Verfahren wie z. B. Ablagern, Sputtern, thermisches Spritzen, Aufbringen einer Paste etc. hergestellt, wobei pures Aluminium, eine Al-Cu-Legierung, eine Al-Mn-Legierung, eine Al-Mg-Legierung oder dergleichen, wie durch JIS definiert, verwendet werden. Insbesondere bevorzugt man die Herstellung des Schutzfilms9 aus Aluminium durch Ablagerung oder Sputtern, da dann nur eine geringe Anzahl von kleinen Löchern entstehen. Wenn der Schutzfilm aus Kohlenstoff wie z. B. Graphit hergestellt wird, kann der Schutzfilm9 beispielsweise dadurch hergestellt werden, dass ein elektrisch leitendes Klebemittel, das in bei Wärme härtendem Harz (beispielsweise Phenolharz) dispergiert ist, auf die innere Bodenfläche aufgebracht und ausgehärtet wird. Wenn der Schutzfilm aus einem elektrisch leitenden Klebemittel besteht, kann der Schutzfilm9 auch als Klebeschicht zwischen dem hohlen Gehäuse1 und der Kathode7 verwendet werden. Der Schutzfilm9 kann ein Laminat sein, um die Anzahl an kleinen Löchern zu verringern. - Der Schutzfilm
9 verhindert, dass die inneren Anschlüsse5a mit dem Elektrolyt10 in Kontakt kommen. Entsprechend stellen die inneren Anschlüsse5a die elektrische Verbindung zwischen dem Inneren des hohlen Gehäuses1 und dem äußeren Kathodenanschluss5b1 über eine lange Zeitspanne sicher. - Nachfolgend wird das Verfahren zur Herstellung der elektrochemischen Zelle beschrieben. Die elektrochemische Zelle liegt als elektrischer Doppelschichtkondensator vor, bei dem die Länge × Breite × Dicke 5 mm × 3 mm × 1 mm beträgt. Die Abmessungen sind aber nicht hieraufbeschränkt.
- Auf einer ungesinterten Aluminiumoxid-Keramiklage, die den Boden
1a bildet, wird ein den Anschlüssen entsprechendes Muster aufgedruckt. Insbesondere wird ein den sechs inneren Anschlüssen5a , dem äußeren Kathodenanschluss5b1 , dem äußeren Anodenanschluss5b2 und den zwei Innenschichtleitungen5c entsprechendes Muster unter Verwendung von Wolframpaste bedruckt. Das Muster, welches den inneren Anschlüssen5a entspricht, hat eine Breite von 0,3 mm und die Abstände betragen 0,3 mm. - Als nächstes wird eine weitere ungesinterte Aluminiumoxid-Keramiklage ausgestanzt, so dass eine dem Wandteil
1b entsprechende ungesinterte Aluminiumoxid-Keramiklage geformt wird. Die zwei ungesinterten Aluminiumoxid-Keramiklagen, die dem Boden1a und dem Wandteil1b entsprechen, werden aufeinander gesetzt und dann bei ungefähr 1500°C zusammengesintert. Dies bildet das Hohlgehäuse1 . Die zwei Innenschichtleitungen5c werden auf einer Innenschicht des hohlen Gehäuses1 ausgebildet. - Nach dem Formen des hohlen Gehäuses
1 und der Innenschichtleitung5c wird der Dichtring2 , der aus Kovar besteht, mit einem Hartlötmaterial4 aus Ag-Cu auf die Öffnung des hohlen Gehäuses1 gelötet. Auf dem Metallabschnitt, der an der Oberfläche des hohlen Gehäuses1 freiliegt, wird dann eine Nickelplattierung und eine Goldplattierung ausgeführt. Dadurch wird auf der Fläche des Dichtrings2 ein Plattierungsfilm gebildet, der als Verbindungsmaterial zum Verschweißen benutzt wird. Ferner werden die inneren Anschlüsse5a , der äußere Kathodenanschluss5b1 und der äußere Anodenanschluss5b2 aus Wolfram-Nickel-Gold geformt, d. h. die Anschlüsse der elektrochemischen Zelle werden gebildet. - Nach dem Formen des hohlen Gehäuses
1 und der Anschlüsse wird die Bodenfläche des Hohlraums in dem hohlen Gehäuse1 einem Sputter-Verfahren unterworfen, um einen reinen Aluminiumfilm mit einer Dicke von 5 μm auszubilden. Außerdem wird ein elektrisch leitfähiger Kleber, in dem Graphit in Phenolharz dispergiert ist, auf dem Aluminiumfilm aufgebracht und gehärtet. Dadurch wird der Schutzfilm9 mit einer Dicke von 50 μm gebildet, der zwei Aluminiumfilmschichten und die elektrisch leitende Klebeschicht umfasst. - Es wird nun ein Nickelüberzug auf eine Platte aus Kovar mit einer Dicke von 0,1 mm aufgebracht und dann wird das Plattenmaterial auf eine Größe von 4,5 mm × 2,5 mm zur Formung des Deckels
3 ausgestanzt. - Kommerziell verfügbarer aktivierter Kohlenstoff, Graphit und Polytetrafluorethylen werden in einem Verhältnis von 9:1:1 vermischt und in eine Schicht aus aktiviertem Kohlenstoff mit einer Dicke von 200 μm ausgerollt. Die Schicht aus aktiviertem Kohlenstoff wird dann zur Formung der Kathode
7 und der Anode6 rechteckig ausgestanzt. - Nachdem die Kathode
7 und die Anode6 hergestellt sind, werden die Kathode7 und der Schutzfilm9 mit Hilfe eines elektrisch leitfähigen Klebemittels miteinander verklebt. Und der Deckel3 und die Anode6 werden mit einem elektrisch leitfähigen Klebemittel miteinander verklebt. - Nach dem Verkleben der Kathode
7 an dem Schutzfilm9 und dem Verkleben der Anode6 und dem Deckel3 wird der Separator8 , der aus Glasfaser besteht, auf der Kathode7 angeordnet. Das Elektrolyt10 , in welchem 1 mol/L (C2H5)4NB4 in Propylencarbonat (PC) gelöst ist, wird in das hohle Gehäuse1 injiziert. Dann wird der Deckel3 auf den Dichtring2 gelegt und an zwei Stellen durch Punkt-Widerstandschweißen provisorisch an dem Dichtring2 geheftet. Hiernach wird der gesamte Umfang des Deckels3 in einer Stickstoffatmosphäre mittels eines Widerstandsnahtverfahrens unter Verwendung von zwei Rollelektroden an den Dichtring2 angeschweißt. - Hiermit ist die elektrochemische Zelle als elektrischer Doppelschichtkondensator geschaffen. Jeder der sechs inneren Anschlüsse
5a ist über ein Abschnittsstück mit dem äußeren Kathodenanschluss5b1 verbunden, das nicht mit dem Elektrolyt10 in Kontakt ist. - Es wird nun die Funktionsweise der elektrochemischen Zelle beschrieben. Die elektrochemische Zelle liegt als elektrischer Doppelschichtkondensator vor, ist jedoch nicht auf eine solche Bauweise beschränkt.
