DE10347132A1 - Abgasnachbehandlungssysteme - Google Patents

Abgasnachbehandlungssysteme Download PDF

Info

Publication number
DE10347132A1
DE10347132A1 DE10347132A DE10347132A DE10347132A1 DE 10347132 A1 DE10347132 A1 DE 10347132A1 DE 10347132 A DE10347132 A DE 10347132A DE 10347132 A DE10347132 A DE 10347132A DE 10347132 A1 DE10347132 A1 DE 10347132A1
Authority
DE
Germany
Prior art keywords
catalyst
ammonia
amount
reductant
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE10347132A
Other languages
English (en)
Other versions
DE10347132B4 (de
Inventor
Devesh Dearborn Upadhyay
Michiel J. van Ann Arbor Nieuwstadt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Publication of DE10347132A1 publication Critical patent/DE10347132A1/de
Application granted granted Critical
Publication of DE10347132B4 publication Critical patent/DE10347132B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J2003/001Driving of auxiliaries characterised by type of power supply, or power transmission, e.g. by using electric power or steam
    • B63J2003/008Driving of auxiliaries characterised by type of power supply, or power transmission, e.g. by using electric power or steam by using steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/18Ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0408Methods of control or diagnosing using a feed-back loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0411Methods of control or diagnosing using a feed-forward control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

Es wird ein Verfahren für die Schätzung einer Menge an in einem harnstoffbasierten SCR-Katalysator gespeichertem Ammoniak auf der Grundlage eines dynamischen Modells des Katalysators vorgestellt. Das Modell berücksichtigt die chemischen und physikalischen Eigenschaften des Katalysators, wie z. B. Katalysatorvolumen, die Anzahl der verfügbaren Ammoniakspeicherorte, Absorptions- und Desorptionsdynamiken sowie Schwefelvergiftung, thermisches Altern und verschiedene Katalysator-Betriebstemperaturen, und generiert die Schätzung auf der Grundlage einer gemessenen oder geschätzten Menge von NO¶x¶ in einer Abgasmischung stromauf vom Katalysator, auf der Grundlage einer Menge von zur Erleichterung der NO¶x¶-Reduktion in den Katalysator eingespritztem Reduktant und auf der Grundlage eines gemessenen Wertes von NO¶x¶ in einer Abgasmischung stromab vom Katalysator. Die geschätzte Menge von gespeichertem Ammoniak wird dann dazu verwendet, um die gewünschte Ammoniakspeichermenge so aufrechtzuhalten, daß ein maximaler NO¶x¶-Umwandlungswirkungsgrad verbunden mit minimalem Austreten von Ammoniak erreicht wird.

Description

  • Gebiet der Erfindung
  • Die vorliegende Erfindung bezieht sich auf ein Abgasreinigungssystem für Diesel- und sonstige Fahrzeuge mit Magermotoren und insbesondere auf das Erreichen optimaler NOx-Umwandlungswirkungsgrade bei gleichzeitiger Minimierung des Austretens von Ammoniak aus einem harnstoffbasierten Katalysator für selektive katalytische Reduktion (SCR-Katalysator) durch Steuern des Anteils der Katalysatoroberfläche, in der Ammoniak gespeichert ist.
  • Hintergrund und Zusammenfassung der Erfindung
  • Die aktuellen Abgasvorschriften erfordern in den Abgassystemen von Kraftfahrzeugen die Verwendung von Katalysatoren, um Kohlenmonoxid (CO), Kohlenwasserstoffe (HC) und Stickoxide (NOx), die während des Motorbetriebes entstehen, in nicht vorschriftswidrige Abgase umzuwandeln. Mit Diesel- oder sonstigen Magermotoren ausgerüstete Fahrzeuge bieten den Vorteil verbesserter Kraftstoffökonomie, jedoch ist in solchen Systemen die katalytische Reduktion von NOx-Emissionen über konventionelle Mittel aufgrund des hohen Anteils von Sauerstoff im Abgas schwierig. In diesem Zusammenhang sind Katalysatoren für selektive katalytische Reduktion (SRC-Katalysatoren), bei denen NOx durch aktives Einspritzen eines Reduktants in die in den Katalysator eintretende Abgasmischung kontinuierlich entfernt wird, für die Erreichung hoher NOx-Umwandlungswirkungsgrade bekannt. Harnstoffbasierte SCR-Katalysatoren verwenden gasförmiges Ammoniak als den aktiven NOx reduzierenden Wirkstoff. Typischerweise wird eine wäßrige Lösung von Harnstoff an Bord eines Fahrzeuges mitgeführt, und es wird ein Einspritzsystem dazu verwendet, es dem in den SCR- Katalysator eintretenden Abgasstrom zuzuführen, wo es sich in Hydrozyanidsäure (NHCO) und gasförmiges Ammoniak (NH3) zerlegt, welches dann dazu verwendet wird, NOx umzuwandeln. Jedoch müssen bei solchen Systemen die Harnstoffeinspritzwerte sehr präzise gesteuert werden. Unzureichende Einspritzung von Harnstoff kann zu nicht optimaler NOx-Umwandlung führen, während eine Überschußeinspritzung zu einem Austreten von Ammoniak aus dem Auspuffendrohr führen kann. Bei einem typischen harnstoffbasierten SCR-Katalysatorsystem ist die Menge eingespritzten Harnstoffs proportional zu der Zuführgas-NOx-Konzentration, die auf einer Abwägung zwischen maximaler NOx-Umwandlung und minimalem Austreten von Ammoniak beruht.
  • Die Erfinder haben einen Nachteil bei der Vorgehensweise nach dem Stand der Technik erkannt. Diese Vorgehensweise erfordert nämlich mehrere Kalibrierkennfelder, um das komplizierte Verhalten des Katalysators hinsichtlich der Absorption und Desorption von Ammoniak als Funktion der Motorbetriebsbedingungen und der Katalysatorbeschädigung zu berücksichtigen, und ist demzufolge inhärent unpräzise.
  • Der Erfinder haben des weiteren erkannt, daß zwar der NOx-Umwandlungswirkungsgrad eines SCR-Katalysators in Gegenwart von absorbiertem Ammoniak verbessert wird, es aber nicht notwendig ist, daß die gesamte Katalysator-Speicherkapazität durch Ammoniak genutzt wird, um einen optimalen NOx-Umwandlungswirkungsgrad zu erreichen. Des weiteren haben die Erfinder erkannt, daß unter bestimmten Betriebsbedingungen, wie z.B. bei hohen SCR-Katalysator-Temperaturen und wenn die Menge des im Katalysator gespeicherten Ammoniaks zu hoch ist, ein Teil davon desorbieren und aus dem Katalysator austreten oder zu NOx oxidiert werden kann, wodurch der Gesamt-NOx-Umwandlungswirkungsgrad reduziert wird. Demzufolge haben die Erfinder festgestellt, daß es für das Erreichen einer optimalen NOx-Reduzierung und Minimierung des Austretens von Ammoniak in einem harnstoffbasierten SCR-Katalysator ganz entscheidend ist, die Menge an Ammoniak zu regeln, die im SCR-Katalysator abgespeichert ist. Da eine direkte Messung nicht möglich ist, haben die Erfinder entsprechend ein präzises Verfahren entwickelt, um die Menge des im SCR-Katalysator abgespeicherten Ammoniaks zu schätzen.
  • Nach der vorliegenden Erfindung umfaßt ein Verfahren zur Schätzung einer Menge von in einer stromab eines Innenverbrennungsmotors angeschlossenen Abgasnachbehandlungsvorrichtung gespeichertem Reduktant: Einspritzen von Reduktant in die Vorrichtung zur Reaktion mit einer Komponente eines Motorabgasgemischs und Schätzen der in der Vorrichtung gespeicherten Reduktantmenge auf der Grundlage einer Menge der genannten Abgaskomponente stromab von der Vorrichtung.
  • Bei einer Ausführungsform der vorliegenden Erfindung wird das Verfahren dazu verwendet, auf der Grundlage einer NOx-Menge im Abgas stromab vom SCR-Katalysator eine in einem SCR-Katalysator gespeicherte Ammoniakmenge zu schätzen.
  • Bei einer weiteren Ausführungsform der vorliegenden Erfindung wird die Menge an gespeichertem Ammoniak durch das Verhältnis der Anzahl der Katalysatorspeicherorte, die absorbiertes Ammoniak enthalten, zur Gesamtzahl der normalerweise verfügbaren Katalysatorspeicherort, d.h. des Anteils der Oberfläche des SCR-Katalysators, in der Ammoniak gespeichert ist, dargestellt.
  • Bei einer weiteren Ausführungsform der vorliegenden Erfindung umfaßt das Verfahren die Vorhersage der Menge des aus dem Katalysator austretenden Ammoniaks auf der Grundlage der geschätzten Menge von gespeichertem Ammoniak.
  • Bei noch einer weiteren Ausführungsform der vorliegenden Erfindung umfaßt ein Verfahren zur Steuerung der Einspritzung eines Reduktants in eine durch ein solches Reduktant zu reduzierende Substanz, wobei diese Reduzierung durch einen Katalysator erleichtert wird, welcher umfaßt: Schätzen einer Menge von im Katalysator gespeichertem Reduktant auf der Grundlage einer Menge nicht reduzierter Substanz stromab vom Katalysator und Anpassen einer in die Substanz eingespritzten Reduktantmenge auf der Grundlage der genannten Schätzung.
  • Bei noch einer weiteren Ausführungsform der vorliegenden Erfindung umfaßt das Verfahren das Anpassen der in den SCR-Katalysator eingespritzten Ammoniakmenge auf der Grundlage der Schätzung der Menge an gespeichertem Ammoniak.
  • Ein Vorteil der vorliegenden Erfindung liegt darin, daß eine genaue Schätzung der Menge von im SCR-Katalysator gespeichertem Ammoniak erhalten wird. Entsprechend kann durch Aufrechterhalten von optimalen Ammoniakspeichermengen im SCR-Katalysator ein verbesserter NOx-Umwandlungswirkungsgrad erreicht werden. Ein weiterer Vorteil der vorliegenden Erfindung liegt in der Fähigkeit zur genauen Vorhersage des Austretens von Ammoniak aus dem Katalysator, da es aktuell keine im Handel verfügbaren Ammoniaksensoren gibt. Ein noch weiterer Vorteil der vorliegenden Erfindung liegt darin, daß das Austreten von Ammoniak aus dem Auspuffendrohr minimiert wird. Da der stromab gelegene NOx-Sensor gegenüber Ammoniak über Kreuz empfindlich ist, verbessert zusätzlich eine Minimierung des Austretens von Ammoniak die Genauigkeit der NOx-Sensorauslesungen, und damit wird der NOx-Umwandlungswirkungsgrad des Gesamtsystems verbessert.
  • Weitere erfindungswesentliche Merkmale gehen aus der nachfolgenden Beschreibung hervor, in der mit Bezug auf die Zeichnungen Ausführungsbeispiele erläutert werden. In den Zeichnungen zeigen:
  • 1 ein funktionelles Blockdiagramm eines Motorabgassystems, das einen Prozessor aufweist, der so konfiguriert ist, daß er erfindungsgemäß die NOx im Motorabgas reduziert, und
  • 2 eine Wahrheitswertetabelle für die Auswahl der angemessenen Steuerstrategie für die Reduktanteinspritzung.
  • Beschreibung bevorzugter Ausführungsbeispiele
  • Unter Bezugnahme auf 1 wird nun ein Motorabgassystem 10 für die Steuerung der Einspritzung eines Reduktants, im vorliegenden Fall wäßriger Harnstoff, in die Abgasmischung eines Motors 11 gezeigt. Insbesondere wird das Reduktant durch einen Injektor 12 in die Abgasmischung eingespritzt, wobei die Menge einer solchen Einspritzung auf ein Steuersignal aus dem Prozessor 26 reagiert, das über eine Leitung 13 dem Injektor 12 zugeführt wird. Eine Abgasnachbehandlungsvorrichtung 14, im vorliegenden Fall ein harnstoffbasierter SCR-Katalysator, ist stromab von der Reduktanteinspritzung in das Motorabgas angeordnet, um die Reaktion zwischen dem in das Motorabgas eingespritzten Reduktanten und den NOx in der Motorabgasmischung zu erleichtern und damit die genannten NOx zu reduzieren.
  • Ein Paar NOx-Sensoren 15, 16 ist stromauf bzw. stromab vom SCR-Katalysator angeordnet. Messungen der NOx-Konzentration in der Abgasmischung stromauf (CNOx_in) und stromab (CNOx_out) des SCR-Katalysators 14, die von den NOx-Sensoren geliefert werden, werden in einen Prozessor 26 eingespeist. Alternativ kann der NOx Sensor 15 wegfallen, und die in den SCR-Katalysator eintretende Menge von NOx in der Abgasmischung kann auf der Grundlage von Motordrehzahl, Motorlast, Abgastemperatur oder beliebigen sonstigen Parametern geschätzt werden, von denen der Fachmann weiß, daß sie die NOx-Produktion des Motors beeinflussen.
  • Temperaturmessungen stromauf (Tu) und stromab (Td) des SCR-Katalysators werden durch Temperatursensoren 17 und 18 geliefert. Der Prozessor 26 berechnet die Katalysator-Temperatur Tcat auf der Grundlage der durch die Sensoren 17 und 18 gelieferten Information. Alternativ können beliebige andere Mittel verwendet werden, von denen der Fachmann weiß, daß sie die Katalysator-Temperatur bestimmen, wie z.B. Plazieren eines Temperatursensors in der Mitte des Katalysator-Betts oder Schätzen der Katalysator-Temperatur auf der Grundlage von Motorbetriebsbedingungen.
  • Der Prozessor 26 weist ein mit Annahmen arbeitendes Steuergerät 19 und ein mit tatsächlichen Werten arbeitendes Steuergerät 20 auf und wählt auf der Grundlage von Betriebsbedingungen zwischen den beiden, um auf der Leitung 13 das Steuersignal murea zu erzeugen. Die Steuerstrategie für die Reduktanteinspritzung wird nachstehend im Detail unter besonderer Bezugnahme auf 2 beschrieben.
  • Die auf Annahmen beruhende Steuerung basiert auf kennfeldbasierter nominaler Reduktanteinspritzung. Die nominale Menge von Reduktanteinspritzung RED_NOM wird aufgrund einer Lookup-Tabelle 20 als Funktion einer Mehrzahl von Betriebsparametern, einschließlich Motorbetriebsbedingungen und Katalysator-Temperatur Tcat, bestimmt. Insbesondere ist hier RED_NOM eine Funktion von Motordrehzahl, Motorlast, EGR-Wert, Beginn der Kraftstoffeinspritzung (SOI), Katalysator-Temperatur Tcat, Raumgeschwindigkeit (SV) und Konzentration von NOx stromauf (CNOx_in) bzw. stromab (CNOx_out) vom SCR-Katalysator.
  • Die auf tatsächlichen Werten beruhende Steuerung erfolgt über einen modellbasierten Beobachter 22. Das Modell des SCR-Katalysators wurde aus ersten Grundsätzen entwickelt und verwendet die globale Kinetik der relevanten Reaktionen. Die Einflußparameter des Modells werden aufgrund von empirischen, den Katalysator interessierenden Daten geschätzt. Die Eingaben in den Beobachter sind die Konzentration von eingespritztem Ammoniak und die Konzentration von NOx stromauf vom SCR-Katalysator. Die Ausgänge des Beobachters 22 sind Schätzungen der im SCR-Katalysator gespeicherten Ammoniakmenge und der Konzentration von Gasphasen-Ammoniak stromab vom SCR-Katalysator. Bei dieser Ausführungsform wird die gespeicherte Ammoniakmenge dargestellt durch den Anteil der Oberfläche, in der Ammoniak gespeichert ist, der definiert werden kann als das Verhältnis zwischen der Anzahl von Katalysator-Orten mit absorbiertem Ammoniak und der Gesamtmenge an in den Speicherorten verfügbarem Ammoniak. Das SCR-Katalysator-Modell umfaßt die Absorption, Desorption und Oberflächenabdeckungsdynamik verbunden mit der NOx-Reduktion und die Ammoniakoxidationsdynamiken auf der Grundlage der relevanten chemischen Reaktionsraten und kann durch die folgenden Gleichungen dargestellt werden:
    Figure 00070001
    worin:
    Figure 00070002
    Ej: Aktivierungsenergie für die Reaktion j = ads, des, red, ox.
    Rj: Reaktionsrate für die Reaktion j = ads, des, red, ox.
    kj: Präexponentielle Terms für die Reaktion j. [vol/mol].
    Cx: Konzentration der Species x [mol/vol].
    θNH3: Anteil der Oberflächenabdeckung [ohne Dimension].
    ΘSC: Gesamtammoniakspeicherkapazität [mol/vol).
    R: Universelle Gaskonstante [kJ/kmol/K].
    T: Temperatur [Kelvin]
    Y: Ausgangskonzentration von NO (CNO), verfügbar als Messung [mol/vol).
    U: Einlaßkonzentration von NH3 (
    Figure 00070003
    ), [mol/vol].
    d: ist ein bekannter und gebündelter Störungsinput → Einlaßkonzentration von NO, (
    Figure 00070004
    ), [mol/vol].
    F: Konstante Flußrate durch den Katalysator [m3/sek).
    Vcat: Katalysator-Volumen [m3].
  • Die Aktivierungsenergien können Funktionen von Temperatur, Einlaßkonzentrationen oder sonstigen Mengen sein, die gemessen oder geschätzt werden können. Das Modell für die Ammoniakspeicherung kann auch ein anderes sein als die durch die obigen Arrhenius-Gleichungen (1a) und (1b) ausgedrückten.
  • Da die einzige in diesem System verfügbare Messung die NOx-Konzentration stromab vom SCR-Katalysator ist, nimmt der Beobachter für den Anteil der Oberflächenabdeckung und die Konzentration des Austretens von Ammoniak folgende Form an:
    Figure 00080001
    worin x ^ = [CNOx + Θ + CNH3] die Beobachterzustände angibt, f die nichtlinearen Systemdynamiken des SCR-Katalysators, wie in den Gleichungen 1a und 1b gezeigt, angibt und L eine beliebige Funktion des Fehlers ε = (CNOX – CNOx) ist, der die Dynamiken des Fehlersystems asymptotisch stabil macht. Die beiden Ausgänge des Beobachters 22 (geschätzter Anteil der Oberfläche, in der Ammoniak gespeichert ist, ^ und die geschätzte Konzentration des Gasphasenammoniaks stromab vom SCR-Katalysator
    Figure 00080002
    werden dem mit tatsächlichen Werten arbeitenden Steuergerät 21 zugeführt. Des weiteren bestimmt das mit tatsächlichen Werten arbeitende Steuergerät 21 den gewünschten Anteil der Oberfläche, in der Ammoniak gespeichert ist, θdes entweder aufgrund der Lookup-Tabelle 23 auf der Grundlage von Betriebsbedingungen, wie z.B. Katalysator-Temperatur, Motordrehzahl, Motorlast, Beginn der Einspritzung, Raumgeschwindigkeit usw. oder aufgrund einiger finiter oder infiniter optimaler Momentansteuerungsgesetze (horizon optimal control law) und erzeugt auf der Leitung 13 auf der Grundlage von ^ und θdes ein Steuersignal. Alternativ kann das mit tatsächlichen Werten arbeitende Steuergerät 21 aufgrund der geschätzten und gewünschten Menge von Ammoniak stromab vom SCR-Katalysator ein Steuersignal generieren.
  • Das mit tatsächlichen Werten arbeitende Steuergerät 21 kann definiert werden als ein beliebiges Steuergerät U, das das System mit geschlossenem Regelkreis asymptotisch stabil macht, wie z.B.: U = K·e, oder U = K·sign(ε).
  • Zusätzlich liefert der Beobachter 22 an einen Diagnose/Adaptierungsbereich 24 Konvergenzzeitinformation (die Zeit, die die gemessenen und geschätzten Mengen von NOx in der Abgasmischung stromab vom SCR-Katalysator benötigen, um sich im Bereich eines kleinen vorbestimmten Wertes ε aneinander anzunähern). Wenn die Konvergenzzeit größer ist als eine vorbestimmte Zeitkonstante tconv, was angibt, daß die Genauigkeit des Katalysator-Modells aufgrund von Faktoren, wie z.B. Alterung des Katalysators oder Vergiftung des Katalysators, gemindert wurde, beginnt Bereich 24 ein Adaptionsschema, um das veränderte Verhalten beispielsweise durch Anpassen der Gesamtspeicherkapazität des Katalysators zu berücksichtigen und den Verlust von Speicherplätzen aufgrund von Alterung oder Vergiftung zu berücksichtigen. Der Anpassungswert wird auf der Grundlage von Betriebsbedingungen und der Dauer der Konvergenzzeit generiert. Zusätzlich kann der Diagnose/Adaptierungsbereich 24 als Reaktion auf eine erhöhte Konvergenzzeit ein Katalysator-Beschädigungssignal setzen.
  • Unter Bezugnahme auf 2 wird nun eine Wahrheitswertetabelle für das Umschalten zwischen dem mit Annahmen arbeitenden Steuergerät 19 oder dem mit tatsächlichen Werten arbeitenden Steuergerät 21 beschrieben.
  • Zustand 1 tritt ein, wenn die Abgastemperatur am Reduktanteinspritzpunkt Tinj unterhalb einer ersten vorbestimmten Schwelle T1 (bei einem bevorzugten Ausführungsbeispiel 170°C) liegt. Da der eingespritzte Harnstoff sich solange nicht in Ammoniak und Hydrocyanidsäure zerlegt, wie Tinj nicht über T1 liegt, führt jede Harnstoffeinspritzung zu einer Harnstoffakkumulation im Auspuffrohr und/oder zur Ablagerung von Harnstoff auf der Katalysatorfläche. Dies führt zu geringem Um wandlungswirkungsgrad und zu zusätzlichem Austreten von Ammoniak. Tinj kann auf der Grundlage von T1 oder auf der Grundlage von Betriebsbedingungen, wie z.B. Motordrehzahl, Motorlast, Kühlmitteltemperatur usw., geschätzt werden. Demzufolge deaktiviert das Steuergerät 26 beim Zustand 1 die Reduktanteinspritzung.
  • Zustand 2 beschreibt einen Zustand, bei dem Tinj über T1 liegt, aber Tcat unterhalb einer zweiten vorbestimmten Temperaturschwelle T2 liegt (bei einem bevorzugten Ausführungsbeispiel 200°C). Zustand 2 gilt beim Motoranlaufen oder im Halte(Leerlauf)zustand. In diesem Temperaturbereich ist der NOx-Umwandlungswirkungsgrad des SCR-Katalysators sehr niedrig, und das auf Annahmen beruhende Steuergerät wird verwendet, um Reduktant einzuspritzen und Ammoniakeinlagerung im Katalysator zu erlauben. θtreshold ist eine Schwellenmenge von Ammoniakeinlagerung, die für verbesserte NOx-Umwandlung erforderlich ist, wenn einmal der SCR-Katalysator im Bereich der optimalen NOx-Umwandlungstemperatur liegt (50% bei einem bevorzugten Ausführungsbeispiel). Unter Bedingungen des Anlaufens wird der Wert θ aus dem KAM (batteriestrom-gestützter Speicherchip des Prozessors 26) für den letzten gelungenen Motorstart vor dem Abschalten mit dem Zündschlüssel verfügbar sein. Im Leerlaufzustand wird der vorhergesagte Wert θ für Vergleiche mit θtreshold zur Verfügung stehen, da der Motor bereits gelaufen ist. Wenn einmal die gewünschte Menge von Ammoniakspeicherung erreicht ist, kann die Reduktanteinspritzung solange ausgesetzt werden, bis Zustand 3 erreicht ist. Dies verhindert eine übermäßige Speicherung von Ammoniak im Katalysator und reduziert damit das Austreten von Ammoniak während der Beschleunigungsvorgänge.
  • Zustand 3 tritt ein, wenn Tcat ≥ 200°C und die modellbasierte Beobachterkonvergenz > ε (d.h. die Differenz zwischen gemessenen und geschätzten Mengen von NOx in der Abgasmischung stromab vom SCR-Katalysator größer ist als ein kleiner vorbestimmter Wert ε). Mit anderen Worten schaltet der Prozessor 26 nicht auf die auf tatsächlichen Werten beruhende Steuerung der Reduktanteinspritzung, bevor eine akzeptable Konvergenz zwischen der gemessenen und geschätzten NOx-Konzentration stromab vom SCR-Katalysator erreicht wurde (d.h. die Differenz zwischen den beiden geringer oder gleich einem kleinen vorbestimmten Fehlerwert ε ist). Die Erreichung der Konvergenz zwischen den gemessenen und den geschätzten NOx-Konzentrationswerten impliziert, daß der vorhergesagte Wert für den Anteil der Oberflächenabdeckung genau ist und nun in der auf tatsächlichen Werten beruhenden Steuerung verwendet werden kann.
  • Zustand 4 tritt ein, wenn Tcat ≥ 200°C und die modellbasierte Beobachterkonvergenz < ε ist. Unter diesen Bedingungen schaltet der Prozessor 26 unter Verwendung des modellbasierten Beobachters 22 auf die auf tatsächlichen Werten beruhende Steuerung der Reduktanteinspritzung um.
  • Demzufolge ist es nach der vorliegenden Erfindung möglich, eine genaue Schätzung der Menge von Ammoniakspeicherung in einem Katalysator unter Verwendung eines modellbasierten Beobachters des Katalysator-Verhaltens zu erhalten. Bei einem bevorzugten Ausführungsbeispiel generiert der Beobachter eine Schätzung des Anteils der Oberfläche des SCR-Katalysators, in der Ammoniak gespeichert ist, auf der Grundlage der NOx-Konzentration stromauf und stromab vom Katalysator und der Konzentration des in den Katalysator zur Erleichterung der NOx-Reduktion eingespritzten Ammoniaks. Der Ausgang des Beobachters kann dann dazu benutzt werden, die Menge an in den Katalysator eingespritztem Reduktant anzupassen, wodurch der gewünschte Anteil der Oberfläche, in der Ammoniak gespeichert ist, erreicht wird, um das Austreten von Ammoniak zu minimieren und den NOx-Umwandlungswirkungsgrad des Katalysators zu optimieren. Des weiteren wird durch das Überwachen der Beobachter-Konvergenzzeit das Modell kontinuierlich aktualisiert, um Vergiftung oder thermisches Altern des Katalysators ebenso zu berücksichtigen, wie verschiedene Betriebstemperaturen. Zusätzlich verhindert das Umschalten zwischen der auf Annahmen beruhenden und der modellbasierten Steuerung der Reduktanteinspritzung Über- und Untereinspritzung von Reduktant, minimiert das Austreten von Ammoniak aus dem Auspuffrohr und verbessert den Gesamtwirkungsgrad des Abgasreinigungssystems.
  • Damit ist die Beschreibung der Erfindung abgeschlossen. Ihre Lektüre durch den Fachmann führt zur Entdeckung zahlreicher Änderungen und Modifizierungen, ohne Geist und Rahmen der Erfindung zu verlassen. Demzufolge ist beabsichtigt, daß der Rahmen der Erfindung durch die nachstehenden Patentansprüche definiert wird.

Claims (24)

  1. Verfahren für die Schätzung einer Menge des in einer stromab von einem Innenverbrennungsmotor angeschlossenen Abgasnachbehandlungsvorrichtung gespeicherten Reduktants, welches Verfahren dadurch gekennzeichnet ist, daß es umfaßt: Einspritzen des Reduktants in die Vorrichtung, um mit einer Komponente einer Motorabgasmischung zu reagieren, und Schätzen der Menge des in der Vorrichtung gespeicherten Reduktants auf der Grundlage einer Menge der genannten Abgasmischungskomponente stromab von der Vorrichtung.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die genannte Schätzung des weiteren auf einer Menge des in die Vorrichtung eingespritzten Reduktants beruht.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die genannte Schätzung des weiteren auf einer Menge einer stromauf von der Vorrichtung eingespritzten Abgaskomponente beruht.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Motor ein Dieselmotor ist.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Abgasnachbehandlungsvorrichtung ein Katalysator für selektive katalytische Reduktion (SCR-Katalysator) ist.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das genannte Reduktant Ammoniak ist.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die genannte Komponente der genannten Abgasmischung NOx ist.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die genannte Menge des im genannten SCR-Katalysator gespeicherten Ammoniaks ein Anteil der Oberfläche des SCR-Katalysators, in der Ammoniak gespeichert wird, ist.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der Anteil der Oberfläche des genannten SCR-Katalysators, in der Ammoniak gespeichert wird, auf der Grundlage folgender Gleichungen geschätzt wird:
    Figure 00140001
    worin:
    Figure 00140002
    Rj: Reaktionsrate für die Reaktion j = ads, des, red, ox. kj: Präexponentielle Terms für die Reaktion j. [vol/mol]. Cx: Konzentration der Species x [mol/vol]. θNH3: Anteil der Oberflächenabdeckung [ohne Dimension]. ΘSC: Gesamtammoniakspeicherkapazität [mol/vol]. R: Universelle Gaskonstante [kJ/kmol/K]. T: Temperatur [Kelvin] Y: Ausgangskonzentration von NO (CNO), verfügbar als Messung [mol/vol]. U: Einlaßkonzentration von NH3 (
    Figure 00070003
    ), [mol/vol]. d: ist ein bekannter und gebündelter Störungsinput → Einlaßkonzentration von NO, (
    Figure 00070004
    ), [mol/vol]. F: Konstante Flußrate durch den Katalysator [m3/sek]. Vcat: Katalysator-Volumen [m3].
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß ΘSC angepaßt wird, um die Beschädigung des genannten SCR-Katalysators zu berücksichtigen.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß ΘSC des weiteren auf der Grundlage einer Temperatur des SCR-Katalysators angepaßt wird.
  12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Motor ein Dieselmotor ist.
  13. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Menge des genannten in die Vorrichtung eingespritzten Reduktants, um mit der genannten Komponente der genannten Motorabgasmischung zu reagieren, auf der Grundlage von Betriebsbedingungen bestimmt wird.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die genannten Betriebsbedingungen die Motordrehzahl umfassen.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die genannten Betriebsbedingungen des weiteren die Motorlast umfassen.
  16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß die genannten Betriebsbedingungen des weiteren eine Temperatur der Vorrichtung umfassen.
  17. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß es des weiteren die Schätzung einer Menge von Reduktant in der genannten Abgasmischung stromab von der Vorrichtung auf der Grundlage der genannten geschätzten Menge von in der Vorrichtung gespeichertem Reduktant umfaßt.
  18. Abgasreinigungssystem für einen Innenverbrennungsmotor, welches System dadurch gekennzeichnet ist, daß es umfaßt: eine stromab von dem Motor angeschlossene Abgasnachbehandlungsvorrichtung, einen stromab von der genannten Abgasnachbehandlungsvorrichtung angeschlossenen Sensor, wobei der genannte Sensor ein Signal abgibt, das eine Menge einer aus der genannten Vorrichtung austretenden Substanz in der Abgasmischung angibt, und ein das Reduktant in die genannte Vorrichtung einspritzendes Steuergerät, wobei das genannte Steuergerät des weiteren auf der Grundlage mindestens des genannten Sensorsignal eine Menge des genannten in der genannten Vorrichtung aufgrund der genannten Einspritzung gespeicherten Reduktants schätzt.
  19. System nach Anspruch 18, dadurch gekennzeichnet, daß der Motor ein Dieselmotor ist.
  20. System nach Anspruch 18, dadurch gekennzeichnet, daß die genannte Vorrichtung ein SCR-Katalysator ist.
  21. System nach Anspruch 18, dadurch gekennzeichnet, daß der genannte Sensor ein NOx-Sensor ist.
  22. System nach Anspruch 18, dadurch gekennzeichnet, daß die genannte Substanz NOx ist.
  23. System nach Anspruch 18, dadurch gekennzeichnet, daß das Reduktant Ammoniak ist.
  24. System nach Anspruch 18, dadurch gekennzeichnet, daß das genannte Steuergerät die genannte gespeicherte Menge des genannten Reduktants auf der Grundlage folgender Gleichungen schätzt:
    Figure 00170001
    worin:
    Figure 00170002
    Rj: Reaktionsrate für die Reaktion j = ads, des, red, ox. kj: Präexponentielle Terms für die Reaktion j. [vol/mol]. Cx: Konzentration der Species x [mol/vol]. θNH3: Anteil der Oberflächenabdeckung [ohne Dimension]. ΘSC: Gesamtammoniakspeicherkapazität [mol/vol]. R: Universelle Gaskonstante [kJ/kmol/K]. T: Temperatur [Kelvin] Y: Ausgangskonzentration von NO (CNO), verfügbar als Messung [mol/vol]. U: Einlaßkonzentration von NH3 (
    Figure 00070003
    ), [mol/vol]. d: ist ein bekannter und gebündelter Störungsinput → Einlaßkonzentration von NO, (
    Figure 00070004
    ), [mol/vol]. F: Konstante Flußrate durch den Katalysator [m3/sek]. Vcat: Katalysator-Volumen [m3].
DE10347132A 2002-11-21 2003-10-10 Abgasnachbehandlungssysteme Expired - Fee Related DE10347132B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/301,276 US7093427B2 (en) 2002-11-21 2002-11-21 Exhaust gas aftertreatment systems
US301276 2002-11-21

Publications (2)

Publication Number Publication Date
DE10347132A1 true DE10347132A1 (de) 2004-06-17
DE10347132B4 DE10347132B4 (de) 2013-08-08

Family

ID=32324514

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10347132A Expired - Fee Related DE10347132B4 (de) 2002-11-21 2003-10-10 Abgasnachbehandlungssysteme

Country Status (2)

Country Link
US (1) US7093427B2 (de)
DE (1) DE10347132B4 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025419A1 (de) * 2007-05-31 2008-12-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb eines Kraftfahrzeuges mit einer Abgas-Heizvorrichtung
WO2010015326A1 (de) * 2008-08-07 2010-02-11 Daimler Ag Verfahren zum betreiben einer abgasreinigungsanlage mit einem scr-katalysator
WO2011138277A1 (de) 2010-05-04 2011-11-10 Avl List Gmbh Verfahren zum betreiben einer brennkraftmaschine
DE102010060099A1 (de) * 2010-10-21 2012-04-26 Ford Global Technologies, Llc. Verfahren zum Anpassen eines SCR Katalysators in einem Abgassystem eines Kraftfahrzeugs
AT510572B1 (de) * 2010-12-01 2012-05-15 Avl List Gmbh Verfahren zur bestimmung der nh3-beladung eines scr-katalysators
DE102011103346A1 (de) * 2011-02-16 2012-08-16 Mtu Friedrichshafen Gmbh Verfahren zur modellbasierten Bestimmung der Temperaturverteilung einer Abgasnachbehandlungseinheit
AT512514A4 (de) * 2012-08-21 2013-09-15 Avl List Gmbh Verfahren zur modellbasierten Regelung eines zumindest einen SCR-Katalysator aufweisenden SCR-Systems
DE102007003547B4 (de) * 2006-09-27 2018-06-14 Robert Bosch Gmbh Verfahren zur Diagnose eines eine Abgasbehandlungsvorrichtung enthaltenden Abgasbereichs einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE112009000996B4 (de) 2008-04-30 2022-12-15 Cummins Ip, Inc. Vorrichtung, Verfahren und System zum Reduzieren von NOx-Emissionen bei einem SCR-Katalysator
DE112009000997B4 (de) 2008-04-30 2024-02-08 Cummins Ip, Inc. Vorrichtung, System und Verfahren zum Bestimmen der Degradation eines SCR-Katalysators

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303934A (ja) * 1998-06-23 2001-10-31 Toyota Motor Corp 内燃機関の排気浄化装置
DE602004030732D1 (de) * 2003-09-30 2011-02-03 Nissan Diesel Motor Co Abgasreinigungsvorrichtung für einen Motor
JP2006002663A (ja) * 2004-06-17 2006-01-05 Hino Motors Ltd 排気浄化装置
US6996975B2 (en) * 2004-06-25 2006-02-14 Eaton Corporation Multistage reductant injection strategy for slipless, high efficiency selective catalytic reduction
DE102004031624A1 (de) * 2004-06-30 2006-02-02 Robert Bosch Gmbh Verfahren zum Betreiben eines zur Reinigung des Abgases einer Brennkraftmaschine verwendeten Katalysators und Vorrichtung zur Durchführung des Verfahrens
JP4267534B2 (ja) * 2004-07-23 2009-05-27 日野自動車株式会社 排気浄化装置の異常検知方法
GB0418884D0 (en) * 2004-08-24 2004-09-29 Ass Octel Method and apparatus for reducing emission of particles and NOx
US7536232B2 (en) * 2004-08-27 2009-05-19 Alstom Technology Ltd Model predictive control of air pollution control processes
US7784272B2 (en) * 2004-08-31 2010-08-31 Cummins Inc. Control system for an engine aftertreatment system
DE102004046640B4 (de) * 2004-09-25 2013-07-11 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102004046639A1 (de) * 2004-09-25 2006-03-30 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
JP2006125247A (ja) * 2004-10-27 2006-05-18 Hitachi Ltd エンジンの排気ガス浄化方法及び排気ガス浄化装置
WO2006081598A2 (de) * 2005-02-03 2006-08-10 Avl List Gmbh Verfahren zur diagnose eines abgasnachbehandlungssystems
DE102005038571A1 (de) * 2005-08-12 2007-02-15 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zur selektiven katalytischen Reduktion von Stickoxiden im Abgas einer Verbrennungskraftmaschine
US20070042495A1 (en) * 2005-08-22 2007-02-22 Detroit Diesel Corporation Method of controlling injection of a reducing agent in an engine emissions control system
US7418816B2 (en) * 2005-09-01 2008-09-02 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
US20070044456A1 (en) * 2005-09-01 2007-03-01 Devesh Upadhyay Exhaust gas aftertreatment systems
DE102005042487A1 (de) * 2005-09-07 2007-03-08 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102005048117A1 (de) * 2005-10-06 2007-04-12 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zur Reduktion des Stickoxidanteils im Abgas einer Verbrennungskraftmaschine
US7757478B2 (en) * 2005-10-07 2010-07-20 Delphi Technologies, Inc. System and method for monitoring operation of an exhaust gas treatment system
DE102006043152A1 (de) * 2005-11-14 2007-06-28 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Reduktionsmittel-Generationssystems
US20070137181A1 (en) * 2005-12-16 2007-06-21 Devesh Upadhyay Exhaust gas aftertreatment systems
DE102005062120B4 (de) * 2005-12-23 2016-06-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines Abgasnachbehandlungssystems
DE102007009824A1 (de) 2006-03-03 2007-09-27 Ford Global Technologies, LLC, Dearborn System und Verfahren zum Erfassen von Reduktionsmittelspeicherung
US7591132B2 (en) * 2006-09-20 2009-09-22 Gm Global Technology Operations, Inc. Apparatus and method to inject a reductant into an exhaust gas feedstream
JP2010516948A (ja) * 2007-01-31 2010-05-20 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト リーンエンジンの排ガス装置内のすすフィルタを再生する方法及びこのための排ガス装置
JP4407705B2 (ja) * 2007-02-26 2010-02-03 株式会社デンソー 排気浄化剤の添加量制御装置、及び排気浄化システム
DE102007016478A1 (de) * 2007-04-05 2008-10-09 Robert Bosch Gmbh Verfahren zum Betreiben einer Abgasbehandlungsvorrichtung und Vorrichtung zur Durchführung des Verfahrens
US7707824B2 (en) * 2007-04-10 2010-05-04 Gm Global Technology Operations, Inc. Excess NH3 storage control for SCR catalysts
US7886527B2 (en) * 2007-04-10 2011-02-15 Gm Global Technology Operations, Inc. Reductant injection control strategy
US8171724B2 (en) * 2007-05-02 2012-05-08 Ford Global Technologies, Llc Vehicle-based strategy for removing urea deposits from an SCR catalyst
US7967720B2 (en) * 2007-06-13 2011-06-28 Ford Global Technologies, Llc Dynamic allocation of drive torque
DE602007005125D1 (de) * 2007-07-31 2010-04-15 Delphi Tech Inc r katalytischen Reduktion
US8001769B2 (en) * 2007-08-20 2011-08-23 Caterpillar Inc. Control of SCR system having a filtering device
US8713917B2 (en) * 2007-08-30 2014-05-06 GM Global Technology Operations LLC Method for reducing NH3 release from SCR catalysts during thermal transients
DE102007045263A1 (de) * 2007-09-21 2009-04-02 Continental Automotive Gmbh Verfahren zur Steuerung der Reduktionsmittelzufuhr in ein Abgasnachbehandlungssystem mit einem SCR-Katalysator
WO2009070734A1 (en) * 2007-11-26 2009-06-04 Michigan Technological University Nox control systems and methods for controlling nox emissions
DE102007061005A1 (de) * 2007-12-18 2009-06-25 Man Nutzfahrzeuge Ag Verfahren zur Verbesserung der Hydrolyse eines Reduktionsmittels in einem Abgasnachbehandlungssystem
EP2072773A1 (de) * 2007-12-21 2009-06-24 Umicore AG & Co. KG Verfahren zur Behandlung von NOx im Abgas und dazugehöriges System
FR2925935B1 (fr) * 2008-01-02 2010-01-15 Peugeot Citroen Automobiles Sa Procede et systeme de gestion de l'injection d'agent reducteur dans un systeme scr.
JP4375483B2 (ja) * 2008-02-22 2009-12-02 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7980061B2 (en) 2008-03-04 2011-07-19 Tenneco Automotive Operating Company Inc. Charged air bypass for aftertreatment combustion air supply
US8256208B2 (en) * 2008-04-30 2012-09-04 Cummins Ip, Inc. Apparatus, system, and method for reducing NOx emissions on an SCR catalyst
US8505278B2 (en) * 2009-04-30 2013-08-13 Cummins Ip, Inc. Engine system properties controller
US8141340B2 (en) * 2008-04-30 2012-03-27 Cummins Ip, Inc Apparatus, system, and method for determining the degradation of an SCR catalyst
US8074445B2 (en) * 2008-04-30 2011-12-13 Cummins Ip, Inc. Apparatus, system, and method for reducing NOx emissions on an SCR catalyst
DE112009000968T5 (de) * 2008-04-30 2011-07-28 Cummins IP, Inc., Minn. Vorrichtung, System und Verfahren zum Reduzieren von Nox-Emissionen bei einem SCR-Katalysator
US8281572B2 (en) * 2008-04-30 2012-10-09 Cummins Ip, Inc. Apparatus, system, and method for reducing NOx emissions from an engine system
US8109079B2 (en) * 2008-04-30 2012-02-07 Cummins Ip, Inc. Apparatus, system, and method for controlling ammonia slip from an SCR catalyst
US8201394B2 (en) * 2008-04-30 2012-06-19 Cummins Ip, Inc. Apparatus, system, and method for NOx signal correction in feedback controls of an SCR system
US8161730B2 (en) * 2008-04-30 2012-04-24 Cummins Ip, Inc. Apparatus, system, and method for reducing NOx emissions on an SCR catalyst
FR2931201B1 (fr) * 2008-05-16 2010-06-04 Peugeot Citroen Automobiles Sa Procede de correction de modeles d'emission d'oxydes d'azote
US8209964B2 (en) * 2008-05-29 2012-07-03 Caterpillar Inc. Exhaust control system having diagnostic capability
US8596042B2 (en) * 2008-08-28 2013-12-03 Delphi International Operations Luxembourg S.A.R.L. System and method for selective catalytic reduction control
US8112986B2 (en) * 2008-09-09 2012-02-14 Ford Global Technologies, Llc Managing reductant slip in an internal combustion engine
US8397489B2 (en) * 2008-09-10 2013-03-19 Ford Global Technologies, Llc Engine idling duration control
US20100101214A1 (en) * 2008-10-24 2010-04-29 Herman Andrew D Diagnostic methods for selective catalytic reduction (scr) exhaust treatment system
US8181451B2 (en) * 2008-11-20 2012-05-22 Alstom Technology Ltd Method of controlling the operation of a selective catalytic reduction plant
US8356471B2 (en) * 2008-12-05 2013-01-22 Cummins Ip, Inc. Apparatus, system, and method for controlling reductant dosing in an SCR catalyst system
US8225595B2 (en) * 2008-12-05 2012-07-24 Cummins Ip, Inc. Apparatus, system, and method for estimating an NOx conversion efficiency of a selective catalytic reduction catalyst
US8486341B2 (en) * 2008-12-09 2013-07-16 Caterpillar Inc. System and method for treating exhaust gases
US20100170225A1 (en) * 2009-01-08 2010-07-08 Caterpillar Inc. Exhaust treatment system having a reductant supply system
DE102009012093A1 (de) * 2009-03-06 2010-09-09 Man Nutzfahrzeuge Ag Verfahren zur Einstellung der Dosierungen des Reduktionsmittels bei selektiver katalytischer Reduktion
US8474248B2 (en) * 2009-05-06 2013-07-02 Detroit Diesel Corporation Model based method for selective catalyst reducer urea dosing strategy
US8186151B2 (en) * 2009-06-09 2012-05-29 GM Global Technology Operations LLC Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications
US9133750B2 (en) * 2009-07-30 2015-09-15 GM Global Technology Operations LLC Method and system for verifying the operation of an SCR catalyst
DE112010003613T5 (de) * 2009-09-10 2012-11-08 Cummins Ip, Inc. Niedertemperatur-Katalysator für die selektive katalytische Reduktion sowie dazugehörige Systeme und Verfahren
US8915062B2 (en) * 2009-10-09 2014-12-23 GM Global Technology Operations LLC Method and apparatus for monitoring a reductant injection system in an exhaust aftertreatment system
BR112012014614B1 (pt) * 2009-12-18 2020-12-08 Volvo Lastvagnar Ab método para controlar um nível de enchimento de um nível de tampão de redutor
ES2434741T3 (es) * 2009-12-23 2013-12-17 Fpt Motorenforschung Ag Método y dispositivo para controlar un convertidor catalítico SCR de un vehículo
SE534479C2 (sv) * 2010-01-27 2011-09-06 Scania Cv Ab Skattning av en avvikelse för åtminstone en modellvariabel hos en katalysatormodell
US8584444B2 (en) * 2010-02-09 2013-11-19 General Electric Company Model-based controls for selective catalyst reduction system
US20120067028A1 (en) * 2010-02-22 2012-03-22 Clerc James C Aftertreatment catalyst degradation compensation
US8726723B2 (en) 2010-02-23 2014-05-20 Cummins Emission Solutions Detection of aftertreatment catalyst degradation
US8671666B2 (en) 2010-03-11 2014-03-18 Cummins Inc. System and apparatus for enhancing exhaust aftertreatment startup emissions control
US8733083B2 (en) 2010-04-26 2014-05-27 Cummins Filtration Ip, Inc. SCR catalyst ammonia surface coverage estimation and control
US8640448B2 (en) * 2010-05-03 2014-02-04 Cummins Inc. Transient compensation control of an SCR aftertreatment system
US9476338B2 (en) 2010-05-03 2016-10-25 Cummins Inc. Ammonia sensor control, with NOx feedback, of an SCR aftertreatment system
US9038373B2 (en) 2010-05-03 2015-05-26 Cummins Inc. Ammonia sensor control of an SCR aftertreatment system
US8793977B2 (en) 2010-07-09 2014-08-05 Paccar Inc Injector control for a selective catalytic reduction system
US8991154B2 (en) 2010-07-12 2015-03-31 Mack Trucks, Inc. Methods and systems for controlling reductant levels in an SCR catalyst
US8689542B2 (en) 2010-10-12 2014-04-08 Cummins Inc. Emissions reductions through reagent release control
US20130000729A1 (en) * 2011-06-30 2013-01-03 Caterpillar Inc. Def pump and tank thawing system and method
US8659415B2 (en) 2011-07-15 2014-02-25 General Electric Company Alarm management
US8751413B2 (en) 2011-07-26 2014-06-10 General Electric Company Fuzzy logic based system monitoring system and method
US8627651B2 (en) 2011-08-05 2014-01-14 Cummins Emission Solutions, Inc. NH3 emissions management in a NOx reduction system
FR2978984A3 (fr) * 2011-08-11 2013-02-15 Renault Sa Gestion optimisee d'un catalyseur scr de vehicule automobile
FR2993602B1 (fr) * 2012-07-17 2014-07-25 IFP Energies Nouvelles Procede de detection de composes azotes contenus dans des gaz d'echappement, notamment de moteur a combustion interne
US8862370B2 (en) * 2012-08-02 2014-10-14 Ford Global Technologies, Llc NOx control during engine idle-stop operations
US9335004B2 (en) 2012-12-07 2016-05-10 General Electric Company Method and system for use in combustion product control
US8834820B1 (en) 2013-06-14 2014-09-16 Caterpillar Inc. Adaptive catalytic conversion and reduction agent control
US9181835B2 (en) 2013-08-13 2015-11-10 Caterpillar Inc. Supervisory model predictive selective catalytic reduction control method
US9284872B2 (en) 2013-09-17 2016-03-15 Cummins Emission Solutions Inc. System, methods, and apparatus for low temperature dosing in diesel exhaust systems
US9845716B2 (en) 2014-02-13 2017-12-19 Cummins Inc. Techniques for control of an SCR aftertreatment system
US9441519B2 (en) 2014-06-11 2016-09-13 Cummins Inc. System variation adaption for feed-forward controller
US9624805B2 (en) 2014-08-26 2017-04-18 Caterpillar Inc. Aftertreatment system having dynamic independent injector control
US10006330B2 (en) 2014-10-28 2018-06-26 General Electric Company System and method for emissions control in gas turbine systems
US9506390B1 (en) * 2015-06-18 2016-11-29 Ford Global Technologies, Llc Distributed control of selective catalytic reduction systems
DE102016122315A1 (de) 2015-12-10 2017-06-14 General Electric Company System und Verfahren zur Fehlerdiagnose in einem Emissionssteuerungssystem
GB2547288B (en) * 2016-02-03 2021-03-17 Johnson Matthey Plc Catalyst for oxidising ammonia
US10392990B2 (en) * 2016-10-14 2019-08-27 Cummins Inc. Systems and methods for idle fuel economy mode
JP6508229B2 (ja) * 2017-02-10 2019-05-08 トヨタ自動車株式会社 内燃機関の排気浄化装置の異常診断装置
CN106812577B (zh) * 2017-03-30 2019-05-24 无锡威孚力达催化净化器有限责任公司 Scr系统控制装置
GB2614999B (en) * 2019-01-22 2023-11-22 Cummins Emission Solutions Inc Systems and methods for implementing corrections to a reductant delivery system in an exhaust aftertreatment system of an internal combustion engine
CN109915245B (zh) * 2019-01-25 2020-10-30 中国汽车技术研究中心有限公司 一种重型车排放监管系统
KR102009128B1 (ko) * 2019-02-07 2019-08-07 서울대학교산학협력단 선택적 촉매 환원 시스템 제어 장치 및 방법
CN113924408B (zh) 2019-05-09 2023-11-14 康明斯排放处理公司 用于分流式紧密联接催化剂的阀门装置
US11732628B1 (en) 2020-08-12 2023-08-22 Old World Industries, Llc Diesel exhaust fluid
US11933213B2 (en) * 2021-12-15 2024-03-19 Ford Global Technologies, Llc Systems and methods for maintaining aftertreatment capability during vehicle life
WO2023141293A1 (en) * 2022-01-21 2023-07-27 Cummins Inc. SYSTEMS AND METHODS FOR PREDICTING AND CONTROLLING TAILPIPE NOx CONVERSION AND AMMONIA SLIP BASED ON DEGRADATION OF AN AFTERTREATMENT SYSTEM
CN114961956B (zh) * 2022-07-06 2023-12-15 潍柴动力股份有限公司 一种选择性催化还原转化效率诊断方法及装置

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4203219A1 (de) 1992-02-05 1993-08-12 Basf Ag Verfahren zur stickoxidminderung in abgasen durch gesteuerte nh(pfeil abwaerts)3(pfeil abwaerts)-zugabe
DE59400100D1 (de) * 1993-03-26 1996-03-14 Siemens Ag Katalysator zur Stickoxidminderung im Abgas eines Verbrennungsmotors
DE4315278A1 (de) * 1993-05-07 1994-11-10 Siemens Ag Verfahren und Einrichtung zur Dosierung eines Reduktionsmittels in ein stickoxidhaltiges Abgas
DE59406551D1 (de) * 1993-11-04 1998-09-03 Siemens Ag Verfahren und Einrichtung zur Dosierung eines Reaktanten in ein Strömungsmedium
DE4436415A1 (de) 1994-10-12 1996-04-18 Bosch Gmbh Robert Einrichtung zum Nachbehandeln von Abgasen einer selbstzündenden Brennkraftmaschine
DE19625447B4 (de) 1996-06-26 2006-06-08 Robert Bosch Gmbh Rohrverdampfer für Zusatzkraftstoff ins Abgas
JPH1024219A (ja) 1996-07-11 1998-01-27 Mitsubishi Heavy Ind Ltd 排ガス脱硝方法
JP4087914B2 (ja) * 1996-07-25 2008-05-21 日本碍子株式会社 脱硝システム及び脱硝方法
US6038854A (en) 1996-08-19 2000-03-21 The Regents Of The University Of California Plasma regenerated particulate trap and NOx reduction system
US5711147A (en) 1996-08-19 1998-01-27 The Regents Of The University Of California Plasma-assisted catalytic reduction system
GB9621215D0 (en) 1996-10-11 1996-11-27 Johnson Matthey Plc Emission control
US5985222A (en) 1996-11-01 1999-11-16 Noxtech, Inc. Apparatus and method for reducing NOx from exhaust gases produced by industrial processes
US5809775A (en) 1997-04-02 1998-09-22 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine by selective catalytic reduction utilizing solid reagents
US5924280A (en) 1997-04-04 1999-07-20 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine while maximizing fuel economy
DE19782282T1 (de) 1997-07-10 2000-09-21 Sk Corp Selektive katalytische Reduktion zur Entfernung von Stickoxiden und zugehöriger Katalysatorkörper
US6003305A (en) 1997-09-02 1999-12-21 Thermatrix, Inc. Method of reducing internal combustion engine emissions, and system for same
FR2770418B1 (fr) 1997-11-04 1999-12-03 Grande Paroisse Sa Procede pour l'elimination dans le gaz des oxydes d'azote nox par reduction catalytique selective (scr) a l'ammoniac sur catalyseurs zeolitiques ne provoquant pas la formation de protoxyde d'azote
JP3237611B2 (ja) 1997-11-11 2001-12-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
GB9802504D0 (en) 1998-02-06 1998-04-01 Johnson Matthey Plc Improvements in emission control
DE19808382A1 (de) * 1998-02-27 1999-09-02 Volkswagen Ag Steuerung eines NOx-Absorber-Katalysator
DE19819579C1 (de) 1998-04-30 1999-09-30 Siemens Ag Verfahren und Vorrichtung zur Abgasnachbehandlung für eine mit einem SCR-Katalysator ausgestattete Brennkraftmaschine
JP2001303934A (ja) * 1998-06-23 2001-10-31 Toyota Motor Corp 内燃機関の排気浄化装置
US6299847B1 (en) 1998-07-07 2001-10-09 Durr Environmental Ammonia catalytic abatement apparatus and method
US6125629A (en) 1998-11-13 2000-10-03 Engelhard Corporation Staged reductant injection for improved NOx reduction
DE19901915C1 (de) * 1999-01-19 2000-04-20 Siemens Ag Verfahren zur katalytischen Umsetzung von im Abgas eines Verbrennungsmotors enthaltenen Stickoxiden
US6182443B1 (en) 1999-02-09 2001-02-06 Ford Global Technologies, Inc. Method for converting exhaust gases from a diesel engine using nitrogen oxide absorbent
JP3607976B2 (ja) 1999-03-29 2005-01-05 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE19922959A1 (de) * 1999-05-19 2000-11-23 Daimler Chrysler Ag Abgasreinigungsanlage mit Stickoxidreduktion unter Reduktionsmittelzugabe
US6305160B1 (en) 1999-07-12 2001-10-23 Ford Global Technologies, Inc. Emission control system
US6266955B1 (en) 1999-08-20 2001-07-31 Caterpillar Inc. Diagnostic system for an emissions control on an engine
US6314722B1 (en) 1999-10-06 2001-11-13 Matros Technologies, Inc. Method and apparatus for emission control
US6269633B1 (en) 2000-03-08 2001-08-07 Ford Global Technologies, Inc. Emission control system
US6415602B1 (en) * 2000-10-16 2002-07-09 Engelhard Corporation Control system for mobile NOx SCR applications
US6928359B2 (en) * 2001-08-09 2005-08-09 Ford Global Technologies, Llc High efficiency conversion of nitrogen oxides in an exhaust aftertreatment device at low temperature
US6546720B2 (en) * 2001-09-04 2003-04-15 Ford Global Technologies, Inc. Method and apparatus for controlling the amount of reactant to be added to a substance using a sensor which is responsive to both the reactant and the substance
US6993900B2 (en) * 2002-10-21 2006-02-07 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
US6941746B2 (en) * 2002-11-21 2005-09-13 Combustion Components Associates, Inc. Mobile diesel selective catalytic reduction systems and methods
US6996975B2 (en) * 2004-06-25 2006-02-14 Eaton Corporation Multistage reductant injection strategy for slipless, high efficiency selective catalytic reduction

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007063940B4 (de) 2006-09-27 2023-10-26 Robert Bosch Gmbh Verfahren zur Diagnose eines eine Abgasbehandlungsvorrichtung enthaltenden Abgasbereichs einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102007003547B4 (de) * 2006-09-27 2018-06-14 Robert Bosch Gmbh Verfahren zur Diagnose eines eine Abgasbehandlungsvorrichtung enthaltenden Abgasbereichs einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102007025419A1 (de) * 2007-05-31 2008-12-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb eines Kraftfahrzeuges mit einer Abgas-Heizvorrichtung
DE112009000997B4 (de) 2008-04-30 2024-02-08 Cummins Ip, Inc. Vorrichtung, System und Verfahren zum Bestimmen der Degradation eines SCR-Katalysators
DE112009000996B4 (de) 2008-04-30 2022-12-15 Cummins Ip, Inc. Vorrichtung, Verfahren und System zum Reduzieren von NOx-Emissionen bei einem SCR-Katalysator
US8978362B2 (en) 2008-08-07 2015-03-17 Daimler Ag Method for operating an exhaust gas treatment system having an SCR catalytic converter
WO2010015326A1 (de) * 2008-08-07 2010-02-11 Daimler Ag Verfahren zum betreiben einer abgasreinigungsanlage mit einem scr-katalysator
WO2011138277A1 (de) 2010-05-04 2011-11-10 Avl List Gmbh Verfahren zum betreiben einer brennkraftmaschine
DE102010060099A1 (de) * 2010-10-21 2012-04-26 Ford Global Technologies, Llc. Verfahren zum Anpassen eines SCR Katalysators in einem Abgassystem eines Kraftfahrzeugs
US8453434B2 (en) 2010-10-21 2013-06-04 Ford Global Technologies, Llc Method for adapting an SCR catalytic converter in an exhaust system of a motor vehicle
AT510572A4 (de) * 2010-12-01 2012-05-15 Avl List Gmbh Verfahren zur bestimmung der nh3-beladung eines scr-katalysators
US10408807B2 (en) 2010-12-01 2019-09-10 Avl List Gmbh Method for determining the NH3 loading of an SCR catalytic converter
WO2012072566A1 (de) 2010-12-01 2012-06-07 Avl List Gmbh Verfahren zur bestimmung der nh3-beladung eines scr-katalysators
AT510572B1 (de) * 2010-12-01 2012-05-15 Avl List Gmbh Verfahren zur bestimmung der nh3-beladung eines scr-katalysators
DE102011103346B4 (de) * 2011-02-16 2014-06-26 Mtu Friedrichshafen Gmbh Verfahren zur modellbasierten Bestimmung der Temperaturverteilung einer Abgasnachbehandlungseinheit
WO2012110210A1 (de) 2011-02-16 2012-08-23 Mtu Friedrichshafen Gmbh Verfahren zur modellbasierten bestimmung der temperaturverteilung einer abgasnachbehandlungseinheit
DE102011103346A1 (de) * 2011-02-16 2012-08-16 Mtu Friedrichshafen Gmbh Verfahren zur modellbasierten Bestimmung der Temperaturverteilung einer Abgasnachbehandlungseinheit
AT512514B1 (de) * 2012-08-21 2013-09-15 Avl List Gmbh Verfahren zur modellbasierten Regelung eines zumindest einen SCR-Katalysator aufweisenden SCR-Systems
DE102013108483A1 (de) 2012-08-21 2014-05-28 Avl List Gmbh Verfahren zur modellbasierten Regelung eines zumindest einen SCR-Katalysator aufweisenden SCR-Systems
AT512514A4 (de) * 2012-08-21 2013-09-15 Avl List Gmbh Verfahren zur modellbasierten Regelung eines zumindest einen SCR-Katalysator aufweisenden SCR-Systems

Also Published As

Publication number Publication date
US20040098974A1 (en) 2004-05-27
US7093427B2 (en) 2006-08-22
DE10347132B4 (de) 2013-08-08

Similar Documents

Publication Publication Date Title
DE10347132B4 (de) Abgasnachbehandlungssysteme
DE10347130B4 (de) Abgasnachbehandlungssysteme
DE10347131A1 (de) Abgasnachbehandlungssysteme
DE10328856B4 (de) Steuerung und Diagnose von Abgasemissionen
EP1866062B1 (de) Vorrichtung zur entfernung von stickoxiden aus brennkraftmaschinenabgas und verfahren zur dosierung eines zuschlagstoffs für brennkraftmaschinenabgas
DE102006027357B4 (de) Verfahren zum Betreiben eines SCR-Katalysators sowie Abgasanlage
DE102013210120B4 (de) Abgasreinigungssystem eines Verbrennungsmotors
DE10327539A1 (de) Diagnose von Abgasemissionen
DE10207986A1 (de) Abgasreinigungsanlage für eine Brennkraftmaschine
DE102004021193A1 (de) Verfahren und Vorrichtungen zur Diagnose von Abgasnachbehandlungssystemen
EP2855867B1 (de) Verfahren zum betreiben einer reduktionsmitteldosierung eines scr-katalysatorsystems und entsprechendes scr-katalysatorsystem
DE102018131654A1 (de) Verfahren zum diagnostizieren und steuern der ammoniakoxidation in selektiven katalytischen reduktionsvorrichtungen
DE10113947A1 (de) Verfahren zur Verringerung des Stickoxidgehalts im Abgas einer im Mager-Fett-Wechsel betreibbaren Brennkraftmaschine
DE102009038948A1 (de) System und Verfahren zur Steuerung von Mager-Stickoxidemission
DE102014119504A1 (de) Verfahren und System zum Steuern einer Abgas-Nachbehandlungs-Vorrichtung für ein Fahrzeug
DE102015224635B4 (de) Abgasreinigungsvorrichtung und Verfahren zum Berechnen einer in einer Mager-NOx-Falle der Abgasreinigungsvorrichtung adsorbierten NOx-Masse
DE102016014854A1 (de) Verfahren zur Abgasnachbehandlung
WO2007137918A1 (de) Verfahren zum betreiben eines scr-katalysators sowie programmalgorithmus zur ausführung des verfahrens
DE10328583A1 (de) Brennstoffzelle und Verfahren zum Steuern/Regeln derselben
DE102016209566A1 (de) Steuern einer Stickoxidemission im Abgas einer Brennkraftmaschine
DE102018107862A1 (de) Abgasbehandlungssystem mit einem Ammoniakspeicher-Steuersystem
DE10043798A1 (de) Verfahren zum Betrieb eines Katalysators
DE102006041135B4 (de) Diagnosesystem sowie Verfahren zum Steuern und Diagnostizieren eines NOx reduzierenden Katalysators
DE102009035304B4 (de) System zur Reinigung von Abgas
WO2008022751A2 (de) Verfahren zum betreiben einer abgasreinigungsanlage an einem mager betriebenen ottomotor

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20131109

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee