DE10214343A1 - Partikelfilter mit einer katalytisch aktiven Beschichtung zur Beschleunigung der Verbrennung der auf dem Filter gesammelten Rußpartikel während einer Regenerationsphase - Google Patents

Partikelfilter mit einer katalytisch aktiven Beschichtung zur Beschleunigung der Verbrennung der auf dem Filter gesammelten Rußpartikel während einer Regenerationsphase

Info

Publication number
DE10214343A1
DE10214343A1 DE10214343A DE10214343A DE10214343A1 DE 10214343 A1 DE10214343 A1 DE 10214343A1 DE 10214343 A DE10214343 A DE 10214343A DE 10214343 A DE10214343 A DE 10214343A DE 10214343 A1 DE10214343 A1 DE 10214343A1
Authority
DE
Germany
Prior art keywords
filter
coating
exhaust gas
soot
barium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10214343A
Other languages
English (en)
Inventor
Marcus Pfeifer
Setten Barry Van
Christian Kuehn
Roger Staab
Lutz Marc Ruwisch
Peter Kattwinkel
Juergen Gieshoff
Egbert Lox
Thomas Kreuzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore AG and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Priority to DE10214343A priority Critical patent/DE10214343A1/de
Priority to US10/397,984 priority patent/US7351382B2/en
Priority to BR0303010-5A priority patent/BR0303010A/pt
Priority to EP03006877A priority patent/EP1355048A1/de
Priority to KR10-2003-0019632A priority patent/KR20030078780A/ko
Priority to JP2003091684A priority patent/JP2004036609A/ja
Priority to CA002423772A priority patent/CA2423772A1/en
Publication of DE10214343A1 publication Critical patent/DE10214343A1/de
Priority to US11/498,014 priority patent/US20060270548A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • B01D39/06Inorganic material, e.g. asbestos fibres, glass beads or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • F01N2430/085Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing at least a part of the injection taking place during expansion or exhaust stroke
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/524Spinel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Die Erfindung betrifft ein Partikelfilter für die Entfernung von Ruß aus dem Abgas eines Dieselmotors, enthaltend auf einem Filterkörper eine katalytisch aktive Beschichtung zur Beschleunigung der Verbrennung der auf dem Filter gesammelten Rußpartikel während einer Regenerationsphase. Das Partikelfilter ist dadurch gekennzeichnet, daß es eine katalytische Beschichtung aufweist, die Verbindungen des Bariums und Magnesiums sowie mindestens ein Element der Platingruppenmetalle enthält. Weiterhin betrifft die Erfindung ein Verfahren zur beschleunigten Verbrennung von im mageren Abgas eines Dieselmotors auf dem Partikelfilter gesammelten Rußpartikeln, wobei die Rußpartikel eine Rußzündtemperatur aufweisen und das Partikelfilter von Zeit zu Zeit durch Anheben der Temperatur des Partikelfilters über die Rußzündtemperatur und Verbrennen der Rußpartikel aktiv regeneriert wird.