- Eingangs sind zwei Typen von elektrischen Doppelschichtkondensatoren (Vergleichsbeispiel 1 und Vergleichsbeispiel 2) für den nachfolgenden Vergleich der elektrischen Doppelschichtkondensatoren (Beispiel) vorhanden.
- Der elektrische Doppelschichtkondensator des Vergleichsbeispiels 1 wird durch Formen nur eines inneren Anschlusses
5a auf der inneren Bodenfläche des hohlen Gehäuses1 geschaffen, wie es in4 gezeigt ist. Der Schutzfilm9 ist mit einer Dicke von 50 μm ausgebildet, was der obigen Ausführungsform entspricht. Die anderen Teile sind mit der obigen Ausführungsform identisch. - Der elektrische Doppelschichtkondensator des Vergleichsbeispiels 2 wird durch Formen nur eines inneren Anschlusses
5a auf der inneren Bodenfläche des hohlen Gehäuses1 erhalten, wie es in4 gezeigt ist Der Schutzfilm9 hat eine Dicke von 250 μm und die Kathode7 und die Anode6 haben eine Dicke von 100 μm. Die anderen Teile sind mit der obigen Ausführungsform identisch. - Jeder elektrische Doppelschichtkondensator (Beispiel, Vergleichsbeispiel 1, Vergleichsbeispiel 2) wird durch einen Reflow-Ofen mit einer Spitzentemperatur bei 260°C zur Ausführung des Aufschmelzlötverfahrens gefördert. Es werden dann die Anfangskapazität und die Fehlerrate jedes elektrischen Doppelschichtkondensators gemessen.
- Die Anfangskapazität jedes elektrischen Doppelschichtkondensators wird anhand der Zeit berechnet, die notwendig ist, bis die Spannung zwischen der Kathode und der Anode 2 V beträgt, wenn 2,5 V zwischen der Kathode und der Anode angelegt sind, um ein Laden und dann ein Entladen mit einem konstanten Strom von 5 μA auszuführen.
- Basierend auf der Kapazitätsmessung von 100 elektrischen Doppelschichtkondensatoren wird die Fehlerrate jedes elektrischen Doppelschichtkondensators berechnet. D. h., nachdem kontinuierlich eine Spannung von 2,5 V zwischen der Kathode und der Anode jedes elektrischen Doppelschichtkondensators, die für 1000 h in einem konstanten Temperaturbad von 70°C liegen, angelegt ist, wird die Kapazitätsmessung unter den gleichen Bedingungen wie für die Berechnung der Anfangskapazität durchgeführt. Es wird ein Fehler festgestellt, wenn die Kapazität kleiner oder gleich 10% der Anfangskapazität beträgt. Und die Fehlerrate jedes elektrischen Doppelschichtkondensators wird entsprechend berechnet. Die Testergebnisse sind in Tabelle 1 gezeigt.
- Wie in Tabelle 1 gezeigt, haben beim Vergleichsbeispiel 1 (ein innerer Anschluss
5a und Schutzfilm9 mit einer Dicke von 50 μm) 20% der Proben nach 1000 h eine Kapazität, die 10% oder weniger der Anfangskapazität beträgt Der innere Widerstand dieser Proben war undefiniert und man hat nach einer Untersuchung mit Röntgenstrahlen herausgefunden, dass der innere Anschluss5a gebrochen war. - Beim Vergleichsbeispiel 2 (ein innerer Anschluss
5a und Schutzfilm9 mit einer Dicke von 250 μm) hatten 5% nach 1000 h eine Kapazität von 10% oder weniger der Anfangskapazität. Die Fehlerrate war beim Vergleichsbeispiel 2 kleiner als beim Vergleichsbeispiel 1. Jedoch verringerte sich die Kapazität aufgrund der dünneren Kathode7 und der Anode6 . Tabelle 1Anzahl der inneren Anschlüsse Anfangskapazität (μAh) Fehlerrate (%) Beispiel 6 30 0 Vergleichsbeispiel 1 1 30 20 Vergleichsbeispiel 2 1 15 5 - Von den 100 Proben des Beispiels (sechs innere Anschlüsse
5a , Schutzfilm9 mit einer Dicke von 50 μm) hatte nach 1000 h keine eine Kapazität von weniger oder gleich 10% der Anfangskapazität. Die inneren Anschlüsse5a wurden mit Röntgenstrahlen untersucht und man hat herausgefunden, dass entweder keiner oder nur einer der sechs Anschlüsse gebrochen war. Es gab aber keine Proben, bei denen alle sechs Anschlüsse gebrochen waren. - Sogar wenn der innere Anschluss
5a aus einem Material besteht, das durch Kontakt mit dem Elektrolyt10 korrodiert, wies auf diese Weise der elektrische Doppelschichtkondensator weniger Fehler auf und hatte eine höhere Zuverlässigkeit. In dem Beispiel und den Vergleichsbeispielen ist die elektrochemische Zelle als elektrischer Doppelschichtkondensator ausgebildet. Die gleichen Effekte können aber auch erzielt werden, wenn die elektrochemische Zelle als Batterie ausgebildet ist. - Die vorliegende Ausführungsform hat die nachfolgend beschriebenen Vorteile.
