-
Gebiet der Erfindung
-
Die vorliegende Erfindung betrifft die Messung der absoluten Position eines Objektes.
-
Beschreibung des Standes der Technik
-
Ein inkrementeller Positionsencoder ist eine Einrichtung zum Messen der relativen Position zweier Objekte. Typischerweise ist eine Skale an einem der Objekte und ein Lesekopf an dem anderen angebracht, wobei auf der Skale in regelmäßigen Abständen angeordnete, identische Markierungen vorgesehen sind. Der Lesekopf projiziert Licht auf die Skale, welches dann abhängig von der Ausgestaltung der Skale entweder reflektiert oder hindurchgelassen wird. Aus dem reflektierten oder hindurchgelassenen Licht erzeugt der Lesekopf eine Reihe von Signalen, die dazu verwendet werden können, einen inkrementellen Zählwert zu erzeugen, der die relative Verschiebung der beiden Objekte angibt. Der Lesekopf kann eine gewisse elektronische Interpolation bereitstellen, so dass die Auflösung höher ist, als sie durch direktes Zählen der Markierungen auf der Skale erzielt werden könnte. In manchen Fällen sind die Ausgänge analog (oft zwei um Sinuswellen in Quadratur), um es zu ermöglichen, dass eine Elektronik außerhalb des Lesekopfes die Interpolation durchführen kann. Ein inkrementeller Encoder kennt nicht die absolute Position des Lesekopfes entlang der Skale.
-
Ein absoluter Encoder umfasst typischerweise eine Skale, auf der Daten in der Form einer pseudozufälligen Folge oder diskreter Codeworte geschrieben sind. Durch Lesen dieser Daten, wenn der Lesekopf über die Skala hinwegtritt, kann der Lesekopf seine absolute Position bestimmen.
-
Es gibt auch hybride, inkrementelle, absolute Positionsencoder. Es ist möglich, inkrementelle Encoder mit einer feineren Auflösung als absolute Encoder herzustellen, wobei viele absolute Encoder auch separate inkrementelle Kanäle umfassen. Der absolute Kanal ergibt eine absolute Position, die bis zu zumindest einer Periode des inkrementellen Kanals genau ist. Eine Interpolation des inkrementellen Kanals ergibt eine Position innerhalb der Periode des inkrementellen Kanals bis zu der gewünschten feinen Auflösung. Miteinander kombiniert ergeben die beiden Systeme eine absolute Position bis zu einer feinen Auflösung. Da der absolute Kanal und der inkrementelle Kanal jedoch in separaten Spuren vorliegen, kann ein Gieren des Lesekopfes zu Fehlern führen, wenn die inkrementelle und die absolute Position kombiniert werden. Bei einer Skale mit fester Position muss diese außerdem in der richtigen Orientierung sein, so dass die inkrementellen und absoluten Spuren mit den jeweiligen Leseköpfen ausgerichtet sind.
-
Ein hybrider, inkrementeller, absoluter Positionsencoder ist in dem europäischen Patent
EP 0 503 716 A1 offenbart, in welchem der absolute Kanal, der aus einem Pseudozufallscode besteht, und der inkrementelle Kanal kombiniert sind, um einen einzigen zusammengesetzten Kanal zu bilden. Das Dokument
DE 44 36 784 A1 offenbart einen Maßstab eines Längenmesssystems, der eine inkrementale Strichteilung aufweist, die gleichzeitig mit einem die Absolut-Position des Teilungsträgers beschreibenden Code versehen ist. Der Code wird dadurch gebildet, dass die Striche der Teilung eine unterschiedliche Breite, aber konstanten gegenseitigen Abstand besitzen. Das Dokument
DE 30 35 012 A1 offenbart einen Maßstab mit Teilstrichen. Die Folge von Teilstrichen ist längs des Maßstabs lediglich an einigen Stellen durch eine Kodierung unterbrochen, um eine absolute Position einzufügen. Das Dokument
DE 100 28 136 A1 offenbart eine Einbettung absoluter Daten in eine Inkrementalspur durch Variieren der Breite der Striche der Inkrementalspur. Das Dokument
DE 199 39 643 A1 offenbart eine Einbettung von absoluten Daten, wobei ein Manchester-Code verwendet wird, bei dem ein Datenwert durch einen Hell-Dunkel-Übergang bzw. einen Dunkel-Hell-Übergang kodiert wird. Das Dokument
CA 2 427 788 A1 offenbart das Einbetten eines absoluten Codes in eine inkrementelle Skale mittels einer Pseudozufallsverteilung, wobei ein Manchester-Code verwendet wird, um die Daten zu kodieren.
-
Zusammenfassung der Erfindung
-
Ein erster Aspekt der vorliegenden Erfindung stellt eine Messskale bereit, umfassend:
- eine inkrementelle Skalenspur mit einer Reihe von Linien, die eine erste Eigenschaft aufweisen und sich im Allgemeinen mit Linien abwechseln, die eine zweite Eigenschaft aufweisen,
- dadurch gekennzeichnet, dass die absoluten Positionsdaten in der inkrementellen Skalenspur in der Form einer Reihe aufeinanderfolgender diskreter Codeworte eingebettet sind.
-
Die Linien, die eine erste Eigenschaft aufweisen, sind vorzugsweise lichtreflektierend oder lichtdurchlässig und die Linien, die eine zweite Eigenschaft aufweisen, sind nicht lichtreflektierend oder nicht lichtdurchlässig.
-
Es sind zusätzliche oder weniger Linien, die eine der Eigenschaften aufweisen, im Vergleich mit jenen, die die andere Eigenschaft aufweisen, in Mustern, die die Codeworte bilden, vorgesehen, wodurch die absoluten Daten in der inkrementellen Skalenspur eingebettet sind.
-
Vorzugsweise erstrecken sich die Linien, die die erste oder die zweite Eigenschaft aufweisen, im Wesentlichen über die Breite der Skale. Die absoluten Daten auf der Skale können palindromisch sein.
-
Die absoluten Daten können in diskrete Codeworte unterteilt sein, wobei der Beginn jedes Codewortes durch ein identisches Startsymbol markiert ist. Die absoluten Daten in sowohl den Codeworten als auch den Startsymbolen können aus binären Codes bestehen.
-
Die Codeworte definieren vorzugsweise N eindeutige Positionen über eine Länge einer Skale, wobei diese Länge derart wiederholt wird, dass die (N+1)te Position gleich ist wie die 1. Position usw.
-
Ein zweiter Aspekt der Erfindung stellt ein System zum Messen einer absoluten Position bereit, das eine Messskale und einen Skalenleser umfasst, die relativ zueinander beweglich sind,
wobei die Messskale eine inkrementelle Skalenspur mit einer Reihe von Linien umfasst, die eine erste Eigenschaft aufweisen und sich im Allgemeinen mit Linien abwechseln, die eine zweite Eigenschaft aufweisen, in der zusätzliche oder weniger Linien, die eine der Eigenschaften aufweisen, im Vergleich mit jenen, die die andere Eigenschaft aufweisen, in Mustern, die Codeworte bilden, vorgesehen sind, wodurch absolute Positionsdaten in der inkrementellen Skalenspur in der Form einer Reihe aufeinanderfolgender diskreter Codeworte eingebettet sind,
und der Skalenleser eine Lichtquelle zum Beleuchten der Skale und zumindest einen Detektor zum Bestimmen der inkrementellen Position und der absoluten Position aus der inkrementellen Skalenspur umfasst.
-
Der wenigstens eine Detektor umfasst einen filternden Lesekopf, der die inkrementelle Position bestimmt.
-
Jedes absolute Bit von Daten weist vorzugsweise einen Wert von 1 oder 0 auf, wobei es ein Takt-Bit mit einem Wert von 0 zwischen jedem absoluten Daten-Bit gibt, wobei bestimmt wird, ob irgendein Bit der Skale ein absolutes Daten-Bit oder ein Takt-Bit ist, indem die Werte der (m+l)ten Bits auf jeder Seite dieses Bits gemessen werden, wobei m = eine beliebige gerade ganze Zahl ist, und wobei die Werte dieser Bits summiert werden, so dass, wenn die Summe kleiner als ein vorbestimmter Wert ist, das Bit ein absolutes Daten-Bit ist.
-
Es wird vorzugsweise eine Nachschlagetabelle verwendet, um eine grobe absolute Position zu bestimmen, indem absolute Positionsdaten, die aus der Skale extrahiert werden, mit absoluten Codeworten in der Nachschlagetabelle verglichen werden. Die absolute Position kann auf innerhalb einer inkrementellen Skalenteilung bestimmt werden, indem die grobe absolute Position mit der Position des Starts des ersten Codeworts in den Daten, die durch den wenigstens einen Detektor extrahiert werden, und dem Ort des ersten vollständigen Datenbits in den Daten, die durch den wenigstens einen Detektor extrahiert werden, kombiniert wird. Die absolute Position kann auf innerhalb eines Bruchteils der Skalenteilung bestimmt werden, indem die absolute Position mit der inkrementellen Position kombiniert wird.
-
Figurenliste
-
Bevorzugte Ausführungsformen der vorliegenden Erfindung werden beispielhaft anhand der begleitenden Zeichnungen veranschaulicht, in denen:
- 1A - 1D schematische Darstellungen einer inkrementellen Skale, einer absoluten Skale und einer Hybridskale sind;
- 2A und 2B schematische Darstellungen von Codeworten auf der palindromischen Skale sind;
- 3A und 3B die zyklische Natur der Skale zeigen;
- 4A und 4B schematische Darstellungen der palindromischen und zyklischen Skale mit zwei und drei palindromischen Codeworten jeweils pro Wiederholungslänge sind;
- 5 eine schematische Darstellung einer Hybridskale und einer Reihe von Pixeln aus der Abbildungsoptik in dem Lesekopf sind; und
- 6 ein Mikrolinsen-Array ist;
- 7 ein Flussdiagramm für das Verfahren zur Bestimmung einer groben absoluten Position ist; und
- 8 eine schematische Darstellung des Lesekopfes und der Skale ist.
-
Beschreibung von bevorzugten Ausführungsformen
-
1A stellt eine Länge einer inkrementellen Skale 10 dar. Die inkrementelle Skale weist ein sich wiederholendes Muster aus reflektierenden Linien 12 und nicht reflektierenden Linien 14 auf. 1B zeigt eine Länge einer absoluten Skale 16. Diese Skale umfasst auch reflektierende 12 und nicht reflektierende 14 Linien, die jeweils ein Bit von absoluten Daten darstellen, die kombiniert werden, um einen Code zum Festlegen der absoluten Position zu bilden.
-
Die 1C und 1D zeigen die inkrementellen und absoluten Skalen von 1A und 1B kombiniert 18. Ein Bit von absoluten Daten ist pro Teilung der inkrementellen Skale eingebettet. Bei diesem Beispiel ist die Codierung binär und somit gibt es zwei mögliche Zustände 1 und 0. Für Zustand 1 in der absoluten Skale verbleibt die reflektierende Linie in der inkrementellen Skale in ihrem ursprünglichen Zustand 20. Für Zustand 0 wird die reflektierende Linie der inkrementellen Skale entfernt, wie es bei 22 gezeigt ist.
-
Das Entfernen von Teilen des inkrementellen Musters verschlechtert das Signal von dem inkrementellen Kanal, jedoch ist der Effekt nicht schwerwiegend, wenn der Schaden entlang der Skale gleich bleibend ist. Bei diesem Beispiel sind reflektierende Linien der inkrementellen Skale entfernt, was zu einem Abfall in dem inkrementellen Signal aber auch zu einem Abfall im Hintergrundlicht im gleichen Verhältnis führt. Wenn jedoch statt dessen reflektierende Linien hinzugefügt werden würden, würde dies zu einem Abfall in dem inkrementellen Signal um den gleichen Betrag aber auch zu einer Zunahme im Hintergrundlicht führen.
-
Absolute Daten können in der inkrementellen Skale ohne das Hinzufügen oder Entfernen von inkrementellen Linien eingebettet werden. Stattdessen kann die Breite von Linien oder der Abstand zwischen Linien verändert werden.
-
Wenn die absoluten Daten in den inkrementellen Daten eingebettet sind, kann die Skale prismatisch sein. Dies bedeutet, dass sie entlang ihrer Breite gleichförmig ist, wie es in 1D zu sehen ist, anstatt dass parallele Datenspuren verwendet werden, wie bei bisher bekannten hybriden inkrementellen und absoluten Skalen. Dies beseitigt drei Mängel von „Parallelspursystemen“. Zunächst ist es möglich, dass der Lesekopf in der einen oder anderen Lage in Bezug auf die Skale montiert werden kann. Zweitens ist ein Gieren des Lesekopfes nicht so kritisch, da es keine Notwendigkeit gibt, parallele Spuren relativ zueinander in Phase zu halten. Drittens gibt es keine Beschränkung der seitlichen Versatztoleranz des Lesekopfes in Bezug auf die Skale.
-
Die absoluten Daten, die in der inkrementellen Skale eingebettet sind, sind derart entworfen, dass sie palindromisch sind. Dies bedeutet, dass die absoluten Daten auf der Skale genau gleich sind, wenn sie von jedem Ende der Codefolge aus gelesen werden. 2A zeigt zwei Codeworte A und B auf einer Skale. Wenn die Skale um 180° gedreht wird, wie es in 2B gezeigt ist, wird die Skale identisch sein. Codewort B ist mit dem ursprünglichen A identisch und befindet sich in der gleichen Position, während Codewort A identisch mit dem ursprünglichen B ist und sich wieder in der gleichen Position befindet. Dies ermöglicht es, dass eine Skale an einer Fläche in jeder Orientierung montiert werden kann, ohne die Notwendigkeit für ein Umprogrammieren oder die Notwendigkeit, die Orientierung des Lesekopfes zu verändern.
-
Die absoluten Daten auf der Skale definieren eindeutige Positionen über eine bestimmte Länge, die mehrere Meter lang sein kann. Über diese Länge hinaus wiederholt sich die Codierung nahtlos, so dass die Codierung weder einen Beginn noch ein Ende aufweist. Wenn die Skale N eindeutige Positionen entlang ihrer Länge vom Start bis zum Ende definiert, wird die Skale dann zyklisch, wenn die (N+1)te Position gleich eingerichtet wird, wie die 1. Position und die (N+2)te Position gleich eingerichtet wird wie die 2. Position usw. Die Länge eines Zyklus des Skalencodes ist als die Wiederholungslänge bekannt. Längen von Skalen, die länger als die Wiederholungslänge sind, können verwendet werden, obwohl Positionen, die entlang dieser definiert sind, nicht länger eindeutig sein werden. Wie es in 3A gezeigt ist, definiert eine Länge einer Skale eindeutige Positionen X, Y über eine Länge d. Diese Positionen werden über eine Länge d2 wiederholt.
-
Ein zyklisches Codieren ermöglicht es, dass die Skale fortlaufend hergestellt und in langen Längen auf Lager gelegt werden kann. Jede Länge, die anschließend zugeschnitten wird, wird über ihre gesamte Länge eine gültige Codierung enthalten. Beispielsweise zeigt 3B eine Länge der Skale, wobei eine bestimmte Länge d zyklisch wiederholt wird. Wenn eine Länge L abgeschnitten wird, bildet sie eine kontinuierliche Skale, wo auch immer sie abgeschnitten worden ist.
-
Es gibt ein Bit von absoluten Daten pro Teilung der inkrementellen Skale. Die Bits sind in Codeworte und Startsymbole gruppiert. Jedes Startsymbol ist identisch und dient dazu, den Start jedes Codeworts zu markieren, wohingegen die Codeworte dazu verwendet werden, die absolute Position zu definieren. Die Auswahl von Startsymbolen ist eingeschränkt, da die gewählte Folge für das Startsymbol nicht innerhalb irgendeinem der Codeworte auftreten darf, da sonst ein Teil des Codewortes fehlerhaft als ein Startsymbol gedeutet werden könnte. Außerdem darf kein Codewort mit dem Beginn des Startsymbols enden oder umgekehrt, da dies dazu führen könnte, dass die Position des Codewortes um wenige Bits fehlinterpretiert werden könnte.
-
Damit die Skale sowohl palindromisch als auch zyklisch ist, müssen die Startsymbole ebenfalls palindromisch sein. Zusätzlich können nur zwei Codeworte innerhalb einer Wiederholungslänge palindromisch sein, ohne dass irgendwelche sich wiederholende Codeworte vorliegen. Beide Skalen 18, die in den 4A und 4B gezeigt sind, sind zyklisch und palindromisch mit einer Wiederholungslänge d. Die Skale in 4A weist zwei palindromische Codeworte ABA und LML auf, ohne dass irgendwelche Codeworte in der Länge d wiederholt vorkommen. Die Skale in 4B weist drei palindromische Codeworte ABA, FGF und LML auf. Jedoch erscheint FGF in der Skale innerhalb der Wiederholungslänge d doppelt.
-
Es werden mehrere Strategien angewandt, um sicherzustellen, dass die verwendeten Codeworte nicht die messtechnische Genauigkeit des inkrementellen Kanals verschlechtern. Einige dieser Strategien umfassen, keine Codeworte zu verwenden, die das inkrementelle Signal schlecht beeinflussen.
-
Die erste Strategie ist, keine Codeworte zu verwenden, die keine gleiche Anzahl von Einsen und Nullen enthalten. Zum Beispiel sollte ein 16-Bit-Codewort exakt acht Einsen und acht Nullen enthalten. Dies stellt sicher, dass die Größe des inkrementellen Signals konstant bleibt, wenn der Lesekopf die Skale überquert. Es ist möglich, diese Randbedingung auf Codeworte zu lockern, die zwischen sieben und neun Einsen und Nullen aufweisen, und möglicherweise weiter.
-
Die zweite Strategie umfasst, keine Codeworte zu verwenden, die eine Kette von mehr als einer vorbestimmten Anzahl von Einsen oder Nullen in einer Reihe enthalten. Beispielsweise kann die maximale Anzahl von Einsen in einer Reihe sechs, oder stärker bevorzugt vier sein. Diese langen gleichmäßigen Folgen bewirken, dass die inkrementellen Lissajou-Figuren, die durch zwei um sinusförmige Ausgänge in Quadratur gebildet werden, in dem Moment außermittig liegen, wenn der Lesekopf über sie hinwegtritt.
-
Die dritte Strategie umfasst nicht, dass irgendwelche Codeworte nicht verwendet werden. Um den Effekt der absoluten Daten auf den inkrementellen Kanal zu minimieren, muss die Skale über die Länge des Lesefensters des inkrementellen Kanals, das typischerweise 50 Bits lang ist, gleichmäßig sein. Dies wird erzielt, indem die Reihenfolge von Codeworten entlang der Skale umgeordnet wird, um sicherzustellen, dass jede Folge von fünfzig aufeinander folgenden Bits so nahe wie möglich die gleichen Anzahlen von Einsen (oder gleichermaßen Nullen) aufweist.
-
Der Lesekopf, der dazu verwendet wird, die Skale zu lesen, umfasst zumindest eine Lichtquelle, um die Skale zu beleuchten, und zumindest einen Detektor, um die inkrementellen und absoluten Positionen zu bestimmen.
-
Eine vereinfachte Version des Lesekopfes 54 und der Skale 18 ist in 8 gezeigt. Um den inkrementellen Teil der Skale zu lesen, sind eine Lichtquelle LS1, ein Gittermaßstab 52 und ein Detektor 50 (z.B. Fotodioden-Array) vorgesehen. Um den absoluten Teil der Skale zu lesen, sind eine Lichtquelle LS2, eine Abbildungslinse 25 und ein Detektor 26 (z.B. linearer Bildsensor) vorgesehen.
-
Es können separate Detektoren verwendet werden, oder alternativ könnten beide Detektoren auf einem Chip eingebettet sein (d.h. die gleichen Pixel detektieren sowohl die absoluten als auch die inkrementellen Positionen). Gleichermaßen können gemeinsame oder separate Lichtquellen und Linsen-Arrays verwendet werden.
-
Ein filternder Lesekopf, wie er in dem
europäischen Patent Nr. 0 207 121 beschrieben ist, ist zur Verwendung bei der Bestimmung der inkrementellen Position geeignet. In einem solchen Lesekopf erzeugt jeder Punkt auf der Skale Ringe oder Streifen an einem Detektor in der Form einer sinusförmigen Welle. Jeder Ring oder Streifen an dem Detektor wird durch viele Punkte auf der Skale erzeugt. Wenn Teile der Skale fehlen, wird das Signal an den Detektor geringfügig verschlechtert, aber dieser Effekt wird herausgemittelt, und die Frequenz und die sinusförmige Form bleiben gleich. Es wird nur die Grundfrequenz der Skale detektiert, und Oberwellen, die durch fehlende Teile der Skale hervorgerufen werden, werden herausgefiltert.
-
Die Verwendung eines filternden Lesekopfes erlaubt daher, dass eine Skale mit nicht beugender Qualität verwendet werden kann und der Lesekopf dennoch in der Lage ist, eine inkrementelle Position auf innerhalb einer Teilung der Skale zu bestimmen, wenn ausgewählte Skalenmarkierungen fehlen oder hinzugefügt sind. Somit ist der filternde Lesekopf in der Lage, die hybride, absolute und inkrementelle Skale so zu lesen, als ob sie eine rein inkrementelle Skale wäre.
-
Ein optisches Detektorsystem, das aus einem linearen Array von Pixeln besteht, kann dazu verwendet werden, die absolute Position zu bestimmen. Die maximale Größe jedes Pixels ist durch das Nyquist-Kriterium vorgeschrieben, es werden aber vorzugsweise kleinere Pixel verwendet.
-
Ein Mikrolinsen-Array 27, wie es in 6 gezeigt ist, kann dazu verwendet werden, die Skale 18 auf dem Detektor 26 (z.B. dem optischen Detektorsystem) abzubilden. Jede Linse 28 ist tatsächlich ein Paar Linsen 28A, 28B, die als ein aufrechtes Abbildungssystem wirken, um ein fortlaufendes Bild zu erzeugen. Die Verwendung eines Mikrolinsen-Arrays erzeugt einen viel geringeren Arbeitsabstand zwischen der Skale 18 und dem Detektor 26 als bei herkömmlichen Abbildungssystemen.
-
Die absoluten Daten müssen aus der hybriden, absoluten und inkrementellen Skale extrahiert werden. Es ist ein Test erforderlich, um zu bestimmen, ob der Wert irgendeines besonderen Pixels ein Daten-Bit darstellt oder nicht. Absolute Daten sind nur auf den reflektierenden Linien der ursprünglichen inkrementellen Skale eingebettet. Diese Daten-Bits können nun abhängig davon, ob die reflektierenden Linien entfernt worden sind oder verblieben sind, einen Wert von 0 oder 1 aufweisen. Die ursprünglichen nicht reflektierenden Linien auf der inkrementellen Skale sind unverändert geblieben. Diese weisen einen Wert von 0 auf und werden als Takt-Bits bezeichnet. Es gibt ein Takt-Bit zwischen jedem Daten-Bit.
-
Eine typische Skale
18, wie sie in
5 gezeigt ist, kann eine 40 µm-Teilung aufweisen, mit beispielsweise 5,12 Pixeln
24 je Teilung auf dem Detektor und einer optischen Vergrößerung von
1 zwischen der Skale und dem Detektor. Es wird deshalb entweder ein Daten-Bit (
1 oder
0) oder ein Takt-Bit (
C) alle 2,56 Pixel auf dem Detektor geben (d.h. alle halbe Skalenteilung). Wenn ein getestetes Pixel (
P) ein Daten-Bit darstellt, wird dann jede (m+l)te Position auf jeder Seite von P ein Takt-Bit sein. Deshalb sollten Takt-Bits an den folgenden Pixelorten vorhanden sein:
-
Da es keine Pixel für Bruchteile gibt, sollten die folgenden Pixel am nächsten bei den Takt-Daten relativ zu dem getesteten Pixel liegen:
-
Die Werte an diesen Orten (d.h. zwischen 1 und 0) werden summiert. Je niedriger die Summe ist, desto wahrscheinlicher repräsentieren die Pixel Takt-Bits, und desto wahrscheinlicher repräsentiert deshalb das getestete Pixel ein Daten-Bit. Da die exakte Vergrößerung unbekannt ist (wegen einer Schwankung aufgrund der Fahrhöhe des Lesekopfes beispielsweise), ist es nur zweckmäßig, nach Takt-Bits innerhalb eines bestimmten Abstandes des getesteten Pixels zu suchen. Ein Suchen nach Takt-Bits zu weit von dem getesteten Pixel weg kann dazu führen, dass sie aufgrund von Vergrößerungsfehlern aus dem Tritt mit ihren wahren Positionen gelangen.
-
Es ist nicht möglich, das erste Daten-Bit in dem Bild durch dieses Verfahren zu lokalisieren, da es nicht möglich ist, ausreichend Pixel auf jeder Seite dieses Daten-Bits zu lesen. Aus demselben Grund ist es nicht möglich, das letzte Daten-Bit auf dem Bild durch dieses Verfahren zu lokalisieren. Es werden durch das obige Verfahren die Daten-Bits weiter in Richtung der Mitte des Bildes bestimmt, wobei dann, unter der Annahme, dass die Vergrößerung konstant ist, Daten-Bits an jedem Ende gelesen werden können, da die Anzahl von Pixeln zwischen jedem Daten-Bit nun bekannt ist.
-
In diesem Stadium ist ein Block von extrahierten Daten geschaffen worden. Das Flussdiagramm von 7 fasst zusammen, wie die grobe absolute Position aus den extrahierten absoluten Daten bestimmt werden kann. Dieser Block von extrahierten absoluten Daten 32 sollte etwas mehr als 4 Codeworte von Daten und zumindest 3 Startsymbole enthalten. Jedes Startsymbol ist identisch und bei diesem Beispiel 9 Bits lang. Die extrahierten Daten werden abgetastet 34 und jeder 9-Bit-Block wird mit der Startsymbolfolge verglichen 36. Die Güte der Übereinstimmung eines 9-Bit-Blocks von Daten wird bestimmt, indem jedes Bit des Datenblockes invertiert wird, wenn sein entsprechendes Bit in der Startsymbolfolge 1 ist. Die Werte aller 9 Bits in dem Block werden summiert, und das Ergebnis ist die Güte der Übereinstimmung 38, wobei gilt, dass je geringer der Wert ist, desto besser die Übereinstimmung ist. Wenn die Startsymbole nicht richtig beabstandet angeordnet sind (d.h. mit exakt einem Codewort zwischen jedem Startsymbol), muss dann das Bild fehlerhaft sein. In diesem Fall wird das Bild verworfen und der Prozess beginnt erneut von Anfang an mit einem neuen Bild 30.
-
Sobald die Startsymbole gefunden worden sind 40, werden die Orte von drei vollständigen Codeworten in den extrahierten Daten berechnet. Dies kann durch die Verwendung einer Nachschlagetabelle vorgenommen werden, die permanent in dem Speicher des Lesekopfes gespeichert ist und dazu verwendet wird, die drei Codeworte zu decodieren. Jede Serie von drei aufeinander folgenden Worten in der Nachschlagetabelle wird mit den drei Worten von dem Bild verglichen 42. In jedem Fall wird eine Güte einer Übereinstimmung auf die gleiche Weise wie beim der Berechnung der Startsymbole berechnet 44. Die Position der besten Übereinstimmung in der Nachschlagetabelle ergibt die grobe absolute Position des Lesekopfes. Der Koeffizient der Güte der Übereinstimmung der zweitbesten Übereinstimmung wird ebenfalls gespeichert, und dieser Koeffizient wird dann dazu verwendet, die Vertrauenswürdigkeit der groben Position zu bestimmen 46. Wenn die beste Übereinstimmung nur marginal besser ist als die zweitbeste Übereinstimmung, ist dann die berichtete grobe Position nicht vertrauenswürdig. Wenn dagegen die beste Übereinstimmung viel besser ist als die zweitbeste Übereinstimmung, ist der Vertrauensgrad höher. Es können Schwellenwerte auf diesen Wert angewandt werden, um zu bestimmen, ob der Lesekopf die Daten dazu verwendet, die grobe absolute Position 48 zu berechnen, oder die Ergebnisse fallen lässt und wieder mit einem neuen Bild startet 30.
-
Unter der Annahme, dass die Daten als hinreichend vertrauenswürdig angesehen werden, ist der letzte Schritt, die absolute Position zu berechnen. Es sind vier Datenstücke erforderlich. Diese sind (a) die grobe Position aus der Nachschlagetabelle (zu dem nächstliegenden Codewort auf der Skale), (b) die Position des Starts des ersten Wortes in den extrahierten Daten (zu der nächstliegenden Skalenteilung), (c) die Position des Starts des ersten vollständigen Daten-Bits in dem ursprünglichen Bild (zu dem nächstliegenden Detektorpixel) und (d) die Phase der Lissajou-Figur aus dem inkrementellen Kanal (zu der Auflösungseinheit).
-
(a) und (b) sind ausreichend, um die absolute Position des Lesekopfes zu der nächstliegenden Skalenteilung zu berechnen. (d) wird dazu verwendet, die Position innerhalb einer Skalenteilung bis zur erforderlichen Endauflösung zu bestimmen. Es ist jedoch möglich, einen Positionsfehler von einer Skalenteilung allein aus dieser Information zu erhalten. (c) enthält ausreichend Information, um darauf zu prüfen und ggf. die Position zu korrigieren.
-
Diese Erfindung kann unter Verwendung einer lichtdurchlässigen Skale anstelle einer lichtreflektierenden Skale ausgeführt werden.
-
Obwohl diese Ausführungsform eine lineare Skale und einen linearen Lesekopf beschreibt, könnte diese Erfindung auch für einen rotierende Skale oder eine zweidimensionale Skale geeignet sein.
-
Außerdem ist die Skale nicht auf eine binäre Codierung begrenzt. Es kann auch eine Codierung mit mehreren Niveaus verwendet werden. Wenn beispielsweise die Skale eine Glasplatte mit darauf abgeschiedenem Chrom umfasst, könnte der Code erzeugt werden, indem klares Glas für die Takt-Bits belassen wird, Chrom mit halber Dichte für die „0“-Daten-Bits und Chrom voller Dichte für die „1“-Daten-Bits verwendet wird. Alternativ können die „0“-Daten-Bits punktierte Linien umfassen, und die „1“-Daten-Bits können durchgezogene Linien umfassen.
-
Diese Erfindung wäre auch für nicht optische Skalen geeignet, beispielsweise für kapazitive oder magnetische Skalen.