DE102009037884A1 - Verfahren und Reaktionssystem zur Gewinnung von Wasserstoff - Google Patents
Verfahren und Reaktionssystem zur Gewinnung von Wasserstoff Download PDFInfo
- Publication number
- DE102009037884A1 DE102009037884A1 DE102009037884A DE102009037884A DE102009037884A1 DE 102009037884 A1 DE102009037884 A1 DE 102009037884A1 DE 102009037884 A DE102009037884 A DE 102009037884A DE 102009037884 A DE102009037884 A DE 102009037884A DE 102009037884 A1 DE102009037884 A1 DE 102009037884A1
- Authority
- DE
- Germany
- Prior art keywords
- aryl
- hydrogen
- alkyl groups
- alkyl
- reaction system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 86
- 239000001257 hydrogen Substances 0.000 title claims abstract description 73
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 73
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 51
- 230000008569 process Effects 0.000 title claims abstract description 20
- 238000011084 recovery Methods 0.000 title 1
- 239000003054 catalyst Substances 0.000 claims abstract description 51
- 239000002608 ionic liquid Substances 0.000 claims abstract description 42
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 230000008030 elimination Effects 0.000 claims abstract description 7
- 238000003379 elimination reaction Methods 0.000 claims abstract description 7
- 239000007791 liquid phase Substances 0.000 claims abstract description 5
- 238000004519 manufacturing process Methods 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- 239000007789 gas Substances 0.000 claims description 26
- 239000000126 substance Substances 0.000 claims description 16
- 230000003647 oxidation Effects 0.000 claims description 15
- 238000007254 oxidation reaction Methods 0.000 claims description 15
- 239000007858 starting material Substances 0.000 claims description 13
- 150000003623 transition metal compounds Chemical class 0.000 claims description 11
- 229910052723 transition metal Inorganic materials 0.000 claims description 10
- 150000003624 transition metals Chemical class 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 8
- 150000001450 anions Chemical class 0.000 claims description 8
- 150000002431 hydrogen Chemical class 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical class OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 7
- 150000001768 cations Chemical class 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 241000609240 Ambelania acida Species 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 4
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 4
- 159000000021 acetate salts Chemical class 0.000 claims description 4
- 150000001298 alcohols Chemical class 0.000 claims description 4
- 150000001299 aldehydes Chemical class 0.000 claims description 4
- 239000010905 bagasse Substances 0.000 claims description 4
- 150000005323 carbonate salts Chemical class 0.000 claims description 4
- 150000001735 carboxylic acids Chemical class 0.000 claims description 4
- 238000006555 catalytic reaction Methods 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000008103 glucose Substances 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 4
- 150000002576 ketones Chemical class 0.000 claims description 4
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical class CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229920001542 oligosaccharide Polymers 0.000 claims description 4
- 150000002482 oligosaccharides Chemical class 0.000 claims description 4
- 229910052762 osmium Inorganic materials 0.000 claims description 4
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052702 rhenium Inorganic materials 0.000 claims description 4
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 4
- 239000010948 rhodium Substances 0.000 claims description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- 239000010902 straw Substances 0.000 claims description 4
- 150000005846 sugar alcohols Polymers 0.000 claims description 4
- 239000002699 waste material Substances 0.000 claims description 4
- 239000002023 wood Substances 0.000 claims description 4
- 239000003513 alkali Substances 0.000 claims description 3
- 150000002506 iron compounds Chemical class 0.000 claims description 3
- 239000010822 slaughterhouse waste Substances 0.000 claims description 3
- 125000005497 tetraalkylphosphonium group Chemical group 0.000 claims description 2
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims 30
- 125000004432 carbon atom Chemical group C* 0.000 claims 12
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims 10
- 125000005843 halogen group Chemical group 0.000 claims 10
- -1 tetracyano borate Chemical compound 0.000 claims 8
- 125000001931 aliphatic group Chemical group 0.000 claims 6
- 150000005840 aryl radicals Chemical class 0.000 claims 6
- 125000002723 alicyclic group Chemical group 0.000 claims 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims 4
- 125000000217 alkyl group Chemical group 0.000 claims 4
- 125000005842 heteroatom Chemical group 0.000 claims 4
- 150000003254 radicals Chemical class 0.000 claims 4
- 229920006395 saturated elastomer Polymers 0.000 claims 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 claims 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims 2
- 229910019142 PO4 Inorganic materials 0.000 claims 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 claims 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims 2
- 150000001342 alkaline earth metals Chemical class 0.000 claims 2
- 125000003118 aryl group Chemical group 0.000 claims 2
- 150000001556 benzimidazoles Chemical group 0.000 claims 2
- 150000002016 disaccharides Chemical class 0.000 claims 2
- UQSQSQZYBQSBJZ-UHFFFAOYSA-M fluorosulfonate Chemical compound [O-]S(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-M 0.000 claims 2
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 claims 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims 2
- 150000002460 imidazoles Chemical group 0.000 claims 2
- 150000002772 monosaccharides Chemical class 0.000 claims 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 2
- 239000010452 phosphate Substances 0.000 claims 2
- 235000021317 phosphate Nutrition 0.000 claims 2
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 claims 2
- 150000003217 pyrazoles Chemical group 0.000 claims 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims 2
- 150000003852 triazoles Chemical class 0.000 claims 2
- JFZKOODUSFUFIZ-UHFFFAOYSA-N trifluoro phosphate Chemical compound FOP(=O)(OF)OF JFZKOODUSFUFIZ-UHFFFAOYSA-N 0.000 claims 2
- 125000004103 aminoalkyl group Chemical group 0.000 claims 1
- 238000005520 cutting process Methods 0.000 claims 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 1
- 238000003307 slaughter Methods 0.000 claims 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 229910002091 carbon monoxide Inorganic materials 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000000035 biogenic effect Effects 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 4
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- 229910021604 Rhodium(III) chloride Inorganic materials 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J7/00—Apparatus for generating gases
- B01J7/02—Apparatus for generating gases by wet methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00002—Chemical plants
- B01J2219/00042—Features relating to reactants and process fluids
- B01J2219/00047—Ionic liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/128—Halogens; Compounds thereof with iron group metals or platinum group metals
- B01J27/13—Platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/27—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a liquid or molten state
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
- C01B2203/1058—Nickel catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1064—Platinum group metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1064—Platinum group metal catalysts
- C01B2203/107—Platinum catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1076—Copper or zinc-based catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1217—Alcohols
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
Abstract
Description
- Die Erfindung betrifft ein Verfahren zur Erzeugung von Wasserstoff aus Wasserstoff enthaltenden Einsatzstoffen durch Flüssigphasenreaktionen in Gegenwart eines Katalysators sowie ein Reaktionssystem zur Durchführung des Verfahrens.
- Zur Erzeugung von Wasserstoff werden Wasserstoff enthaltende Einsatzstoffe häufig einer thermochemischen Behandlung, wie beispielsweise einer Pyrolyse mit anschließender Dampfreformierung, unterzogen, wobei ein Wasserstoff enthaltendes sog. Synthesegas entsteht, aus dem der Wasserstoff in nachfolgenden Verfahrensschritten abgetrennt werden kann. Diese Verfahren haben den Nachteil, dass sie bei hohen Temperaturen zwischen ca. 500–1000°C ablaufen und – nicht zuletzt aufgrund der unvermeidlichen Energieverluste – einen hohen Energiebedarf ausweisen. Darüber hinaus sind die Wasserstoffausbeuten begrenzt und entstehende Nebenprodukte, wie Methan, Schwefel- und Stickstoffverbindungen sowie Aromaten, können nur durch kostenintensive Maßnahmen von dem erzeugten Wasserstoff getrennt werden.
- Um die beschriebenen Nachteile zu umgehen, wurden katalytisch unterstützte Flüssigphasenreaktionen entwickelt, bei denen die Einsatzstoffe in Anwesenheit eines Katalysators bei Temperaturen zwischen 100 und 300°C und Drücken bis ca. 100 bar umgesetzt werden.
- Typische Vertreter dieser Art von Reaktionen sind Flüssigphasenreaktionen, die in Gegenwarf eines heterogenen Festbettkatalysators ablaufen, der in beheizbaren Rohren untergebracht ist und von einer wässrigen Lösung der umzusetzenden Einsatzstoffe durchströmt wird. Die Anwendung derartiger Verfahren, die z. B. in den Patentschriften
US 6,964,757 ,US 6,964,758 undUS 6,699,457 beschrieben werden, ist auf die Umsetzung wasserlöslicher Einsatzstoffe beschränkt. Der hohe Energiebedarf muss durch indirekte Wärmeübertragung über die Rohrwände in das System eingebracht werden, wofür hohe Temperaturen bis 600°C notwendig sind. Der Umsatz zu dem Zielprodukt Wasserstoff ist unvollständig, so dass große Anteile an Kohlenmonoxid entstehen. Darüber hinaus enthält das bei der Reaktion entstehende Gasgemisch größere Anteile von Kohlenwasserstoffen, die anschließend zur Deckung des Energiebedarfs verbrannt werden. Dies mindert Energieeffizienz und Wasserstoffausbeute des Prozesses und beeinflusst daher die Wirtschaftlichkeit des Verfahrens negativ. Durch die Anordnung des Festbettkatalysators in Rohren und die Beheizung dieser Rohre mit Brenngas ist die Skalierbarkeit des Prozesses begrenzt. Der Versuch, eine Wassergas-Shift-Reaktion zur Umwandlung von Kohlenmonoxid mit Wasser in Wasserstoff und Kohlendioxid in den Prozess zu integrieren, löst die Probleme nur graduell. - Andere Vertreter sind die sog. Alkaline-Verfahren, bei denen der Katalysator in einer wässrigen, eine Lauge (z. B. Natron- oder Kalilauge) enthalten Lösung vorliegt. Die Einsatzstoffe müssen bei diesen Verfahren in gelöster oder wässriger Form vorliegen. Derartige Verfahren werden z. B. in den Patentschriften
US 6,607,707 ,US 6,890,412 undUS 6,994,839 beschrieben. Auch sie erlauben es nicht, wasserunlösliche Stoffe umzusetzen. Durch im Prozess anfallende unlösliche Carbonate wird die Handhabbarkeit des Reaktionssystems erschwert. Der Laugenverbrauch und die notwendige Entsorgung der Carbonate sind mit hohen Kosten verbunden. Versuche, die Carbonate in einer Recycling-Stufe wieder in Laugen umzuwandeln, belasten den Prozess kostenseitig zusätzlich. - Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren sowie ein Reaktionssystem der eingangs beschriebenen Art anzugeben, durch welche die Nachteile des Standes der Technik umgangen werden können.
- Verfahrensseitig wird die gestellte Aufgabe erfindungsgemäß dadurch gelöst, dass die Einsatzstoffe in einer ionischen Flüssigkeit oder einem wenigstens eine ionische Flüssigkeit umfassenden Stoffgemisch gelöst und in Gegenwart zumindest eines die Abspaltung von Wasserstoff aus den gelösten Einsatzstoffen unterstützenden Katalysators umgesetzt werden.
- Als Einsatzstoffe für das erfindungsgemäße Verfahren kommen grundsätzlich alle Wasserstoff enthaltenden Stoffe in Frage. Vorzugsweise werden jedoch Stoffe eingesetzt, die neben Wasserstoff auch Kohlenstoff und Sauerstoff enthalten. Insbesondere eignet sich das erfindungsgemäße Verfahren zur Umsetzung von biogenen Stoffen, worunter Stoffe tierischer und/oder pflanzlicher Herkunft zu verstehen sind, die in Reinform oder als Stoffgemische vorliegen können. Beispiele für biogene Stoffe sind Glucose, Bagasse, Holz, Stroh, Grünschnitt und Schlachtabfälle. Daneben können jedoch auch nicht biogenen Einsatzstoffe umgesetzt werden, von denen beispielhaft chemische Verbindungen aus den Klassen der Alkohole, Polyalkohole, Aldehyde, Ketone, Carbonsäuren, Mono-, Di- und Oligosaccharide genannt seien.
- Unter ionische Flüssigkeiten sind im Folgenden niedrigschmelzende Salze mit Schmelzpunkten zwischen –90 und 250°C zu verstehen, wobei die meisten der bekannten ionischen Flüssigkeiten bereits bei Raumtemperatur in flüssiger Form vorliegen. Ionische Flüssigkeiten werden aus positiven (Kationen) und negativen Ionen (Anionen) gebildet, sind jedoch insgesamt ladungsneutral. Sowohl die Anionen als auch die Kationen einer ionischen Flüssigkeit können von organischer oder anorganischer Art sein. Sie sind meist einwertig, können aber auch höhere Wertigkeiten aufweisen, weshalb die Anzahl der Anionen nicht notwendig gleich der Anzahl der Kationen ist. Weiterhin können in ionischen Flüssigkeiten Kombinationen sowohl unterschiedlicher Anionen als auch unterschiedlicher Kationen vorliegen.
- Im Gegensatz zu herkömmlichen, molekularen Flüssigkeiten sind ionische Flüssigkeiten zur Gänze ionisch und zeigen deshalb neue und ungewöhnliche Eigenschaften. Ionische Flüssigkeiten sind durch die Variation der Struktur von Anion und/oder Kation sowie durch die Variation von deren Kombinationen in ihren Eigenschaften an gegebene technische Problemstellungen vergleichsweise gut anpassbar. So kann beispielsweise ihr Lösungsvermögen bezüglich eines Stoffes durch die Wahl der Ionen in weiten Grenzen beeinflusst bzw. eingestellt werden. Aus diesem Grund werden sie oftmals auch als ”Designer Solvents” bezeichnet. Bei herkömmlichen, molekularen Flüssigkeiten ist hingegen lediglich eine Variation der Struktur möglich. Ionische Flüssigkeiten können insbesondere derart ”designed” werden, dass sie auch Stoffe, die keine bzw. nur eine geringe Wasserlöslichkeiten aufweisen unter Bildung einer einphasigen und homogenen Lösung auflösen.
- Wie die Erfahrung gezeigt hat, kann die Wasserstoffausbeute bei der erfindungsgemäßen Umsetzung von Wasserstoff und Kohlenstoff enthaltenden Einsatzstoffen deutlich gesteigert werden, wenn an der Umsetzung Wasser als Reaktand beteiligt ist, das mit dem in den Einsatzstoffen enthaltenen Kohlenstoff zu Kohlemonoxid und Wasserstoff reagiert. Eine bevorzugte Variante des erfindungsgemäßen Verfahrens sieht daher vor, dass die Einsatzstoffe in einem Reaktionssystem umgesetzt werden, das neben den gelösten Einsatzstoffen, wenigstens einer ionischen Flüssigkeit und zumindest einem Katalysator auch Wasser enthält.
- Unter Beteiligung von Wasser liefert das erfindungsgemäße Verfahren bereits bei vergleichsweise niedrigen Reaktionstemperaturen und moderaten -drücken hohe Wasserstoffausbeuten. Hierbei läuft parallel zur Abspaltung von Wasserstoff aus den gelösten Einsatzstoffen eine Wassergas-Shift-Reaktion ab, bei der gebildetes Kohlenmonoxid mit Wasser zu Wasserstoff und Kohlendioxid reagiert. Wasserstoff und Kohlenstoff enthaltene Einsatzstoffe können daher mit hoher Ausbeute und einstufig, d. h. ohne eine nachgeordnete Wassergas-Shift-Reaktion, zu einem überwiegend aus Wasserstoff und Kohlendioxid bestehenden Gas umgesetzt werden. Methan, Kohlenmonoxid sowie weitere Nebenprodukte sind nur in geringen Konzentrationen nachweisbar. Dadurch wird einerseits die erforderliche Gasreinigung und -aufbereitung deutlich vereinfacht und andererseits ein Wasserstoffprodukt mit höchster Wertschöpfung produziert.
- Da Wasser zudem geeignet ist, wasserlösliche Bestandteile der Einsatzstoffe zu lösen, sieht eine zweckmäßige Ausgestaltung des erfindungsgemäßen Verfahrens vor, dass die Einsatzstoffe vor dem Einbringen in das Reaktionssystem in einem Wasser umfassenden Stoffgemisch gelöst werden.
- Eine andere zweckmäßige Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass dem Reaktionssystem Wasser in Form von Wasserdampf zugeführt wird. Dadurch ist es gleichzeitig möglich, den Energiebedarf des Verfahrens ganz oder teilweise zu decken. Im günstigsten Fall kann auf eine aufwendige indirekte Beheizung verzichtet werden. Weiterhin sorgt der einströmende und kondensierende Wasserdampf, bei dem es sich vorzugsweise um kostengünstigen Niederdruckdampf handelt, für eine intensive Durchmischung des Reaktionssystems.
- Vorzugsweise wird das erfindungsgemäße Verfahren mit der Mindestmenge an Wasser durchgeführt, die erforderlich ist, um die Einsatzstoffe vollständig zu lösen und ein kohlenmonoxidfreies Wasserstoffprodukt zu erzeugen.
- Eine bevorzugte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass ein Gemisch aus mehreren Katalysatoren eingesetzt wird, wobei zumindest einer der Katalysatoren eine Wassergas-Shift-Reaktion unterstützt, bei der Kohlenmonoxid und Wasser zu Kohlendioxid und Wasserstoff umgesetzt werden.
- Eine andere Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass genau ein Katalysator eingesetzt wird, wobei dieser Katalysator gleichzeitig die Abspaltung von Wasserstoff aus gelösten Einsatzstoffen und eine Wassergas-Shift-Reaktion unterstützt.
- Mit besonderem Vorteil werden zur Durchführung des erfindungsgemäßen Verfahrens übergangsmetallhaltige Verbindungen als Katalysatoren eingesetzt, die zweckmäßigerweise die Fähigkeit besitzen, Carbonylverbindungen bilden und Alkoholate binden zu können, dehydrierend und Wasserstoff aktivierend zu wirken sowie einen C-C-Bindungsbruch zu bewirken. Beispiele für übergangsmetallhaltige Katalysatoren, die diese Voraussetzungen erfüllen und im Rahmen des erfindungsgemäßen Verfahrens eingesetzt werden können, sind Verbindungen der Übergangsmetalle Ruthenium, Iridium, Rhodium, Osmium, Nickel, Platin, Palladium, Kupfer, Kobalt, Rhenium oder Eisen.
- In einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass zumindest eine Übergangsmetallverbindung der Oxidationsstufe 0 als Katalysator eingesetzt wird, wobei entweder die Übergangsmetallverbindung dem Reaktionssystem in der Oxidationsstufe 0 zugesetzt oder vor oder während der katalytischen Reaktion in eine Form der Oxidationsstufe 0 überführt wird. Die Übergangsmetallverbindungen der Oxidationsstufe 0 liegen im Reaktionssystem gemäß dieser Erfindung bevorzugt in Form von Nanopartikeln oder Nanokolloiden vor, die durch die Gegenwart der ionischen Flüssigkeiten im Reaktionssystem stabilisiert werden, wobei ihre Aggregation durch die ionische Flüssigkeit wirksam unterdrückt wird.
- Eine weitere Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass wenigstens ein Katalysator verwendet wird, der sich vollständig im Reaktionssystem löst.
- Um die Selektivität des Katalysators zu steigern und den Umsatz in der gewünschten Zielreaktion zu erhöhen, sieht eine weitere Ausgestaltung des erfindungsgemäßen Verfahrens vor, dass wenigstens eine Art von Liganden zur Komplexierung eines übergangsmetallhaltigen Katalysators eingesetzt wird.
- Erfindungsgemäß werden die ionischen Flüssigkeiten zweckmäßigerweise so gewählt, dass das Mengenverhältnis von umzusetzenden Einsatzstoffen und ionischen Flüssigkeiten in einem weiten Bereich variierbar ist, womit auch bei schwankenden Zusammensetzungen der umzusetzenden Einsatzstoffe eine Anpassung an die Prozessanforderungen leicht möglich ist.
- Vorzugsweise werden zur Durchführung des erfindungsgemäßen Verfahrens ionische Flüssigkeiten eingesetzt, die aus der Menge der im abhängigen Patentanspruch 9 aufgelisteten ionischen Flüssigkeiten gewählt werden.
- Mit besonderem Vorteil werden zur Durchführung des erfindungsgemäßen Verfahrens ionische Flüssigkeiten verwendet, die in der Lage sind, die als Katalysatoren eingesetzten Verbindungen in ihrer katalytisch aktiven Form vollständig zu lösen oder zu stabilisieren. Insbesondere dann, wenn nanopartikuläre oder nanokolloidale Übergangsmetallverbindungen in der Oxidationsstufe 0 als Katalysatoren verwendet werden, werden zweckmäßigerweise ionische Flüssigkeiten eingesetzt, die die Fähigkeit besitzen, die Aggregation der Nanopartikel effektiv zu behindern.
- Mit Hilfe der ionischen Flüssigkeiten kann die Acidität bzw. Basizität des die gelösten Einsatzstoffe, ionische Flüssigkeiten und übergangsmetallhaltige Katalysatoren umfassenden Reaktionssystems gezielt eingestellt werden. Dabei wird insbesondere die Fähigkeit des Anions der ionischen Flüssigkeit genutzt, im Reaktionssystem als Säure oder Base zu wirken.
- Besonders bevorzugte Ausgestaltungen des erfindungsgemäßen Verfahrens sehen daher vor, dass Tetraalkylphosphoniumsalze und/oder 1,2,3-Trialkylimidazoliumsalze und/oder Phosphonatsalze und/oder Methylphosphonatsalze und/oder Acetatsalze und/oder Carbonatsalze und/oder Hydrogenphosphate und/oder Dihydrogenphosphate als ionische Flüssigkeiten eingesetzt werden.
- Vorzugsweise wird das erfindungsgemäße Verfahren bei Reaktionstemperaturen zwischen 50 und 350°C, besonders bevorzugt zwischen 120 und 300°C und ganz besonders bevorzugt zwischen 130 und 230°C durchgeführt, wobei die Reaktionsdrücke zwischen 1 und 1000 bar, bevorzugt zwischen 30 und 750 bar und besonders bevorzugt zwischen 30 und 350 bar liegen.
- Da die erfindungsgemäße Umsetzung der Einsatzstoffe in einem fluiden Reaktionssystem abläuft, wird vorgeschlagen, die erforderlichen Reaktionsdrücke durch Pumpen von Flüssigkeit bzw. Suspension zu erzeugen.
- Weiterhin betrifft die Erfindung ein Reaktionssystem zur Erzeugung von Wasserstoff aus Wasserstoff enthaltenden Einsatzstoffen, das neben den umzusetzenden Einsatzstoffen zumindest einen Katalysator aufweist.
- Die gestellte Aufgabe wird seitens des Reaktionssystems erfindungsgemäß dadurch gelöst, dass es eine oder mehrere ionische Flüssigkeiten sowie einen oder mehrere die Abspaltung von Wasserstoff aus den Wasserstoff enthaltenden Einsatzstoffen unterstützende Katalysatoren umfasst, wobei die umzusetzenden Einsatzstoffe in gelöster Form vorliegen.
- Als Einsatzstoffe für das erfindungsgemäße Verfahren kommen grundsätzlich alle Wasserstoff enthaltenden Stoffe in Frage. Vorzugsweise umfasst das erfindungsgemäße Reaktionssystem werden solche Einsatzstoffe, die neben Wasserstoff auch Kohlenstoff und Sauerstoff enthalten. Insbesondere umfasst das erfindungsgemäße Reaktionssystem biogene Stoffe, worunter Stoffe tierischer und/oder pflanzlicher Herkunft zu verstehen sind, die in Reinform oder als Stoffgemische vorliegen können. Beispiele für biogene Stoffe sind Glucose, Bagasse, Holz, Stroh, Grünschnitt und Schlachtabfälle. Daneben kann es jedoch auch nicht biogenen Einsatzstoffe umfassen, von denen beispielhaft chemische Verbindungen aus den Klassen der Alkohole, Polyalkohole, Aldehyde, Ketone, Carbonsäuren, Mono-, Di- und Oligosaccharide genannt seien.
- Das erfindungsgemäße Reaktionssystem weiterbildend wird vorgeschlagen, dass es Wasser enthält, wobei der Wassergehalt im Reaktionssystem zwischen 0,01 und 99,99 Massen%, bevorzugt zwischen 3 und 95 Massen% und besonders bevorzugt zwischen 5 und 20 Massen% liegt. Eine ganz besonders bevorzugte Variante des erfindungsgemäßen Reaktionsgemisches sieht vor, dass es die Mindestmenge an Wasser enthält, die erforderlich ist, um die Einsatzstoffe vollständig zu lösen und ein kohlenmonoxidfreies Wasserstoffprodukt zu erzeugen.
- Das erfindungsgemäße Reaktionssystem kann mit einem Gemisch unterschiedlicher Katalysatoren ausgeführt sein, von denen zweckmäßigerweise zumindest einer eine Wassergas-Shift-Reaktion unterstützt. Vorzugsweise umfasst es jedoch genau einen Katalysator, wobei dieser Katalysator gleichzeitig die Abspaltung von Wasserstoff aus gelösten Einsatzstoffen und eine Wassergas-Shift-Reaktion unterstützt.
- Erfahrungsgemäß sind besonders übergangsmetallhaltige Verbindungen zum Einsatz als Katalysatoren in einem erfindungsgemäßen Reaktionssystem geeignet. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Reaktionssystems sehen daher vor, dass es zumindest einen übergangsmetallhaltigen Katalysator aufweist, bei dem es sich vorzugsweise um eine Ruthenium- oder eine Iridium- oder eine Rhodium- oder eine Osmium- oder eine Nickel- oder eine Platin- oder eine Palladium- oder eine Kupfer- oder eine Kobalt- oder eine Rhenium- oder eine Eisen-Verbindung handelt.
- Eine weitere Ausgestaltung des erfindungsgemäßen Reaktionssystems sieht vor, dass zumindest einer der Katalysatoren vollständig im Reaktionssystem löslich ist oder in Form einer Übergangsmetallverbindung der Oxidationsstufe 0 vorliegt, wobei entweder die Übergangsmetallverbindung dem Reaktionssystem in der Oxidationsstufe 0 zugesetzt oder vor oder während der katalytischen Reaktion in eine Form der Oxidationsstufe 0 überführt wird. Übergangsmetallverbindungen der Oxidationsstufe 0 liegen im Reaktionssystem gemäß dieser Erfindung besonders bevorzugt in Form von Nanopartikeln oder Nanokolloiden vor, die durch die Gegenwart der ionischen Flüssigkeiten im Reaktionssystem stabilisiert werden, wobei ihre Aggregation durch die ionische Flüssigkeit wirksam unterdrückt wird.
- Das erfindungsgemäße Reaktionssystem zeichnet sich dadurch aus, dass der Anteil der Katalysatoren zwischen 0,0001 und 20 Massen%, bevorzugt zwischen 0,005 und 10 Massen% und besonders bevorzugt zwischen 0,04 und 2 Massen% liegt.
- Um die Selektivität des Katalysators zu steigern und den Umsatz in der gewünschten Zielreaktion zu erhöhen, sieht eine weitere Ausgestaltung des erfindungsgemäßen Reaktionssystems vor, dass es wenigstens eine Art von Liganden umfasst, durch welche ein übergangsmetallhaltiger Katalysator komplexiert werden kann.
- Bei der oder den im erfindungsgemäßen Reaktionssystem vorliegenden ionischen Flüssigkeiten handelt es sich vorzugsweise um solche, die aus der Menge der im abhängigen Patentanspruch 20 aufgelisteten ionischen Flüssigkeiten ausgewählt werden.
- Besonders vorteilhafte Ausgestaltungen des erfindungsgemäßen Reaktionssystems sehen vor, dass es sich bei der ionischen Flüssigkeit oder den ionischen Flüssigkeiten um Tetraalkylphosphoniumsalze und/oder 1,2,3-Trialkylimidazoliumsalze und/oder Phosphonatsalze und/oder Methylphosphonatsalze und/oder Acetatsalze und/oder Carbonatsalze und/oder Hydrogenphosphate und/oder Dihydrogenphosphate handelt.
- Ferner ist das erfindungsgemäße Reaktionssystem dadurch gekennzeichnet, dass der Anteil der Wasserstoff enthaltenden Einsatzstoffe zwischen 1 und 70 Massen%, bevorzugt zwischen 3 und 50 Massen% und besonders bevorzugt zwischen 5 und 30 Massen% liegt.
- Die Erfindung ermöglicht die Erzeugung von Wasserstoff aus Wasserstoff enthaltenden Einsatzstoffen mit im Vergleich zum Stand der Technik wesentlich geringeren Invest- und Betriebskosten.
- Wegen des fluiden, weitgehend einphasigen und homogenen Charakters des Reaktionssystems und der äußerst geringen Löslichkeit von Wasserstoff in ionischen Flüssigkeiten, ermöglicht das erfindungsgemäße Verfahren sehr hohe Raum-Zeit-Ausbeuten an Wasserstoff, da der gebildete Wasserstoff das Reaktionssystem fast quantitativ verlässt und in die Gasphase übertritt. Darüber hinaus ergibt sich neben den Kostenvorteilen auch eine sehr gute Skalier- und Prozessierbarkeit.
- Im Folgenden soll die Erfindung anhand von mehreren Beispielen erläutert und verdeutlicht werden:
- Beispiel 1: Blindtest mit Na/K-Acetat ohne Einsatzstoffe
- In einem geschlossenen 600-ml-Druckreaktor wurde ein Stoffgemisch vorgelegt, bestehend aus 100 g Na/K-Acetat, 0,05 g Rhodiumtrichlorid, 0,05 g Kupferchlorid und 16,25 g Wasser. Bei einem Stickstoffgegendruck von 10 bar wurde der Reaktor bis auf 250°C aufgeheizt und für 15 Stunden bei dieser Temperatur gehalten. Anschließend wurde der Gehalt an Wasserstoff, Kohlendioxid, Kohlenmonoxid und leichten Kohlenwasserstoffen (bis C4) in dem entstanden Produktgas mittels Gaschromatographen bestimmt. Durch Kenntnis des Druckanstieges während der Versuchsdauer konnte die erzeugte Wasserstoffmenge mit einem Wert von 0,211 Nl ermittelt werden.
- Beispiel 2: Druckversuch: Umsetzung von Methanol in Na/K-Acetat
- In einem geschlossenen 600-ml-Druckreaktor wurde ein Stoffgemisch vorgelegt, bestehend aus 100 g Na/K-Acetat, 0,05 g Rhodiumtrichlorid, 0,05 g Kupferchlorid, 3 g Methanol und 16,25 g Wasser. Bei einem Stickstoffgegendruck von 10 bar wurde der Reaktor bis auf 250°C aufgeheizt und für 17,5 Stunden bei dieser Temperatur gehalten. Anschließend wurde der Gehalt an Wasserstoff, Kohlendioxid, Kohlenmonoxid und leichten Kohlenwasserstoffen (bis C4) in dem entstanden Produktgas mittels Gaschromatographen bestimmt. Aus der Messung ergab sich ein Wert für den Wasserstoffgehalt im Produktgas von 26 Vol.%. Durch Kenntnis des Druckanstieges während der Versuchsdauer konnte die erzeugte Wasserstoffmenge mit einem Wert von 1,477 Nl ermittelt werden. Bezogen auf das eingesetzte Methanol ergibt sich unter Einbeziehung der Wassergas-Shift-Reaktion eine Wasserstoff-Ausbeute von 23,5%.
- Beispiel 3: Druckversuch: Umsetzung von Sorbitol in Na/K-Acetat
- In einem geschlossenen 600-ml-Druckreaktor wurde ein Stoffgemisch vorgelegt, bestehend aus 100 g Na/K-Acetat, 0,05 g Rhodiumtrichlorid, 0,05 g Kupferchlorid, 3 g Sorbitol und 16,25 g Wasser. Bei einem Stickstoffgegendruck von 10 bar wurde der Reaktor bis auf 250°C aufgeheizt und für 17,5 Stunden bei dieser Temperatur gehalten. Anschließend wurde der Gehalt an Wasserstoff, Kohlendioxid, Kohlenmonoxid und leichten Kohlenwasserstoffen (bis C4) in dem entstanden Produktgas mittels Gaschromatographen bestimmt. Aus der Messung ergab sich ein Wert für den Wasserstoffgehalt im Produktgas von 11,6 Vol.%. Durch Kenntnis des Druckanstieges während der Versuchsdauer konnte die erzeugte Wasserstoffmenge mit einem Wert von 0,523 Nl ermittelt werden. Bezogen auf das eingesetzte Sorbitol ergibt sich unter Einbeziehung der Wassergas-Shift-Reaktion eine Wasserstoff-Ausbeute von 10,9%.
- ZITATE ENTHALTEN IN DER BESCHREIBUNG
- Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
- Zitierte Patentliteratur
-
- - US 6964757 [0004]
- - US 6964758 [0004]
- - US 6699457 [0004]
- - US 6607707 [0005]
- - US 6890412 [0005]
- - US 6994839 [0005]
Claims (23)
- Verfahren zur Erzeugung von Wasserstoff aus Wasserstoff enthaltenden Einsatzstoffen durch Flüssigphasenreaktionen in Gegenwart eines Katalysators, dadurch gekennzeichnet, dass die Wasserstoff enthaltenden Einsatzstoffe in einer ionischen Flüssigkeit oder einem wenigstens eine ionische Flüssigkeit umfassenden Stoffgemisch gelöst und in Gegenwart zumindest eines die Abspaltung von Wasserstoff aus den gelösten Einsatzstoffen unterstützenden Katalysators umgesetzt werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Wasserstoff enthaltenden Einsatzstoffe in einem Reaktionssystem umgesetzt werden, das neben den gelösten Einsatzstoffen, wenigstens einer ionischen Flüssigkeit und zumindest einem Katalysator auch Wasser enthält.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Wasserstoff enthaltenden Einsatzstoffe in einem Wasser umfassenden Stoffgemisch gelöst werden.
- Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass dem Reaktionssystem Wasser in Form von Wasserdampf zugeführt wird, bei dem es sich vorzugsweise um Niederduckdampf handelt.
- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass mehr als ein Katalysator eingesetzt wird, wobei wenigstens einer der Katalysatoren eine Wassergas-Shift-Reaktion unterstützt.
- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass genau ein Katalysator eingesetzt wird, wobei dieser Katalysator gleichzeitig die Abspaltung von Wasserstoff aus gelösten Einsatzstoffen und eine Wassergas-Shift-Reaktion unterstützt.
- Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zumindest ein übergangsmetallhaltiger Katalysator eingesetzt wird, bei dem es sich vorzugsweise um eine Ruthenium- oder eine Iridium- oder eine Rhodium- oder eine Osmium- oder eine Nickel- oder eine Platin- oder eine Palladium- oder eine Kupfer- oder eine Kobalt- oder eine Rhenium- oder eine Eisen-Verbindung handelt.
- Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass zumindest eine Übergangsmetallverbindung der Oxidationsstufe 0 als Katalysator eingesetzt wird, wobei entweder die Übergangsmetallverbindung dem Reaktionssystem in der Oxidationsstufe 0 zugesetzt oder vor oder während der katalytischen Reaktion in eine Form der Oxidationsstufe 0 überführt wird.
- Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass ionische Flüssigkeiten eingesetzt werden, die gemäß der Formel [A]a b + [Y]c d beschrieben werden können, wobei a·b = –c·d und a = 1..3, b = 1..3, c = 1..3, d = 1..3 und das Anion [Y]n– ausgewählt ist aus der Gruppe bestehend aus Dicyanamid ([N(CN)2]–, Tricyanomethid ([C(CN)3]–, Tetracyanoborat ([B(CN)4]–), Sulfat ([SO4]2–), Hydrogensulfat ([HSO4]–), Phosphat ([PO4]3–), Hydrogenphosphat ([HPO4]2–), Dihydrogenphosphat ([H2PO4]–), Phosphonat ([HPO3]2–), Tosylat ([C7H7SO3]–), Nonaflat ([C4F9SO3 –]), Trisperfluoroethyl-trifluorophosphat ([PF3(C2F5)3]–), Carbonat ([CO3]2–), Hydroxid, Fluorosulfonat, [R'-COO]–, [R'-CO3]–, [HOOC-(CH2)m-COO]–, [OOC-(CH2)m-COO]2–, [R'-SO3]–, [R'R''PO2]–, [R'HPO3]–, [R'PO4R'']– oder [(R'-SO2)2N]–, und R' und R'' gleich oder ungleich, jeweils ein linearer oder verzweigter 1 bis 12 Kohlenstoffatome enthaltender aliphatischer oder alicyclischer Alkyl- oder ein C5-C18-Aryl-, C5-C18-Aryl-C1-C6-alkyl- oder C1-C6-Alkyl-C5-C18-aryl-Rest ist, der durch Halogenatome substituiert sein kann und m eine ganze Zahl zwischen 1 und 12 ist, das Kation [A]+ ausgewählt ist aus – Kationen der Alkali- oder Erdalkalimetalle – quarternären Ammonium-Kationen der allgemeinen Formel [NR1R2R3R]+, – Phosphonium-Kationen der allgemeinen Formel [PR1R2R3R]+, – Imidazolium-Kationen der allgemeinen Formel wobei der Imidazol-Kern substituiert sein kann mit wenigstens einer Gruppe, die ausgewählt ist aus C1-C6-Alkyl-, C1-C6-Alkoxy-, C1-C6-Aminoalkyl-, C5-C12-Aryl- oder C5-C12-Aryl-C1-C6-Alkylgruppen, – Benzimidazolium-Kationen der allgemeinen Formel wobei der Benzimidazol-Kern substituiert sein kann mit wenigstens einer Gruppe, die ausgewählt ist aus C1-C6-Alkyl-, C1-C6-Alkoxy-, C1-C6-Aminoalkyl-, C5-C12-Aryl- oder C5-C12-Aryl-C1-C6-Alkylgruppen, – Pyridinium-Kationen der allgemeinen Formel wobei der Pyridin-Kern substituiert sein kann mit wenigstens einer Gruppe, die ausgewählt ist aus C1-C6-Alkyl-, C1-C6-Alkoxy-, C1-C6-Aminoalkyl-, C5-C12-Aryl- oder C5-C12-Aryl-C1-C6-Alkylgruppen, – Pyrazolium-Kationen der allgemeinen Formel wobei der Pyrazol-Kern substituiert sein kann mit wenigstens einer Gruppe, die ausgewählt ist aus C1-C6-Alkyl-, C1-C6-Alkoxy-, C1-C6-Aminoalkyl-, C5-C12-Aryl- oder C5-C12-Aryl-C1-C6-Alkylgruppen, – und Triazolium-Kationen der allgemeinen Formel wobei der Triazol-Kern substituiert sein kann mit wenigstens einer Gruppe, die ausgewählt ist aus C1-C6-Alkyl-, C1-C6-Alkoxy-, C1-C6-Aminoalkyl-, C5-C12-Aryl- oder C5-C12-Aryl-C1-C6-Alkylgruppen, und die Reste R1, R2, R3 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus – Wasserstoff; – linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder alicyclischen Alkylgruppen mit 1 bis 20 Kohlenstoffatomen; – Heteroaryl-, Heteroaryl-C1-C6-Alkylgruppen mit 3 bis 8 Kohlenstoffatomen im Heteroaryl-Rest und wenigstens einem Heteroatom ausgewählt aus N, O und S, der mit wenigstens einer Gruppe ausgewählt aus C1-C6-Alkylgruppen und/oder Halogenatomen substituiert sein können; – Aryl-, Aryl-C1-C6-Alkylgruppen mit 5 bis 12 Kohlenstoffatomen im Arylrest, die gegebenenfalls mit wenigstens einer C1-C6-Alkylgruppen und/oder einem Halogenatomen substituiert sein können; und der Rest R ausgewählt ist aus – linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder alicyclischen Alkylgruppen mit 1 bis 20 Kohlenstoffatomen; – Heteroaryl-C1-C6-Alkylgruppen mit 4 bis 8 Kohlenstoffatomen im Arylrest und wenigstens einem Heteroatom ausgewählt aus N, O und S, die mit wenigstens einer C1-C6-Alkylgruppen und/oder Halogenatomen substituiert sein können; – Aryl-C1-C6-Alkylgruppen mit 5 bis 12 Kohlenstoffatomen im Arylrest, die gegebenenfalls mit wenigstens einer C1-C6-Alkylgruppe und/oder einem Halogenenatomen substituiert sein können.
- Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass Tetraalkylphosphoniumsalze und/oder 1,2,3-Trialkylimidazoliumsalze und/oder Phosphonatsalze und/oder Methylphosphonatsalze und/oder Acetatsalze und/oder Carbonatsalze und/oder Hydrogenphosphate und/oder Dihydrogenphosphate als ionische Flüssigkeiten eingesetzt werden.
- Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass es bei Reaktionstemperaturen zwischen 50 und 350°C, besonders bevorzugt zwischen 120 und 300°C und ganz besonders bevorzugt zwischen 130 und 230°C durchgeführt wird, wobei die Reaktionsdrücke zwischen 1 und 1000 bar, bevorzugt zwischen 30 und 750 bar und besonders bevorzugt zwischen 30 und 350 bar liegen.
- Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die eingesetzten Wasserstoff enthaltenden Stoffe ausgewählt sind aus einer Gruppe, die gebildet wird aus Glucose, Bagasse, Holz, Stroh, Grünschnitt und Schlachtabfällen sowie Alkoholen, Polyalkoholen, Aldehyden, Ketonen, Carbonsäuren, Monosacchariden, Disacchariden und Oligosacchariden.
- Reaktionssystem zur Erzeugung von Wasserstoff aus Wasserstoff enthaltenden Einsatzstoffen, das neben den umzusetzenden Einsatzstoffen zumindest einen Katalysator aufweist, dadurch gekennzeichnet, dass es eine oder mehrere ionische Flüssigkeiten sowie einen oder mehrere die Abspaltung von Wasserstoff aus den Wasserstoff enthaltenden Einsatzstoffen unterstützende Katalysatoren umfasst, wobei die umzusetzenden Einsatzstoffe in gelöster Form vorliegen.
- Reaktionssystem nach Anspruch 13, dadurch gekennzeichnet, dass es Wasser enthält, wobei der Wassergehalt im Reaktionssystem zwischen 0,01 und 99,99 Massen%, bevorzugt zwischen 3 und 95 Massen% und besonders bevorzugt zwischen 5 und 20 Massen% liegt.
- Reaktionssystem nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass es mehr als einen Katalysator umfasst, wobei wenigstens einer der Katalysatoren eine Wassergas-Shift-Reaktion unterstützt.
- Reaktionssystem nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass es genau einen Katalysator umfasst, wobei dieser Katalysator gleichzeitig die Abspaltung von Wasserstoff aus gelösten Einsatzstoffen und eine Wassergas-Shift-Reaktion unterstützt.
- Reaktionssystem nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass es zumindest einen übergangsmetallhaltigen Katalysator aufweist, bei dem es sich vorzugsweise um eine Ruthenium- oder eine Iridium- oder eine Rhodium- oder eine Osmium- oder eine Nickel- oder eine Platin- oder eine Palladium- oder eine Kupfer- oder eine Kobalt- oder eine Rhenium- oder eine Eisen-Verbindung handelt.
- Reaktionssystem nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, dass zumindest einer der Katalysatoren vollständig löslich ist oder in Form einer Übergangsmetallverbindung der Oxidationsstufe 0 vorliegt, wobei entweder die Übergangsmetallverbindung dem Reaktionssystem in der Oxidationsstufe 0 zugesetzt oder vor oder während der katalytischen Reaktion in eine Form der Oxidationsstufe 0 überführt wird.
- Reaktionssystem nach einem der Ansprüche 13 bis 18, dadurch gekennzeichnet, dass der Anteil der Katalysatoren zwischen 0,0001 und 20 Massen%, bevorzugt zwischen 0,005 und 10 Massen% und besonders bevorzugt zwischen 0,04 und 2 Massen% liegt.
- Reaktionssystem nach einem der Ansprüche 13 bis 19, dadurch gekennzeichnet, dass ionische Flüssigkeiten eingesetzt werden, die gemäß der Formel [A]a b + [y]c d- beschrieben werden können, wobei a·b = –c·d und a = 1..3, b = 1..3, c = 1..3, d = 1..3 und das Anion [Y]n– ausgewählt ist aus der Gruppe bestehend aus Dicyanamid ([N(CN)2]–, Tricyanomethid ([C(CN)3]–, Tetracyanoborat ([B(CN)4]–), Sulfat ([SO4]2–), Hydrogensulfat ([HSO4]–), Phosphat ([PO4]3–), Hydrogenphosphat ([HPO4]2–), Dihydrogenphosphat ([H2PO4]–), Phosphonat ([HPO3]2–), Tosylat ([C7H7SO3]–), Nonaflat ([C4F9SO3 –]), Trisperfluoroethyl-trifluorophosphat ([PF3(C2F5)3]–), Carbonat ([CO3]2–), Hydroxid, Fluorosulfonat, [R'-COO]–, [R'-CO3]–, [HOOC-(CH2)m-COO]–, [OOC-(CH2)m-COO]2–, [R'-SO3]–, [R'R''PO2]–, [R'HPO3]–, [R'PO4R'']– oder [(R'-SO2)2N]–, und R' und R'' gleich oder ungleich, jeweils ein linearer oder verzweigter 1 bis 12 Kohlenstoffatome enthaltender aliphatischer oder alicyclischer Alkyl- oder ein C5-C18-Aryl-, C5-C18-Aryl-C1-C6-alkyl- oder C1-C6-Alkyl-C5-C18-aryl-Rest ist, der durch Halogenatome substituiert sein kann und m eine ganze Zahl zwischen 1 und 12 ist, das Kation [A]+ ausgewählt ist aus – Kationen der Alkali- oder Erdalkalimetalle – quarternären Ammonium-Kationen der allgemeinen Formel [NR1R2R3R]+, – Phosphonium-Kationen der allgemeinen Formel [PR1R2R3R]+, – Imidazolium-Kationen der allgemeinen Formel wobei der Imidazol-Kern substituiert sein kann mit wenigstens einer Gruppe, die ausgewählt ist aus C1-C6-Alkyl-, C1-C6-Alkoxy-, C1-C6-Aminoalkyl-, C5-C12-Aryl- oder C5-C12-Aryl-C1-C6-Alkylgruppen, – Benzimidazolium-Kationen der allgemeinen Formel wobei der Benzimidazol-Kern substituiert sein kann mit wenigstens einer Gruppe, die ausgewählt ist aus C1-C6-Alkyl-, C1-C6-Alkoxy-, C1-C6-Aminoalkyl-, C5-C12-Aryl- oder C5-C12-Aryl-C1-C6-Alkylgruppen, – Pyridinium-Kationen der allgemeinen Formel wobei der Pyridin-Kern substituiert sein kann mit wenigstens einer Gruppe, die ausgewählt ist aus C1-C6-Alkyl-, C1-C6-Alkoxy-, C1-C6-Aminoalkyl-, C5-C12-Aryl- oder C5-C12-Aryl-C1-C6-Alkylgruppen, – Pyrazolium-Kationen der allgemeinen Formel wobei der Pyrazol-Kern substituiert sein kann mit wenigstens einer Gruppe, die ausgewählt ist aus C1-C6-Alkyl-, C1-C6-Alkoxy-, C1-C6-Aminoalkyl-, C5-C12-Aryl- oder C5-C12-Aryl-C1-C6-Alkylgruppen, – und Triazolium-Kationen der allgemeinen Formel wobei der Triazol-Kern substituiert sein kann mit wenigstens einer Gruppe, die ausgewählt ist aus C1-C6-Alkyl-, C1-C6-Alkoxy-, C1-C6-Aminoalkyl-, C5-C12-Aryl- oder C5-C12-Aryl-C1-C6-Alkylgruppen, und die Reste R1, R2, R3 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus – Wasserstoff; – linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder alicyclischen Alkylgruppen mit 1 bis 20 Kohlenstoffatomen; – Heteroaryl-, Heteroaryl-C1-C6-Alkylgruppen mit 3 bis 8 Kohlenstoffatomen im Heteroaryl-Rest und wenigstens einem Heteroatom ausgewählt aus N, O und S, der mit wenigstens einer Gruppe ausgewählt aus C1-C6-Alkylgruppen und/oder Halogenatomen substituiert sein können; – Aryl-, Aryl-C1-C6-Alkylgruppen mit 5 bis 12 Kohlenstoffatomen im Arylrest, die gegebenenfalls mit wenigstens einer C1-C6-Alkylgruppen und/oder einem Halogenatomen substituiert sein können; und der Rest R ausgewählt ist aus – linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder alicyclischen Alkylgruppen mit 1 bis 20 Kohlenstoffatomen; – Heteroaryl-C1-C6-Alkylgruppen mit 4 bis 8 Kohlenstoffatomen im Arylrest und wenigstens einem Heteroatom ausgewählt aus N, O und S, die mit wenigstens einer C1-C6-Alkylgruppen und/oder Halogenatomen substituiert sein können; – Aryl-C1-C6-Alkylgruppen mit 5 bis 12 Kohlenstoffatomen im Arylrest, die gegebenenfalls mit wenigstens einer C1-C6-Alkylgruppe und/oder einem Halogenenatomen substituiert sein können.
- Reaktionssystem nach einem der Ansprüche 13 oder 20, dadurch gekennzeichnet, dass es sich bei der ionischen Flüssigkeit oder den ionischen Flüssigkeiten um Tetraalkylphosphoniumsalze und/oder 1,2,3-Trialkylimidazoliumsalze und/oder Phosphonatsalze und/oder Methylphosphonatsalze und/oder Acetatsalze und/oder Carbonatsalze und/oder Hydrogenphosphate und/oder Dihydrogenphosphate handelt.
- Reaktionssystem nach einem der Ansprüche 13 bis 21, dadurch gekennzeichnet, dass es einen Gehalt an Wasserstoff enthaltenden Einsatzstoffen aufweist, der zwischen 1 und 70 Massen%, bevorzugt zwischen 3 und 50 Massen% und besonders bevorzugt zwischen 5 und 30 Massen% liegt.
- Reaktionssystem nach einem der Ansprüche 13 bis 22, dadurch gekennzeichnet, dass das Reaktionssystem Wasserstoff enthaltende Einsatzstoffe umfasst, die ausgewählt sind aus einer Gruppe, die gebildet wird aus Glucose, Bagasse, Holz, Stroh, Grünschnitt und Schlachtabfällen sowie Alkoholen, Polyalkoholen, Aldehyden, Ketonen, Carbonsäuren, Monosacchariden, Disacchariden und Oligosacchariden.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009037884A DE102009037884A1 (de) | 2008-09-03 | 2009-08-18 | Verfahren und Reaktionssystem zur Gewinnung von Wasserstoff |
PCT/EP2009/006397 WO2010025921A1 (de) | 2008-09-03 | 2009-09-03 | Verfahren und reaktionssystem zur gewinnung von wasserstoff |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008045484.2 | 2008-09-03 | ||
DE102008045484 | 2008-09-03 | ||
DE102009037884A DE102009037884A1 (de) | 2008-09-03 | 2009-08-18 | Verfahren und Reaktionssystem zur Gewinnung von Wasserstoff |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102009037884A1 true DE102009037884A1 (de) | 2010-03-04 |
Family
ID=41606361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102009037884A Withdrawn DE102009037884A1 (de) | 2008-09-03 | 2009-08-18 | Verfahren und Reaktionssystem zur Gewinnung von Wasserstoff |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102009037884A1 (de) |
WO (1) | WO2010025921A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009053108A1 (de) | 2009-11-13 | 2011-05-19 | Linde Ag | Verfahren und Vorrichtung zur Erzeugung von Wasserstoff |
US8912240B2 (en) | 2013-02-22 | 2014-12-16 | Eastman Chemical Company | Production of methanol and ethanol from CO or CO2 |
WO2021171675A1 (ja) * | 2020-02-28 | 2021-09-02 | 国立大学法人京都大学 | 水素の製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013011379B4 (de) * | 2013-07-09 | 2018-10-25 | Martin Prechtl | H2-Produktion |
CN110844881A (zh) * | 2019-11-28 | 2020-02-28 | 云南电网有限责任公司电力科学研究院 | 一种利用离子液体对液态有机储氢材料脱氢的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6607707B2 (en) | 2001-08-15 | 2003-08-19 | Ovonic Battery Company, Inc. | Production of hydrogen from hydrocarbons and oxygenated hydrocarbons |
US6699457B2 (en) | 2001-11-29 | 2004-03-02 | Wisconsin Alumni Research Foundation | Low-temperature hydrogen production from oxygenated hydrocarbons |
US6890412B2 (en) | 2001-08-27 | 2005-05-10 | Surfect Technologies, Inc. | Electrodeposition apparatus and method using magnetic assistance and rotary cathode for ferrous and magnetic particles |
US6994839B2 (en) | 2001-08-15 | 2006-02-07 | Ovonic Battery Company, Inc. | Carbonate recycling in a hydrogen producing reaction |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007038965A1 (de) * | 2007-08-17 | 2009-03-05 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Speicherung von Wasserstoff |
DE102007039478A1 (de) * | 2007-08-21 | 2009-02-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Wasserstoffgenerator sowie Verfahren zur Erzeugung von Wasserstoff |
-
2009
- 2009-08-18 DE DE102009037884A patent/DE102009037884A1/de not_active Withdrawn
- 2009-09-03 WO PCT/EP2009/006397 patent/WO2010025921A1/de active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6607707B2 (en) | 2001-08-15 | 2003-08-19 | Ovonic Battery Company, Inc. | Production of hydrogen from hydrocarbons and oxygenated hydrocarbons |
US6994839B2 (en) | 2001-08-15 | 2006-02-07 | Ovonic Battery Company, Inc. | Carbonate recycling in a hydrogen producing reaction |
US6890412B2 (en) | 2001-08-27 | 2005-05-10 | Surfect Technologies, Inc. | Electrodeposition apparatus and method using magnetic assistance and rotary cathode for ferrous and magnetic particles |
US6699457B2 (en) | 2001-11-29 | 2004-03-02 | Wisconsin Alumni Research Foundation | Low-temperature hydrogen production from oxygenated hydrocarbons |
US6964758B2 (en) | 2001-11-29 | 2005-11-15 | Wisconsin Alumni Research Foundation | Low-temperature hydrogen production from oxygenated hydrocarbons |
US6964757B2 (en) | 2001-11-29 | 2005-11-15 | Wisconsin Alumni Research | Low-temperature hydrogen production from oxygenated hydrocarbons |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009053108A1 (de) | 2009-11-13 | 2011-05-19 | Linde Ag | Verfahren und Vorrichtung zur Erzeugung von Wasserstoff |
US8912240B2 (en) | 2013-02-22 | 2014-12-16 | Eastman Chemical Company | Production of methanol and ethanol from CO or CO2 |
WO2021171675A1 (ja) * | 2020-02-28 | 2021-09-02 | 国立大学法人京都大学 | 水素の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2010025921A1 (de) | 2010-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2473467B1 (de) | Verfahren zur katalytischen erzeugung von ameisensäure | |
DE3026900A1 (de) | Entfernung des kobalts aus produkten des oxo-verfahrens und dessen wiedergewinnung | |
CH702124B1 (de) | Verfahren zum Abbau von Lignin. | |
DE19939491A1 (de) | Kontinuierliches Verfahren zur Hydroformylierung von Olefinen mit 6 bis 20 Kohlenstoffatomen | |
DE102009037884A1 (de) | Verfahren und Reaktionssystem zur Gewinnung von Wasserstoff | |
DE60315424T2 (de) | Verfahren zur verbesserung eines katalysators | |
DE2931883C2 (de) | Verfahren zur Carbonylierung von olefinischen Verbindungen | |
DE3208058A1 (de) | Verfahren zur gewinnung von edelmetallen aus der gruppe viii des periodensystems der elemente, die an bei edelmetallkatalysierten carbonylierungsreaktionen anfallende rueckstaende gebunden sind | |
DE112017000998T5 (de) | Kohlenstoffvermittelte Wasserspaltung unter Verwendung von Formaldehyd | |
DE3220226A1 (de) | Verfahren zur selektiven abtrennung teerartiger produkte, die bei edelmetallkatalysierten carbonylierungsreaktionen gebildet werden | |
DE2345230C2 (de) | Verfahren zur Herstellung von künstlichem Erdgas | |
DE69108567T2 (de) | Kontinuierliches verfahren zur herstellung von essigsäureanhydrid oder einer mischung von essigsäureanhydrid und essigsäure. | |
DE2804307B2 (de) | ||
DE112021002858T5 (de) | Verfahren für die Herstellung von Ether | |
DE1543195A1 (de) | Verfahren zur Herstellung von Benzol hoher Reinheit | |
EP2456555A1 (de) | Verfahren zur oxidation von methan | |
DE102009038690A1 (de) | Katalysatorzusammensetzung für die Umsetzung von Kohlenmonoxid in Gasströmen | |
DE3146313A1 (de) | Verfahren zur herstellung von adipinsaeurediestern | |
DE2554403A1 (de) | Verfahren zur katalytischen kupplung von allylverbindungen an substituierte olefine | |
DE69418418T2 (de) | Verfahren zur Herstellung einer Hydridocarbonyltris(triorganophosphor)-Rhodium-Verbindung | |
EP2560964A1 (de) | Verfahren zur herstellung von 4-(4-aminophenyl)-morpholin-3-on | |
EP0322661B1 (de) | Verfahren zur Rückgewinnung von Rhodium aus Rhodiumkomplexverbindungen enthaltenden wässrigen Lösungen | |
EP1317491B1 (de) | Verfahren zur kontinuierlichen hydroformylierung von polyalkenen mit 30 bis 700 kohlenstoffatomen | |
DE69001960T2 (de) | Hydroformylierungsverfahren. | |
DE2600666A1 (de) | Thermochemisches verfahren zur erzeugung von wasserstoff aus wasser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8127 | New person/name/address of the applicant |
Owner name: FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUER, DE Owner name: LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE |
|
R081 | Change of applicant/patentee |
Owner name: LINDE AKTIENGESELLSCHAFT, DE Free format text: FORMER OWNER: LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE Effective date: 20110208 Owner name: FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUER, DE Free format text: FORMER OWNER: LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE Effective date: 20110208 |
|
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |
Effective date: 20120301 |