- (1) Die Anschlüsse der elektrochemischen Zelle umfassen sechs voneinander beabstandete innere Anschlüsse
5a in dem Hohlraum zur Aufnahme des Elektrolyts10 . Die sechs inneren Anschlüsse5a sind gemeinsam an die Innenschichtleitungen5c außerhalb des Hohlraums des hohlen Gehäuses1 angeschlossen, d. h. an einem Teilstück, das nicht mit dem Elektrolyt10 in Kontakt ist. Die Innenschichtleitungen5c sind gemeinsam an den äußeren Kathodenanschluss5b1 an der Umfangsfläche des hohlen Gehäuses1 angeschlossen. Aufgrund dessen werden sogar wenn die inneren Anschlüsse5a durch Kontakt mit dem Elektrolyt10 korrodieren, die elektrischen Eigenschaften der elektrochemischen Zelle beibehalten, wenn nicht alle inneren Anschlüsse5a korrodieren und brechen. Infolgedessen weist die elektrochemische Zelle eine hohe Zuverlässigkeit und hohe Kapazität auf. - (2) Die zwei Leitungen
5c in der Innenschicht sind an der Umfangsseite des hohlen Gehäuses1 mit dem äußeren Kathodenanschluss5b1 verbunden. Aufgrund dessen kann das Elektrolyt10 verdampfen, sogar wenn eine der Innenschichtleitungen5c korrodiert und das Elektrolyt10 den Außenanschluss5b erreicht. Dadurch wird zuverlässig verhindert, dass der äußere Anschluss5b korrodiert. - (3) Der Schutzfilm
9 ist auf den sechs inneren Anschlüssen5a auf derjenigen Seite ausgebildet, die mit dem Elektrolyt10 in Kontakt ist. D. h., der Schutzfilm9 ist so aufgebracht, dass alle sechs inneren Anschlüsse5a bedeckt sind. Der Schutzfilm9 ist aus einem Material gebildet, das im Wesentlichen auf Aluminium oder Kohlenstoff basiert und einen zufriedenstellenden Korrosionswiderstand und einen niedrigen elektrischen Widerstand aufweist. Der Schutzfilm9 verhindert, dass die sechs inneren Anschlüsse5a mit dem Elektrolyt10 in Kontakt kommen und beim Laden bzw. Entladen korrodiert werden. Dadurch wird die Zuverlässigkeit der elektrochemischen Zelle weiter verbessert. - (Zweite Ausführungsform)
- Eine zweite Ausführungsform der vorliegenden Erfindung wird nun unter Bezugnahme auf die
5 bis8 beschrieben, wobei man sich hier auf die Unterschiede zur ersten Ausführungsform konzentriert. Die5 ist eine Querschnittsansicht der elektrochemischen Zelle der zweiten Ausführungsform, die6 ist eine perspektivische Ansicht eines hohlen Gehäuses, das die elektrochemische Zelle bildet, die7 ist eine Unteransicht des hohlen Gehäuses und die8 ist eine Explosionsdarstellung der elektrochemischen Zelle. - Ein hohles Gehäuse
1 hat einen Boden, der aus einem ersten Bodenteil1a1 und einem zweiten Bodenteil1a2 gebildet ist, die rechteckförmig und plattenartig sind und bodenseitig angeordnet sind, wie in den5 und6 dargestellt. - Wie in den
7 und8 gezeigt, sind ein äußerer Kathodenanschluss5b1 , der entsprechend einer Kathode7 als gemeinsamer äußerer Anschluss dient, und ein äußerer Anodenanschluss5b2 , der einer Anode6 entspricht, auf der Bodenfläche des ersten Bodenteils1a1 ausgebildet. Der äußere Kathodenanschluss5b1 und der äußere Anodenanschluss5b2 erstrecken sich von der Bodenfläche des hohlen Gehäuses1 zur Umfangsfläche des hohlen Gehäuses1 , um in der gleichen Weise wie bei der ersten Ausführungsform die Verbindung zur entsprechenden Elektrode zu schaffen. - Zwischen dem ersten Bodenteil
1a1 und dem zweiten Bodenteil1a2 sind sechs Zwischenschichtleitungen L1 ausgebildet. Die sechs Zwischenschichtleitungen L1 sind mit dem äußeren Kathodenanschluss5b1 an der Außenfläche des hohlen Gehäuses1 zusammen verbunden und erstrecken sich an einem Mittelteil der Oberseite des ersten Bodenteils1a1 . Jede Zwischenschichtleitung L1 besteht aus wenigstens einem der nachfolgenden Materialien: Wolfram, Molybdän, Nickel, Gold und eine Mischung dieser Materialien, und ist aus einer einzigen Schicht oder einer Anzahl von Schichten gebildet. - Durch den zweiten Bodenteil
1a2 erstrecken sich sechs Durchgangsleitungen L2 zwischen dem ersten Bodenteil1a1 und dem Hohlraum (Aufnahmeraum). Jede der sechs Durchgangsleitungen L2 ist nahe dem Mitteilteil des zweiten Bodenteils1a2 geformt und mit der entsprechenden Zwischenschichtleitung L1 verbunden. Nur die obere Stirnfläche jeder der sechs Durchgangsleitungen L2 liegt an der Bodenfläche des Hohlraums bloß. - In der zweiten Ausführungsform bildet die obere Stirnfläche jeder Durchgangsleitung L2 einen inneren Anschluss
5a . Die Durchgangsleitungen L2 und die Zwischenschichtleitungen L1 bilden die Innenschichtleitung5c . - Jede Durchgangsleitung L2 besteht aus wenigstens einem der nachfolgenden Materialien Wolfram, Molybdän, Nickel, Gold und eine Mischung aus diesen Materialien und ist durch eine einzige Schicht oder eine Mehrzahl von Schichten geformt. Entsprechend sind das hohle Gehäuse
1 und die Durchgangsleitungen L2 zusammengesintert und ausgebildet. Alternativ kann eine Paste, die mit Kohlenstoff und Harz vermischt ist, für die Durchgangsleitungen L2 verwendet werden. In solch einem Fall kann, nachdem der hohle Gehäuse1 gesintert ist, jedes Durchgangsloch mit Paste gefüllt werden, um die Prozessgenauigkeit zu verbessern. Des Weiteren wird Korrosion, die auftritt, wenn das Elektrolyt10 kontaktiert wird, weiter unterdrückt. - In der gleichen Weise wie bei der ersten Ausführungsform hält eine zunehmende Anzahl (Stückzahl) von inneren Anschlüssen
5a , die durch die Durchgangsleitungen L2 geformt sind, die elektrische Funktion der elektrochemischen Zelle über eine lange Zeitspanne aufrecht. Außerdem ist die in der Bodenfläche des Hohlraums freiliegende Fläche für die inneren Anschlüsse5a , die durch die Durchgangsleitungen L2 gebildet sind, verglichen mit dem inneren Anschluss5a der ersten Ausführungsform, reduziert. Somit verhindern die inneren Anschlüsse5a , die durch die Durchgangsleitungen L2 geformt sind, Kurzschlüsse zwischen den inneren Anschlüssen5a , die durch das Verrutschen einer zur Herstellung von Muster verwendeten Maske bewirkt würden, und reduzieren die Häufigkeit, mit denen sie mit dem Elektrolyt10 in Kontakt kommen. - Der Schutzfilm
9 ist auf der Bodenfläche des Hohlraums des hohlen Gehäuses1 zwischen den Durchgangsleitungen L2 (innere Anschlüsse5a ) und der Kathode7 in der gleichen Weise wie bei der ersten Ausführungsform ausgebildet. - Der Schutzfilm
9 wird durch Aufbringen einer Maske auf der Seitenfläche des Hohlraums des hohlen Gehäuses1 und durch Sputtern, thermisches Spritzen, Aufbringen einer Paste oder dergleichen in dem Hohlraum ausgebildet. Der Schutzfilm9 , der durch ein solches Verfahren geschaffen wird, hat am Rand der Bodenfläche des Hohlraums eine sprödere Dünnschichtqualität (Dünnschicht mit vielen kleinen Löchern) als nahe dem Mittelbereich des Hohlraums. Da die inneren Anschlüsse5a der vorliegenden Ausführungsform nahe dem Mittelbereich des zweiten Bodenteils1a2 ausgebildet sind, werden die inneren Anschlüsse5a nicht durch den Schutzfilm9 geschützt, wo die Dünnschicht spröder ist und sie werden durch den Schutzfilm9 geschützt, wo die Dünnschichtqualität besser ist. - Zusätzlich zu den Vorteilen (1) bis (3) der ersten Ausführungsform weist die vorliegende Ausführungsform die nachfolgenden Vorteile auf.
- (4) Die Anschlüsse der elektrochemischen Zelle weisen auf der Bodenfläche des Hohlraums, der das Elektrolyt
10 aufnimmt, sechs voneinander beabstandete Durchgangsleitungen L2 auf. Nur die obere Stirnfläche (innerer Anschluss5a ) jeder der sechs Durchgangsleitungen L2 liegt in der Bodenfläche des Hohlraums bloß. Die Durchgangsleitungen L2 sind gemeinsam mit der Kathode7 verbunden. Da die freiliegende Fläche reduziert ist, reduzieren die inneren Anschlüsse5a , die durch die Durchgangsleitung L2 gebildet sind, die Häufigkeit, mit der sie mit dem Elektrolyt10 in Kontakt kommen. Dadurch wird die Zuverlässigkeit der elektrochemischen Zelle weiter erhöht. - (5) Außerdem kann, wenn die inneren Anschlüsse
5a mit der gleichen Gesamtfläche ausgebildet werden, die Anzahl der inneren Anschlüsse5a durch Reduzieren der Fläche jedes inneren Anschlusses5a erhöht werden. Dadurch wird die Zuverlässigkeit der elektrochemischen Zelle weiter erhöht. - (6) Jede der sechs Durchgangsleitungen L2 ist nahe dem Mittelbereich des zweiten Bodenteils
1a2 ausgebildet. Da die inneren Anschlüsse5a nahe dem Mittelbereich des zweiten Bodenteils1a2 ausgebildet sind, sind deswegen alle inneren Anschlüsse5a durch den Schutzfilm9 dort geschützt, wo die Qualität zufriedenstellend ist.
Claims (6)
- Elektrochemische Zelle, mit einem hohlen Gehäuse (
1 ), das einen Aufnahmeraum zum Aufnehmen eines Elektrodenpaars (6 ,7 ) und eines Elektrolyts (10 ) aufweist, wobei das hohle Gehäuse (1 ) einen plattenförmigen Boden (1a ) und einen rahmenförmigen Wandteil (1b ), der entlang des Umfangs des Bodens (1a ) verläuft, aufweist, mehreren inneren Anschlüssen (5a ), die gemeinsam an nur einer Elektrode (7 ) des Elektrodenpaares (6 ,7 ) angeschlossen sind und auf der Oberseite des Bodens (1a ), die dem Aufnahmeraum zugewandt ist, ausgebildet sind, einem gemeinsamen äußeren Anschluss (5b1 ), der auf der Außenfläche des hohlen Gehäuses (1 ) ausgebildet ist, und mehreren Innenschichtleitungen (5c ), wobei die inneren Anschlüsse (5a ) über die mehreren Innenschichtleitungen (5c ) an den gemeinsamen äußeren Anschluss (5b1 ) außerhalb des Aufnahmeraums angeschlossen sind. - Elektrochemische Zelle, mit einem hohlen Gehäuse (
1 ), das einen Aufnahmeraum zum Aufnehmen eines Elektrodenpaars (6 ,7 ) und eines Elektrolyts (10 ) aufweist, wobei das hohle Gehäuse (1 ) einen plattenförmigen Boden (1a ) und einen rahmenförmigen Wandteil (1b ), der entlang des Umfangs des Bodens (1a ) verläuft, aufweist, wobei der Boden (1a ) aus einem ersten Bodenteil (1a1 ) und einem zweiten Bodenteil (1a2 ) ausgebildet ist, wobei der zweite Bodenteil (1a2 ) auf dem ersten Bodenteil (1a1 ) angeordnet ist, einem gemeinsamen äußeren Anschluss (5b1 ), der auf der Außenfläche des hohlen Gehäuses (1 ) ausgebildet ist, wobei zwischen dem ersten Bodenteil (1a1 ) und dem zweiten Bodenteil (1a2 ) Zwischenschichtleitungen (L1) ausgebildet sind, die sich an einem Mittelteil der Oberseite des ersten Bodenteils (1a1 ) erstrecken, und Durchgangsleitungen (L2), die sich durch den zweiten Bodenteil (1a2 ) zwischen dem ersten Bodenteil (1a1 ) und dem Aufnahmeraum erstrecken und wobei jede der Durchgangsleitungen (L2) nahe dem Mittelteil des zweiten Bodenteils (1a2 ) geformt und mit der entsprechenden Zwischenschichtleitung (L1) verbunden ist, wobei obere Stirnflächen der Durchgangsleitungen (L2) innere Anschlüsse (5a ) sind, die an der Oberfläche des zweiten Bodenteils (1a2 ) dem Aufnahmeraum zugewandt freiliegen, wobei die Zwischenschichtleitungen (L1) mit dem gemeinsamen äußeren Anschluss (5b1 ) verbunden sind, und wobei die inneren Anschlüsse (5a ) gemeinsam an nur einer Elektrode (7 ) des Elektrodenpaars (6 ,7 ) angeschlossen sind. - Elektrochemische Zelle nach Anspruch 1, dadurch gekennzeichnet, dass die inneren Anschlüsse (
5a ), der äußere Anschluss (5b1 ) und die Innenschichtleitungen (5c ) aus wenigstens einem der nachfolgenden Materialien bestehen: Wolfram, Molybdän, Nickel, Gold und eine Mischung dieser Materialien, und dass sie aus einer einzigen Schicht oder mehreren Schichten geformt sind. - Elektrochemische Zelle nach Anspruch 2, dadurch gekennzeichnet, dass die inneren Anschlüsse (
5a ), die Zwischenschichtleitungen (L1) und die Durchgangsleitungen (L2) aus wenigstens einem der nachfolgenden Materialien bestehen: Wolfram, Molybdän, Nickel, Gold und einer Mischung dieser Materialien, und dass sie aus einer einzigen Schicht oder mehreren Schichten geformt sind. - Elektrochemische Zelle nach Anspruch 2, dadurch gekennzeichnet, dass die inneren Anschlüsse (
