DE102017214052B4 - Gassensor, elektrisch leitender Oxidsinterkörper und Leiterplatte - Google Patents

Gassensor, elektrisch leitender Oxidsinterkörper und Leiterplatte Download PDF

Info

Publication number
DE102017214052B4
DE102017214052B4 DE102017214052.6A DE102017214052A DE102017214052B4 DE 102017214052 B4 DE102017214052 B4 DE 102017214052B4 DE 102017214052 A DE102017214052 A DE 102017214052A DE 102017214052 B4 DE102017214052 B4 DE 102017214052B4
Authority
DE
Germany
Prior art keywords
sintered body
conductive oxide
oxide sintered
gas sensor
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102017214052.6A
Other languages
English (en)
Other versions
DE102017214052A1 (de
Inventor
Mina Sato
Yoshinobu Hirose
Akira SEIKE
Hisashi Kozuka
Yasuyuki Okimura
Kazushige Ohbayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Publication of DE102017214052A1 publication Critical patent/DE102017214052A1/de
Application granted granted Critical
Publication of DE102017214052B4 publication Critical patent/DE102017214052B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/70Nickelates containing rare earth, e.g. LaNiO3
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • G01N27/4076Reference electrodes or reference mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/41Oxygen pumping cells
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0326Inorganic, non-metallic conductor, e.g. indium-tin oxide [ITO]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • H05K3/1291Firing or sintering at relative high temperatures for patterns on inorganic boards, e.g. co-firing of circuits on green ceramic sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)

Abstract

Ein Gassensor (300) mit einer Elektrode die aus einem leitfähigen Oxidsinterkörper hergestellt ist, wobei der leitfähige Oxidsinterkörper eine Kristallphase mit einer Perovskit-artigen Oxidkristallstruktur enthält, die durch eine Zusammensetzungsformel repräsentiert ist gemäß: REaCubFecNidOx, wobei RE ein Seltene-Erde-Element repräsentiert, wobei die folgenden Bedingungen erfüllt sind: a + b + c + d = 1 und 1,25 ≤ x ≤ 1,75, und wobei a, b, c und d die folgenden Bedingungen erfüllen:0,375≤a≤0,524;0,050<b≤0,200;0,025≤c≤0,250;und0,150≤d≤0,350,wobei der leitfähige Oxidsinterkörper einen Anteil an Erdalkalielementen von 0,3 Gew.-% oder weniger enthält.

Description

  • HINTERGRUND DER ERFINDUNG
  • 1. Gebiet der Erfindung
  • Die vorliegende Erfindung betrifft einen Gassensor, einen elektrisch leitenden Oxidsinterkörper zur Verwendung in einem Gassensor, einen elektrisch leitenden Oxidsinterkörper und eine Leiterplatte.
  • 2. Beschreibung des Stands der Technik
  • Generell haben keramische Elektronikeinrichtungen ein Keramiksubstrat und Elektroden, die auf dem Substrat angeordnet sind, und derartige Elektroden sind aus einem metallischen Material hergestellt. Zu derartigen keramischen Elektronikeinrichtungen gehören beispielsweise keramische Mehrschichtkondensatoren, die mit einer Ni-Elektrode, einer Pd-Elektrode oder einer Pt-Elektrode versehen sind; keramische ko-getemperte Tieftemperatur- (LTCC) Teile, die mit einer Ag-Elektrode, einer Cu-Elektrode oder einer Ag-Pd-Elektrode versehen sind; Piezo-Aktuatoren mit einer Pd-Elektrode; Halbleitergehäuse mit einer W-Elektrode; und Zündkerzen mit einer Ir-Elektrode oder einer Pt-Elektrode.
  • Von den zuvor genannten Metallelementen müssen Ni, Cu und W in Verbindung mit einem Keramiksubstrat in einer kontrollierten Atmosphäre ausgeheizt werden. Somit ergeben sich Schwierigkeiten, wenn gewisse inhärente Eigenschaften des Zielkeramiksubstrat erreicht werden sollen, und die Herstellungskosten steigen an, was problematisch ist. Im Falle von Ag, das einen niedrigen Schmelzpunkt (962° C) hat, unterliegt das Material für das Keramiksubstrat einer Beschränkung. Wenn ferner das Substrat bei tiefer Temperatur getempert wird, können die Eigenschaften des Keramiksubstrats beeinträchtigt werden. Edelmetalle, etwa Pd, Ir und Pt, sind teuer, so dass die Verwendung derartiger Materialien auf großflächigen Elektroden schwierig ist.
  • Patentdokument 1 offenbart ein Oxidelektrodenmaterial, ein Lanthan-Kobalt-Oxid mit negativer Temperaturcharakteristik, so dass dessen Widerstand bei Umgebungstemperatur hoch ist und bei zunehmenden Temperaturen kleiner wird. Das Patentdokument 2 offenbart Lanthan-Kobalt-Oxid mit einer negativen Temperaturcharakteristik derart, dass dessen Widerstand bei Raumtemperatur hoch ist und der Absolutwert seiner B-Konstante bei hoher Temperatur groß ist. Jedoch zeigen die in den Patentdokumenten 1 und 2 leitenden Oxide einen hohen Widerstand, das heißt, eine geringe Leitfähigkeit bei Raumtemperatur.
  • Wie zuvor beschrieben ist, haben konventionelle Oxide eine Leitfähigkeit, die deutlich geringer ist als diejenige metallischer Materialien, und einen großen Absolutwert der B-Konstante (Temperaturkoeffizient). Daher ergeben sich Schwierigkeiten beim Ersetzen einer Metallelektrode durch eine keramische Elektrode. Indessen sind Ruthenium-Oxide (beispielsweise RuO2 und SrRuO3) dafür bekannt, dass sie eine hohe Leitfähigkeit haben, sie sind aber problematischerweise teuer. Unter derartigen Umständen offenbart die Anmelderin der vorliegenden Anmeldung in Patentdokument 3 einen Oxidsinterkörper, der eine hohe Leitfähigkeit und einen kleinen Absolutwert der B-Konstante (Temperaturkoeffizient) hat, und der für ein leitendes Material geeignet ist. Ferner offenbart die Nicht-Patentschrift 1 diverse Arten von Perovskit-Oxiden. Patentdokumente 4 und 5 offenbaren Lanthan-Nickel-Kupfer-Eisen-Perovskit-Oxide ((La,Ni)(Cu,Fe)O3). Die in den Patentdokumenten 4 und 5 offenbarten Oxide werden beispielsweise als ein Elektrodenoxidmaterial für Brennstoffzellen mit Feststoffoxiden verwendet.
  • Weiterer relevanter Stand der Technik ist in folgenden Dokumenten diskutiert: US 2011/0 236 789 A1 und US 2009/0 013 761 A1 .[Patentdokumente]
    • Patentdokument 1: JP H11-116 334 A (1999)
    • Patentdokument 2: JP 2002-087 882 A
    • Patentdokument 3: WO 2013/150 779 A1
    • Patentdokument 4: JP 2012-169 240 A
    • Patentdokument 5: JP 2012-198 990 A
  • [Nicht-Patentdokumente]
    • Nicht-Patentdokument 1: TAI, L.-W. [u.a.]: Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 2. The system La1-xSrxCo0.2Fe0.8O3. In: Solid State lonics. 1995, Vol.76, No. 3-4, S. 273-283. ISSN 0167-2738 (P); 1872-7689
  • 3. Probleme, die durch die Erfindung zu lösen sind
  • Jedoch zeigen in einigen Fällen konventionelle leitende Oxide keine hohe Leitfähigkeit bei tiefen Temperaturen (beispielsweise < 600° C), obwohl sie bei hohen Temperaturen (beispielsweise ≥ 600° C) eine hohe Leitfähigkeit zeigen. Daher gibt es einen Bedarf für einen leitfähigen Oxidsinterkörper, der auch bei tiefen Temperaturen eine hohe Leitfähigkeit aufweist. Wenn indessen ein derartiger leitfähiger Oxidsinterkörper als eine Gassensorelektrode, die aus einem gesinterten Oxidsubstrat hergestellt ist, verwendet wird, ist der Gassensor auch bei Raumtemperatur funktionsfähig. Daher zeigt der leitfähige Oxidsinterkörper vorzugsweise bei Raumtemperatur eine hohe Leitfähigkeit (im Weiteren als Leitfähigkeit bei Raumtemperatur bezeichnet). Unter derartigen Umständen gibt es auch einen Bedarf an einem leitfähigen Oxidsinterkörper, der bei Raumtemperatur eine hohe Leitfähigkeit aufweist.
  • ÜBERBLICK ÜBER DIE ERFINDUNG
  • Die vorliegende Erfindung wurde erdacht, um die zuvor beschriebenen Probleme zu lösen. Es ist daher eine Aufgabe der vorliegenden Erfindung, einen Gassensor mit einem leitfähigen Oxidsinterkörper, einen leitfähigen Oxidsinterkörper, eine Leiterplatte mit einer Leiterschicht, die aus dem leitfähigen Oxidsinterkörper hergestellt ist, und einen Gassensor bereitzustellen mit einer Elektrode, die aus dem leitfähigen Oxidsinterkörper gebildet ist, wobei der leitfähige Oxidsinterkörper bei Raumtemperatur eine hohe Leitfähigkeit hat.
  • Zur Lösung des oben beschriebenen Problems wird ein Gassensor mit den Merkmalen von Anspruch 1 angegeben. Darüber hinaus wird ein leitfähiger Oxidsinterkörper mit den Merkmalen von Anspruch 7 angegeben. Zudem wird eine Leiterplatte, mit den Merkmalen von Anspruch 8 angeben.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen definiert.
  • Die vorliegende Erfindung kann als diverse Ausführungsformen umgesetzt werden. Derartige Ausführungsformen umfassen beispielsweise ein Herstellungsverfahren für einen leitfähigen Oxidsinterkörper; diverse Einrichtungen und Materialien, in denen jeweils der leitfähige Oxidsinterkörper verwendet ist in Form von Elektroden, thermoelektrischen Materialien, Materialien für Heizelemente und Temperaturerfassungselementen; und Herstellungsverfahren dafür.
  • Figurenliste
    • 1 ist ein Flussdiagramm, das ein Verfahren zur Herstellung einer Ausführungsform des leitfähigen Oxidsinterkörpers der vorliegenden Erfindung darstellt.
    • 2 zeigt eine Ansicht eines Gassensorelements von vorne, in welchem die Ausführungsform des leitfähigen Oxidsinterkörpers als ein Elektrodenmaterial verwendet ist.
    • 3 ist eine Schnittansicht des in 2 gezeigten Gassensorelements.
    • 4 ist ein Flussdiagramm, das ein Verfahren zur Herstellung eines Gassensorelements zeigt.
    • 5 ist eine Schnittansicht eines Gassensors einer Ausführungsform der vorliegenden Erfindung.
    • 6 ist ein Graph, der die Beziehung zwischen dem Cu-Anteil und der Leitfähigkeit bei Raumtemperatur zeigt.
    • 7 ist ein Graph, der die Beziehung zwischen dem Ni-Anteil und der Leitfähigkeit bei Raumtemperatur zeigt.
    • 8 ist ein Graph, der die Beziehung zwischen dem La-Anteil und der Leitfähigkeit bei Raumtemperatur zeigt.
    • 9 ist ein Graph, der die Beziehung zwischen dem Verhältnis (b / (b + c)) und dem Wärmeausdehnungskoeffizienten zeigt.
  • Bezugszeichenliste
  • Zu den Bezugszeichen, die zur Kennzeichnung der diversen Merkmale in den Zeichnungen verwendet sind, gehören die folgenden:
  • 20
    metallische Hülse
    20a
    gebogener Bereich
    20b
    Stufenbereich
    20c
    Flanschbereich
    20d
    männlicher Schraubbereich bzw. Stiftschraubbereich
    29
    Dichtung
    31
    pulverbeladener geladener Teil
    32
    isolierendes Element
    33
    Metallring
    34
    Separator
    35
    Durchgangsloch bzw. Durchgangsbohrung
    36
    Durchführung bzw. Tülle
    37
    Filter
    38
    schützendes Außenrohr
    39
    zweite Lüftungsbohrung
    40
    Außenrohr
    41
    erste Lüftungsbohrung
    60
    Anschlussdraht bzw. Anschlussleitung
    62
    Protektor
    70
    Verbindungsanschluss
    100
    Gassensorelement
    110
    Substrat bzw. Träger
    120
    Außenelektrode
    130
    Referenzelektrode
    140
    Flanschbereich
    300
    Gassensor
  • DETAILLIERTE BESCHREIBUNG DER BEVORZUGTEN AUSFÜHRUNGSFORMEN
  • Mit Verweis auf die Zeichnungen wird nun die vorliegende Erfindung detaillierter beschrieben. Jedoch sollte die vorliegende Erfindung nicht als darauf eingeschränkt ausgelegt werden.
  • A. Leitfähiger Oxidsinterkörper
  • Eine Ausführungsform des leitfähigen Oxidsinterkörpers der vorliegenden Erfindung umfasst eine Kristallphase mit einer Perovskit-artigen Oxidkristallstruktur, die durch die folgende Zusammensetzungsformel (1) dargestellt ist. REaCubFecNidOx (1)
  • In der Formel (1) repräsentiert RE ein Seltene-Erde-Element und es sind die folgenden Bedingungen erfüllt: a + b + c + d = 1 und 1,25 ≤ x ≤ 1,75.
  • Des Weiteren genügen die Koeffizienten a, b, c und d den folgenden Bedingungen: 0,375 a 0,524
    Figure DE102017214052B4_0005
    0,050 < b 0,200
    Figure DE102017214052B4_0006
    0,025 c 0,250 ;
    Figure DE102017214052B4_0007
    und 0,150 d 0,350
    Figure DE102017214052B4_0008
  • Wenn die vorhergehenden Beziehungen (2a) bis (2d) erfüllt sind, kann eine Leitfähigkeit bei Raumtemperatur von 200 S/cm oder größer erreicht werden. In diesem Falle kann ein leitfähiger Oxidsinterkörper zur Verwendung in einem Gassensor bereitgestellt werden, wobei der Sinterkörper für eine Elektrode des Gassensors geeignet ist. Im hierin verwendeten Sinne bezeichnet das Konzept „Leitfähigkeit bei Raumtemperatur“ eine elektrische Leitfähigkeit, die bei 25° C gemessen ist.
  • Wenn der leitfähige Oxidsinterkörper die vorhergehenden Beziehungen für die Zusammensetzung (2a) bis (2d) erfüllt, dann kann die Tempertemperatur zu seiner Herstellung auf 1100° C eingestellt werden. Wenn daher ein leitfähiger Oxidsinterkörper durch die sekundäre Wärmebehandlung einer Paste des entsprechenden leitfähigen Oxidsinterkörpers hergestellt wird, die auf ein allgemein verwendetes Oxidsubstrat aufgebracht wird (beispielsweise Aluminiumoxid oder Zirkonoxid), kann eine Reaktion der Grenzfläche zwischen dem Substrat und dem leitfähigen Oxidsinterkörper unterdrückt bzw. reduziert werden.
  • Wenn der leitfähige Oxidsinterkörper mit dem vorhergehenden Aufbau vollständig aus einer Perovskit-Phase hergestellt ist, beträgt theoretisch der Koeffizient „x“ in Bezug auf O (Sauerstoff) 1,50. Jedoch kann der Sauerstoffanteil von der stöchiometrischen Zusammensetzung infolge des Metallelementanteils des Perovskit-artigen Oxids oder aufgrund der Temperatur und der Art der Umgebung abweichen. Daher ist der Bereich von x in der Formel (1) als ein typischer Bereich festgelegt: 1,25 ≤ x ≤ 1,75.
  • Solange der leitfähige Oxidsinterkörper gemäß der Ausführungsform der vorliegenden Erfindung eine Perovskit-Phase mit dem zuvor genannten Aufbau enthält, kann auch ein weiteres Oxid vorhanden sein. Wenn ein Röntgen-Beugungs-Peak, der von RE·MO3-Oxid (wobei M Cu, Fe-oder Ni repräsentiert) hervorgerufen wird, durch XRD (Röntgenbeugung) in dem leitfähigen Oxidsinterkörper erfasst wird, wird ermittelt, dass der leitfähige Oxidsinterkörper eine Perovskit-Phase enthält. Jedoch enthält der leitfähige Oxidsinterkörper vorzugsweise eine Perovskit-Phase, die die vorhergehende Zusammensetzung mit einem Anteil 50 Massen-% oder mehr enthält.
  • Zu beachten ist, dass der leitfähige Oxidsinterkörper gemäß der Ausführungsform der vorliegenden Erfindung einen sehr kleinen Anteil an Erdalkalimetallelementen enthalten kann, sofern die Leitfähigkeit nicht beeinträchtigt ist. Jedoch enthält vorzugsweise der leitfähige Oxidsinterkörper im Wesentlichen keine Erdalkalimetallelemente. Unter den vorhergehenden Voraussetzungen wird die Aufnahme und das Freisetzen von Sauerstoff behindert, selbst wenn der leitfähige Oxidsinterkörper einer Atmosphäre bei Raumtemperatur (25° C) bis ungefähr 900° C ausgesetzt wird, wodurch eine Schwankung des Gewichts des gesinterten Körpers minimiert wird. Folglich kann ein Oxidsinterkörper, der als leitendes Material zur Verwendung in Hochtemperaturumgebungen geeignet ist, hergestellt werden. Im hierin verwendeten Sinne bezeichnet das Konzept „im Wesentlichen kein Erdalkalimetallelement enthalten“ einen Anteil an Erdalkalimetallelementen von 0,3 % (auf Basis des Gewichts) oder weniger, was durch eine Elementanalyse mittels ICP-(induktiv gekoppelter Plasma-) Emissionsspektrometrie ermittelt wird. Die ICP-Emissionsspektrometrie wird gemäß JIS K0116 (2014) ausgeführt. Analyseproben werden mit der Technik der Auflösung durch Salzsäure im Voraus behandelt. Wenn ein leitfähiger Oxidsinterkörper mit einem Erdalkalimetallelement, etwa Sr, als eine Elektrode eines Gassensors verwendet wird (beispielsweise als ein Sauerstoffsensor), dann diffundiert das Erdalkalimetallelement in das Gassensorsubstrat (beispielsweise Yttrium-stabilisiertes Zirkonoxid) während einer Langzeitverwendung unter tatsächlichen Hochtemperaturarbeitsbedingungen. In einem derartigen Falle kann eine Beeinträchtigung des Leistungsvermögens der Elektrode aufgrund der Diffusion des Erdalkalimetallelements oder eine Beeinträchtigung des Leistungsvermögens des Gassensors (beispielsweise Verringerung der Impedanz) auftreten. Daher enthält der leitfähige Oxid-Sinterkörper im Wesentlichen kein Erdalkalimetallelement.
  • Das Seltene-Erde-Element RE kann aus den Seltenen-Erde-Elementen mindestens ein Element enthalten, das ausgewählt ist aus: La (Lanthan), Ce (Cer), Pr (Praseodym), Nd (Neodym), Pm (Prometium), Sm (Samarium) und dergleichen. Das Seltene-Erde-Element RE umfasst vorzugsweise mindestens ein Element, das ausgewählt ist aus: La, Pr und Nd.
  • Insbesondere, wenn das Seltene-Erde-Element aus La besteht, kann ein leitfähiger Oxidsinterkörper mit hoher Leitfähigkeit bei Raumtemperatur hergestellt werden, was ein bevorzugter Fall ist. Wenn das Seltene-Erde-Element RE aus La besteht, ist der Absolutwert der B-Konstante (Temperaturkoeffizient) vorzugsweise niedriger. Somit kann ein leitfähiger Oxidsinterkörper bereitgestellt werden, der besser als Elektrode eines Gassensors geeignet ist.
  • Zu beachten ist, dass die zuvor genannten Koeffizienten a, b, c und d noch bevorzugter die folgenden Bedingungen erfüllen: 0,412 a 0,524
    Figure DE102017214052B4_0009
    0,060 < b 0,200
    Figure DE102017214052B4_0010
    0,025 c 0,200
    Figure DE102017214052B4_0011
    und 0,200 d 0,350
    Figure DE102017214052B4_0012
  • Wenn die Koeffizienten a, b, c und d die vorhergehenden Bedingungen erfüllen, kann eine Leitfähigkeit bei Raumtemperatur von 500 S/cm oder höher erreicht werden. Daher kann ein leitfähiger Oxidsinterkörper bereitgestellt werden, der noch besser als Elektrode eines Gassensors geeignet ist.
  • Ferner ist der Koeffizient „b“, der in Verbindung mit dem Cu steht, vorzugsweise kleiner als „c“, der mit Fe in Verbindung steht. Wenn der Koeffizient „b“ kleiner als der Koeffizient „c“ ist, dann ist der Anteil an Cu in dem leitfähigen Oxidsinterkörper (ausgedrückt in Atom-%) kleiner als der Anteil an Fe. Daher kann der Wärmeausdehnungskoeffizient verringert werden im Vergleich zu dem Fall, in welchem der Anteil an Cu gleich oder höher als derjenige des Fe ist. Insbesondere kann der Wärmeausdehnungskoeffizient auf die Stufe des Wärmeausdehnungskoeffizienten eines Oxidsubstrats verändert werden (beispielsweise Aluminiumoxid oder Zirkonoxid (noch genauer gesagt, Yttrium-stabilisiertes Zirkonoxid)), das im Allgemeinen als ein Gassensorsubstrat verwendet wird. Wenn daher ein leitfähiger Oxidsinterkörper durch sekundäre Wärmebehandlung einer Paste des entsprechenden leitfähigen Oxidsinterkörpers, die auf ein derartiges Substrat aufgebracht ist, gebildet wird, kann die Erzeugung von Rissen und dergleichen verhindert werden, die ansonsten durch den Unterschied der Wärmeausdehnungskoeffizienten zwischen dem Substrat und dem leitfähigen Oxidsinterkörper hervorgerufen würden. Im Allgemeinen wird ein Gassensor tatsächlich unter Bedingungen mit häufigen Zyklen mit raschem Aufheizen/Abkühlen betrieben. Um daher die Rissbildung und das Ablösen des leitfähigen Oxidsinterkörpers von dem Substrat zu verhindern, ist vorzugsweise der Unterschied im Wärmeausdehnungskoeffizient zwischen dem Substrat und dem leitfähigen Oxidsinterkörper klein.
  • Die Formel (1) von zuvor kann den folgenden Bedingungen genügen: a + b + c + d = 1, 1,25 ≤ x ≤ 1,75 und a < (b + c + d), und die Koeffizienten a, b, c und d genügen den folgenden Bedingungen: 0,412 a 0,500
    Figure DE102017214052B4_0013
    0,060 < b 0,200
    Figure DE102017214052B4_0014
    0,025 c 0,200
    Figure DE102017214052B4_0015
    und 0,150 d 0,350
    Figure DE102017214052B4_0016
  • Wenn die Koeffizienten a, b, c und d den vorhergehenden Bedingungen genügen, kann eine Leitfähigkeit bei Raumtemperatur von 500 S/cm oder größer erreicht werden. Wenn daher ein leitfähiger Oxidsinterkörper durch sekundäre Wärmebehandlung einer Paste des entsprechenden leitfähigen Oxidsinterkörpers, die auf ein Oxidsubstrat aufgebracht wird (beispielsweise Aluminiumoxid oder Zirkonoxid), das im Allgemeinen als ein Substrat eines Gassensors verwendet wird, gebildet wird, dann kann eine hohe Leitfähigkeit bei Raumtemperatur erreicht werden, selbst wenn ein Seltene-Erde-Element RE im Vergleich zu seinem stöchiometrischen Anteil (a < (b + c + d)) aufgrund der Diffusion des Seltene-Erde-Elements RE in dem leitfähigen Oxidsinterkörper im Anteil reduziert ist. Wenn daher die Koeffizienten a, b, c und d die vorhergehenden Bedingungen erfüllen, dann kann ein leitfähiger Oxidsinterkörper bereitgestellt werden, der als eine Elektrode eines Gassensors noch besser geeignet ist. Ferner kann die hohe Leitfähigkeit bei Raumtemperatur erreicht werden, selbst wenn der Anteil des Seltene-Erde-Elements RE reduziert ist, wodurch die Herstellungskosten für einen leitfähigen Oxidsinterkörper reduziert werden können.
  • Der leitfähige Oxidsinterkörper gemäß der Ausführungsform der vorliegenden Erfindung kann als metallisches Elektrodenmaterialsubstitut nicht nur in einer Gassensorelektrode eingesetzt werden, sondern als elektrische Verdrahtung, leitende Elemente, thermoelektrisches Material, Material für Heizelemente und Temperaturerfassungselemente. In einem speziellen Beispiel kann ein leitendes Element oder eine Leiterplatte hergestellt werden, indem auf der Oberfläche eines Keramiksubstrats eine Leiterschicht gebildet wird, die aus dem leitfähigen Oxidsinterkörper hergestellt ist.
  • Indessen wird in einigen Fällen ein leitfähiger Oxidsinterkörper mit einer Perovskit-artigen Oxidkristallstruktur als ein Elektrodenmaterial einer Brennstoffzelle mit festem Oxid verwendet. Jedoch ist der leitfähige Oxidsinterkörper, der in einer Brennstoffzelle mit festem Oxid verwendet wird, nicht immer für ein Elektrodenmaterial eines Gassensors geeignet, wenn er für ein Elektrodenmaterial einer Brennstoffzelle mit festem Oxid verwendet wird. Da eine Brennstoffzelle mit festem Oxid bei 600° C oder höher (beispielsweise 700 bis 1000° C) betrieben wird, wird der leitende Oxidsinterkörper, der in der Brennstoffzelle mit festem Oxid verwendet wird, generell aus einem Material hergestellt, das eine hohe Leitfähigkeit bei einer relevanten Temperatur hat. Es gibt jedoch einige Fälle, in denen der ausgewählte leitfähige Oxidsinterkörper eine geringe Leitfähigkeit bei 600° C oder tiefer zeigt, oder in der er eine beträchtliche Schwankung der Leitfähigkeit bei Änderung der Temperatur zeigt. Generell wird ein Gassensor bei einer relativ niedrigen Temperatur (Raumtemperatur bis zu einer Temperatur unter 600° C) oder 200° C oder höher betrieben. Wenn daher ein leitfähiger Oxidsinterkörper zur Verwendung in einer Brennstoffzelle mit festem Oxid für eine Elektrode eines Gassensors verwendet wird, wird eine genaue Ermittlung der Gaskonzentration gegebenenfalls nicht erreicht. In ähnlicher Weise kann ein derartiger leitfähiger Oxidsinterkörper, wie er in einer Brennstoffzelle mit festem Oxid verwendet wird, gegebenenfalls für ein aus Keramik hergestelltes Element, das bei Raumtemperatur oder höher oder bei einer Temperatur unter Null oder höher betrieben wird, oder zur Verwendung in einer Leiterplatte nicht geeignet sein.
  • B. Verfahren zur Herstellung eines leitfähigen Oxidsinterkörpers
  • 1 ist ein Flussdiagramm, das ein Verfahren zur Herstellung einer Ausführungsform des leitfähigen Oxidsinterkörpers der vorliegenden Erfindung zeigt. Bei der Herstellung des leitfähigen Oxidsinterkörpers werden Pulver der Rohmaterialien gewogen und gemischt (Schritt T110). Gemäß dieser Ausführungsform werden im Schritt T110 Rohmaterialien in Pulverform gewogen, unter nassen Umgebungsbedingungen gemischt und dann getrocknet, um damit eine Rohmaterialpulvermischung herzustellen. Zu Beispielen von Rohmaterialien in Pulverform gehören RE (OH)3, CuO, Fe2O3 und NiO. Alle diese Pulvermaterialien haben vorzugsweise eine Reinheit von 99 % oder höher. Als eine Quelle für RE kann RE2O3 anstelle von RE(OH)3 verwendet werden. Jedoch ist die Verwendung von RE(OH)3 oder die Vermeidung der Verwendung von RE2O3 bevorzugt. Der Grund dafür besteht darin, dass es schwierig sein kann, RE2O3 (beispielsweise La2O3) in genauer Weise zu mischen aufgrund der Wasserabsorptionsfähigkeit, wodurch möglicherweise ein Abfall der Leitfähigkeit und der Reproduzierbarkeit hervorgerufen wird.
  • Anschließend wird das Rohmaterialmischpulver kalziniert, um dadurch ein kalziniertes Pulver zu bilden (Schritt T120). Das Kalzinieren kann in Luft bei 700 bis 1200° C für 1 bis 5 Stunden ausgeführt werden.
  • Anschließend wird eine geeignete Menge an organischem Binder dem kalzinierten Pulver hinzugefügt, und die Mischung wird zu einem Granulat verarbeitet (Schritt T130). In einer Art der Granulatbildung, die in Schritt T130 ausgeführt wird, wird eine geeignete Menge an organischem Binder dem kalzinierten Pulver hinzugefügt, und die Mischung wird in einen Harztopf mit einem Dispersionsmedium (beispielsweise Ethanol) eingefüllt. Die resultierende Mischung wird gemischt und mittels Zirkonoxidkugeln bei nassen Umgebungsbedingungen pulverisiert, um damit eine wässrige Masse zu erhalten. Die auf diese Weise erhaltene wässrige Masse wird bei 80° C für etwa 2 Stunden getrocknet und das getrocknete Produkt wird durch ein Maschengitter mit 250 µm zu Granulat verarbeitet, so dass ein granulatartiges Pulver erhalten wird.
  • Anschließend wird das auf diese Weise erhaltene, als Granulat vorliegende Pulver geformt (Schritt T140). Das Formen kann mittels einer Pressanlage (Formungsdruck: 98 MPa) ausgeführt werden.
  • Anschließend wird die erhaltene kompakte Substanz bei einer Ausheiztemperatur, die höher als die Kalzinierungstemperatur ist, ausgeheizt, so dass ein leitfähiger Sinteroxidkörper erhalten wird (Schritt T150). In einer Art der Temperaturbehandlung wird die kompakte Substanz in der Luft bei 1000 bis 1550° C 1 bis 5 Stunden lang ausgeheizt. Die Ausheiztemperatur liegt vorzugsweise etwa 1100° C. Bei Bedarf kann die Oberfläche des leitfähigen Oxidsinterkörpers nach dem Ausheizen poliert werden.
  • Zu beachten ist, dass kein wesentlicher Verlust an Metallelementen in dem Materialpulver während der Herstellungsschritte der Ausführungsform beobachtet wird. Folglich können die Anteile der Metallelemente in dem hergestellten leitfähigen Oxidsinterkörper im Wesentlichen gleich sein zu den Anteilen in dem Rohmaterialpulver, das in Mischschritt T110 erhalten wird.
  • Ob der leitfähige Oxidsinterkörper die zuvor genannte Zusammensetzung hat oder nicht, kann durch ICP-Analyse des relevanten leitfähigen Oxidsinterkörpers ermittelt werden. Bei der Analyse wird eine Probe in einer wässrigen Salpetersäure mit 50 Vol.-% aufgelöst. Wenn der Anteil des analytischen Zielelements der Probe 1000 ppm oder höher ist, dann wird ICP-AES (ICP-Atomemissionsspektroskopie) angewendet, wohingegen, wenn der Anteil kleiner als 1000 ppm ist, dann wird ICP-MS (ICP-Massenspektroskopie) eingesetzt. Die ICP-AES kann mittels i-CAP6000 (Thermo Fisher Scientific), und ICP-MS kann mittels iCAPQ (Thermo Fisher Scientific) ausgeführt werden. Die ICP-MS-Analyse kann im Kollisionsmodus ausgeführt werden. Bei der Analyse wird eine Eichkurve gewonnen, wobei standardmäßige Lösungen verwendet werden, und jede Messung wird mit Bezug auf die Eichkurve eingestellt, um die Zusammensetzungsanteile in dem leitfähigen Oxidsinterkörper zu ermitteln.
  • C. Gassensorselement
  • 2 ist eine Vorderansicht eines Gassensorelements 100, in welchem die Ausführungsform des leitenden Oxidsinterkörpers als ein Elektrodenmaterial verwendet ist. 3 ist eine Schnittansicht des Gassensorelements 100, das in 2 gezeigt ist. In der Ausführungsform ist das Gassensorelement 100 ein Sauerstoffsensorelement. Das Gassensorelement 100 hat eine längliche Form, die sich entlang einer axialen Linie erstreckt und umfasst ein Substrat 110, das aus einem Keramikmaterial (Feststoffelektrolyt) hergestellt ist, das eine Form eines unten geschlossenen Rohrs hat; ferner umfasst das Sensorelement eine Edelmetallaußenelektrode 120, die auf der Außenfläche des Substrats 110 ausgebildet ist; und eine Standardelektrode (Referenzelektrode) 130, die auf der Innenfläche des Substrats 110 ausgebildet ist.
  • Die Referenzelektrode 130 ist eine Leiterschicht, die aus dem leitfähigen Oxidsinterkörper der zuvor genannten Ausführungsform hergestellt ist. In dem Gassensorelement 100 der Ausführungsform ist die Referenzelektrode 130 nahezu auf der gesamten Innenfläche des Substrats 110 vorgesehen. Die Referenzelektrode 130 tritt mit einem Referenzgas (beispielsweise Luft) mit einer Referenzsauerstoffkonzentration zur Erfassung der Sauerstoffkonzentration in Kontakt. Die Länge der Referenzelektrode 130 entlang der Richtung der axialen Linie kann in geeigneter Weise entsprechend der Größe des Sensorelements 100 modifiziert werden, sie beträgt aber typischerweise 1 bis 10 cm. Die Außenelektrode 120 tritt mit einem Messgas (beispielsweise Abgas) in Kontakt.
  • Der Feststoffelektrolyt, der das Substrat 110 bildet, kann beispielsweise Zirkonoxid (ZrO2) sein, dem Yttriumoxid (Y2O3) zugesetzt worden ist (das heißt, Yttrium-stabilisiertes Zirkonoxid (YSZ)). Alternativ kann das Gassensorelement 100 aus stabilisiertem Zirkonoxid, das einen Oxidstabilisator enthält, der ausgewählt ist aus Calciumoxid (CaO), Magnesiumoxid (MgO), Ceroxid (CeO2), Aluminiumoxid (Al2O3) und anderen Oxiden, oder aus einem anderen Feststoffelektrolyt gebildet ist, hergestellt sein. Im hierin verwendeten Sinne bezeichnet das „stabilisierte Zirkonoxid“ ein vollständig stabilisiertes Zirkonoxid und ein teilweise stabilisiertes Zirkonoxid. Zu beachten ist, dass ein Flanschbereich 140, der in Richtung der radialen Richtung hervorsteht, an dem Gassensorelement 100 (Substrat 110) in einer ungefähren Mittelposition entlang der axialen Linie so vorgesehen ist, dass der Flanschbereich 140 den Rand des Substrats 110 vollständig abdeckt.
  • 4 ist ein Flussdiagramm, das ein Verfahren zur Herstellung des Gassensorelements 100 zeigt. Bei der Herstellung des Gassensorelements 100 wird zunächst das Substrat 110 hergestellt (Schritt T210). Insbesondere wird ein Material des Substrats 110 (beispielsweise Yttrium-stabilisiertes Zirkonoxidpulver) pressgeformt und das geformte Produkt wird in eine Form (Rohr) geschnitten, wie in 2 oder 3 gezeigt ist, um dadurch ein Vorprodukt (ein nicht gesintertes geformtes Produkt) zu erhalten.
  • Nachfolgend wird die Außenelektrode 120 auf der Oberfläche des auf diese Weise gewonnenen Vorprodukts vorgesehen (Schritt T220). Die Außenelektrode 120 kann unter Anwendung einer Pt-Paste oder einer Au-Paste durch Druck oder durch Tauchen auf der Oberfläche gebildet werden.
  • Anschließend wird der auf diese Weise erhaltene Körper, dessen Außenelektrode 120 auf dem Vorsubstrat ausgebildet ist, ausgeheizt (Schritt T230). Der Ausheizschritt kann in Luft bei 1250 bis 1600° C für 1 bis 5 Stunden ausgeführt werden. Auf diese Weise kann ein Sinterkörper (beispielsweise ein Yttrium-stabilisierter Zirkonoxid-Sinterkörper) hergestellt werden, bei welchem die Außenelektrode 120 vorgesehen ist, die auf dem Substrat ausgebildet ist.
  • Anschließend wird eine Paste des kalzinierten Pulvers des leitfähigen Oxidsinterkörpers auf die Innenfläche des Sinterkörpers aufgebracht, um damit die Referenzelektrode 130 zu bilden (Schritt T240). Als nächstes wird insbesondere das kalzinierte Pulver des leitfähigen Oxidsinterkörpers, das in den Schritten T110 und T120 hergestellt wurde, wie in 1 gezeigt ist, in einem Lösungsmittel, etwa Terpineol oder Butylcarbitol mit einem Binder, etwa Ethylzellulose, aufgelöst, um damit eine Paste herzustellen. Die Paste wird auf die Innenfläche des gesinterten Yttriumstabilisierten Zirkonoxidrohrs aufgebracht.
  • Das Zirkonoxidrohr, in welchem die Paste des kalzinierten Pulvers des leitfähigen Oxids auf die Innenfläche aufgebracht ist, wird getrocknet und ausgeheizt, um damit das Gassensorelement 110 zu erzeugen (Schritt T250). Das Ausheizen wird beispielsweise in Luft bei 1100° C für 1 bis 5 Stunden ausgeführt. Zu beachten ist, dass die zuvor genannten Bedingungen der Herstellungsverfahren, die in Verbindung mit 1 und 4 genannt sind, lediglich zur Illustration angegeben sind. Daher sollte beachtet werden, dass der Fachmann diese Bedingungen entsprechend der Anwendung der Produkte und gemäß anderen Faktoren modifizieren kann.
  • D. Gassensor
  • 5 ist eine Schnittansicht des Aufbaus einer Ausführungsform eines Gassensors 300 gemäß der vorliegenden Erfindung. Der Gassensor 300 dient beispielsweise als ein Sauerstoffsensor zur Erfassung der Sauerstoffkonzentration eines Abgases aus einem Motor mit innerer Verbrennung. Der Gassensor 300 hat eine längliche Form, die sich entlang einer axialen Linie O erstreckt. In der folgenden Beschreibung wird die untere Seite der 5 als eine vordere Endseite und die obere Seite davon wird als eine hintere Endseite bezeichnet. Ferner wird eine Richtung, die senkrecht zu der axialen Linie O ist und die von der axialen Linie O nach außen gerichtet ist, als die „radiale Richtung“ bezeichnet. Der Gassensor 300 weist das zuvor genannte Gassensorelement 100 der vorhergehenden Ausführungsform, eine metallische Hülse 20, einen Protektor bzw. ein Schutzelement 62, ein Außenrohr 40, ein schützendes Außenrohr 38 und eine Anschlussleitung 60 auf, die aus der Referenzelektrode 130 des Gassensorelements 100 herausgeführt ist.
  • Die metallische Hülse 20 ist ein Element, das aus Metall (beispielsweise Edelstahl) hergestellt ist, und das Gassensorelement 100 umschließt, und ein vorderer Endbereich des Gassensorelements 100 steht aus dem vorderen Endbereich der metallischen Hülse 20 hervor. Die metallische Hülse 20 hat einen Stufenbereich 20b, der an der Innenfläche so vorgesehen ist, dass der Innendurchmesser in Richtung zu dem vorderen Ende hin abnimmt. Die metallische Hülse 20 hat einen vieleckigen Flanschbereich 20c, der an einer Position in der Nähe der Mitte der metallischen Hülse 20 vorgesehen ist und radial nach außen hervorsteht. Ein Befestigungswerkzeug, etwa ein Schraubenschlüssel, wird mit dem vieleckigen Flanschbereich 20c in Eingriff gebracht. Ein männlicher Schraubbereich 20d ist auf der Außenfläche ausgebildet, die auf der vorderen Endseite des Flanschbereichs 20c angeordnet ist. Der männliche Schraubbereich 20d der metallischen Hülse 20 ist an einer Schraubbohrung einer Abgasleitung, beispielsweise eines Verbrennungsmotors, angebracht, wodurch das vordere Ende des Gassensorelements 100 innerhalb der Abgasleitung angeordnet ist. Somit kann die Sauerstoffkonzentration des Gases (Abgas) erfasst werden. Ferner ist eine Dichtung 29 in eine Vertiefung zwischen einer Fläche auf der vorderen Endseite des Flanschbereichs 20c und dem hinteren Ende des männlichen Schraubbereichs 20d eingepasst. Die Dichtung 29 verhindert einen Gasaustritt, wenn der Gassensor 300 an der Abgasleitung angebracht wird.
  • Der Protektor 62 ist ein rohrförmiges Element, das aus Metall (beispielsweise Edelstahl) hergestellt ist, und das den vorderen Endbereich des Gassensorelements 100 abdeckt, der aus dem vorderen Endbereich der metallischen Hülse 20 hervorsteht. Ein hinterer Endbereich des Protektors 62 ist in der radialen Richtung nach außen gebogen. Dieser hintere Endbereich wird zwischen der Oberfläche auf der vorderen Endseite des Flanschbereichs 140 des Gassensorelements 100 und dem Stufenbereich 20b der metallischen Hülse 20 gehalten, wodurch der Protektor 62 fixiert wird. Wenn die metallische Hülse 20 und das Gassensorelement 100 verbunden werden, wird der Protektor 62 in die metallische Hülse 20 von der hinteren Endseite der metallischen Hülse 20 aus in die metallische Hülse 20 eingeführt, und der hintere Endbereich des Protektors 62 wird mit dem Stufenbereich 20b der metallischen Hülse 20 in Kontakt gebracht. Ferner wird das Gassensorelement 100 von der hinteren Endseite der metallischen Hülse 20 aus in die metallische Hülse 20 eingeführt, und die vordere Stirnfläche des Flanschbereichs 140 wird mit dem hinteren Endbereich des Protektors 62 in Kontakt gebracht. Die Außenelektrode 120, die an der Außenfläche des Gassensorelements 100 vorgesehen ist, wird mit dem Protektor 62 an dem Flanschbereich 140 in Kontakt gebracht und ist mit der metallischen Hülse 20 über den Protektor 62 in elektrischer Verbindung. Zu beachten ist, dass der Protektor 62 mehrere Bohrungen zum Eintritt von Abgas in das Innere des Protektors 62 aufweist. Das Abgas, das in das Innere des Protektors 62 durch die mehreren Bohrungen eingeströmt ist, wird der Außenelektrode 120 als zu erfassendes Gas zugeleitet.
  • Ein pulvergeladener Bereich 31 ist in einem Spalt zwischen der metallischen Hülse 20 und dem hinteren Ende des Flanschbereichs 140 des Gassensorelements 100 angeordnet. Der pulvergeladene Bereich 31 wird gebildet, indem ein Pulvermaterial, das Talkpulver enthält, aufgeladen wird und das aufgeladene Pulvermaterial komprimiert wird. Der pulvergeladene Bereich 31 dichtet den Spalt zwischen dem Gassensorelement 100 und der metallischen Hülse ab. Ein rohrförmiges isolierendes Element (Keramikhülse ) 32 ist auf der hinteren Endseite des pulvergeladenen Bereichs 31 angeordnet.
  • Das Außenrohr 40 ist ein Element, das aus einem metallischen Material, etwa Edelstahl, hergestellt ist, und das mit dem hinteren Endbereich der metallischen Hülse 20 derart verbunden ist, dass das Außenrohr 40 einen hinteren Endbereich des Gassensorelements 100 abdeckt. Ein Metallring 33, der aus metallischem Material, etwa Edelstahl, hergestellt ist, ist zwischen der Innenfläche eines hinteren Endbereichs der metallischen Hülse 20 und der Außenfläche eines vorderen Endbereichs des Außenrohrs 40 angeordnet. Der vordere Endbereich des Außenrohrs 40 ist mit dem hinteren Endbereich der metallischen Hülse 20 verquetscht, wodurch die metallische Hülse 20 und das Außenrohr 40 aneinander befestigt sind. Als Folge der Verquetschung ist ein gebogener Bereich 20a auf der hinteren Endseite des Flanschbereichs 20c gebildet. Als Folge der Ausbildung des gebogenen Bereichs 20a an dem hinteren Endbereich der metallischen Hülse 20 wird das isolierende Element 32 in Richtung zur vorderen Endseite gedrückt. Folglich wird der pulvergeladene Bereich 31 eingedrückt, wodurch das isolierende Element 32 und der pulvergeladene Bereich 31 durch Quetschung befestigt sind, und der Spalt zwischen dem Gassensorelement 100 und der metallischen Hülse 20 ist abgedichtet.
  • Ein isolierender Separator bzw. ein isolierendes Trennelement 34 mit einer näherungsweise zylindrischen Form ist im Inneren des Außenrohrs 40 angeordnet. Der Separator 34 hat eine Durchgangsbohrung 35, die den Separator 34 in der Richtung der axialen Linie O durchdringt und durch die die Anschlussleitung 60 verläuft. Die Anschlussleitung 60 ist elektrisch mit einem Verbindungsanschluss 70 verbunden. Der Verbindungsanschluss 70 ist ein Element, um das Sensorausgangssignal nach außen herauszuführen, und ist so angeordnet, dass es mit der Referenzelektrode 130 in Kontakt tritt. Eine Durchführung 36 mit einer im Wesentlichen kreisförmigen Säulenform ist im Inneren des Außenrohrs 40 derart angeordnet, dass die Durchführung 36 mit dem hinteren Ende des Separators 34 in Kontakt ist. Die Durchführung 36 hat eine Durchgangsbohrung, die sich entlang der axialen Linie O erstreckt und durch die die Anschlussleitung 60 verläuft. Die Durchführung 36 kann beispielsweise aus Gummimaterial, etwa Silikongummi oder Fluor-Gummi hergestellt sein.
  • Das Außenrohr 40 hat mehrere erste Lüftungsbohrungen 41, die in seiner Innenwand an einer Position an der vorderen Endseite der Position der Durchführung 36 derart ausgebildet sind, dass die ersten Lüftungsbohrungen 41 in der Umfangsrichtung angeordnet sind. Ein rohrförmiger gasdurchlässiger Filter 37 ist in die radiale äußere Seite eines hinteren Endbereichs des Außenrohrs 40 so eingepasst, dass die ersten Lüftungsbohrungen 41 abgedeckt sind. Des Weiteren umschließt das rohrförmige schützende Außenrohr 38, das aus Metall hergestellt ist, den Filter 37 von der radial äußeren Seite her. Das schützende Außenrohr 38 kann beispielsweise aus Edelstahl hergestellt sein. Das schützende Außenrohr 38 hat mehrere zweite Lüftungsbohrungen 39, die in seiner Seitenwand derart ausgebildet sind, dass die zweiten Lüftungsbohrungen 39 in der Umfangsrichtung angeordnet sind. Folglich kann ein externes Gas in das Innere des Außenrohrs 40 über die zweiten Lüftungsöffnungen 39 des schützenden Außenrohrs 38, den Filter 37 und die ersten Lüftungsbohrungen 41 des Außenrohrs 40 eingeführt und dann zu der Referenzelektrode 130 des Gassensorelements 100 geführt werden. Zu beachten ist, dass der Filter 37 zwischen dem Außenrohr 40 und dem schützenden Außenrohr 38 durch Verquetschen des Außenrohrs 40 und des schützenden Außenrohrs 38 an dem vorderen Ende und an den hinteren Endseiten der zweiten Lüftungsbohrungen 39 gehalten wird. Der Filter 37 kann aus einem porösen Aufbau eines wasserabweisenden Harzes, etwa Fluoro-Harz, hergestellt sein. Da der Filter 37 wasserabstoßend ist, wird durch den Filter 37 das Einführen eines Referenzgases (Luft) in den Raum innerhalb des Gassensorelements 100 ermöglicht, während ein Durchlass von Wasser, das von außen kommt, verhindert wird.
  • Gemäß dem so hergestellten Gassensor kann ein Gassensor bereitgestellt werden, der eine Elektrode hat, die eine Leitfähigkeit bei Raumtemperatur von 200 S/cm oder größer hat.
  • E. Experimente und deren Ergebnisse
  • Im Folgenden wird ein experimenteller Nachweis, dass die vorteilhaften technischen Eigenschaften der vorliegenden Erfindung erreicht werden können, auf der Grundlage der Ergebnisse von Experimenten beschrieben. Der Nachweis ist durch die folgenden Parameter F1 bis F4 gegeben:
    • (F1) Eine Leitfähigkeit bei Raumtemperatur von 200 S/cm oder größer kann erreicht werden, indem die Anteile der Zusammensetzung des leitfähigen Oxidsinterkörpers so eingestellt werden, dass sie den Formeln (1) und (2a) bis (2d) genügen;
    • (F2) Es kann ein leitfähiger Oxidsinterkörper, der bei Raumtemperatur eine höhere Leitfähigkeit zeigt, hergestellt werden, indem La als das einzige Seltene-Erde-Element RE ausgewählt wird;
    • (F3) Es kann eine Leitfähigkeit bei Raumtemperatur von 500 S/cm erreicht werden, indem die Anteile der Zusammensetzung so eingestellt werden, dass sie den Formeln (3a) bis (3d) genügen; und
    • (F4) Es kann eine Leitfähigkeit bei Raumtemperatur von 500 S/cm oder größer erhalten werden, indem die Anteile der Zusammensetzung so eingestellt werden, dass die Formeln (4a) bis (4d) erfüllt werden, selbst wenn eine Unterrepräsentation eines Seltene-Erde-Elements RE vorliegt (das heißt, a < (b + c + d)).
  • Die nachfolgende Tabelle 1 zeigt die Zusammensetzungen der leitfähigen Oxidsinterkörper und die Messergebnisse für die Leitfähigkeit bei Raumtemperatur. In diesem Experiment wurden 26 leitfähige Oxidsinterkörperproben S01 bis S26, die in Tabelle 1 aufgeführt sind, hergestellt, und es wurde die Leitfähigkeit jeder Probe bei Raumtemperatur (25° C) gemessen. Die Proben S01 bis S19 genügen den zuvor genannten Beziehungen in der Zusammensetzung, die durch die Formeln (1) und (2a) bis (2d) gegeben sind, wohingegen die Proben S20 bis S26, die mit „*“ markiert sind, die zuvor genannten Zusammenhänge bei der Zusammensetzung, die durch die Formeln (1) und (2a) bis (2d) gegeben sind, nicht erfüllen. Tabelle 1
    Nr. der Probe REaCubFecNidOx Leitfähigkeit bei Raumtemperatur σ
    RE Anteil der Elemente (Mol-Verhältnis)
    a b c d 25° C (S/cm)
    S01 La 0,500 0,100 0,125 0,275 932
    S02 La 0,500 0,100 0,075 0,275 1875
    S03 La 0,500 0,150 0,025 0,275 835
    S04 La 0,500 0,200 0,250 0,150 286
    S05 La 0,500 0,100 0,200 0,200 506
    S06 La 0,500 0,100 0,100 0,300 755
    S07 La 0,500 0,060 0,165 0,275 710
    S08 La 0,500 0,075 0,150 0,275 911
    S09 La 0,500 0,100 0,150 0,250 605
    S10 La 0,474 0,105 0,132 0,289 1007
    S11 La 0,487 0,103 0,128 0,282 1254
    S12 La 0,512 0,098 0,122 0,268 766
    S13 La 0,524 0,095 0,119 0,262 508
    S14 La:Pr=1:4 0,500 0,100 0,125 0,275 222
    S15 La:Pr=1:4 0,500 0,100 0,125 0,275 202
    S16 La 0,500 0,100 0,050 0,350 864
    S17 La 0,444 0,111 0,139 0,306 806
    S18 La 0,412 0,118 0,147 0,324 779
    S19 La 0,375 0,125 0,156 0,244 343
    S20* La 0,500 0,000 0,225 0,275 101
    S21* La 0,500 0,050 0,175 0,275 188
    S22* La 0,500 0,100 0,300 0,100 98
    S23* La 0,500 0,225 0,000 0,275 18
    S24* La 0,500 0,000 0,000 0,500 19
    S25* La 0,545 0,091 0,114 0,250 70
    S26* La 0,333 0,133 0,167 0,367 144
  • Jede leitfähige Oxidsinterkörperprobe wurde durch das Herstellungsverfahren, das in 1 gezeigt ist, hergestellt und wurde anschließend einem Oberflächenpolieren unterzogen, um damit eine rechteckige Probe paralleler Leitungen (3,0 mm x 3,0 mm x 15,0 mm) herzustellen. In Schritt T110 (1) wurde Rohmaterialpulver gewogen und so gemischt, dass die in Tabelle 1 gezeigten Zusammensetzungen erreicht wurden. In den Proben S01 bis S13 und S16 bis S26 war das Seltene-Erde-Element RE La. Ferner enthielt RE der Probe S14 La und Pr, und dasjenige der Probe S15 enthielt La und Nd. Im Falle der Probe S14 wurden Rohmaterialpulver gewogen und so gemischt, dass ein La/Pr-Molverhältnis von 1:4 erreicht wurde, wohingegen im Falle der Probe S15 Rohmaterialpulver gewogen und so gemischt wurden, dass ein La/Nd-Molverhältnis von 1: 4 erreicht wurde. Bei der Herstellung der Proben S10, S11, S17, S18, S19 und S26 wurden Rohmaterialpulver gewogen und so gemischt, dass die Koeffizienten a bis d Bedingungen erfüllen, a < (b + c + d). Die Leitfähigkeit wurde durch das folgende Verfahren gemessen.
  • <Leitfähigkeitsmessung>
  • Die Leitfähigkeit jeder Probe wurde mittels eines Gleichstrom-Vierpunkt-Verfahrens gemessen. Bei der Leitfähigkeitsmessung wurden Elektroden und Elektrodenanschlüsse, die aus Pt hergestellt waren, verwendet. Die Leitfähigkeit wurde mittels eines Spannungs-Strom-Generators (Monitor 6264, ein Produkt der ADC-Corporation) gemessen.
  • Von den Proben S01 bis S26 der Tabelle 1 zeigten alle Proben S01 bis S19, die den Beziehungen in Hinblick auf die Zusammensetzung genügen, die durch die Formeln (1) und (2a) bis (2d) gegeben sind, eine Leitfähigkeit bei Raumtemperatur von 200 S/cm oder größer. Im Gegensatz dazu zeigten die Proben S20 bis S26, die die Beziehungen in Bezug auf die Zusammensetzung nicht erfüllten, die durch die Formeln 1 und (2a) bis (2d) gegeben sind, eine Leitfähigkeit bei Raumtemperatur, die niedriger ist als diejenige aller Proben S01 bis S19.
  • Daher stellte sich heraus, dass die leitfähigen Oxidsinterkörper mit Anteilen in der Zusammensetzung, die den Formeln (1) und (2a) bis (2d) genügen, erfolgreich als solche gefunden wurden, die eine Leitfähigkeit bei Raumtemperatur von 200 S/cm oder höher zeigten. Die leitfähige Oxidsinterkörper mit Anteilen in der Zusammensetzung, die den Formeln (1) und (2a) bis (2d) genügen, die tatsächlich eine Leitfähigkeit bei Raumtemperatur von 200 S/cm oder höher aufweisen können, sind als leitfähige Oxidsinterkörper zur Verwendung als Elektrode eines Gassensors (Parameter F1) geeignet.
  • Aus den Proben S01 bis S19 der Tabelle 1, die den Beziehungen in Hinblick auf die Zusammensetzung genügten, die durch die Formeln (1) und (2a) bis (2d) gegeben sind, enthalten die Proben S01 bis S13 und S16 bis S19 (ohne die Proben S14 und S15) La als einziges Seltene-Erde-Element RE. Alle diese Proben zeigten eine Leitfähigkeit bei Raumtemperatur von 286 S/cm oder größer. Von den Proben S01 bis S19, die den Beziehungen in Hinblick auf die Zusammensetzung genügten, die durch die Formeln (1) und (2a) bis (2d) gegeben sind, zeigt im Gegensatz dazu die Proben S14 und S15, die ein anderes Seltene-Erde-Element RE als La enthielten, eine Leitfähigkeit bei Raumtemperatur von weniger als derjenigen der Proben S01 bis S13 und derjenigen der Proben S16 bis S19, die La als das einziges Seltene-Erde-Element RE enthielten.
  • Somit wurden die leitfähigen Oxidsinterkörper, die den Beziehungen in Hinblick auf die Zusammensetzung genügten, die durch die Formeln (1) und (2a) bis (2d) gegeben sind, und die La als das einzige Seltene-Erde-Element RE enthielten, als solche ermittelt, die tatsächlich eine höhere Leitfähigkeit bei Raumtemperatur zeigten im Vergleich zu leitfähigen Oxidsinterkörpern, die ein anderes Seltene-Erde-Element RE als La enthielten. Ferner sind die leitfähigen Oxidsinterkörper, die den Beziehungen in Hinblick auf die Zusammensetzung genügen, die durch die Formeln (1) und (2a) bis (2d) gegeben sind, und die La als das einzige Seltene-Erde-Element RE enthalten, als leitfähige Oxidsinterkörper zur Verwendung als Elektrode eines Gassensorelements geeignet (Parameter F2).
  • Von den Proben S01 bis S13 und S16 bis S19 der Tabelle 1, die die Beziehungen in Hinblick auf die Zusammensetzung erfüllen, die durch die Formeln (1) und (2a) bis (2d) gegeben sind, und die La als das einzige Seltene-Erde-Element RE enthalten, ließen sich alle Proben S01 bis S03, S5 bis S13 und S16 bis S17, die ferner den Beziehungen in Hinblick auf die Zusammensetzung genügen, die durch die Formeln (3a) bis (3d) gegeben sind, als solche ermitteln, die eine Leitfähigkeit bei Raumtemperatur von 500 S/cm oder größer zeigen.
  • Somit wurden leitfähige Oxidsinterkörper, die den Beziehungen in Hinblick auf die Zusammensetzung genügen, die durch die Formeln (1) und (3a) bis (3d) gegeben sind, und die La als das einzige Seltene-Erde-Element RE enthalten, als solche ermittelt, die tatsächlich eine hohe Leitfähigkeit bei Raumtemperatur von 500 S/cm oder höher zeigen. Auch die leitfähigen Oxidsinterkörper, die den Beziehungen in Hinblick auf die Zusammensetzung genügen, die durch die Formeln (1) und (2a) bis (2d) gegeben sind und La als das einzige Seltene-Erde-Element RE enthalten, werden ferner in geeigneter Weise in einem Gassensorelement verwendet (Parameter F3).
  • Von den Proben S01 bis S26 in der Tabelle 1 genügen die Proben S10, S11, S17 bis S19 und S26 den Bedingungen für die Koeffizienten a bis d gemäß a < (b + c + d). Von diesen Proben genügen die Proben S10, S11, S17 und S18 den Beziehungen in Hinblick auf die Zusammensetzung, die durch die Formeln (1) und (4a) bis (4d) gegeben sind. Alle Proben S10, S11, S17 und S18, die den Beziehungen in Hinblick auf die Zusammensetzung genügen, die durch die Formeln (1) und (4a) bis (4d) gegeben sind, zeigten eine Leitfähigkeit bei Raumtemperatur von 500 S/cm oder höher. Im Gegensatz dazu zeigten die Probe S19 mit einem Koeffizienten, der außerhalb der Bedingung (4a) liegt, und die Probe S26 mit einem Koeffizienten, der außerhalb der Bedingung (2a) liegt, und mit einem Koeffizienten d, der außerhalb der Bedingung (2d) liegt, eine Leitfähigkeit bei Raumtemperatur, die niedriger als diejenige der Proben S10, S11, S17 und S18 ist, die jeweils die Beziehungen in Hinblick auf die Zusammensetzung erfüllten, die durch die Formeln (1) und (4a) bis (4d) gegeben sind.
  • Daher wurden die leitfähigen Oxidsinterkörper, die den Beziehungen in Hinblick auf die Zusammensetzung genügen, die durch die Formeln (1) und (4a) bis (4d) gegeben sind, als solche ermittelt, die tatsächlich eine Leitfähigkeit bei Raumtemperatur von 500 S/cm oder höher zeigen, selbst wenn ein Mangel im Seltene-Erde-Element RE vorhanden ist (das heißt, a < (b + c + d)). Des Weiteren sind leitfähige Oxidsinterkörper, die den Beziehungen in Hinblick auf die Zusammensetzung genügen, die durch die Formeln (1) und (4a) bis (4d) gegeben sind und die La als das einzige Seltene-Erde-Element RE enthalten, als ein leitfähiger Oxidsinterkörper zur Verwendung in einem Gassensor geeignet (Parameter F4).
  • Die nachfolgende Tabelle 2 zeigt Leitfähigkeitsmessungen bei 900° C, Werte der B-Konstante und der thermischen elektromotorischen Kraft bei 770° C von typischen Proben, die aus denjenigen der Tabelle 1 ausgewählt sind. Die B-Konstante und die thermische elektromotorische Kraft wurden durch das folgende Verfahren ermittelt. Tabelle 2
    Nr. der Probe REaCubFecNidOx Leitfähigkeit B-Konstante Thermoelektro-motorische Kraft 770 °C (µV/K)
    RE Anteil der Elemente (Mol-Verhältnis) 25°C (S/cm) 900°C (S/cm) (K-1)
    a b c d
    S01 La 0,500 0,100 0,125 0,275 932 461 -281 -16,1
    S02 La 0,500 0,150 0,075 0,275 1875 812 -335 -19,8
    S08 La 0,500 0,075 0,150 0,275 911 472 -262 -16,6
    S11 La 0,487 0,103 0,128 0,282 1254 634 -273 -17,0
    S20* La 0,500 0,000 0,225 0,275 101 29 -505 -2,2
    S22* La 0,500 0,100 0,300 0,100 98 151 175 24,7
  • <Messung der B-Konstante>
  • Die B-Konstante wurde aus einem Leitfähigkeitsmesswert einer Probe errechnet, die bei 25° C und 900° C mittels der zuvor genannten <Leitfähigkeitsmessung> gemessen wurde, wobei die folgende Formel (5) abgewendet wird: B Konstante = ln ( ρ 1 / ρ 2 ) / ( 1 / T 1 1 / T 2 )
    Figure DE102017214052B4_0017
    • ρ1 = 1/σ1
    • ρ2 = 1/σ2
    • ρ1: Widerstand (Ωcm) bei absoluter Temperatur T1 (K)
    • ρ2: Widerstand (Ωcm) bei absoluter Temperatur T2 (K)
    • σ1: Leitfähigkeit (S/cm) bei absoluter Temperatur T1 (K)
    • σ2: Leitfähigkeit (S/cm) bei absoluter Temperatur T2 (K)
    • T1 = 298,15 (K)
    • T2 = 1173,15 (K)
  • <Messung der thermischen elektromotorischen Kraft>
  • Die thermische elektromotorische Kraft wurde durch ein Gleichstrom-Gleichgewichtsverfahren gemessen. Ein längliches Ende jeder Probe (3,0 mm x 3,0 mm x 15,0 mm) wurde erwärmt, um damit eine Differenz in der Temperatur zu erzeugen. Es wurde ein R Thermoelement (Pt-Pt13Rh) an jedem Ende angebracht, wodurch die Temperaturdifferenz ausgelesen wurde. Die Korrelation der Spannungs-Temperatur-Differenz zwischen den zwei Enden wurde ermittelt, und es wurde die thermische elektromotorische Kraft bei 770° C durch das Verfahren der kleinsten Quadrate abgeleitet. Die vorhergehende Messung wurde durch einen Analysator für thermoelektrische Eigenschaften (ZEM-3, ein Produkt der ULVAC Riko) ausgeführt. Die Messung wurde in He-Gas bei geringem Druck ausgeführt.
  • Die Proben S01, S02, S08 und S11 der Tabelle 2, die die Beziehungen in Hinblick auf die Zusammensetzung erfüllen, die durch die Formeln (1) und (2a) bis (2d) gegeben sind, zeigten alle eine Leitfähigkeit bei Raumtemperatur (25° C) von 200 S/cm oder größer. Ferner zeigten diese Proben einen ausreichend kleinen Absolutwert der B-Konstante von 400 K-1 oder weniger, wodurch angezeigt wird, dass die Proben eine ausreichend hohe Leitfähigkeit bei Raumtemperatur zeigten. Selbst bei einer Temperaturänderung war die Leitfähigkeit ausreichend hoch. Ferner zeigten die Proben S01, S02, S08 und S11 der Tabelle 2 eine thermische elektromotorische Kraft (Absolutwert) bei 770° C von 21 µV/K oder weniger, was ausreichend klein ist.
  • Der leitfähige Oxidsinterkörper mit einer derartigen Leitfähigkeit, einem Absolutwert der B-Konstanten und einem Absolutwert der thermischen elektromotorischen Kraft bei 770° C ist insbesondere für den leitfähige Oxidsinterkörper zur Verwendung in einem Gassensor geeignet. Der Grund liegt im Folgenden. Da ein Gassensorelement bei Raumtemperatur bis 200° C oder höher betrieben wird, ist die Leitfähigkeit bei Raumtemperatur vorzugsweise hoch. Wenn der Absolutwert der B-Konstante des Oxidsinterkörpers bei 400 K-1 oder tiefer liegt, wird der Sinterkörper geeigneterweise als eine Leiterschicht (eine Elektrode eines Gassensorelements) verwendet. In einem Gassensor kann eine Differenz der Temperatur von ungefähr 500° C zwischen zwei Enden einer Elektrode erzeugt werden. Wenn die aus einem leitfähige Oxidsinterkörper hergestellte Elektrode einen kleinen Absolutwert der thermischen elektromotorischen Kraft bei 770° C hat, kann ein Sensorrauschen, das ansonsten in Reaktion auf die Temperaturdifferenz zwischen zwei Enden der Elektrode erzeugt würde, in ausreichender Weise reduziert werden, wodurch eine Zunahme des Messfehlers vermieden werden kann.
  • Obwohl dies in der Tabelle nicht angegeben ist, ist zu beachten, dass Proben, die den zuvor genannten Beziehungen in Hinblick auf die Zusammensetzung genügen, die durch die Formeln (1) und (2a) bis (2d) gegeben sind, ermittelt wurden, die nahezu die gleichen B-Konstanten und thermischen elektromotorischen Kraftwerte zeigten wie die Proben S01, S02, S08 und S11. Das heißt, für die Proben S01 bis S19, die die zuvor genannten Beziehungen in Hinblick auf die Zusammensetzung erfüllen, die durch die Formeln (1) und (2a) bis (2d) gegeben sind, wurde ermittelt, dass sie Eigenschaften haben, die zur Bereitstellung eines leitfähigen Oxidsinterkörpers für einen Gassensor geeignet sind.
  • 6 ist ein Graph, der die Beziehung zwischen dem Cu-Anteil und der Leitfähigkeit bei Raumtemperatur zeigt. In 6 sind Daten typischer Beispiele, die aus den in der Tabelle 1 aufgelisteten Beispielen ausgewählt sind, gezeigt. Insbesondere sind die ausgewählten Proben die Proben S01, S02, S03, S07, S08, S20, S21 und S23, die jeweils einen Ni-Koeffizienten d von 0,275 haben. Die Schwankung der Leitfähigkeit bei Raumtemperatur in Bezug auf Cu-Koeffizienten d ist in 6 gegeben. In 6 sind Proben, die den zuvor genannten Beziehungen in Hinblick auf die Zusammensetzung genügen, die durch die Formeln (1) und (2a) bis (2d) gegeben sind, mit einem schwarzen Punkt bezeichnet, wohingegen Proben, die die zuvor genannten Beziehungen in Hinblick auf die Zusammensetzung nicht erfüllen, die durch die Formeln (1) und (2a) bis (2d) gegeben sind, mit einem schwarzen Quadrat gekennzeichnet sind. Das Gleiche gilt für die 7 und 8. Wie aus 6 ersichtlich ist, erfüllt der Cu-Koeffizient d vorzugsweise 0,050 < b ≤ 0,200 (Formel (2a)), wenn die Leitfähigkeit bei Raumtemperatur 200 S/cm oder höher ist. Wenn die Leitfähigkeit bei Raumtemperatur 500 S/cm oder höher ist, erfüllt der Cu-Koeffizient b vorzugsweise besonders die Bedingung 0,060 ≤ b ≤ 0,200 (Formel (3a)).
  • 7 ist ein Graph, der die Beziehung zwischen dem Ni-Anteil und der Leitfähigkeit bei Raumtemperatur zeigt. In 7 sind Daten typischer Beispiele, die aus jenen ausgewählt sind, die in der Tabelle 1 aufgelistet sind, dargestellt. Insbesondere sind die ausgewählten Proben Proben S01, S04, S05, S06, S09 und S16, die jeweils einen Cu-Koeffizienten b von 0,100 haben und den zuvor genannten Beziehungen in Hinblick auf die Zusammensetzung genügen, die durch die Formeln (1) und (2a) bis (2d) gegeben sind. Die Probe S22, die nicht den zuvor genannten Beziehungen in Hinblick auf die Zusammensetzung genügt, die durch die Formeln (1) und (2a) bis (2d) gegeben sind; und die Probe S24 mit einem Cu-Koeffizienten d von 0, die den zuvor genannten Beziehungen in Hinblick auf die Zusammensetzung nicht genügt, die durch die Formeln (1) und (2a) bis (2d) gegeben sind. Die Änderung der Leitfähigkeit bei Raumtemperatur in Bezug auf den Ni-Koeffizienten d ist in 7 angegeben. Wie aus 7 hervorgeht, erfüllt der Ni-Koeffizienten d vorzugsweise 0,150 < d ≤ 0,350 (Formel (2d)), wenn die Leitfähigkeit bei Raumtemperatur 200 S/cm oder höher ist. Wenn die Leitfähigkeit bei Raumtemperatur 500 S/cm oder höher ist, erfüllt insbesondere bevorzugt der Ni-Koeffizient d die Bedingung 0,200 ≤ b ≤ 0,350 (Formel (3d)).
  • 8 ist ein Graph, der die Beziehung zwischen dem La-Anteil und der Leitfähigkeit bei Raumtemperatur zeigt. In 8 sind Daten typischer Beispiele gezeigt, die aus jenen ausgewählt sind, die in der Tabelle 1 aufgelistet sind. Insbesondere sind die ausgewählten Proben die Proben S01, S10 bis S13 und S17 bis S19, die jeweils nahezu konstante Anteile für den Cu-Koeffizienten (b), Fe-Koeffizienten (c) und den Ni-Koeffizienten (d) haben und die die zuvor genannten Beziehungen in Hinblick auf die Zusammensetzung erfüllen, die durch die Formeln (1) und (2a) bis (2d) gegeben sind; und die Probe S25 und S26, die die zuvor genannten Beziehungen in Hinblick auf die Zusammensetzung nicht erfüllen, die durch die Formeln (1) und (2a) bis (2d) gegeben sind. Die Änderung der Leitfähigkeit bei Raumtemperatur in Abhängigkeit des La-Koeffizienten a ist in 8 angegeben. Wie aus 8 ersichtlich ist, erfüllt vorzugsweise der La-Koeffizient a die Bedingung 0,375 ≤ a ≤ 0,524 (Formel (2a)), wenn die Leitfähigkeit bei Raumtemperatur 200 S/cm oder höher ist. Wenn die Leitfähigkeit bei Raumtemperatur 500 S/cm oder höher ist, erfüllt insbesondere bevorzugt der La-Koeffizient a die Bedingung 0,412 ≤ a ≤ 0,524 (Formel (3a)). Wie ebenfalls aus 8 hervorgeht, zeigten die Proben, die den zuvor genannten Beziehungen in Hinblick auf die Zusammensetzung genügen, die durch die Formeln (1) und (2a) bis (2d) gegeben sind, eine hohe Leitfähigkeit bei Raumtemperatur, selbst wenn der La-Anteil so eingestellt war, dass von dem stöchiometrischen Anteil abwich.
  • Im Folgenden wird ein experimenteller Nachweis auf der Grundlage von Ergebnissen von Experimenten beschrieben, wonach eine weitere vorteilhafte technische Eigenschaft der vorliegenden Erfindung erreicht werden kann. Der Nachweis wird durch den folgenden Parameter F5 gestützt: der Wärmeausdehnungskoeffizient kann verringert werden im Vergleich zu einem Falle, in welchem der Anteil von Cu (ausgedrückt in Atom-%) gleich oder höher ist als derjenige des Fe, indem der Cu-Koeffizienten b kleiner eingestellt wird als der Fe-Koeffizient c; das heißt, indem der Anteil an Cu kleiner eingestellt wird als der Anteil an Fe.
  • Die nachfolgende Tabelle 3 zeigt die Zusammensetzung der leitfähigen Oxidsinterkörper, die Verhältnisse des Cu-Anteils zu der Summe aus Cu-Anteil und Fe-Anteil (b/(b+c)) in den leitfähigen Oxidsinterkörpern, und Messwerte der Wärmeausdehnungskoeffizienten, wobei die leitfähigen Oxidsinterkörper typische Proben sind, die aus jenen der Tabelle 1 ausgewählt sind. Tabelle 3
    Nr. der Probe REaCubFecNidOx Wärmeausdehnungskoeffizient × 10-6 (K-1)
    RE Anteil der Elemente (Mol-Verhältnis)
    a b c d b/(b+c)
    S01 La 0,500 0,100 0,125 0,275 0,444 13,4
    S02 La 0,500 0,150 0,075 0,275 0,667 13,9
    S03 La 0,500 0,200 0,025 0,275 0,889 13,9
    S04 La 0,500 0,100 0,250 0,150 0,286 12,9
    S05 La 0,500 0,100 0,200 0,200 0,333 13,3
    S06 La 0,500 0,100 0,100 0,300 0,500 13,7
    S21* La 0,500 0,050 0,175 0,275 0,222 12,6
  • 9 ist ein Graph, der die Abhängigkeit zwischen dem Verhältnis (b/(b+c)) und dem Wärmeausdehnungskoeffizienten zeigt. Der Wärmeausdehnungskoeffizient wurde durch das folgende Verfahren ermittelt.
  • <Messung des Wärmeausdehnungskoeffizienten>
  • Der Wärmeausdehnungskoeffizient jeder Probe wurde bei Raumtemperatur (25° C) bis 100° C mittels eines TMA8310 (Rigaku Corporation) gemessen. Es wurde Al2O3 als eine Standardprobe (Referenz) verwendet. Die Messung wurde in Luft bei einer Temperaturanstiegsrate von 10,0°C/min ausgeführt.
  • Von den Proben S01 bis S06 und S21 der Tabelle 3 entsprechen die Proben S01, S04, S05 und S21, die ein Verhältnis (b / (b + c)) von kleiner 0,5 haben, Proben, die einen Cu-Koeffizienten b haben, der kleiner ist als der Fe-Koeffizient c; das heißt, ein Anteil an Cu (ausgedrückt in Atom-%) ist kleiner als der Anteil an Fe. Die Proben S02, S03 und S06, die ein Verhältnis (b / (b + c)) von 0,5 oder größer haben, entsprechen Proben mit einem Anteil an Cu, der gleich oder größer ist als der Anteil an Fe. Wie aus der Tabelle 3 hervorgeht, zeigten Proben S01, S04, S05 und S21, die einen Anteil von Cu haben, der kleiner als der Anteil von Fe ist, einen niedrigeren Wärmeausdehnungskoeffizienten im Vergleich zu den Proben S02, S03 und S06, die einen Anteil an Cu haben, der gleich oder größer als der Anteil an Fe ist. Wie aus 9 ersichtlich ist, wird der Wärmeausdehnungskoeffizienten deutlich abgesenkt, wenn das Verhältnis (b, wenn das Verhältnis (b / (b + c)) kleiner als 0,5 ist.
  • Folglich zeigten die leitfähigen Oxidsinterkörper, die die zuvor genannten Beziehungen in Hinblick auf die Zusammensetzung erfüllen, die durch die Formeln (1) und (2a) bis (2d) gegeben sind und einen Cu-Koeffizienten b haben, der kleiner ist als ein Fe-Koeffizient c, einen niedrigeren thermischen Wärmeausdehnungskoeffizienten im Vergleich zu Proben mit einem Cu-Koeffizienten b, der gleich oder größer ist als ein Fe-Koeffizient c (Parameter F5). Indessen hat Yttrium-stabilisiertes Zirkonoxid (YSZ), das allgemein als Gassensorsubstrat verwendet wird, einen Wärmeausdehnungskoeffizienten von 10 × 10-6 (K-1), und Aluminiumoxid hat einen Wärmeausdehnungskoeffizienten von 8 × 10-6 (K-1). Die Proben S01, S04 und S05, die einen Anteil an Cu (ausgedrückt in Atom-%) haben, der kleiner ist als der Anteil an Fe, zeigten einen Wärmeausdehnungskoeffizienten, der näher an demjenigen der vorhergehenden Substratmaterialien liegt im Vergleich zu den Proben S02, S03 und S06, die einen Anteil an Cu haben, der gleich oder größer ist als ein Anteil an Fe. Wenn daher ein leitfähiger Oxidsinterkörper hergestellt wird, indem eine Paste des leitfähigen Oxidsinterkörpers auf ein Substrat aufgebracht wird und anschließend die Paste ausgeheizt wird, dann kann die Erzeugung von Rissen und dergleichen, die ansonsten durch die Differenz im Wärmeausdehnungskoeffizienten zwischen dem Substrat und dem leitfähigen Oxidsinterkörper hervorgerufen würden, verhindert werden. Zu beachten ist, dass die Probe S21, die die zuvor genannten Beziehungen in Hinblick auf die Zusammensetzung nicht erfüllt, die durch die Formeln (1) und (2a) bis (2d) gegeben sind, einen Anteil an Cu hat, der kleiner ist als der Anteil an Fe, und die Probe zeigte einen niedrigeren Wärmeausdehnungskoeffizienten. Wie jedoch mit Verweis auf Tabelle 1 beschrieben ist, hatte die Probe S21 eine Leitfähigkeit bei Raumtemperatur von 200 S/cm oder weniger. Im Vergleich zu den Proben S01, S04 und S05 ist daher die Probe S21 weniger als leitfähiger Oxidsinterkörper für einen Gassensor geeignet.
  • F. Modifizierungen
  • Die vorliegende Erfindung ist nicht auf die zuvor genannten Ausführungsformen und Modifizierungen beschränkt und kann in einer Vielzahl von unterschiedlichen Formen innerhalb des Grundgedankens und des Schutzbereichs der vorliegenden Erfindung umgesetzt werden. Beispielsweise können technische Eigenschaften von Ausführungsformen und Modifizierungen, die denjenigen der technischen Merkmale der Ausführungsformen entsprechen, die unter dem Abschnitt „Überblick über die Erfindung“ aufgeführt sind, in geeigneter Weise ersetzt oder kombiniert werden, um alle oder einen Teil der zuvor genannten Probleme zu lösen oder um alle oder einen Teil der zuvor genannten Wirkungen zu erreichen. Wenn ferner die technischen Merkmale nicht als wesentliche Merkmale in der Beschreibung beschrieben sind, können diese in geeigneter Weise weggelassen werden.
  • Modifizierung 1
  • In der zuvor genannten Ausführungsform wird die Referenzelektrode 130 des Gassensors 300 aus einem leitfähigen Oxidsinterkörper hergestellt, wobei jedoch auch ein anderer Aufbau möglich ist. In einem Beispiel kann die Außenelektrode 120, die aus einem leitfähigen Oxidsinterkörper hergestellt ist, anstelle oder zusätzlich zu der Referenzelektrode 130 verwendet werden.
  • Modifizierung 2
  • In der zuvor genannten Ausführungsform ist der Gassensor 300 ein Sauerstoffsensor. Alternativ kann jedoch der gleiche leitfähige Oxidsinterkörper, wie er in der zuvor genannten Ausführungsform verwendet ist, auch für eine Elektrode eines Gassensors (beispielsweise eines NOx-Sensors) verwendet werden, um die Konzentration eines weiteren Gases zu ermitteln.
  • Modifizierung 3
  • In der zuvor genannten Ausführungsform ist das Gassensorelement 100 so ausgebildet, dass es das aus Keramikmaterial (Feststoffelektrolyt) hergestellte Substrat 110 aufweist, das die Form eines unten geschlossenen Rohrs hat und mit einem Paar aus Elektroden 120, 130 versehen ist. Jedoch ist auch ein anderer Aufbau möglich. In einem Beispiel ist das Substrat 110, das aus Keramikmaterial (Feststoffelektrolyt) mit plattenartiger Form hergestellt ist und sich in der Längsrichtung erstreckt, mit einem Paar aus Elektroden versehen, wobei eine Elektrode der Einwirkung eines Messgases ausgesetzt ist und die andere Elektrode der Einwirkung eines Referenzgases unterliegt. In ähnlicher Weise kann der gleiche leitfähige Oxidsinterkörper, wie er in der zuvor genannten Ausführungsform eingesetzt ist, für zumindest eine der Elektroden verwendet werden.

Claims (8)

  1. Ein Gassensor (300) mit einer Elektrode die aus einem leitfähigen Oxidsinterkörper hergestellt ist, wobei der leitfähige Oxidsinterkörper eine Kristallphase mit einer Perovskit-artigen Oxidkristallstruktur enthält, die durch eine Zusammensetzungsformel repräsentiert ist gemäß: REaCubFecNidOx, wobei RE ein Seltene-Erde-Element repräsentiert, wobei die folgenden Bedingungen erfüllt sind: a + b + c + d = 1 und 1,25 ≤ x ≤ 1,75, und wobei a, b, c und d die folgenden Bedingungen erfüllen: 0,375 a 0,524 ;
    Figure DE102017214052B4_0018
    0,050 < b 0,200 ;
    Figure DE102017214052B4_0019
    0,025 c 0,250 ;
    Figure DE102017214052B4_0020
    und 0,150 d 0,350,
    Figure DE102017214052B4_0021
    wobei der leitfähige Oxidsinterkörper einen Anteil an Erdalkalielementen von 0,3 Gew.-% oder weniger enthält.
  2. Der Gassensor nach Anspruch 1, wobei das Seltene-Erde-Element RE La ist.
  3. Der Gassensor nach Anspruch 2, wobei a, b, c und d die folgenden Bedingungen erfüllen: 0,412 a 0,524 ;
    Figure DE102017214052B4_0022
    0,060 < b 0,200 ;
    Figure DE102017214052B4_0023
    0,025 c 0,200 ;
    Figure DE102017214052B4_0024
    und 0,200 d 0,350.
    Figure DE102017214052B4_0025
  4. Der Gassensor nach Anspruch 2 oder 3, wobei b kleiner als c ist.
  5. Der Gassensor nach einem der Ansprüche 1 bis 4, der ein Sauerstoffsensor ist.
  6. Der Gassensor nach einem der Ansprüche 1 bis 5, wobei die Elektrode eine Referenzelektrode ist.
  7. Ein leitfähiger Oxidsinterkörper, der eine Kristallphase mit einer Perovskit-artigen Oxidkristallstruktur aufweist, die durch eine Zusammensetzungsformel repräsentiert ist gemäß: REaCubFecNidOx, wobei RE ein Seltene-Erde-Element repräsentiert, wobei die folgenden Bedingungen erfüllt sind: a + b + c + d = 1, 1,25 s x ≤ 1,75 und a < (b + c + d), und wobei a, b, c und d die folgenden Bedingungen erfüllen: 0,412 a 0,500 ;
    Figure DE102017214052B4_0026
    0,060 < b 0,200 ;
    Figure DE102017214052B4_0027
    0,025 c 0,200 ;
    Figure DE102017214052B4_0028
    und 0,150 d 0,350.
    Figure DE102017214052B4_0029
  8. Eine Leiterplatte, mit: einem Keramiksubstrat, und einer Leiterschicht, die aus dem leitfähigen Oxidsinterkörper nach Anspruch 7 hergestellt und auf einer Oberfläche des Keramiksubstrats angeordnet ist.
DE102017214052.6A 2016-08-12 2017-08-11 Gassensor, elektrisch leitender Oxidsinterkörper und Leiterplatte Active DE102017214052B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-158401 2016-08-12
JP2016158401A JP6734733B2 (ja) 2016-08-12 2016-08-12 ガスセンサ用導電性酸化物焼結体、導電性酸化物焼結体、配線基板及びガスセンサ

Publications (2)

Publication Number Publication Date
DE102017214052A1 DE102017214052A1 (de) 2018-02-15
DE102017214052B4 true DE102017214052B4 (de) 2022-07-28

Family

ID=61018255

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017214052.6A Active DE102017214052B4 (de) 2016-08-12 2017-08-11 Gassensor, elektrisch leitender Oxidsinterkörper und Leiterplatte

Country Status (4)

Country Link
US (1) US10302589B2 (de)
JP (1) JP6734733B2 (de)
CN (1) CN107731339B (de)
DE (1) DE102017214052B4 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6809355B2 (ja) * 2017-04-18 2021-01-06 株式会社デンソー ガスセンサ
JP7009262B2 (ja) * 2018-03-02 2022-01-25 日本特殊陶業株式会社 ガスセンサ素子及びガスセンサ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116334A (ja) 1997-10-21 1999-04-27 Murata Mfg Co Ltd 半導体セラミックおよびそれを用いた半導体セラミック素子
JP2002087882A (ja) 2000-09-14 2002-03-27 Matsushita Electric Ind Co Ltd 半導体磁器組成物とこれを用いた半導体磁器素子及びその製造方法
US20090013761A1 (en) 2007-07-10 2009-01-15 National Taiwan University Of Science & Technology Gas sensor
US20110236789A1 (en) 2010-03-25 2011-09-29 Ngk Insulators, Ltd. Electrode material, fuel cell including the same, and method of manufacturing the same
JP2012169240A (ja) 2010-03-25 2012-09-06 Ngk Insulators Ltd 電極材料、それを含む燃料電池セル、及びその製造方法
JP2012198990A (ja) 2010-03-25 2012-10-18 Ngk Insulators Ltd 電極材料及びそれを含む燃料電池セル
WO2013150779A1 (ja) 2012-04-06 2013-10-10 日本特殊陶業株式会社 酸化物焼結体及びそれを用いた配線基板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2341256C3 (de) * 1973-08-16 1980-08-28 Brown, Boveri & Cie Ag, 6800 Mannheim Meßzelle
JP3417090B2 (ja) * 1994-10-31 2003-06-16 日産自動車株式会社 固体電解質用電極材料
JP5748584B2 (ja) * 2010-07-28 2015-07-15 京セラ株式会社 導電体および固体酸化物形燃料電池セルならびにセルスタック、燃料電池
JP5767743B2 (ja) * 2013-11-15 2015-08-19 日本碍子株式会社 固体酸化物型燃料電池及び空気極材料
WO2016098309A1 (ja) * 2014-12-15 2016-06-23 日本特殊陶業株式会社 導電性酸化物焼結体、導電用部材、ガスセンサ、圧電素子、及び、圧電素子の製造方法
JP2016158401A (ja) 2015-02-25 2016-09-01 日立オートモティブシステムズ株式会社 回転電機の回転子、及びこれを備えた回転電機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116334A (ja) 1997-10-21 1999-04-27 Murata Mfg Co Ltd 半導体セラミックおよびそれを用いた半導体セラミック素子
JP2002087882A (ja) 2000-09-14 2002-03-27 Matsushita Electric Ind Co Ltd 半導体磁器組成物とこれを用いた半導体磁器素子及びその製造方法
US20090013761A1 (en) 2007-07-10 2009-01-15 National Taiwan University Of Science & Technology Gas sensor
US20110236789A1 (en) 2010-03-25 2011-09-29 Ngk Insulators, Ltd. Electrode material, fuel cell including the same, and method of manufacturing the same
JP2012169240A (ja) 2010-03-25 2012-09-06 Ngk Insulators Ltd 電極材料、それを含む燃料電池セル、及びその製造方法
JP2012198990A (ja) 2010-03-25 2012-10-18 Ngk Insulators Ltd 電極材料及びそれを含む燃料電池セル
WO2013150779A1 (ja) 2012-04-06 2013-10-10 日本特殊陶業株式会社 酸化物焼結体及びそれを用いた配線基板

Also Published As

Publication number Publication date
JP6734733B2 (ja) 2020-08-05
JP2018024560A (ja) 2018-02-15
US20180045673A1 (en) 2018-02-15
CN107731339A (zh) 2018-02-23
US10302589B2 (en) 2019-05-28
CN107731339B (zh) 2019-12-17
DE102017214052A1 (de) 2018-02-15

Similar Documents

Publication Publication Date Title
DE102016212638A1 (de) Gassensorelement und Gassensor
DE112016002136B4 (de) Gassensor
DE112006002956B4 (de) Hitzebeständiges Legierungselement, Kollektorelement für eine Brennstoffzelle, Zellenstapel und Brennstoffzellenvorrichtung
DE19949431A1 (de) Festoxidbrennstoffzelle mit einem Mischungsgradienten zwischen Elektrode und Elektrolyt
DE102017003832A1 (de) Gassensorelement und Gassensor
DE19839382B4 (de) Oxid-Ionenleiter und seine Verwendung
DE112013005662T5 (de) Verfahren zum Herstellen einer Piezokeramik, Pietokeramik und piezoelektrisches Element
WO2002044103A1 (de) Keramischer werkstoff sowie dessen herstellung
DE102017214052B4 (de) Gassensor, elektrisch leitender Oxidsinterkörper und Leiterplatte
DE10248033A1 (de) Gassensorelement mit mindestens zwei Zellen
DE10108438A1 (de) Oxidionenleiter, Herstellungsmethode dafür und ihn verwendende Brennstoffzelle
DE19744316C2 (de) Sauerstoffsensitives Widerstandsmaterial
DE112015005617B4 (de) Elektrisch leitfähiger Oxidsinterkörper, Element zur elektrischen Leitung, Gassensor, piezoelektrisches Element und Verfahren zur Herstellung des piezoelektrischen Elements
WO2002089160A2 (de) Elektrisches vielschichtbauelement und verfahren zu dessen herstellung
DE102019001514A1 (de) Sensorelement und Gassensor
EP3696827A1 (de) Thermistor-sinterkörper und temperatursensorelement
DE112018005222T5 (de) Festelektrolyt, verfahren zu dessen herstellung und gassensor
DE112016005767T5 (de) Gassensorelement und Gassensor
DE102016005758B4 (de) Sauerstoffsensor mit einer aus einem gesinterten elektrisch leitfähigen Oxid gebildeten Sauerstoffsensorelektrode
EP3129775B1 (de) Verfahren zum herstellen eines sensorelements zur erfassung mindestens einer eigenschaft eines messgases in einem messgasraum
DE112018005234T5 (de) Festelektrolyt, dessen Herstellungsverfahren und Gassensor
DE112022001724T5 (de) Sauerstoffsensorelement und verfahren zu seiner herstellung
DE60217787T2 (de) Komplexe Oxide, Oxidionenleiter, leitende Oxidionenschichten und elektrochemische Zellen
EP1564197B1 (de) Sinterköper für thermistorelement, herstellungsverfahren dafür,thermistorelement und temperaturfühler
EP0755512B1 (de) Keramische schichtsysteme, insbesondere für gassensoren

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R081 Change of applicant/patentee

Owner name: NITERRA CO., LTD., NAGOYA-SHI, JP

Free format text: FORMER OWNER: NGK SPARK PLUG CO., LTD., NAGOYA-SHI, AICHI, JP