Description

  • Die Erfindung betrifft ein Partikelfilter für die Entfernung von Ruß aus dem Abgas eines Dieselmotors. Das Partikelfilter enthält auf einem Filterkörper eine katalytisch aktive Beschichtung zur Beschleunigung der Verbrennung der auf dem Filter gesammelten Rußpartikel während einer Regenerationsphase. Weiterhin betrifft die Erfindung ein Verfahren zur beschleunigten Verbrennung von im mageren Abgas eines Dieselmotors auf dem Partikelfilter gesammelten Rußpartikeln.
  • Partikelfilter sind in der Lage, Rußpartikel aus dem mageren Abgas von Verbrennungsmotoren herauszufiltern und so deren Ausstoß in die Atmosphäre zu verhindern. Dabei finden verschiedene Filterkonzepte ihren Einsatz, wie zum Beispiel Wandflußfilter, Filter aus keramischen Fasern oder keramische oder metallische Schäume sowie Filter aus Drahtgeflechten. Damit können Filtrationsgrade von deutlich über 95% erzielt werden.
  • Die eigentliche Schwierigkeit besteht aber nicht in der Filtration der Rußpartikel, sondern in der Regeneration der eingesetzten Filter. Kohlenstoffruß verbrennt spontan erst bei Temperaturen von etwa 600°C. Diese Temperaturen werden aber zum Beispiel von modernen Dieselmotoren im allgemeinen nur bei Vollast erreicht. Daher sind zusätzliche, unterstützende Maßnahmen zur Oxidation der aus dem Abgas abgetrennten Rußpartikel notwendig.
  • Man unterscheidet zwischen aktiven und passiven Maßnahmen: Bei den aktiven Maßnahmen wird die Temperatur des Filters beispielsweise durch eine elektrische Aufheizung über die zur Oxidation des Rußes notwendige Temperatur angehoben. Solche Maßnahmen sind stets mit einem Kraftstoffmehrverbrauch verbünden. Bei den passiv eingreifenden Systemen wird zum Beispiel durch die Verwendung von metallorganischen Kraftstoffadditiven wie Ferrocen oder durch eine katalytische Beschichtung des Filters die Rußzündtemperatur abgesenkt.
  • Die DE 31 41 713 A1 beschreibt eine die Rußzündtemperatur herabsetzende Beschichtung, welche als aktive Substanz Silbervanadat enthält. Eine Weiterbildung dieser Erfindung wird in der DE 32 32 729 C2 beschrieben. Danach kann die die Zündtemperatur senkende Beschichtung als aktive Substanz Lithiumpentoxid, Vanadinpentoxid mit Alkalimetalloxid, ein Vanadat, ein Perrhenat oder eine Kombination dieser Substanzen enthalten.
  • Die DE 34 07 172 beschreibt eine Einrichtung zur Reinigung der Abgase von Dieselmotoren von oxidierbaren festen, flüssigen und gasförmigen Schadstoffen. Zu diesem Zweck enthält die Einrichtung in einem Gehäuse unmittelbar oder im Abstand hintereinander Filterelemente angeordnet, wobei mindestens ein Filterelement A, welches den die Zündtemperatur des Rußes senkenden und seinen Abbrand fördernden: Katalysator trägt und mindestens ein Filterelement B, welches den die Verbrennung gasförmiger Schadstoffe fördernder Katalysator trägt, einander mehrfach abwechseln.
  • Koberstein et. al. beschreiben in "Einsatz von Abgasnachbehandlungseinrichtungen" (VDI-Berichte No. 559; VDI-Verlag 1985, 275-296) ein Wandflußfilter, welches eine kombinierte Beschichtung mit Zündkatalysator auf den Kanalwänden der Gaseintrittsseite und mit Oxidationskatalysator auf der Gasaustrittsseite aufweist. Die Funktion des Oxidationskatalysators ist es hierbei, die während der Filterregeneration freigesetzten Kohlenwasserstoffe zu oxidieren und damit unschädlich zu machen.
  • Die US 4,510,265 beschreibt ein selbstreinigendes Diesel-Partikelfilter. Das Filter ist, mit einer Katalysatormischung aus einem Metall der Platingruppe und Silbervanadat versehen. Die Anwesenheit der Katalysatormischung veringert die Zündtemperatur der Dieselpartikel.
  • Die US 4,849,399 beschreibt ebenfalls eine Katalysatorzusammensetzung zur Herabsetzung der Zündtemperatur von Dieselruß. Die Zusammensetzung enthält schwefelresistente anorganische Oxide aus der Gruppe Titanoxid, Zirkonoxid; Siliciumdioxid, Aluminiumsilicat und Aluminiumoxid sowie auf dem Oxid abgeschiedene, katalytisch aktive Komponenten aus der Gruppe Platin, Palladium und Rhodium.
  • Gemäß der US 5,100,632 kann die Zündtemperatur von Dieselruß auch mit einer Katalysatorzusammensetzung vermindert werden, die ein Platingruppenmetall und ein Erdalkalimetall enthält. Insbesondere wird eine Katalysatorzusammensetzung aus Magnesiumoxid und Platin und/oder Rhodium vorgeschlagen.
  • Die US 5,758,496 beschreibt ein Partikel- und Abgasreinigungssystem, welches ein Partikelfilter enthält, dessen poröse Wände direkt mit einem katalytisch aktiven Metall zur Oxidation von Kohlenmonoxid und unverbrannten Kohlenwasserstoffen beschichtet ist. Zur Herabsetzung der Zündtemperatur des auf dem Filter abgelagerten Dieselrußes wird dem Kraftstoff ein Additiv zugesetzt. Dieses Additiv besteht aus einer Organometallverbindung in einem flüssigen Trägermedium. Insbesondere handelt es sich bei den Organometallverbindungen um Kupfer-, Nickel,- oder Ceroctoat.
  • Die US 5,792,436 beschreibt ein Verfahren für die Entfernung von Stickoxiden und Schwefeloxiden aus dem mageren Abgas von Verbrennungsmotoren. Hierzu werden die Abgase über eine katalysierte Falle geleitet, die eine Kombination aus einem Stickoxide und Schwefeloxide absorbierenden Material und einem Oxidationskatalysator enthält. Das absorbiende Material kann durch Erhöhen der Temperatur der Falle regeneriert werden. Zu diesem Zweck werden dem Abgasstrom während der Regenerationsphase brennbare Komponenten zugesetzt, die am Oxidationskatalysator verbrannt werden und die Temperatur der Falle auf die Desorptionstemperatur für Stickoxide und Schwefeloxide erhöhen. Geeignete Absorbermaterialien sind Oxide, Carbonate, Hydroxide von Magnesium, Calcium, Strontium, Barium und Lanthan sowie Oxide des Cers, Praseodyms und Oxide von Elementen mit den Atomzahlen von 22 bis 29. Der Oxidationskatalysator besteht aus wenigstens einem Platingruppenmetall. Absorbierendes Material und Oxidationskatalysator werden in Form einer Beschichtung zum Beispiel auf einem Wabenkörper mit parallel angeordneten, frei durchströmbaren Kanälen oder auf kugel- oder tablettenförmigen Tragkörpern aufgebracht, die in einer Schüttung angeordnet sind.
  • Die US 6,023,928 beschreibt ein Verfahren zur gleichzeitigen Verminderung der im Abgas eines Dieselmotors enthaltenen Rußpartikel, unverbrannten Kohlenwasserstoffen und Kohlenmonoxid. Das Verfahren setzt ein mit Platin katalysiertes Partikelfilter in Kombination mit einem cerhaltigen Kraftstoffadditiv ein, um die Zündtemperatur des Rußes herabzusetzen.
  • Die Absenkung der Rußzündtemperatur durch eine Rußzündbeschichtung oder durch ein Kraftstoffadditiv ist im allgemeinen nicht in der Lage, eine Regeneration des Filters auch bei niedrigen Lastpunkten zu gewährleisten, so daß heutzutage häufig eine Kombination von aktiven und passiven Maßnahmen eingesetzt wird.
  • Besonders bewährt hat sich die Kombination eines Oxidationskatalysators in Verbindung mit einem Partikelfilter. Dabei ist der Oxidationskatalysator vor dem Partikelfilter in der Abgasanlage angeordnet. Durch eine Nacheinspritzung oder aridere motorische Maßnahmen gelangen unverbrannter Kraftstoff und Kohlenmonoxid auf den Oxidationskatalysator und werden dort katalytisch zu Kohlendioxid und Wasser umgesetzt. Mit Hilfe der frei werdenden Reaktionswärme wird das Abgas und damit auch das nachgeschaltete Partikelfilter aufgeheizt. Ein solches System beschreibt zum Beispiel die GB 2 134 407 A. In Verbindung mit einer die Rußzündtemperatur senkenden, katalytischen Beschichtung des Filters oder von Kraftstoffadditiven kann die Menge der Nacheinspritzung von Kraftstoff reduziert und das Filter an jedem Betriebspunkt des Motors regeneriert werden.
  • Einen anderen Weg beschreitet die EP 0 341 832 B1. Sie beschreibt ein Verfahren zur Behandlung des Abgases von Schwerlastwagen. Das Abgas wird zuerst ohne Filtern über einen Oxidationskatalysator geleitet, um das in ihm enthaltene Stickstoffmonoxid zu Stickstoffdioxid zu oxidieren. Das Stickstoffdioxid enthaltende Abgas wird dann zum Verbrennen der auf einem nachgeschalteten Filter abgelagerten Partikel verwendet, wobei die Menge des Stickstoffdioxids ausreicht, um die Verbrennung der auf dem Filter abgelagerten Teilchen bei einer Temperatur von weniger als 400°C durchzuführen. Hiermit soll eine kontinuierliche Regeneration des Partikelfilters möglich sein, ohne daß eine periodische Nacheinspritzung von Kraftstoff zur Erhöhung der Abgastemperatur erforderlich ist.
  • Die EP 0 835 684 A2 beschreibt ein Verfahren zur Behandlung des Abgases von Kleinlast- und Personenkraftwagen. Das Abgas wird gemäß diesem Verfahren über zwei hintereinandergeschaltete Katalysatoren geführt, von denen der erste das im Abgas enthaltene Stickstoffmonoxid zu Stickstoffdioxid oxidiert, welches Rußpartikel, die sich auf dem zweiten Katalysator abgelagert haben zu CO2 oxidiert.
  • Die in den beiden letzten Patentschriften beschriebenen Verfahren setzen einen hohen Anteil von Stickoxiden im unbehandelten Abgas des Dieselmotors voraus. Das ist jedoch im allgemeinen nicht im ausreichenden Maße der Fall.
  • In einer Pressemitteilung vom 15. April 1999 sowie in den Patentanmeldungen EP 000113027-30 A1 wurde von PSA Peugeot Citroen für Dieselmotoren ein Partikelfiltersystem mit periodischer Regeneration des Partikelfilters durch Abbrennen der auf dem Filter abgelagerten Rußpartikel vorgestellt. Die auf dem Filter abgelagerten Rußpartikel verbrennen in der Gegenwart von Sauerstoff erst bei einer Temperatur von 550°C. Um die Regeneration des Partikelfilters auch während Betriebszuständen des Dieselmotors mit Abgastemperaturen von nur 150°C (zum Beispiel während Fahrten in der Stadt) zu gewährleisten, werden mehrere Maßnahmen getroffen. Zum einen wird die Abgastemperatur durch aktive Maßnahmen auf 450°C erhöht. Zum anderen wird dem Kraftstoff ein cerhaltiges Additiv zugesetzt, welches die natürliche Verbrennungstemperatur der Rußpartikel auf 450°C absenkt. Zur Erhöhung der Abgastemperatur auf 450°C wird während der Expansionsphase Kraftstoff in die Zylinder eingespritzt. Dieser Vorgang wird im folgenden als Nacheinspritzung bezeichnet. Durch die damit verbundene Nachverbrennung wird die Abgastemperatur um 200 bis 250°C angehoben. Zusätzlich erfolgt eine weitere Nachverbrennung unverbrannter Kohlenwasserstoffe, die aus der Nacheinspritzung resultieren, an einem vor dem Filter angeordneten Oxidationskatalysator. Dadurch erhöht sich die Abgastemperatur um weitere 100°C.
  • Ein weiterer, entscheidender Vorteil des Kraftstoffadditivs ist die beschleunigte Filterregeneration. Heutzutage ist es nicht möglich, die zur Einleitung der Filterregeneration nötige Nacheinspritzung in jedem Betriebspunkt zu gewährleisten. Eine Beschleunigung des Rußabbrandes wirkt daher der Gefahr einer unvollständigen Filterregeneration entgegen. Die Zeit, in der die Nacheinspritzung aufrecht erhalten werden muß, kann minimiert werden. Die Gefahr, daß das Fahrzeug während der Regeneration in einen Betriebspunkt gelangt, der für eine Nacheinspritzung ungeeignet ist, ist daher deutlich geringer.
  • Nachteilig bei den bekannten Verfahren und Abgassystemen, die zur Absenkung der Rußzündtemperatur dem Kraftstoff ein Additiv zufügen, ist die Tatsache, daß sich das Additiv nach Regeneration des Partikelfilters in Form einer Asche, zum Beispiel Cerasche, im Filter ansammelt. Hinzu kommt eine Asche aus der Verbrennung des mit dem Abgas ausgetragenen Schmieröls (Ölasche). Die Cerasche, die ungefähr zwei Drittel der Gesamtasche ausmacht, bildet zusammen mit der Ölasche eine pulverförmige, flockige Zusammensetzung, die als Rückstand nach Verbrennung des Rußes im Filter verbleibt. Nach einer gewissen Betriebsdauer des Verbrennungsmotors können sich je nach Größe und Ölverbrauch des Motors mehrere hundert Gramm der Asche im Filter ansammeln und den Abgasgegendruck erheblich erhöhen, was mit einem kontinuierlich steigendem Kraftstoffmehrverbrauch einhergeht. Das Filter wird daher gewöhnlich nach einer längeren Betriebsdauer, beispielsweise nach ca. 80 000 km, durch Waschen mit Wasser von dieser Asche befreit.
  • Ein weiterer Nachteil dieser und solcher Systeme, die mit einem unbeschichteten Filter arbeiten, sind die hohen Kohlenmonoxidemissionen, die während der spontanen bzw. aktiven Filterregeneration auftreten. Dabei verbrennt der im Filter gesammelte Ruß mit einer Beladung von bis zu 8 g Ruß pro Liter Filtervolumen innerhalb weniger Minuten, was als Folge zu einer unvollständigen Oxidation der Rußpartikel und zu erheblichen CO-Emissionen führt.
  • Vor dem Hintergrund des vorgestellten Standes der Technik ist es Aufgabe der vorliegenden Erfindung, ein Partikelfilter zur Verfügung zu stellen, welches durch eine katalyrische Beschichtung in der Lage ist, die Rußzündtemperatur abzusenken, den Rußabbrand zu beschleunigen und damit den Energiebedarf für die Regeneration des Rußfilters und die Gefahr eines Regenerationsabbruchs zu verringern. Außerdem soll die CO- Emission während der aktiven Filterregeneration verringert und zudem das Intervall zwischen zwei Waschungen des Filters zur Entfernung von akkumulierten Aschen verlängert werden. Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur beschleunigten Verbrennung von im mageren Abgas eines Dieselmotors auf dem Partikelfilter gesammelten Rußpartikeln.
  • Diese Aufgabe wird durch ein Partikelfilter gemäß Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen des Filters werden in den abhängigen Ansprüchen 2 bis 10 beansprucht. Die Ansprüche 11 bis 13 beschreiben ein Verfahren zur beschleunigten Verbrennung des auf dem Partikelfilter gemäß der Erfindung gesammelten Rußes.
  • Gemäß Anspruch 1 wird die Aufgabe der Erfindung durch ein Partikelfilter für die Entfernung von Ruß aus dem Abgas eines Dieselmotors gelöst, welches auf einem Filterkörper eine katalytisch aktive Beschichtung zur Beschleunigung der Verbrennung der auf dem Filter gesammelten Rußpartikel während einer Regenerationsphase enthält. Das Partikelfilter ist dadurch gekennzeichnet, daß die katalytische Beschichtung, Verbindungen des Bariums und Magnesiums sowie mindestens ein Element der Platingruppenmetalle enthält.
  • Unter einem Partikelfilter wird im Rahmen dieser Erfindung ein feinporöser, offenporiger Körper verstanden, der in der Lage ist, zum Beispiel die Rußpartikel im Abgas eines Dieselmotors mit einer Partikelgröße im Bereich zwischen 0,1 und 10 µm zu mehr als 80, bevorzugt mehr als 90%, mechanisch aus dem Abgasstrom herauszufiltern. Es eignen sich sogenannte Tiefenfilter aus keramischen Fasern oder Drahtgeflechten. Es können auch keramische oder metallische Schäume eingesetzt werden, sofern damit die erforderlichen Filtrationsgrade erzielbar sind. Bevorzugt werden sogenannte Wandflußfilter eingesetzt, mit denen Filtrationsgrade über 95% erhalten werden. Wandflußfilter sind wie gewöhnliche Wabenkörper für Autoabgaskatalysatoren aufgebaut. Die Filterkörper besitzen eine im allgemeinen zylindrische Gestalt und sind von einer Eintrittsstirnfläche zur Austrittsstirnfläche von Strömungskanälen für das Abgas durchzogen. Im Unterschied zu normalen Abgaskatalysatoren sind die Kanäle der Wandflußfilter an den Stirnflächen wechselseitig verstopft, so daß das Abgas bei seinem Weg von der Eintrittsstirnfläche zur Austrittsstirnfläche gezwungen ist, die porösen Kanalwände zu durchströmen. Hierbei werden die Rußpartikel aus dem Abgasstrom herausgefiltert.
  • Die erfindungsgemäße Beschichtung des Partikelfilters ist in der Lage, bei normalen Betriebspunkten Stickoxide vornehmlich in der Form von Nitraten einzuspeichern, und diese im sauerstoffhaltigem Abgas bei Temperaturen oberhalb von 300 bis 400°C wieder zu desorbieren. Die Desorption der Stickoxide erfolgt hier also nicht, wie bei Stickoxid-Speicherkatalysatoren üblich, in einer reduzierenden Atmosphäre, sondern durch thermische Zersetzung in einer oxidierenden Atmosphäre. Die freiwerdenden Stickoxide und insbesondere das freiwerdende NO2 ist in der Lage, bereits ab Temperaturen von 300 bis 350°C spontan mit dem im Filter gesammelten Dieselruß gemäß Gleichung (1) zu reagieren:

    C + NO2 → CO + NO (1)

    bzw.

    NO2(adsorb.) → NO2(desorb.) → NO + O* (1a)

    C + O* → CO (1b)
  • Das im zweiten Reaktionsschritt (1b) gebildete Kohlenmonoxid wird bei diesen Temperaturen an den Edelmetallzentren des Katalysators zu Kohlendioxid gemäß Gleichung (2) oxidiert:

    2 CO + O2 → CO2 (2)
  • Die in beiden Reaktionsschritten freiwerdende Energie schiebt im weiteren Verlauf der Filterregeneration die Verbrennung des Rußes ausschließlich mit Sauerstoff an. Das durch die katalytische Beschichtung eingespeicherte NOx bzw. NO2 dient nach dem derzeitigen Kenntnisstand über die Funktionsweise der Filterbeschichtung als Initialzünder für die weitere Verbrennung des im Filter gesammelten Kohlenstoffrußes mit Sauerstoff. Je größer die Menge an eingespeichertem bzw. desorbiertem NO2 ist, desto mehr Energie kann durch die ersten beiden Reaktionsschritte gewonnen werden und desto schneller geht die Filterregeneration vonstatten.
  • Bekannte NOx-Absorbermaterialien sind Oxide, Carbonate, Hydroxide von Alkali- und Erdalkalimetallen und Lanthan sowie Oxide des Cers, Praseodyms und Oxide von Elementen mit den Atomzahlen von 22 bis 29. Diese Komponenten sind im allgemeinen mit Platingruppenmetallen, insbesondere Pt und/oder Pd und/oder Rh dotiert.
  • Bei der Untersuchung dieser Stickoxid-Speichermaterialien wurde überraschend festgestellt, daß die Kombination von Verbindungen des Bariums mit Verbindungen des Magnesiums ein besonders großes Speichervermögen für Stickoxide aufweist und zu einer starken und schnellen, thermischen Desorption der während der Filtrationsphase abgespeicherten Stickoxide führt. Als Verbindungen des Bariums und Magnesiums werden bevorzugt die Oxide, Carbonate oder Hydroxide eingesetzt. Es können aber auch Verbindungen verwendet werden, die sich unter den Anwendungsbedingungen des Filters in die entsprechenden Oxide, Carbonate oder Hydroxide umwandeln.
  • Weitere Verbesserungen werden erzielt, wenn die Beschichtung zusätzlich Ceroxid, Zirkonoxid und Manganoxid enthält, wobei Ceroxid und Zirkonoxid bevorzugt in Form eines Mischoxids eingesetzt werden. Besonders vorteilhaft ist eine Kombination von Ceroxid mit Manganoxid, Bariumcarbonat und Magnesiumoxid in der Beschichtung. Ein Partikelfilter mit einer solchen Beschichtung zeigt in der Regenerationsphase eine sehr starke und schnelle Desorption der während der Filtrationsphase abgespeicherten Stickoxide. Die Regenerationszeit des Filters ist entsprechend verkürzt.
  • Das erfindungsgemäße Partikelfilter wird in einem Verfahren zur Entfernung von Ruß aus dem Abgas eines Dieselmotors eingesetzt. Das Verfahren nutzt aktive und passive Maßnahmen, um den Partikelgehalt und auch die Konzentration von Kohlenwasserstoffen und Kohlenmonoxid im Abgas eines Dieselmotors zu vermindern. Das Verfahren teilt sich in eine Filtrationsphase und eine Regenerationsphase auf, die zyklisch wiederholt werden. Während der Filtrationsphase werden die Rußpartikel aus dem Abgasstrom herausgefiltert, und auf dem Filter abgelagert. Gleichzeitig werden durch den vorgeschalteten Oxidationskatalysator Kohlenmonoxid und Kohlenwasserstoffe zu einem Großteil zu Kohlendioxid und Wasser umgesetzt. Wegen des geringen Gehaltes des Abgases an diesen oxidierbaren Abgaskomponenten reicht die bei der Umsetzung freiwerdende Exotherme nicht aus, um das Filter auf Regeneratioristemperatur zu erwärmen.
  • Mit zunehmender Rußablagerung erhöht sich der Abgasgegendruck des Filters und beeinträchtigt die Leistung des Dieselmotors. Daher muß bei Erreichen eines vorgebbaren Abgasgegendruckes die Regeneration des Filters eingeleitet werden. Zu diesem Zweck muß die Abgastemperatur auf die erforderliche Rußzündtemperatur erhöht werden. Hierzu eignen sich die Nacheinspritzung von Dieselkraftstoff in die Zylinder des Dieselmotors oder in die Abgasleitung vor dem Partikelfilter, eine späte Verbrennungslage, eine mehrstufige Verbrennung oder externe Heizmaßnahmen.
  • Bevorzugt wird der für die Erwärmung des Partikelfilters benötigte zusätzliche Kraftstoff jedoch während der Expansionsphase in die Zylinder des Dieselmotors eingespritzt. Durch die in den Zylindern ablaufende Nachverbrennung erhöht sich dabei die Abgastemperatur schön um etwa 150 bis 200°C. Bei der Nachverbrennung wird nicht der gesamte nacheingespritzte Kraftstoff verbrannt, sondern es gelangt ein gewisser Anteil unverbrannter Kohlenwasserstoffe ins Abgas und somit auf das Partikelfilter.
  • Der unverbrannte Kraftstoff wird auf dem Partikelfilter katalytisch verbrannt und hebt dadurch die Temperatur des Filters auf die Rußzündtemperatur an. Sollte die oxidative Wirkung der Filterbeschichtung auf den unverbrannten Kraftstoff nicht ausreichend genug sein, so kann vor das Filter ein Dieseloxidationskatalysator (DOC) in die Abgasanlage eingebaut werden, der eine effektive Verbrennung der unverbrannten Kohlenwasserstoffe bewirkt. Die dabei maximal erhältliche Temperaturerhöhung hängt von der Menge des nacheingespritzten Kraftstoffes ab.
  • Nach Beginn der Nacheinspritzung steigt die Temperatur des Abgases zunächst sehr schnell an und nähert sich dann bei fortdauernder Nacheinspritzung asymptotisch einem Maximalwert. Ist durch die Menge des nacheingespritzten Kraftstoffes sichergestellt, daß dieser Maximalwert der Abgastemperatur über der Rußzündtemperatur liegt, so setzt schon während des Temperaturanstiegs die thermische. Desorption der während des normalen Fahrbetriebs auf der Filterbeschichtung eingespeicherten Stickoxide ein. Die desorbierten Stickoxide reagieren spontan mit den auf dem Filter gesammelten Rußpartikeln unter Freisetzung von Wärme. Dadurch kann der eventuell noch im Filter verbleibende Restruß mit dem Sauerstoff des Abgases verbrannt werden.
  • Nach erfolgter Regeneration wird die Zuführung von zusätzlichem Kraftstoff gestoppt und die Filtrationsphase beginnt von neuem.
  • Durch die die Zündtemperatur des Rußes senkende und die Rußverbrennung beschleunigenden Komponenten der katalytischen Beschichtung des Partikelfilters wird für die Regeneration des Filters weniger zusätzlicher Kraftstoff verbraucht als ohne diese Komponenten. Aufgrund der verkürzten Regenerationszeit wird zusätzlich die benötigte Gesamtzeit für die Nacheinspritzung reduziert und die Gefahr eines, möglichen Regenerationsabbruchs minimiert. Darüber hinaus gelingt es durch die Platinkomponente der Beschichtung die während der spontanen Regeneration unbeschichteter Filter auftretenden Kohlenmonoxidemissionen zu vermindern. Ein weiterer Vorteil der Erfindung gegenüber den aus dem Stand der Technik bekannten Verfahren, die Rußzündtemperatur durch Kraftstoffadditive herabzusetzen, ist die Tatsache, daß sich keine Asche der Additive im Filter ansammeln kann. Es findet lediglich, wie auch bei den anderen Verfahren, eine Ablagerung von Ölasche statt. Das Wartungsintervall zur Entfernung solcher Aschen aus dem Filter durch entsprechende Spül- oder Waschvorgänge mit Wasser kann daher wesentlich gegenüber den Verfahren mit Kraftstoffadditiven verlängert werden. Wie entsprechende Versuche gezeigt haben, ist die katalytische Beschichtung des Filters gegenüber solchen Waschvorgängen beständig.
  • Für das Verfahren sind verschiedene Filtertypen geeignet, wie zum Beispiel Wandflußfilter, Filter aus keramischen Fasern oder keramische oder metallische Schäume sowie Filter aus Drahtgeflechten. Bevorzugt werden Wandflußfilter aus Siliciumcarbid, Cordierit oder Natriumzirkonphosphat eingesetzt. Bei diesen Filtern wird nur die Eintrittsseite mit der katalytischen Beschichtung versehen. Die Konzentration der Beschichtung liegt zwischen 20 und 200 g/l Filterkörper, während die Konzentration des oder der Platingruppenmetalle 0,5 bis 10 g/l Filterkörper beträgt.
  • Bevorzugt wird das erfindungsgemäße Verfahren für die Abgasreinigung von Fahrzeugen mit Dieselantrieb eingesetzt. Das Antriebsaggregat eines solchen Kraftfahrzeug enthält für die Durchführung des erfindungsgemäßen Verfahren einen Dieselmotor und eine. Abgasreinigungsanlage mit einem Dieseloxidationskatalysator und einem Partikelfilter, wobei die Abgastemperatur des Motors zur Regeneration des Partikelfilters durch. Nacheinspritzung von Kraftstoff in die Zylinder des Dieselmotors während der Expansionsphase erhöht werden kann. Das Partikelfilter dieses Antriebsaggregats ist mit der schon beschriebenen katalytischen Beschichtung versehen, die sowohl eine NOx- Speicherbeschichtung als auch eine Edelmetallkomponente für die Oxidation von Kohlenmonoxid und gegebenenfalls Kohlenwasserstoffen enthält. Eine sonders vorteilhafte Ausführungsform dieses Antriebsaggregats enthält, einen Oxidationskatalysator in motornaher Position vor dem Partikelfilter, der so dimensioniert ist, daß er bei Nacheinspritzung von Kraftstoff nur einen kleinen Teil des Kraftstoffs umsetzt. Dieser Oxidationskatalysator wird bevorzugt vor oder kurz hinter dem Turbolader in den Abgasstrang des Dieselmotors eingefügt. Er erreicht auf Grund seiner motornahen Position sehr schnell seine Betriebstemperatur und kann so einen Teil der CO und HC- Emissionen während des Kaltstarts vermindern. Wegen seines kleinen Volumens kann er aber die während einer Regeneration des Partikelfilters durch Nacheinspritzung zusätzlich eingebrachten und nicht vollständig verbrannten Kohlenwasserstoffe nicht mehr umsetzen, so daß der größte Teil des nacheingespritzten Kraftstoffs auf das Partikelfilter gelangt und dort durch Kontakt mit der Oxidationsfunktion der katalytischen Beschichtung verbrannt wird.
  • Zur Herstellung der katalytischen Beschichtung des Filters werden die Feststoffkomponenten der Beschichtung zu einer bevorzugt wäßrigen Beschichtungssuspension verarbeitet. Das Filter wird dann auf der späteren Eintrittsseite für das Abgas unter Anwendung bekannter Verfahren mit dieser Suspension beschichtet. Gegebenenfalls werden auch An- und Abströmseite des Filters beschichtet. Die Suspension wird anschließend getrocknet und calciniert. Das oder die Platingruppenmetalle können dabei schon vor Anfertigung der Beschichtungssuspension auf, den Feststoffkomponenten der Beschichtung abgeschieden werden oder in Form löslicher Vorläuferverbindungen der wäßrigen Beschichtungssuspension zugefügt werden. Alternativ dazu können die Platingruppenmetalle auch erst nach Fertigstellung der Beschichtung durch eine nachträgliche Imprägnierung mit einer Lösung der Vorläuferverbindungen in die Beschichtung eingebracht werden. Nach erfolgter Imprägnierung muß der Filterkörper erneut getrocknet und calciniert werden.
  • Die Erfindung wird im folgenden durch einige Beispiele und Vergleichsbeispiele näher erläutert. Es zeigen:
  • Fig. 1 NOx-Desorption verschiedener Filterbeschichtungen bei geringer Einspritzmenge,
  • Fig. 2 NOx-Desorption verschiedener Filterbeschichtungen bei hoher Einspritzmenge,
  • Fig. 3 Filterregenerationsverhalten bei niedriger Einspritzmenge,
  • Fig. 4 Filterregenerationsverhalten bei hoher Einspritzmenge.
  • In den folgenden Vergleichsbeispielen und Beispielen wurde die Absenkung der Rußzündtemperatur und die Beschleunigung des Rußabbrandes durch verschiedene NOx- Speicherbeschichtungen untersucht. Für die Untersuchungen wurden zylindrische Wandflußfilter aus Siliciumcarbid mit einer Zelldichte (Anzahl der Strömungskanäle pro Querschnittsfläche des Filters) von 41 cm-2, einer Länge von 15,2 cm und einem Durchmesser von 14,4 cm (Volumen ca. 2,5 l) eingesetzt.
  • Es wurden Partikelfilter mit den in der Tabelle 1 aufgelisteten Beschichtungszusammensetzungen versehen: Tabelle 1 Beschichtungszusammensetzungen

  • Bei dem verwendeten Ceroxid handelte es sich jeweils um ein mit 30 Gew.-% Zirkonoxid stabilisiertes Material. Vor der Anfertigung der Beschichtungssuspension wurde eine Mischung aus Ceroxid und Manganoxid zunächst durch Imprägnieren mit Hexachloroplatinsäure mit der notwendigen Menge Platin belegt, getrocknet und an Luft bei 500°C calciniert. Die Platinmenge wurde dabei so gewählt, daß in der fertigen Beschichtung eine Platinkonzentration von 3,18 g/l Filterkörper (90 g/ft3) bei einer Beschichtung der Filterkörper mit 150 g der Speicherkomponenten pro Liter Filterkörper vorlag.
  • Zur Beschichtung der Filterkörper wurden die mit Platin katalysierten Oxidpulver und gegebenenfalls MgO und BaCO3 in einer Menge Wasser suspendiert, die der zuvor ermittelten Wasseraufnahmekapazität der Filterkörper entsprach. Diese Suspensionen wurden sorgfältig gemahlen und dann über die Eintrittsstirnflächen der Filterkörper gegossen. Danach wurden die Filterkörper getrocknet und calciniert.
  • Prüfung der Partikelfilter
  • Jedes Filter wurde zunächst an einem 2,2 l Dieselmotor (mit Direkteinspritzung) bei definierten Betriebsbedingungen mit etwa 8 g Ruß beladen. Dann wurde die Regeneration des Filters durch Anreichern des Abgasstromes mit Kohlenwasserstoffen eingeleitet. Durch die Verbrennung der im Abgas enthaltenden Kohlenwasserstoffe auf einem dem Filter vorgelagerten Dieseloxidationskatalysator wurde eine Erhöhung der Abgastemperatur um 50 bis 100°C erzielt.
  • Es wurden zwei unterschiedliche Nacheinspritzmengen angewendet, die bei ununterbrochener Nacheinspritzung zu Maximalwerten der Abgastemperatur vor dem Filter von 500 (geringe Einspritzmenge) und 600°C (hohe Einspritzmenge) geführt hätten.
  • Während des Anstiegs der Abgastemperatur erhöhte sich durch die ansteigende Temperatur auch der Abgasgegendruck. Bei Erreichen einer bestimmten Filtereingangstemperatur setzte zunächst die NOx-Desorption und anschließend der Rußabbrand ein, was daran zu erkennen war, daß der Abgasgegendruck ein Maximum durchlief und dann auf den Wert vor Belegung des Filters mit Ruß zurückfiel. Der Beginn der Filterregeneration (gleichgesetzt mit dem Maximum der Filter-Gegendruckkurve) wurde jeweils registriert und ist für die verschiedenen Filterbeschichtungen in der folgenden Tabelle 2 aufgelistet. Tabelle 2 Beginn des Rußabbrandes

  • Aus den Fig. 1 und 2 ist zu ersehen, daß das NOx-Einspeicherungsvermögen der Vergleichsbeschichtungen relativ gering war. Die Vergleichsbeschichtung führten zwar auch zu einer Beschleunigung der Filterregeneration im Vergleich zum unbeschichteten Filter, eine wesentlich stärkere Beschleunigung wurde jedoch für die erfindungsgemäße Beschichtung festgestellt.
  • Die erfindungsgemäße Beschichtung mit einer Kombination aus Magnesiumoxid mit Bariumcarbonat in Verbindung mit Cer-, Zirkon- und Manganoxid weist offensichtlich aufgrund synergetischer Effekte ein vielfach höheres NOx-Speichervolumen auf (siehe Fig. 1 und 2). Dementsprechend konnte der Start der Filterregeneration bei geringer und hoher Einspritzmenge erheblich beschleunigt und die Regenerationszeit des Filters verkürzt werden (Fig. 3 und 4).

Claims (13)

1. Partikelfilter für die Entfernung von Ruß aus dem Abgas eines Dieselmotors enthaltend auf einem Filterkörper eine katalytisch aktive Beschichtung zur Beschleunigung der Verbrennung der auf dem Filter gesammelten Rußpartikel während einer Regenerationsphase, dadurch gekennzeichnet, daß die katalytische Beschichtung Verbindungen des Bariums und Magnesiums sowie mindestens ein Element der Platingruppenmetalle enthält.
2. Partikelfilter nach Anspruch 1, dadurch gekennzeichnet, daß die Barium- und Magnesiumverbindungen von Carbonaten, Oxalaten, Hydroxiden, Carboxylaten, Oxiden oder Mischungen hiervon gebildet sind.
3. Partikelfilter nach Anspruch 2, dadurch gekennzeichnet, daß die Barium und/oder Magnesiumverbindungen als solche oder in geträgerter Form vorliegen.
4. Partikelfilter nach Anspruch 3, dadurch gekennzeichnet, daß in der Beschichtung die Bariumverbindung in Kombination mit einem homogenen Mg/Al-Mischoxid aus Magnesiumoxid und Aluminiumoxid vorliegt, wobei Magnesiumoxid in einer Konzentration von 1 bis 40 Gew.-%, bezogen auf das Gesamtgewicht des Mg/Al-Mischoxids, im Mischoxid enthalten ist.
5. Partikelfilter nach Anspruch 4, dadurch gekennzeichnet, daß das oder die Edelmetalle ausgewählt sind aus Platin, Palladium, Rhodium oder Mischungen davon und vollständig oder teilweise auf dem Mg/Al-Mischoxid abgeschieden sind.
6. Partikelfilter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß in der Beschichtung neben den Verbindungen des Bariums und Magnesiums auch Verbindungen des Cers, Zirkons, Mangans, Lanthans, Niobs oder Tantals in der Größenordnung von 10 bis 80 Gew.-%, bezogen auf das Gesamtgewicht der Beschichtung, vorliegen.
7. Partikelfilter nach Anspruch 6, dadurch gekennzeichnet, daß die Beschichtung Oxide des Cers, Zirkons, Mangans, Bariums und Magnesiums enthält.
8. Partikelfilter nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei dem Filterkörper um einen Wandflußfilter mit einer Eintritts- und einer Austrittsseite aus Siliciumcarbid, Cordierit oder Natriumzirkonphosphat handelt.
9. Partikelfilter nach Anspruch 8, dadurch gekennzeichnet, daß die Beschichtung beidseitig auf das Filter aufgebracht ist.
10. Partikelfilter nach Anspruch 8, dadurch gekennzeichnet, daß die Beschichtung nur auf der Eintrittsseite des Filters aufgebracht ist.
11. Verfahren zur beschleunigten Verbrennung von im mageren Abgas von Verbrennungsmotoren auf einem Partikelfilter gesammelten Rußpartikeln, wobei die Rußpartikel eine Rußzündtemperatur aufweisen und das Partikelfilter von Zeit zu Zeit durch Anheben der Temperatur des Partikelfilters über die Rußzündtemperatur und Verbrennen der Rußpartikel aktiv regeneriert wird, dadurch gekennzeichnet, daß das Partikelfilter eine katalytische Beschichtung gemäß einem der Ansprüche 1 bis 10 enthält.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Anhebung der Temperatur des Filters über die Rußzündtemperatur durch eine motorseitig eingeleitete Nacheinspritzung von Dieselkraftstoff erfolgt.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß vor dem Partikelfilter ein Dieseloxidationskatalysator angeordnet ist, auf dem der nacheingespritzte Dieselkraftstoff verbrannt und dadurch die Temperatur des Filters über die Rußzündtemperatur angehoben wird.
DE10214343A 2002-03-28 2002-03-28 Partikelfilter mit einer katalytisch aktiven Beschichtung zur Beschleunigung der Verbrennung der auf dem Filter gesammelten Rußpartikel während einer Regenerationsphase Withdrawn DE10214343A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE10214343A DE10214343A1 (de) 2002-03-28 2002-03-28 Partikelfilter mit einer katalytisch aktiven Beschichtung zur Beschleunigung der Verbrennung der auf dem Filter gesammelten Rußpartikel während einer Regenerationsphase
US10/397,984 US7351382B2 (en) 2002-03-28 2003-03-26 Particle filter having a catalytically active coating to accelerate burning off accumulated soot particles during a regeneration phase
BR0303010-5A BR0303010A (pt) 2002-03-28 2003-03-28 Filtro de partìculas com um revestimento cataliticamente ativo para acelerar a queima de partìculas de fuligem acumuladas durante uma fase de regeneração
EP03006877A EP1355048A1 (de) 2002-03-28 2003-03-28 Partikelfilter mit einer katalytisch aktiven Beschichtung zur Beschleunigung der Russverbrennung während einer Regeneration
KR10-2003-0019632A KR20030078780A (ko) 2002-03-28 2003-03-28 재생단계에서 축적된 검댕입자의 연소를 촉진시키는촉매작용성 도료를 포함하는 입자필터
JP2003091684A JP2004036609A (ja) 2002-03-28 2003-03-28 再生段階中に堆積スス粒子の焼却を加速する触媒活性コーティングを有する粒子フィルター
CA002423772A CA2423772A1 (en) 2002-03-28 2003-03-28 Particle filter having a catalytically active coating to accelerate burning of accumulated soot particles during a regeneration phase
US11/498,014 US20060270548A1 (en) 2002-03-28 2006-08-02 Particle filter having a catalytically active coating to accelerate burning off accumulated soot particles during a regeneration phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10214343A DE10214343A1 (de) 2002-03-28 2002-03-28 Partikelfilter mit einer katalytisch aktiven Beschichtung zur Beschleunigung der Verbrennung der auf dem Filter gesammelten Rußpartikel während einer Regenerationsphase

Publications (1)

Publication Number Publication Date
DE10214343A1 true DE10214343A1 (de) 2003-10-09

Family

ID=27816074

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10214343A Withdrawn DE10214343A1 (de) 2002-03-28 2002-03-28 Partikelfilter mit einer katalytisch aktiven Beschichtung zur Beschleunigung der Verbrennung der auf dem Filter gesammelten Rußpartikel während einer Regenerationsphase

Country Status (7)

Country Link
US (2) US7351382B2 (de)
EP (1) EP1355048A1 (de)
JP (1) JP2004036609A (de)
KR (1) KR20030078780A (de)
BR (1) BR0303010A (de)
CA (1) CA2423772A1 (de)
DE (1) DE10214343A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009017347A1 (de) 2009-04-14 2010-10-28 Audi Ag Katalytische Reduktion von Stickstoffdioxid
US8052937B2 (en) 2006-03-20 2011-11-08 Ford Global Technologies, Llc Soot oxidation catalyst and method of making

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265497B2 (ja) * 2004-07-05 2009-05-20 トヨタ自動車株式会社 排気浄化装置の制御方法
US7722829B2 (en) * 2004-09-14 2010-05-25 Basf Catalysts Llc Pressure-balanced, catalyzed soot filter
US7605109B1 (en) * 2004-10-28 2009-10-20 Nanostellar, Inc. Platinum-bismuth catalysts for treating engine exhaust
US7611680B2 (en) * 2004-10-28 2009-11-03 Nanostellar, Inc. Platinum-bismuth catalysts for treating engine exhaust
US7225613B2 (en) * 2005-01-26 2007-06-05 Ford Global Technologies, Llc Diesel engine after treatment device for conversion of nitrogen oxide and particulate matter
EP1920831B1 (de) * 2006-11-08 2020-06-03 Nissan Motor Co., Ltd. Mischoxid-basierter Katalysator zur Oxidierung von Feinstaub
DE102007016946A1 (de) 2007-04-05 2008-10-09 Nano-X Gmbh Beschichtungsmaterial mit einer katalytischen Aktivität und Verwendung des Beschichtungsmaterials
DE102007034633A1 (de) * 2007-04-05 2009-01-29 Nano-X Gmbh Beschichtungsmaterial mit einer katalytischen Aktivität und Verwendung des Beschichtungsmaterials
WO2009011133A1 (ja) * 2007-07-19 2009-01-22 Toda Kogyo Corporation 炭化水素を分解する触媒
JP5318396B2 (ja) * 2007-11-02 2013-10-16 Dowaエレクトロニクス株式会社 排気ガス浄化材および排気ガス浄化用フィルター
BRPI0908461B1 (pt) * 2008-02-05 2020-06-16 Basf Corporation Sistema de tratamento de emissão adequado para o tratamento de um sistema de descarga a jusante de um motor a gasolina de injeção direta
GB0803670D0 (en) * 2008-02-28 2008-04-09 Johnson Matthey Plc Improvements in emission control
FR2932216B1 (fr) * 2008-06-04 2010-07-30 Renault Sas Procede de regeneration d'un filtre a particules pour vehicule automobile
US20110172448A1 (en) * 2008-06-27 2011-07-14 Martin Votsmeier Process for carrying out heterogeneously catalyzed reactions with high selectivity and yield
US7951346B2 (en) * 2008-10-31 2011-05-31 Emerachem, Llc Methods and systems for reducing particulate matter in a gaseous stream
FR2939695B1 (fr) * 2008-12-17 2011-12-30 Saint Gobain Ct Recherches Structure de purification incorporant un systeme de catalyse supporte par une zircone a l'etat reduit.
US8281571B2 (en) * 2009-03-06 2012-10-09 Detroit Diesel Corporation Method for three zone diesel oxidation catalyst light off control system
DE102009033635B4 (de) * 2009-07-17 2020-11-05 Umicore Ag & Co. Kg Katalytisch aktives Partikelfilter mit Schwefelwasserstoff-Sperrfunktion, seine Verwendung und Verfahren zur Entfernung von Stickoxiden und Partikeln
EP2335809A1 (de) * 2009-12-21 2011-06-22 Bernhard Kahlert Verfahren zum Reinigen eines Dieselabgases
US8815189B2 (en) 2010-04-19 2014-08-26 Basf Corporation Gasoline engine emissions treatment systems having particulate filters
DE102010021553A1 (de) 2010-05-21 2011-11-24 Siemens Aktiengesellschaft Bauteil mit einer katalytischen Oberfläche, Verfahren zu dessen Herstellung und Verwendung dieses Bauteils
DE102010021554A1 (de) 2010-05-21 2011-11-24 Siemens Aktiengesellschaft Bauteil mit einer katalytischen Oberfläche, Verfahren zu dessen Herstellung und Verwendung dieses Bauteils
GB2481057A (en) * 2010-06-11 2011-12-14 Johnson Matthey Plc Exhaust system comprising a catalyst with a downstream filter and SCR catalyst
GB201021887D0 (en) * 2010-12-21 2011-02-02 Johnson Matthey Plc Oxidation catalyst for a lean burn internal combustion engine
DE102011118232A1 (de) 2011-11-10 2013-05-16 Nano-X Gmbh Vorrichtung zum Reinigen von Gasen und Verfahren zu deren Herstellung
JP5725214B2 (ja) * 2012-02-14 2015-05-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8801818B2 (en) * 2012-05-14 2014-08-12 Daimler Ag Method and cleaning device for cleaning and checking a particle filter
KR101438953B1 (ko) * 2012-12-18 2014-09-11 현대자동차주식회사 저온에서의 NOx 흡장성능이 개선된 LNT촉매
EP2943276B1 (de) * 2013-01-08 2021-07-21 Umicore AG & Co. KG Katalysator zur reduktion von stickoxiden
GB201401115D0 (en) 2014-01-23 2014-03-12 Johnson Matthey Plc Diesel oxidation catalyst and exhaust system
EP3067319A1 (de) * 2015-03-09 2016-09-14 SASOL Germany GmbH Nox-fallenkatalysatorträgermaterial mit verbesserter stabilität gegen bildung von baal2o4
GB2543849B (en) * 2015-11-02 2021-08-11 Johnson Matthey Plc Oxidation catalyst
WO2017187419A1 (en) * 2016-04-29 2017-11-02 Johnson Matthey Public Limited Company Exhaust system
CN113356986B (zh) * 2021-06-24 2022-08-12 中国重汽集团济南动力有限公司 一种dpf分段再生方法
CN113776998B (zh) * 2021-09-08 2022-06-24 安徽江淮汽车集团股份有限公司 一种增压器沉积物评价方法

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB134407A (en) 1918-12-10 1919-11-06 Wood Milne Ltd Improved Coupling for Attaching the Inflating Tube to the Valves of Pneumatic Tyres.
JPS5731938B2 (de) * 1973-10-11 1982-07-07
DE2745188C3 (de) * 1977-10-07 1980-05-08 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Geformter Katalysator, Verfahren zu seiner Herstellung und Verwendung
US4233139A (en) * 1978-07-25 1980-11-11 Exxon Research & Engineering Co. Acid catalyzed hydrocarbon conversion processes utilizing a catalyst comprising a Group IVB, VB or VIB metal oxide on an inorganic refractory oxide support
DE3141713A1 (de) 1981-10-21 1983-05-11 Degussa Ag, 6000 Frankfurt Katalysator zur herabsetzung der zuendtemperatur von dieselruss
DE3232729A1 (de) 1982-09-03 1984-03-08 Degussa Ag, 6000 Frankfurt Verfahren zur herabsetzung der zuendtemperatur von aus dem abgas von dieselmotoren herausgefiltertem dieselruss
US4476245A (en) * 1982-11-29 1984-10-09 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4472532A (en) * 1982-11-29 1984-09-18 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
DE3407172C2 (de) * 1984-02-28 1986-09-04 Degussa Ag, 6000 Frankfurt Einrichtung zur Reinigung der Abgase von Dieselmotoren
US5100632A (en) * 1984-04-23 1992-03-31 Engelhard Corporation Catalyzed diesel exhaust particulate filter
US4510265A (en) * 1984-05-04 1985-04-09 Engelhard Corporation Platinum/silver vanadate catalyzed diesel exhaust particulate filter
CA1260909A (en) * 1985-07-02 1989-09-26 Koichi Saito Exhaust gas cleaning catalyst and process for production thereof
US4849399A (en) * 1987-04-16 1989-07-18 Allied-Signal Inc. Catalyst for the reduction of the ignition temperature of diesel soot
US4868150A (en) * 1987-12-22 1989-09-19 Rhone-Poulenc Inc. Catalyst support material containing lanthanides
US4902487A (en) 1988-05-13 1990-02-20 Johnson Matthey, Inc. Treatment of diesel exhaust gases
US5030338A (en) * 1988-11-09 1991-07-09 Mobil Oil Corp. Conversion process using direct heating
DE3923985C1 (de) * 1989-07-20 1990-06-28 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
GB2256375B (en) * 1991-05-31 1995-06-07 Riken Kk Exhaust gas cleaner and method of cleaning exhaust gas
EP0731256B1 (de) * 1992-09-28 2000-03-22 Ford Motor Company Limited Filterelement zur Steuerung der Abgasemission von Brennkraftmaschinen
JP3375790B2 (ja) * 1995-06-23 2003-02-10 日本碍子株式会社 排ガス浄化システム及び排ガス浄化方法
DE69624890T2 (de) * 1995-09-25 2003-03-27 Sintokogio Ltd Filter zur Abscheidung von Russpartikeln aus Abgas und Vorrichtung zur Verwendung desselben
US5958827A (en) * 1995-12-07 1999-09-28 Toyota Jidosha Kabushiki Kaisha Solid solution particle of oxides, a process for producing the same and a catalyst for purifying exhaust gases
US5792436A (en) * 1996-05-13 1998-08-11 Engelhard Corporation Method for using a regenerable catalyzed trap
GB9621215D0 (en) 1996-10-11 1996-11-27 Johnson Matthey Plc Emission control
JP3965711B2 (ja) * 1996-10-25 2007-08-29 株式会社日立製作所 窒素酸化物の浄化触媒及び浄化方法
TW509719B (en) * 1997-04-17 2002-11-11 Clean Diesel Tech Inc Method for reducing emissions from a diesel engine
US6093378A (en) * 1997-05-07 2000-07-25 Engelhard Corporation Four-way diesel exhaust catalyst and method of use
DE19741498B4 (de) * 1997-09-20 2008-07-03 Evonik Degussa Gmbh Herstellung eines Keramik-Edelstahlgewebe-Verbundes
DE19813654A1 (de) 1998-03-27 1999-09-30 Degussa Verfahren zum Betreiben einer Abgasreinigungsanlage enthaltend eine Schwefelfalle und einen Stickoxid-Speicherkatalysator
FR2780096B1 (fr) * 1998-06-22 2000-09-08 Rhodia Chimie Sa Procede de traitement par combustion des particules carbonees dans un circuit d'echappement d'un moteur a combustion interne
JP5072136B2 (ja) * 1998-07-24 2012-11-14 千代田化工建設株式会社 多孔性スピネル型複合酸化物の製造方法
DE19838282A1 (de) 1998-08-24 2000-03-02 Degussa Stickoxid-Speichermaterial und daraus hergestellter Stickoxid-Speicherkatalysator
DE19847008A1 (de) * 1998-10-13 2000-04-20 Degussa Stickoxid-Speicherkatalysator
JP2002530175A (ja) * 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
JP3575307B2 (ja) * 1998-12-28 2004-10-13 トヨタ自動車株式会社 排ガス浄化用触媒及びその製造方法
US6375910B1 (en) * 1999-04-02 2002-04-23 Engelhard Corporation Multi-zoned catalytic trap and methods of making and using the same
ES2284503T3 (es) * 1999-07-02 2007-11-16 Basf Catalysts Llc Sistema catalizador para tratar gases de escape de motores diesel y procedimiento.
GB9919013D0 (en) 1999-08-13 1999-10-13 Johnson Matthey Plc Reactor
US20030049191A1 (en) * 1999-12-11 2003-03-13 Twigg Martyn Vincent Process for treating exhaust gas including sox
JP2001221038A (ja) * 1999-12-13 2001-08-17 Ford Global Technol Inc 消音形排気コンバーター
US20020082164A1 (en) * 2000-01-14 2002-06-27 Danan Dou Methods to reduce alkali material migration from NOx adsorber washcoat to cordierite
JP4590733B2 (ja) 2000-02-22 2010-12-01 マツダ株式会社 排気ガス浄化用触媒及び該触媒による排気ガス浄化方法
FI118326B (fi) 2000-04-10 2007-10-15 Ecocat Oy Adsorbenttikatalyytti
JP4548968B2 (ja) * 2000-06-05 2010-09-22 株式会社日本自動車部品総合研究所 セラミック担体およびセラミック触媒体
JP4889873B2 (ja) * 2000-09-08 2012-03-07 日産自動車株式会社 排気ガス浄化システム、これに用いる排気ガス浄化触媒及び排気浄化方法
US20040065078A1 (en) * 2000-09-29 2004-04-08 Adolf Schafer-Sindlinger Catalytic soot filter and use thereof in treatment of lean exhaust gases
US6677272B2 (en) * 2001-08-15 2004-01-13 Corning Incorporated Material for NOx trap support
US20030039597A1 (en) * 2001-08-24 2003-02-27 Engelhard Corporation Close coupled catalyst with a SOx trap and methods of making and using the same
US6613299B2 (en) * 2001-11-13 2003-09-02 Sud-Chemie Prototech, Inc. Catalyzed diesel particulate matter exhaust filter
US6912847B2 (en) * 2001-12-21 2005-07-05 Engelhard Corporation Diesel engine system comprising a soot filter and low temperature NOx trap

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8052937B2 (en) 2006-03-20 2011-11-08 Ford Global Technologies, Llc Soot oxidation catalyst and method of making
US8137636B2 (en) 2006-03-20 2012-03-20 Ford Global Technologies, Llc Soot oxidation catalyst and method of making
US8241579B2 (en) 2006-03-20 2012-08-14 Ford Global Technologies, Llc Diesel exhaust gas treatment system
DE102009017347A1 (de) 2009-04-14 2010-10-28 Audi Ag Katalytische Reduktion von Stickstoffdioxid

Also Published As

Publication number Publication date
JP2004036609A (ja) 2004-02-05
US7351382B2 (en) 2008-04-01
US20040067176A1 (en) 2004-04-08
EP1355048A1 (de) 2003-10-22
KR20030078780A (ko) 2003-10-08
US20060270548A1 (en) 2006-11-30
BR0303010A (pt) 2004-04-27
CA2423772A1 (en) 2003-09-28

Similar Documents

Publication Publication Date Title
DE10214343A1 (de) Partikelfilter mit einer katalytisch aktiven Beschichtung zur Beschleunigung der Verbrennung der auf dem Filter gesammelten Rußpartikel während einer Regenerationsphase
DE602004003354T2 (de) Einen teilchenfilter und nox-absorber enthaltendes abgassystem für brennkraftmaschine mit magergemischverbrennung
DE69902446T3 (de) Verbesserungen der schadstoffregelung
DE102010002425B4 (de) Filter
EP0105113B1 (de) Verfahren zur Herabsetzung der Zündtemperatur von aus dem Abgas von Dieselmotoren herausgefiltertem Dieselruss
DE60020070T2 (de) Katalytischer wabenköper-filter mit porösen trennwänden
DE10308288B4 (de) Verfahren zur Entfernung von Stickoxiden aus dem Abgas eines mager betriebenen Verbrennungsmotors und Abgasreinigungsanlage hierzu
DE3407172C2 (de) Einrichtung zur Reinigung der Abgase von Dieselmotoren
EP0077524B1 (de) Verfahren zur Herabsetzung der Zündtemperatur von Dieselruss
DE60307775T2 (de) Filter Katalysator zur Reinigung von Abgasen
DE102008048854B4 (de) Regelungsstrategie für ein Katalysatorkonzept zur Abgasnachbehandlung mit mehreren Stickoxid-Speicherkatalysatoren
DE19923781C2 (de) Verfahren und Vorrichtung zur Entfernung von Ruß aus dem Abgas eines Dieselmotors
DE102006058554B4 (de) Abgasreinigungsvorrichtung
DE60125530T2 (de) DIESELAUSPUFFSYSTEM MIT NOx-FALLE
DE102014105736A1 (de) Motor mit Fremdzündung und Abgassystem, das ein katalysiertes in Zonen beschichtetes Filtersubstrat umfasst
WO2009140989A1 (de) Vorrichtung zur reinigung von dieselabgasen
DE10048511A1 (de) Verfahren zur Verminderung von Kohlenmonoxid, Kohlenwasserstoffen und Partikel im mageren Abgas von Verbrennungsmotoren
DE102006038042A1 (de) Katalysator zur Oxidation von Ruß und Herstellungsverfahren
DE10023439A1 (de) Verfahren zur Entfernung von Stickoxiden und Rußpartikeln aus dem mageren Abgas eines Verbrennungsmotors und Abgasreinigungssystem hierfür
EP1227232A2 (de) Verfahren zur Wiederherstellung der katalytischen Aktivität eines Katalysators, welcher im Abgastrakt eines Dieselmotors angeordnet ist und wenigstens eine Oxidationsfunktion aufweist
EP2112339A1 (de) Verfahren und Vorrichtung zur Reinigung von Abgasen eines Verbrennungsmotors
DE112014000482T5 (de) Abgasreinigungskatalysator und Verfahren zum Herstellen desselben
DE60201305T2 (de) Abgasreinigungsanlage und Verfahren für einen Verbrennungsmotor
DE102010033689A1 (de) Abgasnachbehandlungssystem mit katalytisch aktivem Wall-Flow-Filter mit NOx-Speicherfunktion vor Katalysator mit gleicher Speicherfunktion
DE102010033688A1 (de) Abgasnachbehandlungssystem mit katalytisch aktivem Wall-Flow-Filter mit Speicherfunktion vor Katalysator mit gleicher Speicherfunktion

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: UMICORE AG & CO.KG, 63457 HANAU, DE

8110 Request for examination paragraph 44
8139 Disposal/non-payment of the annual fee