5a ) und die Durchgangsleitungen (L2) aus einem elektrisch leitenden Material bestehen, das im Wesentlichen aus Kohlenstoff besteht, und die Zwischenschichtleitungen (L1) aus wenigstens einem der nachfolgenden Materialien bestehen: Wolfram, Molybdän, Nickel, Gold und eine Mischung dieser Materialien, und dass sie aus einer einzigen Schicht oder mehreren Schichten geformt sind. - Elektrochemische Zelle nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das hohle Gehäuse (
1 ) aus Keramik besteht, die wenigstens eine der nachfolgenden Materialen umfasst: Aluminiumoxid, Siliziumnitrid, Zirkonium, Siliziumkarbid, Aluminiumnitrid, Mullit und eine Mischung aus diesen Materialien.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005221391 | 2005-07-29 | ||
JP2005-221391 | 2005-07-29 | ||
PCT/JP2006/311399 WO2007013223A1 (ja) | 2005-07-29 | 2006-06-07 | 電気化学セル |
Publications (2)
Publication Number | Publication Date |
---|---|
DE112006000597T5 DE112006000597T5 (de) | 2008-01-17 |
DE112006000597B4 true DE112006000597B4 (de) | 2013-09-12 |
Family
ID=37683128
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE112006000597T Expired - Fee Related DE112006000597B4 (de) | 2005-07-29 | 2006-06-07 | Elektrochemische Zelle |
DE112006004269T Withdrawn DE112006004269A5 (de) | 2005-07-29 | 2006-06-07 | Elektrochemische Zelle |
DE112006004268T Withdrawn DE112006004268A5 (de) | 2005-07-29 | 2013-08-22 | Elektrochemische Zelle |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE112006004269T Withdrawn DE112006004269A5 (de) | 2005-07-29 | 2006-06-07 | Elektrochemische Zelle |
DE112006004268T Withdrawn DE112006004268A5 (de) | 2005-07-29 | 2013-08-22 | Elektrochemische Zelle |
Country Status (6)
Country | Link |
---|---|
US (4) | US8563166B2 (de) |
JP (9) | JP4591931B2 (de) |
KR (1) | KR100925013B1 (de) |
CN (2) | CN101142643B (de) |
DE (3) | DE112006000597B4 (de) |
WO (1) | WO2007013223A1 (de) |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007013223A1 (ja) | 2005-07-29 | 2007-02-01 | Sii Micro Parts Ltd. | 電気化学セル |
JP2009093824A (ja) * | 2007-10-04 | 2009-04-30 | Sumitomo Electric Ind Ltd | 蓄電デバイス |
JP5294410B2 (ja) * | 2008-04-16 | 2013-09-18 | セイコーインスツル株式会社 | 電気化学セル、およびその製造方法 |
JP5435638B2 (ja) * | 2009-01-21 | 2014-03-05 | セイコーインスツル株式会社 | 電気化学セルおよび電気化学セルの製造方法 |
KR101067177B1 (ko) * | 2009-09-14 | 2011-09-22 | 삼성전기주식회사 | 칩형 전기 이중층 커패시터 및 그 제조방법 |
KR101133374B1 (ko) * | 2009-09-11 | 2012-06-21 | 삼성전기주식회사 | 칩형 전기 이중층 커패시터 및 그 제조방법 |
US20110002084A1 (en) | 2009-07-06 | 2011-01-06 | Samsung Electro-Mechanics Co., Ltd. | Chip-type electric double layer capacitor and method of manufacturing the same |
KR101067158B1 (ko) * | 2009-09-04 | 2011-09-22 | 삼성전기주식회사 | 칩형 전기이중층 커패시터와 칩형 전기이중층 커패시터의 제조방법 |
US8194395B2 (en) | 2009-10-08 | 2012-06-05 | Avx Corporation | Hermetically sealed capacitor assembly |
KR101141447B1 (ko) * | 2009-12-01 | 2012-05-15 | 삼성전기주식회사 | 칩형 전기 이중층 커패시터 및 그 제조방법 |
JP5697472B2 (ja) * | 2010-03-29 | 2015-04-08 | セイコーインスツル株式会社 | 電気化学素子 |
JP2011228176A (ja) * | 2010-04-21 | 2011-11-10 | Sumitomo Electric Ind Ltd | 溶融塩電池 |
US9059484B2 (en) * | 2010-08-13 | 2015-06-16 | General Electric Company | Rechargeable electrochemical cell and method of manufacturing a rechargeable electrochemical cell |
JP2012104804A (ja) * | 2010-10-15 | 2012-05-31 | Seiko Instruments Inc | 電子部品、及び電子装置 |
US9214709B2 (en) * | 2010-12-21 | 2015-12-15 | CastCAP Systems Corporation | Battery-capacitor hybrid energy storage system for high temperature applications |
US8760851B2 (en) | 2010-12-21 | 2014-06-24 | Fastcap Systems Corporation | Electrochemical double-layer capacitor for high temperature applications |
JP5905731B2 (ja) * | 2011-02-15 | 2016-04-20 | セイコーインスツル株式会社 | 電気化学素子及びその製造方法 |
US9001495B2 (en) | 2011-02-23 | 2015-04-07 | Fastcap Systems Corporation | High power and high energy electrodes using carbon nanotubes |
JP5779387B2 (ja) * | 2011-04-19 | 2015-09-16 | 太陽誘電株式会社 | 電気化学デバイス |
EP2723979B1 (de) | 2011-05-24 | 2020-07-08 | FastCAP SYSTEMS Corporation | Stromversorgungssystem für hochtemperaturanwendungen mit wiederaufladbarem energiespeicher |
AU2012267770A1 (en) | 2011-06-07 | 2014-01-23 | Fastcap Systems Corporation | Energy storage media for ultracapacitors |
JP5818069B2 (ja) * | 2011-06-20 | 2015-11-18 | セイコーインスツル株式会社 | 電気化学セル、及び電子装置 |
JP6058909B2 (ja) * | 2011-06-24 | 2017-01-11 | セイコーインスツル株式会社 | 電気化学セル及びその製造方法 |
WO2013009720A2 (en) | 2011-07-08 | 2013-01-17 | Fastcap Systems Corporation | High temperature energy storage device |
US9558894B2 (en) | 2011-07-08 | 2017-01-31 | Fastcap Systems Corporation | Advanced electrolyte systems and their use in energy storage devices |
WO2013047462A1 (ja) * | 2011-09-30 | 2013-04-04 | 株式会社 村田製作所 | 電池収容構造体 |
CN106749029A (zh) * | 2011-10-28 | 2017-05-31 | 华瑞科学仪器(上海)有限公司 | 离子液体和含该离子液体的电流型氨气传感器 |
BR112014010635B1 (pt) | 2011-11-03 | 2020-12-29 | Fastcap Systems Corporation | sistema de registro em log |
JP2013128066A (ja) * | 2011-12-19 | 2013-06-27 | Seiko Instruments Inc | 電気化学セル |
KR101297091B1 (ko) * | 2011-12-22 | 2013-08-14 | 비나텍주식회사 | 표면 실장형 슈퍼 커패시터 및 그의 제조 방법 |
KR101244281B1 (ko) * | 2011-12-22 | 2013-03-18 | 비나텍주식회사 | 분리막 전극을 이용한 슈퍼 커패시터 및 그의 제조 방법 |
KR101297092B1 (ko) * | 2011-12-27 | 2013-08-14 | 비나텍주식회사 | 표면 실장형 슈퍼 커패시터 및 그의 제조 방법 |
KR101297093B1 (ko) * | 2011-12-27 | 2013-08-14 | 비나텍주식회사 | 배선기판 및 그를 이용한 표면 실장형 슈퍼 커패시터 |
KR101306600B1 (ko) * | 2011-12-27 | 2013-09-11 | 비나텍주식회사 | 표면 실장형 슈퍼 커패시터의 제조 방법 |
KR101222873B1 (ko) * | 2011-12-27 | 2013-01-25 | 비나텍주식회사 | 표면 실장형 슈퍼 커패시터 |
KR101141674B1 (ko) * | 2012-02-16 | 2012-05-04 | 주식회사 로스윈 | 전기 이중층 캐패시터 및 그 제조방법 |
FR2987173A1 (fr) * | 2012-02-17 | 2013-08-23 | St Microelectronics Tours Sas | Procede de realisation d'une microbatterie |
KR101337373B1 (ko) * | 2012-03-15 | 2013-12-05 | 비나텍주식회사 | 표면 실장형 슈퍼 커패시터 |
JP2013232569A (ja) * | 2012-05-01 | 2013-11-14 | Taiyo Yuden Co Ltd | 電気化学デバイス |
JP5155488B2 (ja) * | 2012-09-06 | 2013-03-06 | 太陽誘電株式会社 | 電気化学デバイス |
JP5202753B1 (ja) | 2012-10-16 | 2013-06-05 | 太陽誘電株式会社 | 電気化学キャパシタ |
CN103021673B (zh) * | 2012-12-30 | 2015-07-15 | 无锡富洪科技有限公司 | 超级电容器电极片及其制备方法 |
US9206672B2 (en) | 2013-03-15 | 2015-12-08 | Fastcap Systems Corporation | Inertial energy generator for supplying power to a downhole tool |
DE102013008641B4 (de) * | 2013-05-21 | 2015-07-02 | Audi Ag | Vorrichtung und Verfahren zur Herstellung einer elektrischen Verbindung eines elektrischen Anschlusses eines Energiespeichers mit einem elekrischen Verbindungselement |
JP5826794B2 (ja) * | 2013-06-14 | 2015-12-02 | 太陽誘電株式会社 | 電気化学デバイス |
US10872737B2 (en) | 2013-10-09 | 2020-12-22 | Fastcap Systems Corporation | Advanced electrolytes for high temperature energy storage device |
US11270850B2 (en) | 2013-12-20 | 2022-03-08 | Fastcap Systems Corporation | Ultracapacitors with high frequency response |
EP4325025A3 (de) | 2013-12-20 | 2024-04-24 | Fastcap Systems Corporation | Elektromagnetische telemetrievorrichtung |
WO2015122420A1 (ja) * | 2014-02-13 | 2015-08-20 | 太陽誘電株式会社 | 電気化学デバイス及び製造方法 |
JP5677600B2 (ja) * | 2014-03-03 | 2015-02-25 | 太陽誘電株式会社 | 電気化学デバイス |
KR101500955B1 (ko) * | 2014-03-26 | 2015-03-10 | 김상진 | 패키지형 전기 이중층 커패시터 |
US9646774B2 (en) * | 2014-06-05 | 2017-05-09 | Trion Energy Solutions Corp. | Power wafer |
KR20240055878A (ko) | 2014-10-09 | 2024-04-29 | 패스트캡 시스템즈 코포레이션 | 에너지 저장 디바이스를 위한 나노구조 전극 |
KR102668693B1 (ko) | 2015-01-27 | 2024-05-27 | 패스트캡 시스템즈 코포레이션 | 넓은 온도 범위 울트라커패시터 |
JP5875129B2 (ja) * | 2015-03-13 | 2016-03-02 | 太陽誘電株式会社 | 電気化学デバイス |
US10199630B2 (en) | 2015-08-21 | 2019-02-05 | TOP Battery Co., Ltd | Electrode terminal, electro-chemical device and electro-chemical device comprising same |
EP3363060B1 (de) * | 2015-10-16 | 2021-03-10 | Robert Bosch GmbH | Anschlussklemmenanordnung für eine energiespeichervorrichtung |
US11830672B2 (en) | 2016-11-23 | 2023-11-28 | KYOCERA AVX Components Corporation | Ultracapacitor for use in a solder reflow process |
JP7554556B2 (ja) | 2016-12-02 | 2024-09-20 | ファーストキャップ・システムズ・コーポレイション | 複合電極 |
CN108269960A (zh) * | 2017-01-03 | 2018-07-10 | 神华集团有限责任公司 | 一种电池单体及其制造方法和电池组 |
JP2018120848A (ja) * | 2017-01-26 | 2018-08-02 | 本田技研工業株式会社 | リチウムイオン二次電池 |
US10847834B1 (en) * | 2017-09-27 | 2020-11-24 | Apple Inc. | Corrosion resistant current collector for lithium metal anode |
CN112119526A (zh) * | 2018-05-15 | 2020-12-22 | 株式会社村田制作所 | 固体电池、电池模块及固体电池的充电方法 |
US11557765B2 (en) | 2019-07-05 | 2023-01-17 | Fastcap Systems Corporation | Electrodes for energy storage devices |
US11509011B2 (en) * | 2019-10-15 | 2022-11-22 | Greatbatch Ltd. | Miniature electrochemical cell having a casing of a conductive plate closing an open-ended ceramic container having a via hole supporting a platinum-containing conductive pathway |
CN111863459B (zh) * | 2020-06-28 | 2021-10-08 | 华中科技大学 | 一种贴片式微型滤波电容器的制备方法与应用 |
JP7334198B2 (ja) * | 2021-02-01 | 2023-08-28 | プライムプラネットエナジー&ソリューションズ株式会社 | 電極端子および該電極端子を備えた二次電池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4916576A (en) * | 1989-02-27 | 1990-04-10 | Fmtt, Inc. | Matrix capacitor |
DE19851571A1 (de) * | 1997-11-10 | 1999-05-12 | Asahi Glass Co Ltd | Elektrischer Doppelschichtkondensator |
JP2001216952A (ja) * | 2000-02-04 | 2001-08-10 | Seiko Instruments Inc | 非水電解質電池および電気二重層キャパシタ |
US6529365B1 (en) * | 2001-09-28 | 2003-03-04 | Intel Corporation | Multiple terminal SMT BGA-style wound capacitor |
US20050037258A1 (en) * | 2003-06-29 | 2005-02-17 | Hironobu Itoh | Electrochemical cell and fabrication method of the same |
EP1553649A2 (de) * | 2003-12-25 | 2005-07-13 | SII Micro Parts Ltd. | Elektrochemische Zelle |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA771344B (en) * | 1976-05-17 | 1978-04-26 | Globe Union Inc | Composite article and method of manufacturing |
US4331743A (en) | 1980-09-02 | 1982-05-25 | Duracell International Inc. | Method for increasing recycling life of non-aqueous cells |
JPS59176136U (ja) * | 1983-05-10 | 1984-11-24 | 日本ケミコン株式会社 | 電気二重層コンデンサ |
JPS6294908A (ja) | 1985-10-22 | 1987-05-01 | 松下電器産業株式会社 | 電気二重層キヤパシタ |
JPS63237349A (ja) | 1987-03-26 | 1988-10-03 | Matsushita Electric Ind Co Ltd | 有機電解液電池 |
JPH05347233A (ja) | 1992-06-12 | 1993-12-27 | Nec Corp | 電気二重層コンデンサおよびその製造方法 |
US5464706A (en) | 1994-03-02 | 1995-11-07 | Dasgupta; Sankar | Current collector for lithium ion battery |
US5476734A (en) * | 1994-04-28 | 1995-12-19 | Westinghouse Electric Corporation | Current collector with integral tab for high temperature cell |
DE19503447A1 (de) * | 1995-02-03 | 1996-08-08 | Hoechst Trevira Gmbh & Co Kg | Massenträger und Elektroden für galvanische Primär- und Sekundärelemente |
US6808845B1 (en) * | 1998-01-23 | 2004-10-26 | Matsushita Electric Industrial Co., Ltd. | Electrode metal material, capacitor and battery formed of the material and method of producing the material and the capacitor and battery |
JPH11260414A (ja) | 1998-03-10 | 1999-09-24 | Kao Corp | 非水系二次電池 |
JPH11345604A (ja) * | 1998-06-03 | 1999-12-14 | Hitachi Ltd | リチウム2次電池及び電池モジュール |
JP3784205B2 (ja) | 1999-06-30 | 2006-06-07 | 京セラ株式会社 | 電気二重層コンデンサ |
JP2001229595A (ja) | 2000-02-10 | 2001-08-24 | Tanashin Denki Co | ディスククランプ装置 |
JP4087044B2 (ja) | 2000-06-14 | 2008-05-14 | 三菱電機株式会社 | 電池 |
US20020150822A1 (en) * | 2001-02-02 | 2002-10-17 | Marlow John V. | Lightweight composite grid for battery plates |
JP3921957B2 (ja) | 2001-04-13 | 2007-05-30 | 株式会社明電舎 | 積層型電気二重層キャパシタ |
JP3697184B2 (ja) | 2001-08-27 | 2005-09-21 | 株式会社ルネサステクノロジ | 電圧調整モジュール(vrm) |
DE10232379B4 (de) * | 2002-07-17 | 2006-09-14 | Dilo Trading Ag | Elektrisch leitfähiger Haftvermittler, Elektrode, Verfahren zu deren Herstellung sowie Sekundärbatterie |
JP2004127556A (ja) | 2002-09-30 | 2004-04-22 | Sanyo Electric Co Ltd | 非水電解液電池 |
JP3975923B2 (ja) * | 2003-01-20 | 2007-09-12 | ソニー株式会社 | 非水電解質電池 |
JP2004227959A (ja) | 2003-01-23 | 2004-08-12 | Sii Micro Parts Ltd | 非水電解質電池および電気二重層キャパシタ |
JP4527366B2 (ja) | 2003-05-30 | 2010-08-18 | セイコーインスツル株式会社 | 電気化学セルの製造方法 |
JP2005019790A (ja) * | 2003-06-27 | 2005-01-20 | Sanyo Electric Co Ltd | 電気二重層コンデンサ及び電池 |
EP1630834A1 (de) | 2003-05-30 | 2006-03-01 | Sanyo Electric Co., Ltd. | Elektrischer doppelschichtkondensator und elektrolytische zelle |
JP2004356462A (ja) | 2003-05-30 | 2004-12-16 | Sanyo Electric Co Ltd | チップ型電気二重層コンデンサ及びチップ型電解質電池 |
JP4297761B2 (ja) | 2003-09-19 | 2009-07-15 | 三洋電機株式会社 | 電気二重層キャパシタ |
JP4671652B2 (ja) | 2003-10-30 | 2011-04-20 | 京セラ株式会社 | 電池用ケースおよび電池 |
JP2005183373A (ja) | 2003-11-27 | 2005-07-07 | Kyocera Corp | 電池用ケース、その製造方法および電池ならびに電気二重層キャパシタ用ケース、その製造方法および電気二重層キャパシタ |
US7521153B2 (en) * | 2004-03-16 | 2009-04-21 | Toyota Motor Engineering & Manufacturing North America, Inc. | Corrosion protection using protected electron collector |
JP4817778B2 (ja) | 2004-09-28 | 2011-11-16 | 京セラ株式会社 | 電池用ケースおよび電池ならびに電気二重層キャパシタ用ケースおよび電気二重層キャパシタ |
JP4556619B2 (ja) * | 2004-11-01 | 2010-10-06 | 日産自動車株式会社 | 燃料電池システム |
US7651813B2 (en) | 2004-11-25 | 2010-01-26 | Kyocera Corporation | Container, battery and electric double layer capacitor |
WO2007013223A1 (ja) | 2005-07-29 | 2007-02-01 | Sii Micro Parts Ltd. | 電気化学セル |
-
2006
- 2006-06-07 WO PCT/JP2006/311399 patent/WO2007013223A1/ja active Application Filing
- 2006-06-07 CN CN2006800085465A patent/CN101142643B/zh not_active Expired - Fee Related
- 2006-06-07 US US11/817,169 patent/US8563166B2/en not_active Expired - Fee Related
- 2006-06-07 JP JP2007528364A patent/JP4591931B2/ja not_active Expired - Fee Related
- 2006-06-07 DE DE112006000597T patent/DE112006000597B4/de not_active Expired - Fee Related
- 2006-06-07 DE DE112006004269T patent/DE112006004269A5/de not_active Withdrawn
- 2006-06-07 KR KR1020077021401A patent/KR100925013B1/ko active IP Right Grant
- 2006-06-07 CN CN2011101452515A patent/CN102324301B/zh not_active Expired - Fee Related
-
2010
- 2010-07-22 JP JP2010165378A patent/JP5240622B2/ja active Active
- 2010-07-22 JP JP2010165376A patent/JP5240620B2/ja active Active
- 2010-07-22 JP JP2010165377A patent/JP5240621B2/ja not_active Expired - Fee Related
-
2012
- 2012-03-13 US US13/419,196 patent/US8617740B2/en not_active Expired - Fee Related
- 2012-10-29 JP JP2012237855A patent/JP5382891B2/ja not_active Expired - Fee Related
- 2012-10-29 JP JP2012237856A patent/JP2013034005A/ja active Pending
-
2013
- 2013-01-24 JP JP2013011146A patent/JP5305211B2/ja not_active Expired - Fee Related
- 2013-08-06 JP JP2013163467A patent/JP5553322B2/ja not_active Expired - Fee Related
- 2013-08-22 DE DE112006004268T patent/DE112006004268A5/de not_active Withdrawn
- 2013-11-27 US US14/092,369 patent/US9966201B2/en not_active Expired - Fee Related
- 2013-11-27 US US14/092,299 patent/US9502186B2/en active Active
-
2014
- 2014-04-10 JP JP2014080894A patent/JP2014160845A/ja not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4916576A (en) * | 1989-02-27 | 1990-04-10 | Fmtt, Inc. | Matrix capacitor |
DE19851571A1 (de) * | 1997-11-10 | 1999-05-12 | Asahi Glass Co Ltd | Elektrischer Doppelschichtkondensator |
JP2001216952A (ja) * | 2000-02-04 | 2001-08-10 | Seiko Instruments Inc | 非水電解質電池および電気二重層キャパシタ |
US6445566B2 (en) * | 2000-02-04 | 2002-09-03 | Seiko Instruments Inc. | Power source element |
US6529365B1 (en) * | 2001-09-28 | 2003-03-04 | Intel Corporation | Multiple terminal SMT BGA-style wound capacitor |
US20050037258A1 (en) * | 2003-06-29 | 2005-02-17 | Hironobu Itoh | Electrochemical cell and fabrication method of the same |
EP1553649A2 (de) * | 2003-12-25 | 2005-07-13 | SII Micro Parts Ltd. | Elektrochemische Zelle |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112006000597B4 (de) | Elektrochemische Zelle | |
JP4773133B2 (ja) | 電気二重層キャパシタまたは二次電池 | |
DE102012204613A1 (de) | Negative Flüssigmetallelektrode für Lithiumionenbatterien | |
DE3816778A1 (de) | Sekundaerelement mit nichtwaessrigem elektrolyten | |
DE102008000024A1 (de) | Abgesicherte Elektrolytkondensator-Anordnung | |
DE112014000883T5 (de) | Kondensator mit geringem äquivalenten Serienwiderstand | |
DE69418958T2 (de) | Elektrochemische Vorrichtungen enthaltend Lithiumnitrid-Metalverbindungen in mindestens einer Elektrode eines Elektrodenpaares | |
DE102005009508A1 (de) | Oberflächenmontierbarer Flipchip-Kondensator | |
WO2022111932A1 (de) | Energiespeicherelement mit prismatischem gehäuse | |
DE1953359A1 (de) | Elektrolytkondensator | |
DE69008833T2 (de) | Festelektrolytkondensator und Verfahren zu seiner Herstellung. | |
DE102016217383A1 (de) | Verfahren zur Herstellung von Elektroden mit verbesserter Stromsammlerstruktur | |
DE102008012595A1 (de) | Festelektrolytkondensator | |
DE112012000858T5 (de) | Elektrode für elektrochemisches Element | |
DE102018221983B4 (de) | Verfahren zur Herstellung einer Elektrolytschicht auf einer Kathodenschicht und diese enthaltende Batteriezelle | |
DE202023102874U1 (de) | Gehäuseteil mit elektrischer Durchführung für eine elektrische Einrichtung und Energiespeicher mit einem solchen Gehäuseteil | |
DE102022101390A1 (de) | Elektrische Durchführung und Energiespeicher mit einer solchen Durchführung | |
EP4333165A2 (de) | Energiespeicherelement, deckelbaugruppe und herstellungsverfahren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8127 | New person/name/address of the applicant |
Owner name: SEIKO INSTRUMENTS INC., CHIBA, JP |
|
R016 | Response to examination communication | ||
R079 | Amendment of ipc main class |
Free format text: PREVIOUS MAIN CLASS: H01G0009016000 Ipc: H01G0011660000 |
|
R079 | Amendment of ipc main class |
Free format text: PREVIOUS MAIN CLASS: H01G0009016000 Ipc: H01G0011660000 Effective date: 20130311 |
|
R018 | Grant decision by examination section/examining division | ||
R130 | Divisional application to |
Ref document number: 112006004269 Country of ref document: DE Effective date: 20130613 Ref document number: 112006004268 Country of ref document: DE Effective date: 20130613 |
|
R020 | Patent grant now final |
Effective date: 20131213 |
|
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |