DE10318420A1 - Flüssigkristalline Verbindungen - Google Patents

Flüssigkristalline Verbindungen Download PDF

Info

Publication number
DE10318420A1
DE10318420A1 DE2003118420 DE10318420A DE10318420A1 DE 10318420 A1 DE10318420 A1 DE 10318420A1 DE 2003118420 DE2003118420 DE 2003118420 DE 10318420 A DE10318420 A DE 10318420A DE 10318420 A1 DE10318420 A1 DE 10318420A1
Authority
DE
Germany
Prior art keywords
compounds
diyl
liquid
liquid crystalline
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE2003118420
Other languages
English (en)
Inventor
Peer Dr. Kirsch
Alexander Hahn
Eike Dr. Poetsch
Volker Meyer
Michael Dr. Heckmeier
Melanie Dr. Klasen-Memmer
Georg Dr. Lüssem
Christian Hock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Priority to DE2003118420 priority Critical patent/DE10318420A1/de
Publication of DE10318420A1 publication Critical patent/DE10318420A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0466Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF2O- chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3422Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

Die Erfindung betrifft flüssigkristalline Verbindungen der Formel I, DOLLAR F1 worin DOLLAR A R·1·, R·2·, A·1·, A·2·, A·3·, A·4·, Z·1·, Z·2·, Z·3·, a, b, und c die in Anspruch 1 angegebenen Bedeutungen haben, sowie flüssigkristalline Medien, enthaltend mindestens eine Verbindung der Formel I, und elektrooptische Anzeigen, enthaltend ein solches flüssigkristallines Medium.

Description

  • Die vorliegende Erfindung betrifft flüssigkristalline Verbindungen sowie ein flüssigkristallines Medium, dessen Verwendung für elektrooptische Zwecke und dieses Medium enthaltende Anzeigen.
  • Flüssige Kristalle werden vor allem als Dielektrika in Anzeigevorrichtungen verwendet, da die optischen Eigenschaften solcher Substanzen durch eine angelegte Spannung beeinflusst werden können. Elektrooptische Vorrichtungen auf der Basis von Flüssigkristallen sind dem Fachmann bestens bekannt und können auf verschiedenen Effekten beruhen. Derartige Vorrichtungen sind beispielsweise Zellen mit dynamischer Streuung, DAP-Zellen (Deformation aufgerichteter Phasen), Gast/Wirt-Zellen, TN-Zellen mit verdrillt nematischer ("twisted nematic") Struktur, STN-Zellen ("supertwisted nematic"), SBE-Zellen ("superbirefringence effect") und OMI-Zellen ("optical mode interference"). Die gebräuchlichsten Anzeigevorrichtungen beruhen auf dem Schadt-Helfrich-Effekt und besitzen eine verdrillt nematische Struktur.
  • Die Flüssigkristallmaterialien müssen eine gute chemische und thermische Stabilität und eine gute Stabilität gegenüber elektrischen Feldern und elektromagnetischer Strahlung besitzen. Ferner sollten die Flüssigkristallmaterialien niedere Viskosität aufweisen und in den Zellen kurze Ansprechzeiten, tiefe Schwellenspannungen und einen hohen Kontrast ergeben.
  • Weiterhin sollten sie bei üblichen Betriebstemperaturen, d.h. in einem möglichst breiten Bereich unterhalb und oberhalb Raumtemperatur eine geeignete Mesophase besitzen, beispielsweise für die oben genannten Zellen eine nematische oder cholesterische Mesophase. Da Flüssigkristalle in der Regel als Mischungen mehrerer Komponenten zur Anwendung gelangen, ist es wichtig, dass die Komponenten untereinander gut mischbar sind. Weitere Eigenschaften, wie die elektrische Leitfähigkeit, die dielektrische Anisotropie und die optische Anisotropie, müssen je nach Zellentyp und Anwendungsgebiet unterschiedlichen Anforderungen genügen. Beispielsweise sollten Materialien für Zellen mit verdrillt nematischer Struktur eine positive dielektrische Anisotropie und eine geringe elektrische Leitfähigkeit aufweisen.
  • Beispielsweise sind für Matrix-Flüssigkristallanzeigen mit integrierten nichtlinearen Elementen zur Schaltung einzelner Bildpunkte (MFK-Anzeigen) Medien mit großer positiver dielektrischer Anisotropie, breiten nematischen Phasen, relativ niedriger Doppelbrechung, sehr hohem spezifischen Widerstand, guter UV- und Temperaturstabilität und geringem Dampfdruck erwünscht.
  • Derartige Matrix-Flüssigkristallanzeigen sind bekannt. Als nichtlineare Elemente zur individuellen Schaltung der einzelnen Bildpunkte können beispielsweise aktive Elemente (d.h. Transistoren) verwendet werden. Man spricht dann von einer "aktiven Matrix", wobei man zwei Typen unterscheiden kann:
    • 1. MOS (Metal Oxide Semiconductor) oder andere Dioden auf Silizium-Wafer als Substrat.
    • 2. Dünnfilm-Transistoren (TFT) auf einer Glasplatte als Substrat.
  • Die Verwendung von einkristallinem Silizium als Substratmaterial beschränkt die Displaygröße, da auch die modulartige Zusammensetzung verschiedener Teildisplays an den Stößen zu Problemen führt.
  • Bei dem aussichtsreicheren Typ 2, welcher bevorzugt ist, wird als elektrooptischer Effekt üblicherweise der TN-Effekt verwendet. Man unterscheidet zwei Technologien: TFT's aus Verbindungshalbleitern wie z.B. CdSe oder TFT's auf der Basis von polykristallinem oder amorphem Silizium. An letzterer Technologie wird weltweit mit großer Intensität gearbeitet.
  • Die TFT-Matrix ist auf der Innenseite der einen Glasplatte der Anzeige aufgebracht, während die andere Glasplatte auf der Innenseite die transparente Gegenelektrode trägt. Im Vergleich zu der Größe der Bildpunkt-Elektrode ist der TFT sehr klein und stört das Bild praktisch nicht. Diese Technologie kann auch für voll farbtaugliche Bilddarstellungen erweitert werden, wobei ein Mosaik von roten, grünen und blauen Filtern derart angeordnet ist, dass je ein Filterelement einem schaltbaren Bildelement gegenüber liegt.
  • Die TFT-Anzeigen arbeiten üblicherweise als TN-Zellen mit gekreuzten Polarisatoren in Transmission und sind von hinten beleuchtet.
  • Der Begriff MFK-Anzeigen umfasst hier jedes Matrix-Display mit integrierten nichtlinearen Elementen, d.h. neben der aktiven Matrix auch Anzeigen mit passiven Elementen wie Varistoren oder Dioden (MIM = Metall-Isolator-Metall).
  • Derartige MFK-Anzeigen eignen sich insbesondere für TV-Anwendungen (z.B. Taschenfernseher) oder für hochinformative Displays für Rechneranwendungen (Laptop) und im Automobil- oder Flugzeugbau. Neben Problemen hinsichtlich der Winkelabhängigkeit des Kontrastes und der Schaltzeiten resultieren bei MFK-Anzeigen Schwierigkeiten bedingt durch nicht ausreichend hohen spezifischen Widerstand der Flüssigkristallmischungen [TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris; STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Adressing of Television Liquid Crystal Displays, p. 145 ff, Paris]. Mit abnehmendem Widerstand verschlechtert sich der Kontrast einer MFK-Anzeige und es kann das Problem der "alter image elimination" auftreten. Da der spezifische Widerstand der Flüssigkristallmischung durch Wechselwirkung mit den inneren Oberflächen der Anzeige im allgemeinen über die Lebenszeit einer MFK-Anzeige abnimmt, ist ein hoher (Anfangs)-Widerstand sehr wichtig, um akzeptable Standzeiten zu erhalten. Insbesondere bei low-volt-Mischungen war es bisher nicht möglich, sehr hohe spezifische Widerstände zu realisieren. Weiterhin ist es wichtig, dass der spezifische Widerstand eine möglichst geringe Zunahme bei steigender Temperatur sowie nach Temperatur- und/oder UV-Belastung zeigt. Besonders nachteilig sind auch die Tieftemperatureigenschaften der Mischungen aus dem Stand der Technik. Gefordert wird, dass auch bei tiefen Temperaturen keine Kristallisation und/oder smektische Phasen auftreten und die Temperaturabhängigkeit der Viskosität möglichst gering ist. Die MFK-Anzeigen aus dem Stand der Technik genügen somit nicht den heutigen Anforderungen.
  • Es besteht somit immer noch ein großer Bedarf nach MFK-Anzeigen mit sehr hohem spezifischen Widerstand bei gleichzeitig großem Arbeitstemperaturbereich, kurzen Schaltzeiten auch bei tiefen Temperaturen und niedriger Schwellenspannung, die diese Nachteile nicht oder nur in geringerem Maße zeigen.
  • Bei TN-(Schadt-Helfrich)-Zellen sind Medien erwünscht, die folgende Vorteile in den Zellen ermöglichen:
    • – erweiterter nematischer Phasenbereich (insbesondere zu tiefen Temperaturen)
    • – Schaltbarkeit bei extrem tiefen Temperaturen (out-door-use, Automobil, Avionik)
    • – erhöhte Beständigkeit gegenüber UV-Strahlung (längere Lebensdauer)
  • Mit den aus dem Stand der Technik zur Verfügung stehenden Medien ist es nicht möglich, diese Vorteile unter gleichzeitigem Erhalt der übrigen Parameter zu realisieren.
  • Bei höher verdrillten Zellen (STN) sind Medien erwünscht, die eine höhere Multiplexierbarkeit und/oder kleinere Schwellenspannungen und/oder breitere nematische Phasenbereiche (insbesondere bei tiefen Temperaturen) ermöglichen. Hierzu ist eine weitere Ausdehnung des zur Verfügung stehenden Parameterraumes (Klärpunkt, Übergang smektisch-nematisch bzw. Schmelzpunkt, Viskosität, dielektrische Größen, elastische Größen) dringend erwünscht.
  • Der Erfindung liegt die Aufgabe zugrunde, Medien insbesondere für derartige MFK-, IPS-, TN- oder STN-Anzeigen bereitzustellen, die die oben angegebenen Nachteile nicht oder nur in geringerem Maße, und vorzugsweise gleichzeitig sehr hohe spezifische Widerstände und niedrige Schwellenspannungen aufweisen. Für diese Aufgabe werden flüssigkristalline Verbindungen benötigt, die einen hohen Klärpunkt und eine niedrige Rotationsvikosität besitzen.
  • Es wurde nun gefunden, dass diese Aufgabe gelöst werden kann, wenn man die erfindungsgemäßen flüssigkristallinen Verbindungen verwendet.
  • Gegenstand der Erfindung sind somit flüssigkristalline Verbindungen der Formel I,
    Figure 00050001
    worin
    R1 und R2 jeweils unabhängig voneinander H, Halogen, einen halogenierten oder unsubstituierten Alkyl- oder Alkoxyrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH2-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CH=CH-, -O-, -CO-O- oder -O-CO- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind, wobei einer der Reste R1 und R2 auch CN, OCN, SCN, NCS oder SF5 bedeuten kann,
    A1, A2, A3 und A4 jeweils unabhängig voneinander
    Figure 00060001
    Z1, Z2 und Z3 jeweils unabhängig voneinander -CO-O-, -O-CO-, -CF2O-, -OCF2-, -CH2O-, -OCH2-, -CH2CH2-, -(CH2)4-, -C2F4-, -CH2CF2-, -CF2CH2-, -CF=CF-, -CH=CH-, -C≡C- oder eine Einfachbindung, und
    a, b und c jeweils unabhängig voneinander 0, 1, 2 oder 3, wobei a + b + c ≤ 3 ist,
    bedeuten.
  • Gegenstand der Erfindung ist weiterhin die Verwendung der Verbindungen der Formel I in flüssigkristallinen Medien.
  • Die Verbindungen der Formel I besitzen einen breiten Anwendungsbereich. In Abhängigkeit von der Auswahl der Substituenten können diese Verbindungen als Basismaterialien dienen, aus denen flüssigkristalline Medien zum überwiegenden Teil zusammengesetzt sind; es können aber auch Verbindungen der Formel I flüssigkristallinen Basismaterialien aus anderen Verbindungsklassen zugesetzt werden, um beispielsweise die dielektrische und/oder optische Anisotropie eines solchen Dielektrikums zu beeinflussen und/oder um dessen Schwellenspannung und/oder dessen Viskosität zu optimieren.
  • Die Verbindungen der Formel I sind in reinem Zustand farblos und bilden flüssigkristalline Mesophasen in einem für die elektrooptische Verwendung günstig gelegenen Temperaturbereich. Insbesondere zeichnen sich die erfindungsgemäßen Verbindungen durch ihren breiten nematischen Phasenbereich aus. In flüssigkristallinen Mischungen unterdrücken die erfindungsgemäßen Substanzen die smektischen Phasen und führen zu einer deutlichen Verbesserung der Tieftemperatur-Lagerstabilität. Chemisch, thermisch und gegen Licht sind sie stabil.
  • Gegenstand der Erfindung sind insbesondere die Verbindungen der Formel I, worin R1 Alkyl oder Alkenyl und R2 Halogen oder OCF3 bedeutet. Halogen bedeutet vorzugsweise F, ferner Cl.
  • Insbesondere bevorzugt sind Verbindungen der Formel I, worin a = 0, ferner a = 1, ist. Z1, Z2 und/oder Z3 ist vorzugsweise eine Einfachbindung, ferner -CF2O-, -OCF2-, -C2F4-, -CH2O-, -OCH2- oder -COO-.
  • Figure 00070001
  • A4 bedeutet insbesondere
    Figure 00070002
  • Besonders bevorzugt sind Verbindungen der Formeln IA
  • Figure 00070003
    worin
    a und b jeweils 0, 1 oder 2 und a + b = 1 oder 2 bedeuten. Vorzugsweise bedeutet a = 1 und b = 0 oder a = 0 und b = 1. Vorzugsweise ist L1 = F und L2 = H oder Fluor, insbesondere bedeuten L1 = L2 = Fluor.
  • R1 und X besitzen die in Anspruch 1 angegebenen Bedeutungen. X ist vorzugsweise F oder OCF3, R1 bedeutet vorzugsweise geradkettiges Alkyl oder Alkenyl. L1 und L2 bedeuten jeweils unabhängig voneinander H oder F. Besonders bevorzugt sind Verbindungen worin X = L1 = L2 = Fluor, ferner X = OCF3 und L1 = L2 = F bedeuten.
  • Besonders bevorzugte Verbindungen der Formel I sind die Verbindungen der Formeln I1 bis I31,
    Figure 00080001
    Figure 00090001
    Figure 00100001
    Figure 00110001
    Figure 00120001
    worin R1 und X die oben angegebenen Bedeutungen haben.
  • Die Verbindungen der Formel I werden nach an sich bekannten Methoden dargestellt, wie sie in der Literatur (z.B. in den Standardwerken wie Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.
  • Die Verbindungen der Formel I können z.B. wie folgt hergestellt werden:
  • Schema 1
    Figure 00130001
  • Schema 2
    Figure 00140001
  • Schema 3
    Figure 00140002
  • Schema 4
    Figure 00150001
  • Gegenstand der Erfindung sind auch elektrooptische Anzeigen (insbesondere STN- oder MFK-Anzeigen mit zwei planparallelen Trägerplatten, die mit einer Umrandung eine Zelle bilden, integrierten nicht-linearen Elementen zur Schaltung einzelner Bildpunkte auf den Trägerplatten und einer in der Zelle befindlichen nematischen Flüssigkristallmischung mit positiver dielektrischer Anisotropie und hohem spezifischem Widerstand), die derartige Medien enthalten sowie die Verwendung dieser Medien für elektrooptische Zwecke.
  • Die erfindungsgemäßen Flüssigkristallmischungen ermöglichen eine bedeutende Erweiterung des zur Verfügung stehenden Parameterraumes.
  • Die erzielbaren Kombinationen aus Klärpunkt, Viskosität bei tiefer Temperatur, thermischer und UV-Stabilität und dielektrischer Anisotropie übertreffen bei weitem bisherige Materialien aus dem Stand der Technik.
  • Die Forderung nach hohem Klärpunkt, nematischer Phase bei tiefer Temperatur sowie einem hohen Δε konnte bislang nur unzureichend erfüllt werden. Flüssigkristallmischungen, wie z. B. MS 99295 (Merck KGaA, Darmstadt, Deutschland) weisen zwar vergleichbare Klärpunkte und Tieftemperaturstabilitäten auf, sie haben jedoch relativ hohe Δn-Werte als auch höhere Schwellenspannungen von ca. ≥ 1,7 V.
  • Andere Mischungssysteme besitzen vergleichbare Viskositäten und Werte von Δε, weisen jedoch nur Klärpunkte in der Gegend von 60 °C auf.
  • Die erfindungsgemäßen Flüssigkristallmischungen ermöglichen es bei Beibehaltung der nematischen Phase bis -20 °C und bevorzugt bis -30 °C, besonders bevorzugt bis -40 °C, Klärpunkte oberhalb 80°, vorzugsweise oberhalb 90°, besonders bevorzugt oberhalb 100 °C, gleichzeitig dielektrische Anisotropiewerte Δε ≥ 4, vorzugsweise ≥ 6 und einen hohen Wert für den spezifischen Widerstand zu erreichen, wodurch hervorragende STN- und MKF-Anzeigen erzielt werden können. Insbesondere sind die Mischungen durch kleine Operationsspannungen gekennzeichnet. Die TN-Schwellen liegen unterhalb 1,5 V, vorzugsweise unterhalb 1,3 V.
  • Es versteht sich, dass durch geeignete Wahl der Komponenten der erfindungsgemäßen Mischungen auch höhere Klärpunkte (z.B. oberhalb 110°) bei höheren Schwellenspannung oder niedrigere Klärpunkte bei niedrigeren Schwellenspannungen unter Erhalt der anderen vorteilhaften Eigenschaften realisiert werden können. Ebenso können bei entsprechend wenig erhöhten Viskositäten Mischungen mit größerem Δε und somit geringeren Schwellen erhalten werden. Die erfindungsgemäßen MFK-Anzeigen arbeiten vorzugsweise im ersten Transmissionsminimum nach Gooch und Tarry [C.H. Gooch und H.A. Tarry, Electron. Lett. 10, 2-4, 1974; C.H. Gooch und H.A. Tarry, Appl. Phys., Vol. 8, 1575-1584, 1975], wobei hier neben besonders günstigen elektrooptischen Eigenschaften wie z.B. hohe Steilheit der Kennlinie und geringe Winkelabhängigkeit des Kontrastes (DE-PS 30 22 818) bei gleicher Schwellenspannung wie in einer analogen Anzeige im zweiten Minimum eine kleinerere dielektrische Anisotropie ausreichend ist. Hierdurch lassen sich unter Verwendung der erfindungsgemäßen Mischungen im ersten Minimum deutlich höhere spezifische Widerstände verwirklichen als bei Mischungen mit Cyanverbindungen. Der Fachmann kann durch geeignete Wahl der einzelnen Komponenten und deren Gewichtsanteilen mit einfachen Routinemethoden die für eine vorgegebene Schichtdicke der MFK-Anzeige erforderliche Doppelbrechung einstellen.
  • Die Fließviskosität ν20 bei 20 °C ist vorzugsweise < 60 mm2·s-1, besonders bevorzugt < 50 mm2·s-1. Der nematische Phasenbereich ist vorzugsweise mindestens 90°, insbesondere mindestens 100°. Vorzugsweise erstreckt sich dieser Bereich mindestens von -30° bis +80°. Die Rotationsviskosität γ1 bei 20 °C ist vorzugsweise < 200 mPa·s, besonders bevorzugt < 180 mPa·s, insbesondere < 160 mPa·s.
  • Messungen des "Capacity Holding-ratio" (HR) [S. Matsumoto et al., Liquid Crystals 5, 1320 (1989); K. Niwa et al., Proc. SID Conference, San Francisco, June 1984, p. 304 (1984); G. Weber et al., Liquid Crystals 5, 1381 (1989)] haben ergeben, dass erfindungsgemäße Mischungen enthaltend Verbindungen der Formel I eine deutlich kleinere Abnahme des HR mit steigender Temperatur aufweisen als analoge Mischungen enthaltend anstelle den Verbindungen der Formel I Cyanophenylcyclohexane der Formel
    Figure 00170001
    oder Ester der Formel
    Figure 00170002
  • Auch die UV-Stabilität der erfindungsgemäßen Mischungen ist erheblich besser, d. h. sie zeigen eine deutlich kleinere Abnahme des HR unter UV-Belastung.
  • Vorzugsweise basieren die erfindungsgemäßen Medien auf mehreren (vorzugsweise zwei, drei oder mehr) Verbindungen der Formel I, d.h. der Anteil dieser Verbindungen ist 5-95 %, vorzugsweise 10-60 % und besonders bevorzugt im Bereich von 15-40 %.
  • Die einzelnen Verbindungen der Formeln I bis IX und deren Unterformeln, die in den endungsgemäßen Medien verwendet werden können, sind entweder bekannt, oder sie können analog zu den bekannten Verbindungen hergestellt werden.
  • Bevorzugte Ausführungsformen sind im folgenden angegeben:
    • – Das Medium enthält vorzugsweise ein, zwei oder drei homologe Verbindungen der Formel I, wobei jedes Homologe zu maximal 10% in der Mischung enthalten ist.
    • – Medium enthält zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln II bis IX:
      Figure 00180001
      Figure 00190001
      worin die einzelnen Reste die folgenden Bedeutungen haben: R0 n-Alkyl, Oxaalkyl, Fluoralkyl, Alkenyloxy oder Alkenyl mit jeweils bis zu 9 C-Atomen X0 F, Cl, halogeniertes Alkyl, halogeniertes Alkenyl, halogeniertes Alkenyloxy oder halogeniertes Alkoxy mit bis zu 7 C-Atomen, Z0 -CH=CH-, -C2H4-, -(CH2)4-, -C2F4-, -CH2O-, -OCH2-, -CF=CF-, -CF2O-, -OCF2- oder -COO-, Y1, Y2, Y3 und Y4 jeweils unabhängig voneinander H oder F, und r 0 oder 1.
  • Die Verbindung der Formel IV ist vorzugsweise
    Figure 00200001
    Figure 00210001
    • – Das Medium enthält vorzugsweise eine oder mehrere Verbindungen der Formeln
      Figure 00210002
      Figure 00220001
      worin R0 und Y2 die oben angegebene Bedeutung haben.
    • – Das Medium enthält vorzugsweise ein, zwei oder drei, ferner vier, Homologe der Verbindungen ausgewählt aus der Gruppe H1 bis H19 (n = 1-7):
      Figure 00230001
      Figure 00240001
      Figure 00250001
    • – Das Medium enthält zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln X bis XV:
      Figure 00250002
      Figure 00260001
      worin R0, X0, Y1, Y2, Y3 und Y4 jeweils unabhängig voneinander eine der in Anspruch 7 angegebene Bedeutung haben. Vorzugsweise bedeutet X0 F, Cl, CF3, OCF3, OCHF2. R0 bedeutet vorzugsweise Alkyl, Oxaalkyl, Fluoralkyl, Alkenyl oder Alkenyloxy.
    • – Der Anteil an Verbindungen der Formeln I bis IX zusammen beträgt im Gesamtgemisch mindestens 50 Gew.-%.
    • – Der Anteil an Verbindungen der Formel I beträgt im Gesamtgemisch 5 bis 50 Gew.-%.
    • – Der Anteil an Verbindungen der Formeln II bis IX im Gesamtgemisch beträgt 30 bis 70 Gew.-%.
      Figure 00270001
    • – Das Medium enthält Verbindungen der Formeln II, III, IV, V, VI, VII, VIII und/oder IX.
    • – R0 ist geradkettiges Alkyl oder Alkenyl mit 2 bis 7 C-Atomen.
    • – Das Medium besteht im wesentlichen aus Verbindungen der Formeln I bis XV.
    • – Das Medium enthält weitere Verbindungen, vorzugsweise ausgewählt aus der folgenden Gruppe bestehend aus den allgemeinen Formeln XVI bis XX:
      Figure 00270002
      Figure 00280001
      worin R0 und X0 die oben angegebene Bedeutung haben und die 1,4-Phenylenringe durch CN, Chlor oder Fluor substituiert sein können. Vorzugsweise sind die 1,4-Phenylenringe ein- oder mehrfach durch Fluoratome substituiert.
    • – Das Medium enthält weitere Verbindungen, vorzugsweise ausgewählt aus der folgenden Gruppe bestehend aus den Formeln RI bis RIX,
      Figure 00280002
      Figure 00290001
      worin R0 n-Alkyl, Oxaalkyl, Fluoralkyl, Alkenyloxy oder Alkenyl mit jeweils bis zu 9 C-Atomen, d 0, 1 oder 2, Y1 H oder F, Alkyl oder Alkyl* jeweils unabhängig voneinander ein geradkettiger oder verzweigter Alkylrest mit 1-9 C-Atomen, Alkenyl oder Alkenyl* jeweils unabhängig voneinander einen geradkettigen oder verzweigten Alkenylrest mit bis zu 9 C-Atomen bedeuten.
    • – Das Medium enthält vorzugsweise eine oder mehrere Verbindungen der Formeln
      Figure 00300001
      worin n und m jeweils eine ganze Zahl von 1-9 bedeuten.
    • – Das Gewichtsverhältnis I: (II + III + IV + V + VI + VII + VIII + IX) ist vorzugsweise 1 : 10 bis 10 : 1.
    • – Das Medium besteht im wesentlichen aus Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln I bis XV.
  • Es wurde gefunden, dass bereits ein relativ geringer Anteil an Verbindungen der Formel I im Gemisch mit üblichen Flüssigkristallmaterialien, insbesondere jedoch mit einer oder mehreren Verbindungen der Formel II, III, IV, V, VI, VII, VIII oder IX zu einer beträchtlichen Erniedrigung der Schwellenspannung und zu niedrigen Werten für die Doppelbrechung führt, wobei gleichzeitig breite nematische Phasen mit tiefen Übergangstemperaturen smektisch-nematisch beobachtet werden, wodurch die Lagerstabilität verbessert wird. Die Verbindungen der Formeln I bis IX sind farblos, stabil und untereinander und mit anderen Flüssigkristallmaterialien gut mischbar.
  • Der Ausdruck "Alkyl" oder "Alkyl*" umfasst geradkettige und verzweigte Alkylgruppen mit 1-9 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl und Heptyl. Gruppen mit 2-5 Kohlenstoffatomen sind im allgemeinen bevorzugt.
  • Der Ausdruck "Alkenyl" oder "Alkenyl*" umfasst geradkettige und verzweigte Alkenylgruppen mit bis zu 9 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen. Besonders bevorzugte Alkenylgruppen sind C2-C7-1E-Alkenyl, C4-C7-3E-Alkenyl, C5-C7-4-Alkenyl, C6-C7-5-Alkenyl und C7-6-Alkenyl, insbesondere C2-C7-1E-Alkenyl, C4-C7-3E-Alkenyl und C5-C7-4-Alkenyl. Beispiele bevorzugter Alkenylgruppen sind Vinyl, 1E-Propenyl, 1E-Butenyl, 1E-Pentenyl, 1E-Hexenyl, 1E-Heptenyl, 3-Butenyl, 3E-Pentenyl, 3E-Hexenyl, 3E-Heptenyl, 4-Pentenyl, 4Z-Hexenyl, 4E-Hexenyl, 4Z-Heptenyl, 5-Hexenyl, 6-Heptenyl und dergleichen. Gruppen mit bis zu 5 Kohlenstoffatomen sind im allgemeinen bevorzugt.
  • Der Ausdruck "Fluoralkyl" umfasst vorzugsweise geradkettige Gruppen mit endständigen Fluor, d.h. Fluormethyl, 2-Fluorethyl, 3-Fluorpropyl, 4-Fluorbutyl, 5-Fluorpentyl, 6-Fluorhexyl und 7-Fluorheptyl. Andere Positionen des Fluors sind jedoch nicht ausgeschlossen.
  • Der Ausdruck "Oxaalkyl" umfasst vorzugsweise geradkettige Reste der Formel CnH2n+1-O-(CH2)m, worin n und m jeweils unabhängig voneinander 1 bis 6 bedeuten. Vorzugsweise ist n = 1 und m 1 bis 6.
  • Durch geeignete Wahl der Bedeutungen von R0 und X0 können die Ansprechzeiten, die Schwellenspannung, die Steilheit der Transmissionskennlinien etc. in gewünschter Weise modifiziert werden. Beispielsweise führen 1E-Alkenylreste, 3E-Alkenylreste, 2E-Alkenyloxyreste und dergleichen in der Regel zu kürzeren Ansprechzeiten, verbesserten nematischen Tendenzen und einem höheren Verhältnis der elastischen Konstanten k33 (bend) und k11 (splay) im Vergleich zu Alkyl- bzw. Alkoxyresten. 4-Alkenylreste, 3-Alkenylreste und dergleichen ergeben im allgemeinen tiefere Schwellenspannungen und kleinere Werte von k33/k11 im Vergleich zu Alkyl- und Alkoxyresten.
  • Eine Gruppe -CH2CH2- in Z1 und/oder Z2 führt im allgemeinen zu höheren Werten von k33/k11 im Vergleich zu einer einfachen Kovalenzbindung. Höhere Werte von k33/k11 ermöglichen z.B. flachere Transmissionskennlinien in TN-Zellen mit 90° Verdrillung (zur Erzielung von Grautönen) und steilere Transmissionskennlinien in STN-, SBE- und OMI-Zellen (höhere Multiplexierbarkeit) und umgekehrt.
  • Das optimale Mengenverhältnis der Verbindungen der Formeln I und II + III + IV + V + VI + VII + VII + VIII + IX hängt weitgehend von den gewünschten Eigenschaften, von der Wahl der Komponenten der Formeln I, II, III, IV, V, VI, VII, VIII und/oder IX und von der Wahl weiterer gegebenenfalls vorhandener Komponenten ab. Geeignete Mengenverhältnisse innerhalb des oben angegebenen Bereichs können von Fall zu Fall leicht ermittelt werden.
  • Die Gesamtmenge an Verbindungen der Formeln I bis XV in den erfindungsgemäßen Gemischen ist nicht kritisch. Die Gemische können daher eine oder mehrere weitere Komponenten enthalten zwecks Optimierung verschiedener Eigenschaften. Der beobachtete Effekt auf die Ansprechzeiten und die Schwellenspannung ist jedoch in der Regel umso größer je höher die Gesamtkonzentration an Verbindungen der Formeln I bis XV ist.
  • In einer besonders bevorzugten Ausführungsform enthalten die erfindungsgemäßen Medien Verbindungen der Formel II bis IX (vorzugsweise II und/oder III), worin X0 OCF3, OCHF2, F, OCH=CF2, OCF=CF2, OCF2CHFCF3, oder OCF2-CF2H bedeutet. Eine günstige synergistische Wirkung mit den Verbindungen der Formel I führt zu besonders vorteilhaften Eigenschaften.
  • Der Aufbau der erfindungsgemäßen MFK-Anzeige aus Polarisatoren, Elektrodengrundplatten und Elektroden mit Oberflächenbehandlung entspricht der für derartige Anzeigen üblichen Bauweise. Dabei ist der Begriff der üblichen Bauweise hier weit gefasst und umfasst auch alle Abwandlungen und Modifikationen der MFK-Anzeige, insbesondere auch Matrix-Anzeigeelemente auf Basis poly-Si TFT oder MIM.
  • Ein wesentlicher Unterschied der erfindungsgemäßen Anzeigen zu den bisher üblichen auf der Basis der verdrillten nematischen Zelle besteht jedoch in der Wahl der Flüssigkristallparameter der Flüssigkristallschicht.
  • Die Herstellung der erfindungsgemäß verwendbaren Flüssigkristallmischungen erfolgt in an sich üblicher Weise. In der Regel wird die gewünschte Menge der in geringerer Menge verwendeten Komponenten in der den Hauptbestandteil ausmachenden Komponenten gelöst, zweckmäßig bei erhöhter Temperatur. Es ist auch möglich, Lösungen der Komponenten in einem organischen Lösungsmittel, z.B. in Aceton, Chloroform oder Methanol, zu mischen und das Lösungsmittel nach Durchmischung wieder zu entfernen, beispielsweise durch Destillation.
  • Die Dielektrika können auch weitere, dem Fachmann bekannte und in der Literatur beschriebene Zusätze, wie z. B. Stabilisatoren, Antioxidation, enthalten. Beispielsweise können 0-15 % pleochroitische Farbstoffe oder chirale Dotierstoffe zugesetzt werden.
  • C bedeutet eine kristalline, S eine smektische, SC eine smektische C, SB eine smektische B, N eine nematische und I die isotrope Phase.
  • V10 bezeichnet die Spannung für 10 % Transmission (Blickrichtung senkrecht zur Plattenoberfläche). ton bezeichnet die Einschaltzeit und toff die Ausschaltzeit bei einer Betriebsspannung entsprechend dem 2fachen Wert von V10. Δn bezeichnet die optische Anisotropie und no den Brechungsindex. Δε bezeichnet die dielektrische Anisotropie (Δε = ε|| – ε, wobei ε|| die Dielektrizitätskonstante parallel zu den Moleküllängsachsen und ε die Dielektrizitätskonstante senkrecht dazu bedeutet). Die elektrooptischen Daten wurden in einer TN-Zelle im 1. Minimum (d.h. bei einem d · Δn-Wert von 0,5) bei 20 °C gemessen, sofern nicht ausdrücklich etwas anderes angegeben wird. Die optischen Daten wurden bei 20 °C gemessen, sofern nicht ausdrücklich etwas anderes angegeben wird.
  • In der vorliegenden Anmeldung und in den folgenden Beispielen sind die Strukturen der Flüssigkristallverbindungen durch Acronyme angegeben, wobei die Transformation in chemische Formeln gemäß folgender Tabellen A und B erfolgt. Alle Reste CnH2n+1 und CmH2m+1 sind geradkettige Alkylreste mit n bzw. m C-Atomen. n und m bedeuten jeweils unabhängig voneinander 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 oder 15. Die Codierung gemäß Tabelle B versteht sich von selbst. In Tabelle A ist nur das Acronym für den Grundkörper angegeben. Im Einzelfall folgt getrennt vom Acronym für den Grundkörper mit einem Strich ein Code für die Substituenten R1, R2, L1 und L2:
    Figure 00340001
    Figure 00350001
  • Bevorzugte Mischungskomponenten finden sich in den Tabellen A und B.
  • Tabelle A:
    Figure 00350002
  • Figure 00360001
  • Figure 00370001
  • Tabelle B:
    Figure 00380001
  • Figure 00390001
  • Figure 00400001
  • Figure 00410001
  • Figure 00420001
  • Figure 00430001
  • Figure 00440001
  • Tabelle C:
  • In der Tabelle C werden mögliche Dotierstoffe angegeben, die in der Regel den erfindungsgemäßen Mischungen in Mengen von 0,1 bis 10 Gew.% zugesetzt werden.
  • Figure 00450001
  • Figure 00460001
  • Tabelle D
  • Stabilisatoren, die beispielsweise den erfindungsgemäßen Mischungen zugesetzt werden können, werden nachfolgend genannt.
  • Figure 00470001
  • Figure 00480001
  • Figure 00490001
  • Figure 00500001
  • Figure 00510001
  • Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie zu begrenzen. Vor- und nachstehend bedeuten Prozentangaben Gewichtsprozent. Alle Temperaturen sind in Grad Celsius angegeben. Fp. bedeutet Schmelzpunkt, Kp. Klärpunkt. Ferner bedeuten K = kristalliner Zustand, N = nematische Phase, S = smektische Phase und I = isotrope Phase. Die Angaben zwischen diesen Symbolen stellen die Übergangstemperaturen dar. Δn bedeutet optische Anisotropie (589 nm, 20 °C), Δε die dielektrische Anisotropie 1 kHz, 20 °C), die Fließviskosität ν20 (mm2/sec) wurde bei 20 °C bestimmt. Die Rotationsviskosität γ1 (mPa·s) wurde ebenfalls bei 20 °C bestimmt.
  • "Übliche Aufarbeitung" bedeutet: man gibt gegebenenfalls Wasser hinzu, extrahiert mit Dichlormethan, Diethylether, Methyl-tert.Butylether oder Toluol, trennt ab, trocknet die organische Phase, dampft ein und reinigt das Produkt durch Destillation unter reduziertem Druck oder Kristallisation und/oder Chromatographie. Folgende Abkürzungen werden verwendet:
    n-BuLi 1,6 molare Lösung von n-Butyllithium in n-Hexan
    DMAP 4-(Dimethylamino)-pyridin
    THF Tetrahydrofuran
    DCC N,N'-Dicyclohexylcarbodiimid
    LDA Lithiumdimethylamid
  • Beispiel 1
    Figure 00520001
  • Schritt 1.1
    Figure 00520002
  • Die Herstellung von B erfolgt analog zu Lit. a) R. Baker, A. L. Boyes, C. J. Swain, J. Chem. Soc. Perkin Trans. 1, 1990, 1415-1421; b) H. Hagiwara, T. Okabe, H. Ono, V. P. Kamat. T. Hoshi, T. Suzuku, M. Ando, J Chem. Soc. Perkin Trans. 1, 2002, 895-900.
  • Schritt 1.2
    Figure 00520003
  • Eine Lösung von 207 mmol 1,4-Dibrombenzol in 250 ml Diethylether wird bei -50 °C tropfenweise mit 207 mmol BuLi (15 % in Hexan) versetzt. Dann tropft man eine Lösung von 170 mmol B in 50 ml Diethylether bei derselben Temperatur zu, rührt 30 min nach, lässt auf 0 °C kommen und arbeitet wie üblich wässrig auf. Das Rohprodukt (51 g) wird in 400 m I CH2Cl2 gelöst und bei -75 °C mit 400 mmol Triethylsilan versetzt. Man tropft 400 mmol Bortrifluorid-Etherat zu, wobei die Temperatur nicht über -70 °C steigen darf. Danach lässt man auf -10 °C kommen, hydrolysiert mit ges. NaHCO3-Lösung und arbeitet wie üblich wässrig auf. Das Rohprodukt enthält die trans/cis-Isomere in einem Verhältnis 9:1. Man kristallisiert aus Pentan bei -20 °C μm.
  • Schritt 1.3
    Figure 00530001
  • 73 mmol C werden in 200 ml THF gelöst und auf -70 °C gekühlt. Man tropft zuerst 73 mmol BuLi (15 % in Hexan) zu, gefolgt von 73 mmol Trimethylborat in 50 ml THF. Man lässt auf -20 °C kommen, stellt durch Zugabe von 2N HCl auf pH = 2 ein und arbeitet wässrig auf. Das Rohprodukt wird mit heißem Heptan digeriert und bei 0 °C kristallisiert.
  • Schritt 1.4
    Figure 00530002
  • Eine Mischung von 60 mmol D, 300 ml Toluol, 120 mmol NaOH, 50 ml Wasser und 30 ml 30 % H2O2 wird 2 h bei 45 °C gerührt. Die Mischung wird mit 10 % HCl auf pH = 2 eingestellt und wässrig aufgearbeitet. Das Rohprodukt wird aus Heptan umkristallisiert.
  • Schritt 1.5
    Figure 00530003
  • 22 mmol E werden in 100 ml Xylol in Gegenwart von 1,5 g Wasser feuchtem 5 % Pd-C-Katalysator bei 5 bar und 130 °C für 27,5 h hydriert. Die Aufarbeitung erfolgt wie üblich. Man erhält ein farbloses Öl.
  • Schritt 1.6
    Figure 00540001
  • Eine Lösung von 17 mmol 2-Trimethylsilyl-1,3-dithian in 75 ml THF wird bei -70 °C mit 17 mmol BuLi (15 % in Hexan) versetzt. Man lässt innerhalb von 4 h auf 0 °C kommen, kühlt dann wieder auf -70 °C und tropft 17 mmol F in 25 ml THF zu, man lässt auf Raumtemperatur kommen, rührt 18 h nach und arbeitet wie üblich wässrig auf. Das Rohprodukt wird aus Heptan kristallisiert. Man erhält farblose Kristalle.
  • Schritt 1.7
    Figure 00540002
  • Eine Lösung von 6,12 mmol G in 50 ml CH2Cl2 wird bei -20 °C tropfenweise mit 6,27 mmol Trifluormethansulfonsäure versetzt. Man lässt für 30 min auf Raumtemperatur kommen und kühlt dann auf -70 °C. Nun werden zuerst eine Lösung von 9,1 mmol 3,4,4-Trifluorphenol und 10,1 mmol Triethylamin in 20 l CH2Cl2, 5 min später 31 mmol Triethylamin-Tris(hydrofluorid) zugegeben. Nach weiteren 5 min gibt man in kleinen Portionen eine Suspension von 31,5 mmol DBH (1,3-Dibrom-5,5-dimethylhydanthoin) zu und rührt 1 h bei -70 °C nach. Man lässt auf -10 °C kommen und gießt die Reaktionsmischung in 400 ml eiskalte NaOH. Man arbeitet wie üblich wässrig auf und reinigt das Rohprodukt durch Chromatographie an Kieselgel (Heptan/Toluol 3:2) und Kristallisation aus Pentan bei -70 °C. Man erhält farblose Kristalle: K 34 N 58,1 I.
  • Analog werden die folgenden Verbindungen der Formel
    Figure 00550001
    hergestellt:
    Figure 00550002
    Figure 00560001
    Figure 00570001
    Figure 00580001
    Figure 00590001
    Figure 00600001
    Figure 00610001
    Figure 00620001
  • Beispiel 2
  • Schritt 2.1
    Figure 00630001
  • Eine Mischung aus 50 mmol I, 50 mmol J, 2,5 mmol Pd(PPh3)4, 300 ml Toluol und 300 ml Na-Boratpuffer (pH=9) wird 18 h bei 80 °C gerührt. Man gießt die Mischung in 500 ml 0,1 N HCl, extrahiert das Produkt mit CH2Cl2, trocknet über Na2SO4 und rotiert zur Trockene ein. Das Rohprodukt wird in n-Heptan über Kiegelgel chromatographiert und anschließend zweimal bei -20 °C aus n-Heptan umkristallisiert. K 77 N 90,8 I; Δn = 0,1493; Δε = 27,3
  • Analog werden folgenden Verbindungen der Formel
    Figure 00630002
    hergestellt:
    Figure 00640001
    Figure 00650001
    Figure 00660001
    Figure 00670001
    Figure 00680001
    Figure 00690001
    Figure 00700001
    Figure 00710001
    Figure 00720001
    Figure 00730001
    Figure 00740001
    Figure 00750001
    Figure 00760001
    Figure 00770001
    Figure 00780001
    Figure 00790001
    Figure 00800001
    Figure 00810001
    Figure 00820001
    Figure 00830001
    Figure 00840001
    Figure 00850001
    Figure 00860001
  • Beispiel 3
    Figure 00860002
  • Schritt 3.1
    Figure 00860003
  • Eine Lösung von 61,2 mmol L in 500 ml CH2Cl2 wird bei -20 °C tropfenweise mit 62,7 mmol Trifluormethansulfonsäure versetzt. Man lässt für 30 min auf Raumtemperatur kommen und kühlt dann auf -70 °C. Nun werden zuerst eine Lösung von 91 mmol 4-Brom-3-fluorphenol und 101 mmol Triethylamin in 200 ml CH2Cl2, 5 min später 310 mmol Triethylamin-Tris(hydrofluorid) zugegeben. Nach weiteren 5 min gibt man in kleinen Portionen eine Suspension von 315 mmol 1,3-Dibrom-5,5-dimethylhydanthoin zu und rührt 1 h bei -70 °C nach. Man lässt auf -10 °C kommen und gießt die Reaktionsmischung in eiskalte NaOH. Man arbeitet wie üblich wässrig auf und reinigt das Rohprodukt durch Chromatographie an Kieselgel (Heptan/MTB-Ether 4:1) und Kristallisation aus Ethanol bei -20 °C.
  • Schritt 3.2
    Figure 00870001
  • Eine Mischung aus 50 mmol M, 50 mmol 3,4,5-Trifluorbenzolboronsäure, 2,5 mmol Pd(PPh3)4, 300 ml Toluol und 300 ml Na-Boratpuffer (pH=9) wird 18 h bei 80 °C gerührt. Man gießt die Mischung in 500 ml 0,1 N HCl, extrahiert das Produkt mit CH2Cl2, trocknet über Na2SO4 und rotiert zur Trockene ein. Das Rohprodukt wird in n-Heptan über Kieselgel chromatographiert und anschließend bei -20 °C aus n-Heptan umkristallisiert. K 61 N 191,8 I; Δn = 0,1220; Δε = 19,1 Analog werden die folgenden Verbindungen der Formel
    Figure 00870002
    hergestellt:
    Figure 00880001
    Figure 00890001
    Figure 00900001
    Figure 00910001
    Figure 00920001
    Figure 00930001
    Figure 00940001
    Figure 00950001
  • Mischungsbeispiele
  • Beispiel M1
    Figure 00950002
  • Beispiel M2
    Figure 00960001
  • Beispiel M3
    Figure 00960002
  • Beispiel M4
    Figure 00970001
  • Beispiel M5
    Figure 00970002
  • Beispiel M6
    Figure 00980001
  • Beispiel M7
    Figure 00980002
  • Beispiel M8
    Figure 00990001
  • Beispiel M9
    Figure 00990002
  • Beispiel M 10
    Figure 01000001
  • Beispiel M11
    Figure 01000002

Claims (10)

  1. Flüssigkristalline Verbindungen der Formel I,
    Figure 01010001
    worin R1 und R2 jeweils unabhängig voneinander H, Halogen, einen halogenierten oder unsubstituierten Alkyl- oder Alkoxyrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH2-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CH=CH-, -O-, -CO-O- oder -O-CO- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind, wobei einer der Reste R1 und R2 auch CN, OCN, SCN, NCS oder SF5 bedeuten kann, A1, A2, A3 und A4 jeweils unabhängig voneinander
    Figure 01010002
    Z1, Z2 und Z3 jeweils unabhängig voneinander -CO-O-, -O-CO-, -CF2O-, -OCF2-, -CH2O-, -OCH2-, -CH2CH2-, -(CH2)4-, -C2F4-, -CH2CF2-, -CF2CH2-, -CF=CF-, -CH=CH-, -C≡C- oder eine Einfachbindung, und a, b und c jeweils unabhängig voneinander 0, 1, 2 oder 3, wobei a + b + c ≤ 3 ist. bedeuten.
  2. Flüssigkristalline Verbindungen der Formel IA
    Figure 01020001
    worin R1, a, b, c und die in Anspruch 1 angegebenen Bedeutungen haben, wobei a + b = 1 oder 2 ist, L1 und L2 jeweils unabhängig voneinander H oder F, und X F, Cl, CN, mit ein oder mehreren Halogenatomen fluorierter Alkyl-, Alkenyl-, Alkoxy- oder Alkenyloxyrest mit jeweils bis zu 8 C-Atomen bedeuten.
  3. Flüssigkristalline Verbindungen nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass a = 1 und b = 0 ist.
  4. Flüssigkristalline Verbindungen nach Anspruch 2, dadurch gekennzeichnet, dass L1 Fluor und L2 Fluor oder Wasserstoff bedeuten.
  5. Flüssigkristalline Verbindungen nach Anspruch 2, dadurch gekennzeichnet, dass L1 und L2 Fluor bedeuten.
  6. Flüssigkristalline Verbindungen der Formeln I1 bis I31,
    Figure 01030001
    Figure 01040001
    Figure 01050001
    Figure 01060001
    Figure 01070001
    worin R1 und X die in Anspruch 2 angegebenen Bedeutungen haben.
  7. Flüssigkristallines Medium enthaltend mindestens zwei mesogene Verbindungen, dadurch gekennzeichnet, dass es mindestens eine Verbindung der Formel I nach Anspruch 1 enthält.
  8. Flüssigkristallines Medium nach Anspruch 7, dadurch gekennzeichnet, dass es eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln II bis IX,
    Figure 01080001
    Figure 01090001
    worin R0 n-Alkyl, Oxaalkyl, Fluoralkyl, Alkenyloxy oder Alkenyl mit jeweils bis zu 9 C-Atomen X0 F, Cl, halogeniertes Alkyl, halogeniertes Alkenyl, halogeniertes Alkenyloxy oder halogeniertes Alkoxy mit bis zu 7 C-Atomen, Z0 -CH=CH-, -C2H4-, -(CH2)4-, -C2F4-, -CH2O-, -OCH2-, -CF=CF-, -CF2O-, -OCF2- oder -COO-, Y1,Y2, Y3 und Y4 jeweils unabhängig voneinander H oder F, und r 0 oder 1 bedeuten, enthält.
  9. Verwendung des flüssigkristallinen Mediums nach Anspruch 7 oder 8 für elektrooptische Zwecke.
  10. Elektrooptische Flüssigkristallanzeige enthaltend ein flüssigkristallines Medium nach Anspruch 7 oder 8.
DE2003118420 2003-04-24 2003-04-24 Flüssigkristalline Verbindungen Ceased DE10318420A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE2003118420 DE10318420A1 (de) 2003-04-24 2003-04-24 Flüssigkristalline Verbindungen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2003118420 DE10318420A1 (de) 2003-04-24 2003-04-24 Flüssigkristalline Verbindungen

Publications (1)

Publication Number Publication Date
DE10318420A1 true DE10318420A1 (de) 2004-11-11

Family

ID=33154361

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2003118420 Ceased DE10318420A1 (de) 2003-04-24 2003-04-24 Flüssigkristalline Verbindungen

Country Status (1)

Country Link
DE (1) DE10318420A1 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006125511A1 (de) * 2005-05-25 2006-11-30 Merck Patent Gmbh Pyran-dioxan-derivate und deren verwendung in flüssigkristallinen medien
WO2008034511A1 (de) * 2006-09-21 2008-03-27 Merck Patent Gmbh Indanverbindungen zur verwendung als komponenten flüssigkristalliner medien
EP1925653A1 (de) * 2006-11-27 2008-05-28 MERCK PATENT GmbH Flüssigkristallines Medium und Flüssigkristallanzeige
JP2008163316A (ja) * 2006-11-27 2008-07-17 Merck Patent Gmbh 液晶媒体および液晶ディスプレイ
US7449222B2 (en) * 2003-12-17 2008-11-11 Merck Patent Gesellschaft Mit Beschrankter Haftung Liquid-crystalline medium
JP2008545668A (ja) * 2005-05-25 2008-12-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング テトラヒドロピラン誘導体類の調製方法
JP2008545667A (ja) * 2005-05-25 2008-12-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 対応する4−ハロゲン誘導体の還元的脱離による2,5−2置換テトラヒドロピラン誘導体類の調製方法
EP2100944A1 (de) 2008-03-11 2009-09-16 MERCK PATENT GmbH Flüssigkristallines Medium und Flüssigkristallanzeige
JP2011231197A (ja) * 2010-04-27 2011-11-17 Jnc Corp 液晶化合物、液晶組成物および液晶表示素子
JP2012117062A (ja) * 2010-11-29 2012-06-21 Merck Patent Gmbh 液晶混合物
WO2012100809A1 (de) * 2011-01-25 2012-08-02 Merck Patent Gmbh Flüssigkristalline verbindungen und flüssigkristalline medien
CN103319444A (zh) * 2012-06-20 2013-09-25 石家庄诚志永华显示材料有限公司 含有4-四氢吡喃结构的液晶化合物及其制备方法与应用
CN103788039A (zh) * 2014-03-12 2014-05-14 石家庄诚志永华显示材料有限公司 含有四氢吡喃二氟亚甲氧基连接基团的液晶化合物及其制备方法与应用
JP5534110B1 (ja) * 2012-12-27 2014-06-25 Dic株式会社 フルオロビフェニル含有組成物

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449222B2 (en) * 2003-12-17 2008-11-11 Merck Patent Gesellschaft Mit Beschrankter Haftung Liquid-crystalline medium
DE102004056901B4 (de) * 2003-12-17 2014-01-09 Merck Patent Gmbh Flüssigkristallines Medium und seine Verwendung
JP2008545666A (ja) * 2005-05-25 2008-12-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング ピラン−ジオキサン誘導体類、および液晶媒体中におけるそれの使用
KR101309905B1 (ko) * 2005-05-25 2013-09-17 메르크 파텐트 게엠베하 피란/다이옥세인 유도체 및 액정 매질 내에서의 그의 용도
JP2008545668A (ja) * 2005-05-25 2008-12-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング テトラヒドロピラン誘導体類の調製方法
WO2006125511A1 (de) * 2005-05-25 2006-11-30 Merck Patent Gmbh Pyran-dioxan-derivate und deren verwendung in flüssigkristallinen medien
JP2008545667A (ja) * 2005-05-25 2008-12-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 対応する4−ハロゲン誘導体の還元的脱離による2,5−2置換テトラヒドロピラン誘導体類の調製方法
US7674507B2 (en) 2005-05-25 2010-03-09 Merck Patent Gmbh Pyran-dioxane derivatives, and the use thereof in liquid-crystalline media
CN101180294B (zh) * 2005-05-25 2011-05-11 默克专利股份有限公司 吡喃-二*烷衍生物及其在液晶介质中的用途
WO2008034511A1 (de) * 2006-09-21 2008-03-27 Merck Patent Gmbh Indanverbindungen zur verwendung als komponenten flüssigkristalliner medien
EP1925653A1 (de) * 2006-11-27 2008-05-28 MERCK PATENT GmbH Flüssigkristallines Medium und Flüssigkristallanzeige
JP2008163316A (ja) * 2006-11-27 2008-07-17 Merck Patent Gmbh 液晶媒体および液晶ディスプレイ
EP2100944A1 (de) 2008-03-11 2009-09-16 MERCK PATENT GmbH Flüssigkristallines Medium und Flüssigkristallanzeige
JP2009215556A (ja) * 2008-03-11 2009-09-24 Merck Patent Gmbh 液晶媒体および液晶ディスプレイ
JP2011231197A (ja) * 2010-04-27 2011-11-17 Jnc Corp 液晶化合物、液晶組成物および液晶表示素子
JP2012117062A (ja) * 2010-11-29 2012-06-21 Merck Patent Gmbh 液晶混合物
CN103328458B (zh) * 2011-01-25 2016-08-17 默克专利股份有限公司 液晶化合物和液晶介质
CN103328458A (zh) * 2011-01-25 2013-09-25 默克专利股份有限公司 液晶化合物和液晶介质
KR101918316B1 (ko) 2011-01-25 2018-11-13 메르크 파텐트 게엠베하 액정 화합물 및 액정 매질
WO2012100809A1 (de) * 2011-01-25 2012-08-02 Merck Patent Gmbh Flüssigkristalline verbindungen und flüssigkristalline medien
JP2014511358A (ja) * 2011-01-25 2014-05-15 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶化合物および液晶媒体
CN103319444B (zh) * 2012-06-20 2016-01-27 石家庄诚志永华显示材料有限公司 含有4-四氢吡喃结构的液晶化合物及其制备方法与应用
CN103319444A (zh) * 2012-06-20 2013-09-25 石家庄诚志永华显示材料有限公司 含有4-四氢吡喃结构的液晶化合物及其制备方法与应用
JP5534110B1 (ja) * 2012-12-27 2014-06-25 Dic株式会社 フルオロビフェニル含有組成物
CN103788039A (zh) * 2014-03-12 2014-05-14 石家庄诚志永华显示材料有限公司 含有四氢吡喃二氟亚甲氧基连接基团的液晶化合物及其制备方法与应用
CN103788039B (zh) * 2014-03-12 2016-09-07 石家庄诚志永华显示材料有限公司 含有四氢吡喃二氟亚甲氧基连接基团的液晶化合物及其制备方法与应用

Similar Documents

Publication Publication Date Title
EP1565540B1 (de) Flüssigkristalline verbindungen
DE10243776B4 (de) Flüssigkristalline Verbindungen
EP1436358B1 (de) Flüssigkristalline verbindungen
EP0495031B1 (de) Flüssigkristallines medium
DE102007009944B4 (de) Flüssigkristallines Medium und seine Verwendung
DE10229476B4 (de) Flüssigkristalline Verbindungen, sie enthaltende flüssigkristalline Medien und ihre Verwendung für elektrooptische Zwecke
DE10247986A9 (de) Photostabiles flüssigkristallines Medium
DE102004058002A1 (de) Flüssigkristallines Medium
EP1341746B1 (de) Flüssigkristalline verbindungen
WO2004106460A1 (de) Flüssigkristalline verbindungen mit tetrahydropyranring
DE10223061A1 (de) Flüssigkristallines Medium
DE10318420A1 (de) Flüssigkristalline Verbindungen
DE102004056901A1 (de) Flüssigkristallines Medium
EP0477328B1 (de) Flüssigkristallines medium
DE19707941B4 (de) Flüssigkristallines Medium
EP2542648A1 (de) Flüssigkristallines medium
DE10250844A1 (de) Flüssigkristallines Medium
DE4123539A1 (de) Fluessigkristallines medium
DE19629812A1 (de) Flüssigkristallines Medium
DE10344228A1 (de) Flüssigkristallines Medium
DE19529106B4 (de) Flüssigkristallines Medium und seine Verwendung
DE102004025808A1 (de) Flüssigkristalline Verbindungen
EP0548318A1 (de) Flüssigkristallines medium
DE10338111A1 (de) Flüssigkristallines Medium
EP1416030A1 (de) Flüssigkristallines Medium

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8125 Change of the main classification

Ipc: C07D 309/06 AFI20051017BHDE

R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final