JP5294410B2 - 電気化学セル、およびその製造方法 - Google Patents

電気化学セル、およびその製造方法 Download PDF

Info

Publication number
JP5294410B2
JP5294410B2 JP2009065075A JP2009065075A JP5294410B2 JP 5294410 B2 JP5294410 B2 JP 5294410B2 JP 2009065075 A JP2009065075 A JP 2009065075A JP 2009065075 A JP2009065075 A JP 2009065075A JP 5294410 B2 JP5294410 B2 JP 5294410B2
Authority
JP
Japan
Prior art keywords
electrochemical cell
hole
active material
glass substrate
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009065075A
Other languages
English (en)
Other versions
JP2009278068A (ja
Inventor
宏明 植竹
英晴 小野寺
三塚  輝
俊二 渡邊
澄彦 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2009065075A priority Critical patent/JP5294410B2/ja
Publication of JP2009278068A publication Critical patent/JP2009278068A/ja
Application granted granted Critical
Publication of JP5294410B2 publication Critical patent/JP5294410B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、寸法精度が高く、コストダウンを図ることができる電気化学セル、およびその製造方法に関する。
例えば、電気2重層キャパシタ等のような電気化学セルは、メモリのバックアップ用として携帯機器に用いられている。そのパッケージは、金属製の正極缶と負極缶を樹脂製ガスケットにより勘合封止するコイン型や、アルミシートを重ね合わせて封止するラミネート型が慣用されている。また、最近、リフロー処理によって基板に実装可能な低背型のセラミックパッケージが提案されている(例えば、特許文献1を参照。)。この文献記載の技術では、正極負極として用いる活物質と電解質とそれらを収納する容器からなる。図25に示すように、収納する容器を凹状容器101と封口板102で構成し、容器内部に位置する第一および第二の集電体を、凹状容器101の外側底面部や側面に位置する接続端子103、接続端子104に電気的に接続する。そして、接続端子103および接続端子104が、収納容器と一体化された構造となっている。
特開2001−216952号公報(図1)
この特許文献1に記載されているように、セラミックを用いてベースになる容器を構成する場合は、底板になる平板と、凹部を構成するように中心がくり抜かれた平板とを重ね合わせて用いる。従って、両者を重ね合わせるために1000℃を越える温度で焼成するので、セラミックの板の枠部周辺が大きく熱収縮する。このため、セラミック板に多数のベースを配置して取り個数を上げようとしても、セラミック板の枠部周辺の寸法精度が悪化し、結果として歩留まりが悪くなる。
また、底板になる平板と、凹部を構成する中心がくり抜かれた平板とを積層することから、両者の板の界面の気密性に課題が内在している。
また、特許文献1の段落〔0019〕においては、凹状容器として耐熱樹脂、ガラス、セラミックスまたはセラミックスガラス等の耐熱材料がよいことが開示されている。しかしながら、このようなパッケージ用のガラス材料を用いての電気化学セルの製造方法については具体的な記載はない。
本発明は、上記問題点を解決するためになされたものであって、その目的は、ガラスのベースを用いて、寸法精度が高く、コストダウンを図ることができる電気化学セル、およびその製造方法を提供することにある。
上記問題点を解決するために、請求項1に記載の発明は、ガラスからなるベースと、前記ベースに接合されるリッドとからなる電気化学セルの製造方法であって、ガラス基板上面に、底部に貫通孔を設けた凹部を備える複数のベースを形成するベース形成処理工程と、前記貫通孔に充填材を収容する充填工程と、前記凹部の底部に第1活物質を配置し、この第1活物質の上方にセパレータ及び第2活物質を積層させて配置する組み込み処理工程と、前記貫通孔の前記充填材に対して、前記ガラス基板の裏面に第1電極を形成し、前記
第2活物質に接続された第2電極を前記ガラス基板の裏面に形成する電極形成処理工程と、前記凹部内の第1活物質、セパレータ、第2活物質及び電解液を封入するリッドを、前記第2活物質を押圧しながら前記凹部の外縁部に接合するリッド接合処理工程と、前記ガラス基板から各ベースを切り出す切断処理工程とを含むことを要旨とする。
請求項2に記載の発明は、請求項1に記載の電気化学セルの製造方法において、前記ベース形成処理工程は、底部に貫通孔を備える凹部を形成するための上下の型をプレスする成型加工を用いることを要旨とする。
請求項3に記載の発明は、請求項1に記載の電気化学セルの製造方法において、前記ベース形成処理工程は、前記凹部を形成するためのマスク材を配置した第1サンドブラスト加工と、前記貫通孔を形成するためのマスク材を配置した第2サンドブラスト加工を用いることを要旨とする。
請求項4に記載の発明は、請求項3に記載の電気化学セルの製造方法において、前記第2サンドブラスト加工は、前記ガラス基板の裏面にマスク材を配置し、この裏面から行なうことを要旨とする。
請求項5に記載の発明は、請求項1〜4のいずれか1つに記載の電気化学セルの製造方法において、前記リッドを導電性材料を用いて構成し、前記第2電極を形成する工程は、前記ガラス基板において、前記リッドを接合する外縁部から裏面に達する貫通孔を形成し、前記貫通孔の内壁に、前記外縁部から、前記第2電極に達する導電性材料を形成する工程を含むことを要旨とする。
請求項6に記載の発明は、請求項1〜4のいずれか1つに記載の電気化学セルの製造方法において、前記第2電極を形成する工程は、前記凹部の底部に第2の貫通孔を設け、前記第2の貫通孔に導電性材料を埋め込み、前記第2活物質に接続する工程を含むことを要旨とする。
請求項7に記載の発明は、請求項1〜6のいずれか1つに記載の電気化学セルの製造方法において、前記充填工程は、前記貫通孔に導電性材料を充填することを要旨とする。
請求項8に記載の発明は、請求項1〜6のいずれか1項に記載の電気化学セルの製造方法において、前記充填工程は、前記貫通孔の内側面を含む成膜領域に、導電性材料からなる薄膜を形成し、当該貫通孔に絶縁性材料又は導電性材料を充填することを要旨とする。
請求項9に記載の発明は、請求項8に記載の電気化学セルの製造方法において、前記薄膜を、前記電解液に対して耐食性を有する材料から形成し、当該薄膜が形成された前記貫通孔に対しガラスペーストを充填して、当該ガラスペーストを焼成させることを要旨とする。
請求項10に記載の発明は、請求項8又は9に記載の電気化学セルの製造方法において、前記リッドを接合する前記凹部の前記外縁部に、メタライズ層を形成するメタライズ処理工程をさらに備え、前記薄膜は、前記メタライズ層と同じ材料からなり、前記メタライズ処理工程と同時に形成されることを要旨とする。
請求項11に記載の発明は、請求項8〜10のいずれか1項に記載の電気化学セルの製造方法において、前記薄膜を形成した前記貫通孔に、金属片を配置し、当該金属片を溶融することにより前記貫通孔に金属を充填することを要旨とする。
請求項12に記載の発明は、請求項1〜6のいずれか1つに記載の電気化学セルの製造
方法において、前記リッドを前記凹部の外縁部に接合した後で、前記リッドに設けられた注入孔から電解液を注入し、前記注入孔を封止する工程を含むことを要旨とする。
請求項13に記載の電気化学セル単層のガラス基板からなり、凹部及び該凹部の底面から前記ガラス基板の底面に達する貫通孔が、上下の型を用いた成形加工又はマスク材を介したサンドブラスト加工により形成されたベースと、前記貫通孔に設けられた充填材と、前記凹部の底部に配置された第1活物質と、前記第1活物質の上方に、セパレータを介して配置された第2活物質と、前記貫通孔の前記充填材に対して、前記ガラス基板の裏面に形成された第1電極と、前記ガラス基板の裏面に形成され、前記第2活物質に接続された第2電極とを備え、記凹部内の第1活物質、前記セパレータ、前記第2活物質及び電解液を封入し、前記凹部の外縁部に接合するリッドとを備えことを要旨とする。
請求項14に記載の発明は、請求項13に記載の電気化学セルにおいて、前記貫通孔に銀ペースト及びガラスフリットの混合物が充填されたことを要旨とする。
請求項15に記載の発明は、請求項13に記載の電気化学セルにおいて、前記貫通孔の内側面を含む成膜領域に導電性材料からなる薄膜が形成され、前記貫通孔にガラスペーストが充填されたことを要旨とする。
請求項16に記載の発明は、請求項13に記載の電気化学セルにおいて、前記貫通孔の内側面を含む成膜領域に導電性材料からなる薄膜が形成され、前記貫通孔に金系合金材料又はアルミニウムが充填されたことを要旨とする。
(作用)
請求項1に記載の発明によれば、ガラス基板上面に、底部に貫通孔を設けた凹部を備える複数のベースを形成し、貫通孔に導電性材料を埋め込む。次に、凹部の底部に接した第1活物質を配置し、この第1活物質の上方にセパレータ及び第2活物質を積層させて配置し、貫通孔に埋め込まれた導電性材料に対して、ガラス基板の裏面に第1電極を形成し、第2活物質に接続された第2電極を形成する。次に、凹部内の第1活物質、セパレータ、第2活物質及び電解液を封入するリッドを、第2活物質を押圧しながら凹部の外縁部に接合する。そして、ガラス基板から各ベースを切り出す。このため、ガラス基板は加工が容易であるため、寸法精度を確保し、一枚のガラス基板から、複数のセルを一括して製造することができる。従って、ガラス基板からセルの取り個数を多くすることができ、量産化を図ることができる。
請求項2に記載の発明によれば、ベース形成工程は、底部に貫通孔を備える凹部を形成するための上下型をプレスする成型加工を用いる。成形加工は、ガラスを軟化点以上の温度に加熱して、型を用いて所望の加工形状に成形する技術である。従って、型を適切に加工することで、貫通孔を備える凹部が1回の成形加工で形成できる。そして、複数の貫通孔を備える凹部も1回の成形加工で可能である。これにより、ガラス基板上に複数のベースを一括して効率よく製造することができる。
請求項3に記載の発明によれば、ベース形成工程は、凹部を形成するためのマスク材を配置した第1サンドブラスト加工と、貫通孔を形成するためのマスク材を配置した第2サンドブラスト加工を用いる。サンドブラスト加工は、ガラス基板にマスク材料を貼り付けた後に、リソグラフィ技術でマスクをパターニングし、砥粒を噴射し、マスクの開口部のガラスを砥粒の衝撃作用で加工する。このため、サンドブラスト加工を用いて、ガラス基板上に複数のベースを製造することができる。特に、サンドブラスト加工の場合には、ガラス基板に高温を加える必要がないので、ガラス基板全面に亘って、より寸法精度を向上させることができる。更に、各ベースを切り出すまで、各ベースを繋ぐガラス基板を元の厚みを維持できるため、各工程におけるガラス基板の破損を抑制することができる。
請求項4に記載の発明によれば、第2サンドブラスト加工は、ガラス基板の裏面にマスク材を配置して、裏面から行なう。サンドブラスト加工においては、加工面側が断面積が広くなりため、凹部の底面の貫通孔の形状を、ガラス基板の裏面側で広くなり形状を実現することができる。
請求項5に記載の発明によれば、ガラス基板において、リッドを接合する外縁部から裏面に達する貫通孔を形成する。そして、貫通孔の内壁に外縁部から、ガラス基板の裏面に形成された第2電極に達する導電性材料を形成する。このため、ベースの側面に第2電極に達する電気的接続を設けることができる。
請求項6に記載の発明によれば、凹部の底部に第2の貫通孔を設け、第2の貫通孔に、
導電性材料を埋め込み、第2活物質に接続する。このため、ベースの底面に第2電極に達する電気的接続を設けることができる。
請求項7に記載の発明によれば、充填工程において、貫通孔に導電性材料を充填することにより、第1電極と第1活物質とを電気的に接続することができる。
請求項8に記載の発明によれば、貫通孔の内側面を含む成膜領域に、導電性材料からなる薄膜を形成し、貫通孔に絶縁性材料又は導電性材料を充填するので、薄膜により第1電極と第1活物質とを電気的に接続される。このため、貫通孔に充填する材料の自由度を高めることができる。
請求項9に記載の発明によれば、薄膜は、電解液に対して耐食性を有する材料から形成され、貫通孔にはガラスペーストを焼成したものが充填される。このため、薄膜の電解液による腐食を防止し、且つ焼成したガラスペーストにより貫通孔の気密性を高めることができる。
請求項10に記載の発明によれば、薄膜は、メタライズ層と同じ材料からなり、メタライズ処理工程において同時に形成されるので製造工程を簡略化することができる。
請求項11に記載の発明によれば、貫通孔に金属片を配置し、金属片を溶融することにより貫通孔に金属を充填する。このため、第1活物質と第1電極との電気的接続を良好にすることができる。また、金属片を溶融することで貫通孔に金属を充填するので、充填工程を簡略化することができる。
請求項12に記載の発明によれば、リッドを凹部の外縁部に接合した後で、リッドに設けられた注入孔から電解液を注入し、注入孔を封止する。これにより、電解液を意識することなく、リッドの接合を確実に行なうことができる。
請求項13に記載の発明によればベースは、加工が容易なガラス基板から形成することができるため、寸法精度を確保するとともに、一枚のガラス基板から、複数のセルを一括して製造することができる。従って、ガラス基板からセルの取り個数を多くすることができ、量産化を図ることができる。またベースは単層のガラス基板からなり、凹部や貫通孔は該ガラス基板を成形加工又はサンドブラスト加工することにより形成されているため、複数の平板が積層されたベースに比べ、ベース自体の気密性を向上することができる。
請求項14に記載の発明によれば、銀ペースト及びガラスフリットの混合物を介して第1活物質及び第1電極とを電気的に接続できる。
請求項15に記載の発明によれば、導電性を有する薄膜によって第1活物質及び第1電極を電気的に接続できるので、貫通孔に充填される充填材の材料の自由度を高めることができる。また充填材をガラスから形成することができるので貫通孔の気密性を高めることができる。
請求項16に記載の発明によれば、導電性を有する薄膜によって第1活物質及び第1電極を電気的に接続できるので、貫通孔に充填される充填材の材料の自由度を高めることができる。また充填材を金系合金材料又はアルミニウムから形成することができるので、電気抵抗値を著しく低下させることができる。
本発明によれば、ガラスのベースを用いて、寸法精度が高く、コストダウンを図ることができる電気化学セルを製造することができる。
第1実施形態における電気化学セルの構造の説明図であって、(a)は斜視図、(b)は底面図、(c)は断面図。 第1実施形態における電気化学セルの製造方法のフローチャートの説明図。 第1実施形態における電気化学セルの製造方法のフローチャートの説明図。 第1実施形態における電気化学セルの製造工程の説明図であって、(a)は形加工の型の説明図、(b)は成形加工されたガラス基板の上面図、(c)は成形加工されたガラス基板の断面図、(d)は斜視図。 第1実施形態における電気化学セルの製造工程の説明図であって、(a)はメタライズ工程、(b)は金属リングのロウ付け、(c)はフィードスルーへの埋め込みの説明図。 第1実施形態における電気化学セルの製造工程の説明図であって、(a)は活物質の組込み、(b)はリッドの溶接、(c)はワークと切断線の関係の説明図。 第2実施形態における電気化学セルの構造の説明図であって、(a)は斜視図、(b)は断面図。 第2実施形態における電気化学セルの製造方法のフローチャートの説明図。 第2実施形態における電気化学セルの製造工程の説明図であって、(a)はマスク材の形成、(b)はパターニングによる開口、(c)はサンドブラスト加工、(d)は凹部の形成、(e)は裏面のマスク材の形成、(f)はフィードスルーの形成、(g)はマスク剥離の説明図、(h)はベースの斜視図。 第2実施形態における電気化学セルの製造工程の説明図であって、(a)はベースの斜視図、(b)はワークの上面図、(c)はメタライズ、(d)は金属リングの接合の説明図。 第3実施形態における電気化学セルの断面図。 第4実施形態における電気化学セルの断面図。 第5実施形態における電気化学セルの断面図。 第5実施形態における貫通電極を形成する工程の説明図。 第5実施形態における貫通電極を形成する工程の説明図。 別例のガラス基板の説明図。 他の実施形態における電気化学セルの説明図であって、(a)は成型加工されたベースに折り畳み構造の電極活物質を封入した電気化学セル、(b)はサンドブラスト加工されたベースに折り畳み構造の電極活物質を封入した電気化学セル、(c)は2つのフィードスルーを底面に設けた電気化学セルの説明図。 他の実施形態における電気化学セルの製造方法の説明図。 他の実施形態における電気化学セルの説明図であって、(a)は外部電極に樹脂を設けた構造、(b)は改良された電極構造の説明図。 他の実施形態における電気化学セルの説明図であって、(a)は電気化学セルの間隔を狭くして配置した場合の課題、(b)は断面図、(c)は上面図。 他の実施形態における電気化学セルの製造方法の説明図。 他の実施形態における電気化学セルの製造工程の説明図であって、(a)は金属性リングの接合、(b)はマスク材の形成、(c)はサンドブラスト加工の説明図。 他の実施形態における電気化学セルの製造方法の説明図。 他の実施形態における電気化学セルの製造工程の説明図であって、(a)はメタライズ、(b)はマスク材の形成の説明図。 従来の電気化学セルの説明図。
(第1実施形態)
以下、本発明を具体化した電気化学セルとしての電気2重層キャパシタに関する第1実施形態について、図1〜図6を用いて説明する。本実施形態では、電気2重層キャパシタを成形加工によって製造する場合を想定する。
〔電気化学セルの構成〕
まず、本発明の成形加工によって製造された電気化学セルCL1を図1に従って説明する。
図1(a)は、代表的な小型のセルとして電気化学セルCL1の外観の斜視図を示している。長手方向の寸法は約3mmから10mm程度、短辺方向の寸法は約2mmから8mm程度、高さは約1mmである。
この電気化学セルCL1は、表面実装用のパッケージになっている。
この電気化学セルCL1は、ガラスによって構成されたベース10の上面10aにはメ
タライズ層12が設けられている。そして、このメタライズ層12の上に金属リング13が配置され、その金属リングにリッド11が接合されている。電気化学セルCL1のベース10の一側面には凹部からなるフィードスルーFT1が設けられており、このフィードスルーFT1には引出金属皮膜17が配置されている。
図1(b)は、電気化学セルCL1の底面10cを示している。この底面10cには外部電極(18,19)が設けられている。この電気化学セルCL1の一方の電極は、リッド11、金属リング13、メタライズ層12、引出金属皮膜17を介して、底面10cの第2電極(外部電極18)に接続されている。また、他方の電極は、後述するように、ベース10の凹部の底面に設けられたフィードスルーを介して第1電極(外部電極19)に接続されている。
図1(c)は、切断線Aにおける断面図を示している。ベースには凹部(キャビティ)が設けられており、その中に電極活物質が配置されている。具体的には、正極活物質20とセパレータ21と負極活物質22が積層された状態で配置されている。凹部内には電解液(図示せず)が充填されている。凹部内の底面には、ベース10の底面10cに達するフィードスルーFT2が設けられている。本実施形態では、フィードスルーFT2は、凹部の側面に接する位置に、凹部の側面を延長して設けられている。これは、型作成の簡易化、離型する際の簡易化のためである。
このフィードスルーFT2の内部には導電性の材料により埋込部15が形成されている。埋込部15は、底面10cに設けられたもう一方の外部電極19に電気的に接続されている。
正極活物質20は、導電性接着剤などによる活物質接続部20aと保護膜20bを経て、充填材としての埋込部15に電気的に接続されている。なお、保護膜20bは、埋込部の材料が電気化学的な腐食を引き起こさないアルミニウム(Al)等を用いる場合には不要である。
また、負極活物質22は、導電性接着剤などによる活物質接続部22aを経てリッド11の内面に接続されている。リッド11は、メタライズ層12、金属リング13、金属皮膜14により、ベース10に接着されている。これにより、リッド11は、電極活物質層を押圧して組立てられており、電気化学セルCL1の内部抵抗の増加を抑制している。
図1(c)に示すように、ベース10の側面10bは、上面10aを傾斜して交わる傾斜側面部10b1と、底面10cと直交する直交側面部10b2とから構成されている。本実施形態では、傾斜側面部10b1は、直交側面部10b2の面に対して約20度の角度で後退している。この傾斜側面部10b1は、成形加工に特有なものであり、後述する成形加工を円滑に進めるために設けられている。
〔電気化学セルCL1の製造方法〕
次に、電気化学セルCL1の製造方法を、図2〜図6に従って説明する。
〔ベース及びリッドの製造〕
ここでは、フローチャート(図2)と、工程図(図4、図5)を参照して説明する。
まず、ベース10を形成するガラス基板GPを準備する(ステップS101)。ここでは、ガラスの材料としてソーダライムガラス或は結晶化ガラスを用いることができる。ソーダライムガラスの主成分は、珪砂(SiO)、炭酸ナトリウム、炭酸カルシウムであり、その熱膨張係数は約8.5ppmから9.0ppmである。一方、結晶化ガラスの主成分は、珪砂、ホウ砂(B)、ソーダ灰、酸化アルミニウムなどであり、その熱膨
張率は約3.25ppmである。結晶化ガラスはパイレックス(登録商標)、テンパックス(登録商標)などの商品名で呼ばれている。そして、使用するガラスに応じて後の工程温度の設定と材料の選択が必要になる。
次に、ベース形成処理工程として、ガラス基板GPに複数個の凹部の成形加工を行なう(ステップS102)。この成形加工には、図4(a)に示す上型50及び下型51を用いる。上型50には、ベース10の底面10cにフィードスルーFT2を形成するための凸部、底面10cを形成するための平坦部、側面10bを形成するための凹部が設けられている。また。下型51には、底面10cを形成するための平坦部に対して、上型50のフィードスルーFT2を形成するための凸部に対応する凹部が設けられている。ここで、上型50及び下型51の凹凸部には、約20度の傾斜を与えている。
上下の型(50,51)には、加熱部52が内蔵されており、型を所定の温度に維持する。そして、上型50及び下型51をガラスの軟化点以上の温度にする。準備したガラス基板GPを、上型50及び下型51の間にセットし、プレスして成形加工を行なう。
次に、成型加工されたガラス基板GP1を研磨加工を行なう(ステップS103)。型(50,51)をワークから離した場合、ガラス基板GP1の加工面は梨地になるので、ガラスの両面のラップ加工及びポリッシュ加工を行なう。
図4(b)は研磨後のガラス基板GP1の上面図、図4(c)は切断線Bにおける断面図を示している。ガラス基板GP1には、底部GP11と凸部GP12と、凹部(GP13,GP14)を1組とした多数組のベースが配置される。底部GP11と凸部GP12は、ベース10のキャビティを構成し、凹部(GP13,GP14)はそれぞれフィードスルー(FT1,FT2)を構成する。ここで、凹凸部には約20度の傾斜が与えられているので、離型の際にも型を円滑にワークから離すことができる。図4(d)に、加工後のガラス基板の外観を示す。
次に、リッドとの接合面のメタライズ処理を行なう(ステップS104)。具体的には、金属製のリングを配置する前に、該当箇所のガラス表面にメタライズを行なう。具体的には、Cr(クロム)、Pd(パラジウム)、Ni(ニッケル)、Cu(銅)などからなる積層膜を成膜した後、電解メッキを行なう該当箇所に積層膜を残すパターニングを行なう。パターニング後に、Cuメッキ、Niメッキ、Au(金)メッキを、それぞれ約0.1μmから10μmの範囲で付ける。これを図5(a)に示す。メタライズ層M1は、後工程で金属リングを配置する領域である。メタライズ層M2はガラス基板の外枠に付けたメタライズ領域、メタライズ層M3は各メタライズ層を接続するためのメタライズ領域である。無電解メッキを用いる場合には、メタライズ層(M2,M3)は不要である。また、メタライズ領域は、凹部の側面と凹部の底面が除かれていれば、ガラスの片側全面であってもよい。
一方で、以下に詳述するように、金属リングの準備とベースへのロウ付けを行なう。具体的には、ガラス基板GP1のメタライズ層の上に、リッドを溶接して封止構造を実現するための金属製のリング(シームリング)をロウ付けする。
ここでは、まず、金属リング用材料の準備を行なう(ステップS105)。具体的には、以下に示すように、金属リングの材料は、母材のガラスと熱膨張係数が近似するように選択する。
・ソーダライムガラスの場合(熱膨張係数:8.5〜9ppm)
金属リング:FeNi合金(Ni50%)(熱膨張係数:9.4〜10ppm)
リッド:FeNi合金(金属リングに同じ)(熱膨張係数:9.4〜10ppm)
・結晶化ガラス(熱膨張係数:3.25ppm)
金属リング:FeNiCo合金(コバール)(熱膨張係数:3.0〜4.0ppm)
リッド:FeNiCo合金(コバール)(熱膨張係数:3.0〜4.0ppm)
これによれば、ガラス基板としてソーダライムガラスを用いる場合は、ガラスの熱膨張率が近似するFeNi合金を選定する。一方、結晶化ガラスを用いる場合は、FeNiCo合金(コバール)を選定する。なお、リッドの材料も、金属リングと同一のものを採用する。
これら金属リングをメタライズ層にロウ付けするロウ材料としては、容器として気密性が要求されることから、真空気密封止用のものが望ましい。結晶化ガラスを用いる場合は、セラミックパッケージ用として採用されるBAg−8(銅銀合金で重量比がAg:Cu=72:28)を用いることができる。この材料の溶融温度は約780℃である。
一方、ソーダライムガラスを用いる場合には、BAg−18(銅銀錫合金で重量比がAg:Cu:Sn=60:30:10)或いは銅銀インジウム合金(Ag:Cu:In=61.5:24:14.5)である。溶融温度は、より低温になり600℃から720℃の範囲である。なお、BAg−18を結晶化ガラスに用いることも可能である。
そして、金属リング用材料について、抜き加工処理(ステップS106)、研磨加工処理(ステップS107)を行なう。具体的には、ベース10の上面10aの大きさになるように加工してリング状金属13aを形成する。また、ロウ材も、金属リング13と同じ形状に打ち抜いて、リング状ロウ材13bを形成する。
次に、ロウ材の貼り付けを行なう(ステップS108)。具体的には、図5(b)に示すように、リング状ロウ材13bをリング状金属13aのメタライズ層側に貼り付ける。これにより、金属リング13が形成される。
次に、金属リングの接合を行なう(ステップS109)。具体的には、金属リング13をベース10の上面10aに接合する。
次に、金属皮膜の形成を行なう(ステップS110)。具体的には、金属リングの表面にさらにNiと金メッキを施す。本実施形態では、ニッケル(Ni)を2〜8μm、金(Au)を0.1μmから1μmの厚みで形成した。これにより、リッドが溶接される際には、リッド面に形成されたNiメッキと、本工程で形成されたNiメッキとAuメッキとが溶融して強固な合金層を形成する。
次に、充填工程として、貫通電極の形成を行なう(ステップS111)。ここでは、凹部内のフィードスルーFT2に、電極活物質の一方の極からベース10の底面10cに電気的に接続するために、貫通電極を形成する。具体的には、凹部に形成されたフィードスルーFT2に銀ペーストとガラスフリットを混合し、図5(c)に示すように、スクリーン印刷法により埋め込んで形成する。この図5(c)では、1つのベースのみが示されている。ガラス基板の裏面側にスクリーン印刷用のマスク25を配置し、凹部底面側には、埋込用材料23の回り込みを防止する治具26がセットされている。スクレッパ(図示せず)により埋込用材料23を金属マスク面に広げた後、スキージ24によりマスク25の表面を掻きとって、マスク25が開口している埋込部15に埋込用材料23を充填する。
また、ガラスフリットは、無機酸化物の粉末であり、例えば酸化ホウ素(B)、二酸化珪素(SiO)、酸化ビスマス(Bi)等を主成分とし、これに適当なバインダを含有させたものである。銀粉とガラスフリットとの比率は、例えば、重量比で、銀粉:ガラスフリット=10:90とすることができる。
なお、本工程を真空中で行なうことにより、埋込部15への気泡の含有を抑制することができる。また、スクリーン印刷の後に、所定の温度で乾燥作業を行なう。この際に、埋込用材料が収縮するので、印刷と乾燥とを複数回繰り返すことが望ましい。
これにより貫通電極の表裏の抵抗値は数Ωとなる。電気化学セルを数μAの電流を流すバックアップ用として用いる場合は実用上十分である。更に、抵抗値を下げる場合には、フィードスルーFT2の内面に下地用の金属箔膜を形成した後に銀ペーストとガラスフリットを用いて埋め込む方法や、フィードスルー内に金属の細線(ジメット線など)を埋め込んでガラスフリットで焼き固める方法が好ましい。両者の場合とも、抵抗値は数十mΩで形成できる。これにより、電気化学セルを例えば携帯機器の写真用LEDフラッシュとして、数Aの放電電流をパルス状に流す用途で使用する場合においても、抵抗値に起因する電圧降下を十分に抑制することができる。
次に、引出金属皮膜の形成を行なう(ステップS112)。もう一方の電極となる部分は、ベースのメタライズ層M1からベース10の側面に形成されているフィードスルーFT1の内面に形成された引出金属皮膜17によってベース底面に延接される。フィードスルーFT1内面には、スパッタ法や蒸着法などの成膜形成方法で、金属皮膜を形成する。なお、この引出金属皮膜17の形成は、メタライズ膜の形成処理(ステップS104)時に同時に行なうこともできる。
次に、電極形成処理工程として外部電極の形成を行なう(ステップS113)。ここでは、ベース10の底面10cに、対向した1対の外部電極18、19を形成する。外部電極は、それぞれ貫通電極(フィードスルーFT2)及びフィードスルーFT1内面に形成された引出金属皮膜に電気的に接続される。外部電極用の膜の形成は、ベース10の底面10cに金属箔膜を薄膜形成手段で成膜した後に、リソグラフィでパターニングする手法や、金属マスクを用いて必要な部分のみに薄膜を形成する方法等を用いることが可能である。必要に応じて、薄膜後に、さらにNiメッキや銅(Cu)メッキ等をすることがより好ましい。このような構成により、プリント板への再はんだ付けも可能となる。
次に、保護膜の形成を行なう(ステップS114)。凹部内のフィードスルーFT2に形成された埋込部15は、後の工程で電極活物質に電気的に接続される。このため、電気化学セルの正極側に接続される場合は、腐食が発生しない材料を保護膜として選定することが望ましい。埋込部15において、前述したように銀を用いる場合は、銀が電解液に直接に接触しないように、埋込部15の凹部内露出面上にアルミニウム膜を成膜する。実験の結果、数十μmのアルミニウム膜を形成するのが好ましいことが判明した。
以上の工程により、ベースを複数形成したガラス基板が完成する。
〔電気化学セルの組立工程〕
前述した工程により形成したガラス基板を用いて、電気化学セルCL1の組立工程(組み込み処理工程)を行なう。この組立工程は、このガラス基板GP1の状態で、図3に示すフローチャートの各工程を実施する。
まず、リッドの準備を行なう(ステップS201)。ここで、リッド11の材料は、上述したように金属リング13の熱膨張係数に合わせて選定する。本実施形態では、ガラス基板GP1がソーダライムガラスの場合は、金属リングとしてFeNi合金を選択する。ここでは、リッド11も金属リングと同一の材料を選択する。ガラス基板が結晶化ガラスの場合は、金属リング13としてFeNiCo合金を選択したが、リッド11も同一の材料を選択する。
次に、約100μm程度の薄板にした後、プレス等の機械的加工手段やエッチング等の化学的な加工手段で個片を形成する。
次に、切断した個片のバリを除去するために、バレル研磨を施す。その後、メッキをする。なお、メッキ後、銀クラッドを接合面側に貼り付けると、後の金属リング13との接合工程で溶接がより容易となる。このメッキは、Niメッキの他、銀錫メッキ、金錫メッキも可能である。
そして、負極活物質22の貼り付けを行なう(ステップS202)。具体的には、図6(a)に示すように、リッド11の内面に活物質接続部22aを用いて負極活物質22を貼り付ける。
一方、ベース10の凹部には、正極活物質20の組み込みを行なう(ステップS203)。具体的には、導電性接着剤等による活物質接続部20aを、凹部の底面に形成されている活物質接続部20aの表面に形成する。そして、正極活物質20を配置する。
次に、セパレータの組み込みを行なう(ステップS204)。具体的には、セパレータ21を正極活物質20の上を覆うように配置する。
この後、ベース10の凹部に電解液を適量注入し(ステップS205)、エージング処理を行なう(ステップS206)。具体的には、電解液を注入した後は、電極活物質との反応でガスが発生する場合がある。このような場合はガスの発生が収まるのを待つ。
次に、リッド接合処理工程としてリッドの接合を行なう(ステップS207)。ここでは、リッド11を金属リング13の表面の金属皮膜に密着させる。これにより、正極活物質20、セパレータ21、負極活物質22が積層される。
そして、2箇所ないし4箇所程度を溶接法などで仮留めを行ない、本溶接を行なう。本実施形態では、図6(b)に示すように、1対のローラー電極40を用いて、長辺方向及び短辺方向を平行に溶接するシーム溶接法を行なう。シーム溶接法では、金属リング13の表面の金属皮膜上に電解液が付着していても、発生する熱により付着電解液を蒸発させ、気密に封止することが可能である。また、本実施形態は、金属リングと母体になるベースのガラスとの熱膨張係数を近似するように材料を選定しているので、急激な熱応力の発生にも拘わらず、ガラス材料にクラック等の損傷を伴うことなく気密封止をすることができる。
次に、切断処理工程としてガラス基板の切断を行なう(ステップS208)。ガラス基板GP1には、行列状に複数の電気化学セルが形成されている。電気化学セルの寸法は、図6(c)に示すように、長辺の寸法を「L」、短辺の寸法を「W」とする。この場合、凸部GP12の外縁部に従って切断するため、縦方向の切断線(LV1,LV2、LV3,LV4等)、横方向は切断線(LH1,LH2,LH3,LH4等)を用いる。切断手段は、ダイサー等による切断のほか、レーザ等を併用して切断することも可能である。
そして、分割された電気化学セルCL1の電気特性等の検査を行なう(ステップS209)。具体的には、充放電特性、内部抵抗、外観検査等の検査を実施する。
本実施形態によれば、以下のような効果を得ることができる。
・ 本実施形態では、電気化学セルを構成するガラス基板について成形加工を行なう。ガラス基板は加工が容易であるため、型の精度がガラスに転写されるから、寸法精度のよい型を準備することにより、長期間、寸法精度の優れた成形加工品を得ることができる。そして、型を用いた成形加工であるため、一度の加工でガラス基板上に多数の凹部とフィードスルーを同時に、一括して形成することが可能である。
(第2実施形態)
以下、本発明を具体化した電気化学セルとしての電気2重層キャパシタに関する第2実施形態について、図7〜図10を用いて説明する。第2実施形態では、第1実施形態とは異なり、電気化学セルのベースになるガラス基板の加工を、サンドブラスト法を用いる。具体的には、平板のガラス基板に凹部とフィードスルーを設ける加工にサンドブラスト法を用いる。
〔電気化学セルの構成〕
サンドブラスト法により製造した電気化学セルCL2を図7に示す。
図7(a)は電気化学セルCL2の外観の斜視図を示している。図7(b)は、切断線Cにおける断面図を示しており、これらは第1実施形態の図1(a)及び(c)に対応するものである。第1実施形態と同様に、ガラス製のベース10の表面にメタライズ層12を設け、その上に金属リング13を配置して、その金属リング13にリッド11を溶接法により接合したものである。ベース10の凹部には、図7(b)に示すように、正極活物質20、セパレータ21、負極活物質22が配置され、電解液(図示せず)が注入されて電気化学セルCL2を成している。
図7(a)に示す電気化学セルCL2の外観と、図1(a)に示す電気化学セルCL1の外観を対比すると、図1(c)では、ベース10の側面10bには傾斜側面部10b1が設けて屈折しているが、図7(b)では、ベース10の側面は平面的で屈折していない。これは、成形加工においては、ガラス基板と型との離型を良くするために、約20度程度のテーパを設けているが、図7(b)の直線形状は、組立工程の中の切断工程で、ダイサー等でガラスが垂直に切断される際に形成されたものである。
また、図7(b)と図1(c)とでは、底面10cに形成されたフィードスルーFT2の位置が異なっている。図1(c)では、型作成の容易さ、離型する際の容易さを目的として、フィードスルーFT2の位置を、凹部の側面を延長して形成されている。しかし、本実施形態では、フィードスルーFT2は、底面10cに形成される外部電極19に接続する位置に制約されるだけで、比較的自由に配置することができる。
〔電気化学セルCL2の製造方法〕
次に、電気化学セルCL2の製造方法を、図8〜図10に従って説明する。本実施形態と第1実施形態とは、ベースの製造工程が異なるのみであるので、第1実施形態と同様の部分の説明は省略する。
ここでは、フローチャート(図8)と、工程図(図9、図10)を参照して説明する。なお、図9では、1個のセルの製造を説明している。
まず、ベース10を形成するガラス基板GPの準備を行なう(ステップS301)。図9(a)に示すように、このガラス基板GPの厚みを「T」とした場合、この厚みがベース10の厚みとなる。この厚みTの値としては、例えば0.7mm程度を選択することができる。
そして、ガラス表面のマスク材料によるパターニングを行なう(ステップS302)。具体的には、図9(a)に示すように、ガラス基板GPの表面にウレタン樹脂等のマスク材45を貼り付ける。そして、加工が必要な部分をリソグラフィ技術で開口する。具体的には、露光、現像、エッチングの一連の加工を行ない、パターニングを行なう。ここでは、図9(b)に示すように、ベース10の凹部になる領域のマスク材45に開口部45aを形成する。
次に、第1のサンドブラスト加工を行なう(ステップS303)。具体的には、図9(c)に示すように、ワークを加工する砥粒46をノズル(図示せず)から噴射し、開口部45aを加工する。砥粒としては、平均粒径が約5μmから40μmのアルミナや炭化珪素を用いる。この場合、ガラス材料は、砥粒の機械的な衝撃による擦過作用で削り取られ、エッチングされる。そして、噴射ノズルを、ガラス基板GP上を走査させることにより、大面積のガラス基板GPの加工を行なうことができる。図9(d)に示すように、サンドブラスト加工により形成された凹部の深さが約400μm程度になった時点で、加工を停止する。凹部の底面は、砥粒の照射により梨地になるが差し支えない。
次に、ガラス裏面のマスク材料によるパターニングを行なう(ステップS304)。ここでは、裏面からフィードスルーの加工を行なう。具体的には、まず、表面のマスク材45を剥離した後に、図9(e)に示すように、裏面に新たなマスク材45を貼付する。そして、このマスク材45に、フィードスルー(FT1、FT2)を形成するための開口部のパターニングを行なう。
次に、第2のサンドブラスト加工を行なう(ステップS305)。ここでも、砥粒46をノズルから噴射してフィードスルー用の孔を開けていく。そして、図9(f)に示すように、フィードスルーFT1用の孔が貫通した場合、ベース形成処理工程を終了する。
そして、マスクの剥離を行なう(ステップS306)。この場合、図9(g)に示すように、フィードスルー(FT1,FT2)の貫通孔が形成され、このガラス基板の斜視図を図9(h)に示す。図10(a)は、上記のサンドブラスト法により複数のベース10(図では4個)を加工した時点でのガラス基板GPを示す。図10(a)は、第1実施形態の図4(d)に対応するものである。第1実施形態の図4(d)では、凹部の厚みと同じ厚みを有する薄肉部がベース10の外部に形成されてガラス基板が薄くなる。一方、本実施形態の図10(a)では、ベースに相当する部分の外は、サンドブラスト加工前と同じ厚みTを有している。従って、後の工程においてもガラス基板GP2の厚みを厚いまま維持できるので、取り扱いが容易になる。
次に、接合面のメタライズを行なう(ステップS307)。図10(b)は、図10(a)のガラス基板GP2の上面図である。図10(b)の4つの凹部とフィードスルーFT1及びガラス基板GP2の周囲(枠部)に金属膜層を設けて電気的に接続させる。具体的には、第1実施形態と同様に、Cr、Pd、Ni、Cu等からなる積層膜をパターニングした後に、Cuメッキ、Niメッキ、Auメッキを、それぞれ約0.1μmから10μmの範囲で付ける。この結果、ガラス基板GP2には、図10(c)に示すようにメタライズ層(M1,M2,M3)が形成される。
そして、金属リング用材料の準備(ステップS308)、抜き加工(ステップS309)、研磨加工(ステップS310)、ロウ材の貼り付け(ステップS311)、金属リングの接合(ステップS312)は、第1実施形態のステップS105〜S108と同様に行なう。ここで、メタライズ層M1上に、金属リング13がロウ付けされた状態を図10(d)に示す。
この後、金属皮膜の形成(ステップS313)、貫通電極の形成(ステップS314)、引出金属皮膜の形成(ステップS315)、外部電極の形成(ステップS316)、保護膜の形成(ステップS317)については、第1実施形態と同様に行なう。ただし、本実施形態では、フィードスルーFT1の開口部がベース10の底面側にある。このため、引出金属皮膜の形成については、フィードスルーFT1の開口径の大きい底面側から成膜した後に、先の金属リング13のメタライズ層M1に電気的な接続が確実に行なわれるように、メタライズ層M1側からも補助的に成膜するか、導電性材料で接続を補うのが望ま
しい。
以下、リッド11の製造工程及び電気化学セルの組立工程も、第1実施形態と同様に行なう。
本実施形態によれば、以下のような効果を得ることができる。
・ 本実施形態では、サンドブラスト法は、研磨砥粒を機械的に照射して部材を破断させて削り取る。これにより、第1実施形態の成形加工のようにガラス基板に高温を加える必要がない。従って、第1実施形態のようにガラスと型間の離型の時に、小径のフィ−ドスルーを形成するための型の凹部が、ガラスと型の熱収縮特性の差により折損するような不具合が生じないという利点がある。従って、ガラス基板の大きさは、原理上1m×1m程度の大面積でも可能であるため、セルの取り個数(歩留まり)を格段に向上できる。
・ 本実施形態では、接合面のメタライズ処理(ステップS307)は、第1実施形態に比較して容易にすることができる。すなわち、図4(a)と図10(b)との対比で明らかなように、本実施形態では、メタライズ対象のガラス基板GP2の表面が平面であることから、メタライズ膜のパターニングにおけるレジスト塗布及び露光を極めて容易に行なうことができる。
(第3実施形態)
以下、本発明を具体化した電気化学セルとしての電気2重層キャパシタに関する第3実施形態について、図11に従って説明する。第3実施形態では、貫通電極の形成(ステップS111,S314)の際に、貫通孔としてのフィードスルーFT2の内側面に薄膜を形成し、薄膜の上からガラスペーストを埋め込む。
図11は、外部電極18,19が形成された状態のベース10の断面図である。ベース10のフィードスルーFT2には、充填材を構成する導電膜60が形成されている。導電膜60は、フィードスルーFT2の内側面に積層された下地層61と、下地層61に積層された耐食層62とを有している。下地層61は、ガラスとの密着性が高いクロムを用いることができる。耐食層62は、数μm程度の厚さを有し、下記の電解液に対して良好な耐食性を有するアルミニウム、又はチタン、又はタンタルから形成されている。
電解液の電解質には、特に限定されることなく従来の電気二重層キャパシタや非水二次電池に用いられている非水溶媒が用いられる。上記非水溶媒には、環状エステル類、鎖状エステル類、環状エーテル類、鎖状エーテル類等が用いられ、具体的には、プロピレンカ−ボネ−ト(PC)、エチレンカ−ボネ−ト(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、γ−ブチロラクトン(γBL)、2メチル‐γ‐ブチロラクトン、アセチル‐γ‐ブチロラクトン、γ‐バレロラクトン、1,2−ジメトキシエタン(DME)、1,2‐エトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル、ジプロピルカーボネート、メチルエチルカーボネート、メチルブチルカーボネート、メチルプロピルカーボネート、エチルブチルカーボネート、エチルプロピルカーボネート、ブチルプロピルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル、テトラヒドロフラン(THF)、アルキルテトラヒドロフラン、ジアルキルアルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3‐ジオキソラン、アルキル‐1,3‐ジオキソラン、1,4‐ジオキソラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、プ
ロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル、無水マレイン酸、スルホラン、3−メチルスルホランなどの非水溶媒およびこれらの誘導体や混合物などが好ましく用いられる。
リフローハンダ付けのような電気二重層キャパシタを用いる場合は、電解液としては常圧での沸点が200℃以上の非水溶媒が安定である。リフロー温度は250℃程度に上がる場合があるが、その温度で電池内部の圧力が上がっているせいか常圧での沸点が204℃のγ−ブチロラクトン(γBL)を用いた場合でも電池の破裂はなかった。プロピレンカーボネート(PC)、エチレンカーボネート(EC)、γ−ブチロラクトン(γBL)選ばれる単独または複合物で用いることが良好であった。
これら非水溶媒中に存在する主な不純物としては、水分と、有機過酸化物(例えばグリコール類、アルコール類、カルボン酸類)などが挙げられる。前記各不純物は、電極の表面に絶縁性の被膜を形成し、電極の界面抵抗を増大させるものと考えられる。したがって、サイクル寿命や容量の低下に影響を与える恐れがある。また高温(60℃以上)貯蔵時の自己放電も増大する恐れがある。このようなことから、非水溶媒を含む電解質においては前記不純物はできるだけ低減されることが好ましい。具体的には、水分は50ppm以下、有機過酸化物は1000ppm以下であることが好ましい。
支持塩としては(CPBF、(CPBF、(CH)(CNBF、(CNBF、(CPPF、(CPCFSO、(CNPF、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]、チオシアン塩、アルミニウムフッ化塩などのリチウム塩などの1種以上の塩を用いることができる。また、ポリエチレンオキサイド誘導体か該誘導体を含むポリマ−、ポリプロピレンオキサイド誘導体か該誘導体を含むポリマ−、リン酸エステルポリマ−等も上記支持塩と併用し用いることもできる。
導電膜60は、所定の成膜領域に形成されている。本実施形態では、成膜領域は、フィードスルーFT2の内側面全体と、ベース10の凹部10dの内側面10eの一部と、凹部10dの底面10fの一部と、ベース10の底面10cの一部とを含む。これにより、凹部10d側に形成された導電膜60は、凹部10dに収容された正極活物質20と接続し、ベース10の底面10c側に延設された導電膜60が外部電極19に接続する。
また、導電膜60が形成されたフィードスルーFT2には、充填材を構成する埋込部63が充填されている。埋込部63は、ガラス材からなり、アルミニウム又はチタンの表面に濡れて高い気密性を有する。尚、このベース10は、第1実施形態の成形加工により形成されたベースでもよいし、サンドブラスト法により形成されたベースでもよい。
次に、貫通電極の形成方法について説明する。まず、フィードスルーFT2に、下地層61をスパッタ法又は蒸着法により形成する。このとき、ベース10の底面10cにマスク材を配置し、必要な部分のみ、クロムからなる薄膜を形成する。さらに、ベース10の凹部10dにおける底面10fに、マスク材を配置して、必要な部分のみ、クロムからなる薄膜を形成する。これにより、上記したような構成の下地層61が形成される。
また、下地層61の上に、耐食層62を、スパッタ法又は蒸着法により積層する。このとき、下地層61と同様に、ベース10の底面10cにマスク材を配置し、必要な部分のみアルミニウム又はチタンからなる薄膜を形成する。また、ベース10の凹部10dにお
ける底面10fに、マスク材を配置して、必要な部分のみ、アルミニウム又はチタンからなる耐食層62を形成する。
さらに、導電膜60を形成したフィードスルーFT2に、ガラスペーストを、ディスペンサ等による塗布や、スクリーン印刷法により充填する。さらに、脱バインダ工程及び焼成工程を行って、埋込部63を形成する。また、引出金属皮膜17の形成、外部電極18,19の形成を行う。尚、このようにガラスからなる埋込部63を形成する場合、上記保護膜20bの形成は不要となる。
(実施例)
次に、本実施形態において、導電膜60としてアルミニウムを用いた例について説明する。まず、フィードスルーFT2及び凹部10dの一部及びベース10の底面10cに、クロムからなる下地層61を形成した後、アルミニウムからなる耐食層62を、真空蒸着法により約2μmの厚みになるように成膜した。
さらに、ガラス転移点が約380℃であって、鉛を含有しないビスマス系のガラスフリットに有機成分を付加したガラスペーストを準備し、フィードスルーFT2に、スクリーン印刷法により充填する。
フィードスルーFT2にガラスペーストを充填した後、150℃で10分間乾燥する。乾燥後、埋込部63が収縮するので、再度スクリーン印刷法により、上記ガラスペーストを充填した。
さらに、大気圧、微量の酸素を含む雰囲気下において、脱バインダ工程を350℃で1時間行い、ペースト中の有機物成分を揮発させた。また、窒素雰囲気下において、500℃で1時間放置し、焼成させた。この焼成工程により、ガラスペーストはフィードスルーFT2の内側面に濡れて密着し、フィードスルーFT2を気密封止することができる。
このように形成したベース10に対し、凹部10d側から染色液を滴下し、染色液の漏洩を確認する染色浸透試験を行った。ベース10の底面10c側から染色液の漏れがないか確認したが、漏れは観察されなかった。
また、外部電極19と、導電膜60の凹部10d側とにテスターを軽く当て、貫通電極の表裏の電気抵抗値を計測したが、1Ω以下であり、電気的接続も十分であった。尚、アルミニウムの代わりにチタンを用いても同様な結果が得られている。
本実施形態によれば、以下のような効果を得ることができる。
・ 本実施形態では、フィードスルーFT2に対する充填工程において、フィードスルーFT2の内側面を含む成膜領域に、耐食性を有する導電性材料からなる導電膜60を形成した。また、当該フィードスルーFT2に絶縁性材料であるガラスペーストを充填し、ガラスペーストを焼成させて埋込部63を形成した。このため、導電膜60を電解液に対する耐食性を有する材料から形成することで、導電膜60の浸食を防止することができる。また、導電膜60によって、正極活物質20と外部電極19とを電気的に接続することで、埋込部63の材料の自由度を高めることができる。即ち、埋込部63をガラスから形成することができるため、フィードスルーFT2の気密性を高めることができる。
(第4実施形態)
以下、本発明を具体化した電気化学セルとしての電気2重層キャパシタに関する第4実施形態について、図12に従って説明する。第4実施形態の電気化学セルは、第3実施形態の電気化学セルとほぼ同様な構成であるが、その製造方法のみが異なる。
具体的には、メタライズ処理(S104,S307)の際に、充填材を構成する導電膜70を同時に形成する。本実施形態の導電膜70は、メタライズ層12と同様な材質からなる。図7は、メタライズ処理が完了した状態のベース10の断面図である。
メタライズ処理の際に、ベース10の上面10aにメタライズ層12を形成する際、上面10a側から、上記成膜領域をターゲットとして導電膜70を形成する。また、ベース10の底面10c側からも導電膜70を形成する。これにより、Cr(クロム)、Pd(パラジウム)、Ni(ニッケル)又はCu(銅)等からなる積層膜に、Cuメッキ、Niメッキ又はAuメッキ等が形成された導電膜70が形成される。
このように導電膜70及びメタライズ層12を形成すると、金属リングの接合(S109,S312)、金属皮膜の形成(ステップS110,S313)が行われる。
そして、第3実施形態と同じガラスペーストを、スクリーン印刷法によりフィードスルーFT2に充填し、窒素雰囲気中、500℃で30分焼成して埋込部(図示略)を形成した。このように形成した導電膜70及び埋込部に対し、上記実施例と同様に染色液を用いて、染色浸透試験を行ったが、染色液のフィードスルーFT2を介した漏れは確認されなかった。また、上記ベース10に設けられた外部電極(図示略)と凹部10d側の導電膜70とにテスターを当接させて、貫通電極の表裏の電気抵抗を計測したが、1Ω以下であった。
本実施形態によれば、以下のような効果を得ることができる。
・ 本実施形態では、リッド11を接合する凹部10dの外縁部に、メタライズ層12を形成するメタライズ処理工程において、導電膜70を、メタライズ層12と同じ材料で同時に形成した。このため、導電膜70を形成する工程を別途設けなくてもよいため、製造工程を簡略化することができる。
(第5実施形態)
以下、本発明を具体化した電気化学セルとしての電気2重層キャパシタに関する第5実施形態について、図13〜図15に従って説明する。第5実施形態の電気化学セルは、第3実施形態又は第4実施形態の電気化学セルとほぼ同様な構成であるが、その製造方法のみが異なる。
本実施形態の電気化学セルは、ベース10のフィードスルーFT2の内側面等に、充填材を構成する導電膜60が形成されている構成は同じであるが、図13に示すように、フィードスルーFT2に設けられた充填材を構成する埋込部75が、ガラスではなく、金系合金材料又はアルミニウム等といった金属から形成されている。金系合金材料としては、金錫合金(Au‐Sn、融点280℃)、金ゲルマニウム合金(Au‐Ge、融点356℃)、金−シリコン合金(Au‐Si、融点360℃)、金−アンチモン合金(Au‐Sb)等を好適に用いることができる。
この電気化学セルを製造する際には、導電膜を形成した後、図14に示すように、フィードスルーFT2内に、金系合金材料又はアルミニウム等からなる金属片76を配置する。本実施形態では金属片76は、少なくともフィードスルーFT2から抜け落ちない大きさに形成されている。また、金属片76は、図では球状に形成されているが、その他の形状に形成されていてもよい。
ガラス基板GPに形成された各フィードスルーFT2内に金属片76をそれぞれ配置すると、不活性ガスを充満させた雰囲気下で、金属片76に、凹部10d側からレーザを照射する。このとき照射するレーザは、YAGレーザ、COレーザ等を用いることができ
る。図15に示すように、ガラス基板GPにメタライズ処理が施されていない場合、各フィードスルーFT2、即ち各金属片76を結ぶ直線L1に沿って、レーザ光を走査する。これにより、金属片76が極めて短時間で溶融して、フィードスルーFT2内に流れ込み、固化する。尚、レーザでなくても、金属片76の融点以上の温度で加熱できる装置であれば、電気炉等の熱処理装置を用いてもよい。
また、アルミニウムからなる金属片76をレーザで溶融する場合は、不活性ガスで置換した雰囲気又は真空に減圧したチャンバー内で行うことが好ましい。このようにすると、アルミニウムの酸化が抑制されるため、白濁現象や凝固割れを抑制することができる。また、アルミニウムはYAGレーザに対して高反射材料であるため、高出力のレーザパワーの方が有利であるが、いわゆるアルミニウム爆発現象を防ぐため、レーザの波形を制御して照射することが好ましい。尚、アルミニウム爆発現象とは、溶融開始時に一気に反射率が低下して、YAGレーザに対する吸収率が上昇し、その後アルミニウムが爆発したように溶融する現象をいう。
さらに、ワークを別の加熱装置により加熱し、アルミニウムの溶融を促進すると、溶融がより円滑に進む。尚、埋込部75にアルミニウムを用いる場合には、アルミニウム又はチタンによって導電膜を形成すれば、保護膜20bは形成しなくてもよい。
このように、埋込部75を金属から形成することにより、埋込部を絶縁性のガラスから形成する場合に比較して、電気抵抗値は著しく低下するため、電気化学セルから数アンペアの電流を流すような用途には適している。
また、上記した材料からなる金属片76の融点は、リフロー処理の最高温度(260℃)より高い温度となっている。このため、電気化学セルをプリント基板にクリームハンダ等で実装する場合にも、埋込部75は溶融することがなく、電解液が漏洩する等の問題が生じない。特に金ゲルマニウム合金は、金錫合金よりも融点が高いため、リフロー処理の最高温度よりも温度が高くなる可能性があるプリント基板からの取り外しにおいても、好適である。
(実施例)
本実施例では、フィードスルーFT2内に、第4実施形態と同様な導電膜70を形成した。さらに、金属片76として、金錫合金のボール、金ゲルマニウム合金のボールを準備した。ボールの径は約0.4mmであり、フィードスルーFT2内に入る大きさとした。
金属片76の溶融には、YAGレーザを用いた。照射出力は10W、スポット径は0.3mmとし、ひとつの金属片76に対し0.1秒間照射されるように調整した。その結果、金錫合金からなるボールも、金ゲルマニウム合金からなるボールも容易に溶融し、フィードスルーFT2に形成した導電膜に濡れて固化した。
また、このベース10に対し、染色液を用いて、染色浸透試験を行ったが、染色液を滴下した面と反対側の面において、染色液の漏れは確認されなかった。
本実施形態によれば、以下のような効果を得ることができる。
・ 本実施形態では、導電膜60を形成したフィードスルーFT2に、金属片76を配置し、当該金属片76に対しレーザ照射することにより溶融して、フィードスルーFT2に金属を充填した。このため、正極活物質20と外部電極19との電気的接続を良好にすることができる。また、金属片76にレーザ照射することにより溶融するため、金属片76を短時間で容易に溶融することができ、充填工程を簡略化することができる。
さて、前述した各実施形態は、以下のように変更してもよい。
○ 上記第1実施形態では、長手方向の寸法は約3mmから10mm程度、短辺方向の寸法は約2mmから8mm程度、高さは約1mmの小型のセルを製造した。セルの大きさはこれに限定されるものではなく、やや大きい構造のパッケージとすることも可能である。その長辺寸法と短辺寸法は約10mmから20mm程度のものであり、また厚みも1mmから2mm程度の範囲である。この電気化学セルは、内部抵抗を低くし、数100mAないし1A程度のパルス状の放電にも使用できる用途を目的としたものである。従って、その容量も、数十mFから1F程度となる。
○ 第1実施形態では、ガラス基板を、図4に示すようなガラス基板GP1の形状以外に成形することも可能である。例えば、図16に示すように、ガラス基板GPの上面81を平面状とした形状とすることができる。ガラス基板GPには、成形加工に用いられる上型及び下型(図示略)により、凹部80、フィードスルーFT1,FT2が形成される。このようにすると、メタライズ層12を形成する際に、パターニングにおけるレジスト塗布及び露光を容易に行うことができる。
○ 上記第1実施形態では、図1(c)に示す構造の電気化学セルを製造したが、電極活物質やセパレータの構造はこれに限定されるものではない。例えば、シート状の電極活物質やセパレータを積層させた構造や倦回構造のセルを形成することも可能である。具体的には、図17(a)に示す電気化学セルCL3においては、シート状第1活物質30、シート状セパレータ31、異極となるシート状第2活物質32が折り畳まれた構造で、ベース10の凹部に配置されている。図17(a)に示す構造においても、ベース10、リッド11のパッケージ構造は、前述の図1(c)と共通している。図17(a)の構造では、図1(c)と同様に、フィードスルーFT1が凹部外に形成されている。そして、凹部の底面では、シート状第1活物質30が活物質接続部30aを介して埋込部15に接続される。一方、シート状第2活物質32が活物質接続部32aを介してリッド11に接続される。
また、この構造は、言うまでもなく上記第2実施形態にも適用可能であり、この場合には、図17(b)に示す電気化学セルCL4のようになる。
そして、図17(a)や図17(b)に示す電気化学セル(CL3,CL4)の製造においては、ベース10の凹部の底面に、導電性接着剤を適量つけておく。適当な長さの正極及び負極を、セパレータを挟んで折り畳んだ構造の電極を、別途、準備しておき、凹部の底面に配置する。この後、電解液を適量注入する。
○ 上記第1実施形態では、図1(c)に示す構造の電気化学セルを製造したが、2つのフィードスルーをベース10の底面に設けることも可能である。具体的には、図17(c)に示す電気化学セルCL5のように、ベース10の凹部内の長辺方向に対向した位置に、凹部の側面を延長して1組のフィードスルー(FT3,FT4)を設ける。そして、凹部底面には、1組のフィードスルー(FT3,FT4)に対応して、それぞれ埋込部(15,16)を設ける。そして、シート状第1活物質36、シート状セパレータ37、異極となるシート状第2活物質38が折り畳まれた構造で、ベース10の凹部に配置されている。
ここで、両極のシート状活物質をフィードスルーに接続しやすいように、シート状活物質に延長部が設けられている。そして、この延長部を凹部側面にまで延設させ、それぞれの導電性保護膜に接続した構成を有している。
具体的には、シート状第1活物質36の延長部36aは、導電性保護膜35を介して埋込部16に接続される。この接続は、スポット溶接などの接続手段により行なわれる。そ
して、埋込部16を介してベース底面の外部電極19に電気的に接続させている。一方、異極を構成するシート状第2活物質38の延長部38aは、導電性保護膜39と接続され、埋込部15を介して外部電極18に電気的に接続される。なお、シート状第1活物質36と導電性保護膜39の間には絶縁膜34が設けられており、シート状第1活物質36が異極と混触することを防止している。
この図17(c)に示す電気化学セルの製造においては、図18に示すフローチャートを用いる。
まず、予め電極構成シート(正極、負極、セパレータ)を準備する(ステップS401)。そして、折り畳み構造の電極を形成する(ステップS402)。そして、延長部(36a,38a)を、接続容易なように凹部側面に形成したそれぞれの導電性保護膜(35,39)に電気的に接続させる(ステップS403、S404)。この場合、スポット溶接などの接続手段で行なう。
この後、電解液を適量注入する(ステップS405)。
以下、エージング処理(ステップS406)、リッドの接合(ステップS407)、切断(ステップS408)、電気特性等検査(ステップS409)は、ステップS206〜S209と同様に実施する。
○ 上記各実施形態では、電解液を注入した後で、リッド11を接続した。これに代えて、リッド11を接続した後に電解液の注入を行なうことも可能である。この場合には、例えば、リッド11の端部近傍に細孔が設け、リッド11を溶接した後に、細孔を通して電解液を注入する。この場合、注入前に、容器の内圧を陰圧にしておくことが好ましい。そして、電解液を注入後に、細孔を溶融しやすい金属等を用いて封止する。
○ 上記各実施形態では、ベース10の底面に外部電極を設けたが、外部電極の構造はこれに限定されるものではない。ベース材料が脆性材料であるガラスであることに起因して、実装後に基板曲げ試験でベース底面にクラックが発生する可能性も潜在している。そこで、このような脆弱性に対応する電極構造の電気化学セルCL6の具体例を図19(a)に示す。具体的には、ガラス底面において外部電極が形成される領域に、リフロー実装に耐えられる樹脂47を被覆する。このような樹脂47の例としては、ポリイミド樹脂やポリアミドイミド樹脂等がある。樹脂47を被覆した後、樹脂面の一部をリソグラフィを用いてエッチングして開口する。そして、ベース底面にある埋込部(15,16)の表面を露出させた後に、図示しない金属マスク等を用いて、露出面と開口面の側面及び樹脂面に金属膜(48,49)を成膜し、パターニングを行なうことにより、外部電極を形成することが可能である。更に、その金属膜(48,49)の上に、メッキ等で金属皮膜を形成することでより確実な外部電極とすることができる。このような構造にすることで、基板曲げ試験においても、クラックの発生を大幅に抑制できる。
樹脂の被覆の方法は、スクリーン印刷等の印刷法を用いるとガラス基板に容易に被覆することができる。更に、廃棄する樹脂量を減らせるので利用効率にも優れる。
また、樹脂47(ポリイミド樹脂)に対して、図19(b)に示す構造にすることも可能である。ここでは、この樹脂47には、予め貫通する開口部47aを設ける。そして、表面にパターニングされた銅層47b、裏面に耐熱用の接着材層47cを皮膜する。複数の開口部47aが埋込部(15,16)と重なるように位置合わせをした後に、接着材層47cでガラス基板GPの裏面に接着する。この後に、金属マスク等を用いて、埋込部(15,16)と開口部47aとパターニングされた銅層47bとを接続するように金属膜を成膜することで外部電極を形成する。そして、この金属膜表面をメッキ等により金属皮膜を形成することで、より確実な外部電極にすることができる。
○ 上記第2実施形態では、フィードスルー(FT1,FT2)をガラス基板の底面側から開けたため、開口部である底面側が広くなっている。これに代えて、フィードスルーを、これとは逆の方向から開けることも可能である。
○ 上記第1、第2実施形態では、リッド11と金属リング13との接合において、ローラー電極40を用いた電気溶接(シーム溶接)を用いた。接合はローラー電極40による電気溶接に限定されるものではない。例えば、レーザ光による接合も用いることが可能である。
電気化学セルの間隔を狭くして配置した場合、ローラー電極40が隣のセルに接触し、不具合が生じることがある。図20(a)においては、3つのセルが隣接して配置されており、その中央のセルを溶接している状態を示すが、ローラー電極40は左右のセルのリッド11や金属リング13と干渉している。このため、目的のセルを正常に溶接することができない。なお、ローラー電極40の幅WRを縮小することで干渉を抑制できるが、この場合、ローラー電極40の寿命が短くなり、量産化においては頻繁な交換が必要になり、実用的な解決策ではない。
そこで、図20(b)に示すように、レーザ光41を用いてリッド11の周囲を走査加熱してリッド11を金属リング13に接合することが可能である。レーザ光41としては、例えば、炭酸ガスレーザやYAGレーザを用いる。このように、レーザ光41を用いることで、隣接するセルと干渉することなく溶接が可能となる。
更に、レーザ光41で溶接する場合は、リッド11に細孔11aを設けておき、電解液を注入しないでリッドを溶接し、リッドの溶接終了後に細孔11aから電解液を注入する方が良い。電解液を注入後、細孔11aは封止材料で封止することで気密を保つ。これにより、後で実施されるプリント基板へのリフローによる電気化学セルの実装において漏液を抑制することができる。
このように、レーザ光41を用いてリッド11を接合する場合、細孔11aの封止を考慮しても、リッド溶接のリードタイムを短縮できる。また、隣接するセルを間隔を設けることなく配置することが可能であるため、ガラス基板でのセルの取り個数を多くすることが可能であり、歩留まりを更に向上させることができる。
また、各セルの切断に要する時間を大幅に短縮できる。具体的には、図20(c)に示すように、切断線(LV1,LV2,LV3)を用いて縦方向、また切断線(LH1,LH2,LH3)を用いて横方向の切断を行なうことができる。図6(c)と比較して、無駄な切断線を無くすことができる。これにより、切断工程のリードタイムを短縮させるとともに、ダイサーのブレード(刃)の交換間隔を長くすることが可能である。
○ 上記第2実施形態では、ガラス基板GPの加工(ステップS301〜S307)を行なった後で、金属性リングの接合(ステップS312)を行なった。これに代えて、ガラス基板GPの加工前に金属性リングの接合を行なうことも可能である。この場合には、図21に示すように、ガラス基板GPを準備し(ステップS501)、接合面のメタライズを行なう(ステップS502)。更に、金属リング用材料の準備(ステップS503)、抜き加工(ステップS504)、研磨加工(ステップS505)、ロウ材の貼り付け(ステップS506)は、第2実施形態のステップS308〜S311と同様に行なう。そして、ガラス基板GPへの金属性リングの接合を行なう(ステップS507)。これにより、図22(a)に示す構造となる。
次に、ステップS313と同様に金属皮膜を形成(ステップS508)した後で、ガラ
ス表面のマスク材料によるパターニングを行なう(ステップS509)。具体的には、図22(b)に示すように、ベース10の凹部を形成するための開口部を有するマスク材45をガラス基板GP上に形成する。
そして、サンドブラスト加工を行なう(ステップS510)。この場合、図22(c)に示すように、金属リング13は、マスク材45によって保護しておく。
以下、ガラス裏面のマスク材料によるパターニング(ステップS511)、サンドブラスト加工(ステップS512)、マスクの剥離(ステップS513)、貫通電極の形成(ステップS514)、引出金属皮膜の形成(ステップS515)、外部電極の形成(ステップS516)、保護膜の形成(ステップS517)を実施する。これらの工程は、ステップS304〜S306、S314〜S317と同様に実施される。
○ 上記第2実施形態では、ガラス基板GPの加工(ステップS301〜S307)を行なった後で、接合面のメタライズ(ステップS307)を行なった。これに代えて、ガラス基板GPの加工前に接合面のメタライズを行なうことも可能である。この場合には、図23に示すように、ガラス基板GPの準備(ステップS601)に接合面のメタライズを行なう(ステップS602)。ここで、ガラス基板GP上にメタライズ層M1が形成された状態を図24(a)に示す。
そして、ガラス基板GP表面のマスク材料によるパターニングを行なう(ステップS603)。具体的には、図24(b)に示すように、ベース10の凹部を形成するための開口部を有するマスク材45をガラス基板GP上に形成する。
そして、サンドブラスト加工を行なう(ステップS604)。
以下、ガラス裏面のマスク材料によるパターニング(ステップS605)、サンドブラスト加工(ステップS606)、マスクの剥離(ステップS607)を行なう。
そして、金属リング用材料の準備(ステップS608)、抜き加工(ステップS609)、研磨加工(ステップS610)、ロウ材の貼り付け(ステップS611)は、第2実施形態のステップS308〜S311と同様に行なう。
そして、ガラス基板GPへの金属性リングの接合を行なう(ステップS612)。更に、金属皮膜の形成(ステップS613)、貫通電極の形成(ステップS614)、引出金属皮膜の形成(ステップS615)、外部電極の形成(ステップS616)、保護膜の形成(ステップS617)を、ステップS313〜S317と同様に実施する。
このように、ガラス基板GPの加工前に接合面のメタライズを施すと、メタライズ工程は平坦なガラス面の状態で加工ができるので、メタライズ工程でのリソグラフィが容易となる。
CL1,CL2,CL3,CL4,CL5,CL6…電気化学セル、GP,GP1,GP2…ガラス基板、GP11…底部、GP12…凸部、M1…メタライズ層、M2…メタライズ層、M3…メタライズ層、FT1,FT2、FT3,FT4…フィードスルー、10…ベース、10a…上面、10b…側面、10c…底面、10b1…傾斜側面部、10b2…直交側面部、10d,80…凹部、11…リッド、11a…細孔、12…メタライズ層、13…金属リング、13a…リング状金属、13b…リング状ロウ材、14…金属皮膜、15…埋込部、16…埋込部、17…引出金属皮膜、18…外部電極、19…外部電極、20…正極活物質、20a…活物質接続部、20b…保護膜、21…セパレータ、22…負極活物質、22a…活物質接続部、23…埋込用材料、24…スキージ、25
…マスク、30…第1活物質、30a…活物質接続部、31…シート状セパレータ、32…第2活物質、32a…活物質接続部、34…絶縁膜、35…導電性保護膜、36…第1活物質、36a…延長部、37…シート状セパレータ、38…第2活物質、38a…延長部、39…導電性保護膜、40…ローラー電極、45…マスク材、45a…開口部、47…樹脂、47a…開口部、47b…銅層、47c…接着材層、50…上型、51…下型、52…加熱部、60,70…導電膜、76…金属片。

Claims (16)

  1. ガラスからなるベースと、前記ベースに接合されるリッドとからなる電気化学セルの製造方法であって、
    ガラス基板上面に、底部に貫通孔を設けた凹部を備える複数のベースを形成するベース形成処理工程と、
    前記貫通孔に充填材を設ける充填工程と、
    前記凹部の底部に第1活物質を配置し、この第1活物質の上方にセパレータ及び第2活物質を積層させて配置する組み込み処理工程と、
    前記貫通孔の前記充填材に対して、前記ガラス基板の裏面に第1電極を形成し、前記第2活物質に接続された第2電極を前記ガラス基板の裏面に形成する電極形成処理工程と、
    前記凹部内の第1活物質、セパレータ、第2活物質及び電解液を封入するリッドを、前記第2活物質を押圧しながら前記凹部の外縁部に接合するリッド接合処理工程と、
    前記ガラス基板から各ベースを切り出す切断処理工程と
    を含むことを特徴とする電気化学セルの製造方法。
  2. 前記ベース形成処理工程は、底部に貫通孔を備える凹部を形成するための上下の型をプレスする成型加工を用いることを特徴とする請求項1に記載の電気化学セルの製造方法。
  3. 前記ベース形成処理工程は、前記凹部を形成するためのマスク材を配置した第1サンドブラスト加工と、
    前記貫通孔を形成するためのマスク材を配置した第2サンドブラスト加工を用いることを特徴とする請求項1に記載の電気化学セルの製造方法。
  4. 前記第2サンドブラスト加工は、前記ガラス基板の裏面にマスク材を配置し、この裏面から行なうことを特徴とする請求項3に記載の電気化学セルの製造方法。
  5. 前記リッドを導電性材料を用いて構成し、
    前記第2電極を形成する工程は、
    前記ガラス基板において、前記リッドを接合する外縁部から裏面に達する貫通孔を形成
    し、
    前記貫通孔の内壁に、前記外縁部から、前記第2電極に達する導電性材料を形成する工程を含むことを特徴とする請求項1〜4のいずれか1つに記載の電気化学セルの製造方法。
  6. 前記第2電極を形成する工程は、
    前記凹部の底部に第2の貫通孔を設け、前記第2の貫通孔に導電性材料を埋め込み、前記第2活物質に接続する工程を含むことを特徴とする請求項1〜4のいずれか1つに記載の電気化学セルの製造方法。
  7. 前記充填工程は、前記貫通孔に導電性材料を充填することを特徴とする請求項1〜6のいずれか1つに記載の電気化学セルの製造方法。
  8. 前記充填工程は、前記貫通孔の内側面を含む成膜領域に、導電性材料からなる薄膜を形成し、当該貫通孔に絶縁性材料又は導電性材料を充填することを特徴とする請求項1〜6のいずれか1項に記載の電気化学セルの製造方法。
  9. 前記薄膜を、前記電解液に対して耐食性を有する材料から形成し、当該薄膜が形成された前記貫通孔に対しガラスペーストを充填して、当該ガラスペーストを焼成させることを特徴とする請求項8に記載の電気化学セルの製造方法。
  10. 前記リッドを接合する前記凹部の前記外縁部に、メタライズ層を形成するメタライズ処理工程をさらに備え、
    前記薄膜は、前記メタライズ層と同じ材料からなり、前記メタライズ処理工程と同時に形成されることを特徴とする請求項8又は9に記載の電気化学セルの製造方法。
  11. 前記薄膜を形成した前記貫通孔に、金属片を配置し、当該金属片を溶融することにより前記貫通孔に金属を充填することを特徴とする請求項8〜10のいずれか1項に記載の電気化学セルの製造方法。
  12. 前記リッドを前記凹部の外縁部に接合した後で、前記リッドに設けられた注入孔から電解液を注入し、前記注入孔を封止する工程を含むことを特徴とする請求項1〜11のいずれか1つに記載の電気化学セルの製造方法。
  13. 単層のガラス基板からなり、凹部及び該凹部の底面から前記ガラス基板の底面に達する貫通孔が、上下の型を用いた成形加工又はマスク材を介したサンドブラスト加工により形成されたベースと、
    前記貫通孔に設けられた充填材と、
    前記凹部の底部に配置された第1活物質と、
    前記第1活物質の上方に、セパレータを介して配置された第2活物質と、
    前記貫通孔の前記充填材に対して、前記ガラス基板の裏面に形成された第1電極と、
    前記ガラス基板の裏面に形成され、前記第2活物質に接続された第2電極とを備え、
    前記凹部内の第1活物質、前記セパレータ、前記第2活物質及び電解液を封入し、前記凹部の外縁部に接合するリッドとを備え電気化学セル。
  14. 前記貫通孔に銀ペースト及びガラスフリットの混合物が充填された請求項13に記載の電気化学セル。
  15. 前記貫通孔の内側面を含む成膜領域に導電性材料からなる薄膜が形成され、前記貫通孔にガラスペーストが充填された請求項13に記載の電気化学セル。
  16. 前記貫通孔の内側面を含む成膜領域に導電性材料からなる薄膜が形成され、前記貫通孔に金系合金材料又はアルミニウムが充填された請求項13に記載の電気化学セル。
JP2009065075A 2008-04-16 2009-03-17 電気化学セル、およびその製造方法 Expired - Fee Related JP5294410B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009065075A JP5294410B2 (ja) 2008-04-16 2009-03-17 電気化学セル、およびその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008106965 2008-04-16
JP2008106965 2008-04-16
JP2009065075A JP5294410B2 (ja) 2008-04-16 2009-03-17 電気化学セル、およびその製造方法

Publications (2)

Publication Number Publication Date
JP2009278068A JP2009278068A (ja) 2009-11-26
JP5294410B2 true JP5294410B2 (ja) 2013-09-18

Family

ID=41443184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009065075A Expired - Fee Related JP5294410B2 (ja) 2008-04-16 2009-03-17 電気化学セル、およびその製造方法

Country Status (1)

Country Link
JP (1) JP5294410B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683030A (zh) * 2011-03-18 2012-09-19 太阳诱电株式会社 电化学装置
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028490A (ja) * 2010-07-22 2012-02-09 Taiyo Yuden Co Ltd 電気化学デバイス
JP2012028491A (ja) * 2010-07-22 2012-02-09 Taiyo Yuden Co Ltd 電気化学デバイス
JP5668235B2 (ja) * 2010-08-18 2015-02-12 セイコーインスツル株式会社 電子部品、及び電子装置
JP2012119605A (ja) * 2010-12-03 2012-06-21 Taiyo Yuden Co Ltd 電気化学デバイス
JP2012134299A (ja) * 2010-12-21 2012-07-12 Taiyo Yuden Co Ltd 電気化学デバイス
JP5201757B1 (ja) 2012-09-13 2013-06-05 太陽誘電株式会社 電気化学デバイス
JP6308578B2 (ja) * 2013-11-27 2018-04-11 セイコーインスツル株式会社 電気化学セル
JP6705689B2 (ja) * 2016-04-21 2020-06-03 セイコーインスツル株式会社 電気化学セル
JP6705702B2 (ja) * 2016-06-13 2020-06-03 セイコーインスツル株式会社 電気化学セル

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013223A1 (ja) * 2005-07-29 2007-02-01 Sii Micro Parts Ltd. 電気化学セル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683030A (zh) * 2011-03-18 2012-09-19 太阳诱电株式会社 电化学装置
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process

Also Published As

Publication number Publication date
JP2009278068A (ja) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5294410B2 (ja) 電気化学セル、およびその製造方法
JP5181153B2 (ja) 電気化学セル及び電気化学セルの製造方法
JP6236518B2 (ja) 電気化学セル
JP2010206101A (ja) 収納容器及び電気化学セル並びに収納容器の製造方法
JP4591931B2 (ja) 電気化学セル
US20060040177A1 (en) Electrochemical cell
CN105591047A (zh) 电化学电池
WO2012011362A1 (ja) 電気化学デバイス
JP5818069B2 (ja) 電気化学セル、及び電子装置
JP2010165909A (ja) 電気化学セル及び電気化学セルの製造方法
JP5668235B2 (ja) 電子部品、及び電子装置
JP5588539B2 (ja) 電気化学セル
JP5731836B2 (ja) 端子付電気化学セルとその製造方法
US20120217056A1 (en) Electronic Component and Package for Device, and Method of Manufacturing the Same
JP4373743B2 (ja) 電池用ケースおよび電池
JP5032636B2 (ja) 電気化学セル及びその製造方法
JP4824279B2 (ja) 電気化学セル
CN100517800C (zh) 陶瓷容器和使用其的电池以及电双层电容器
JP5341960B2 (ja) 電気化学セル
JP2006165319A (ja) 電気化学セル及びその製造方法
JP2006216645A (ja) 電気化学セル及びその製造方法
JP5813821B2 (ja) 電気化学セル
JP2005123154A (ja) 電池用ケースおよび電池
JP6308578B2 (ja) 電気化学セル
CN111900950A (zh) 一种便于密封焊接的谐振器及其组装方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130607

R150 Certificate of patent or registration of utility model

Ref document number: 5294410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees