DE102009001793A1 - Prepregs und daraus hergestellte Formkörper - Google Patents

Prepregs und daraus hergestellte Formkörper Download PDF

Info

Publication number
DE102009001793A1
DE102009001793A1 DE200910001793 DE102009001793A DE102009001793A1 DE 102009001793 A1 DE102009001793 A1 DE 102009001793A1 DE 200910001793 DE200910001793 DE 200910001793 DE 102009001793 A DE102009001793 A DE 102009001793A DE 102009001793 A1 DE102009001793 A1 DE 102009001793A1
Authority
DE
Germany
Prior art keywords
prepregs
fiber
reactive
diisocyanate
polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200910001793
Other languages
English (en)
Inventor
Friedrich Georg Dr. Schmidt
Emmanouil Dr. Spyrou
Werner Grenda
Sebastian De Nardo
Sibylle Prof. Planitz-Penno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Priority to DE200910001793 priority Critical patent/DE102009001793A1/de
Priority to CA2755936A priority patent/CA2755936C/en
Priority to BRPI1013403A priority patent/BRPI1013403A2/pt
Priority to CN201080013378.5A priority patent/CN102361917B/zh
Priority to PCT/EP2010/050319 priority patent/WO2010108701A1/de
Priority to EP20100701644 priority patent/EP2411454B1/de
Priority to AU2010227757A priority patent/AU2010227757B2/en
Priority to KR1020167022669A priority patent/KR20160102578A/ko
Priority to ES10701644T priority patent/ES2423802T3/es
Priority to JP2012501198A priority patent/JP5815501B2/ja
Priority to KR1020117022402A priority patent/KR101897824B1/ko
Priority to PL10701644T priority patent/PL2411454T3/pl
Priority to RU2011142633/04A priority patent/RU2540078C2/ru
Priority to US13/256,394 priority patent/US20120003891A1/en
Publication of DE102009001793A1 publication Critical patent/DE102009001793A1/de
Priority to ZA2011/07682A priority patent/ZA201107682B/en
Priority to US13/973,425 priority patent/US20140065911A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • B29C70/506Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands and impregnating by melting a solid material, e.g. sheet, powder, fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/798Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing urethdione groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2926Coated or impregnated inorganic fiber fabric
    • Y10T442/2992Coated or impregnated glass fiber fabric

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Die Erfindung betrifft Prepregs und daraus hergestellte Composite-Bauteile (Formkörper), erhältlich durch die Verwendung pulverförmiger reaktiver Polyurethanzusammensetzungen.

Description

  • Die Erfindung betrifft Prepregs und daraus hergestellte Composite-Bauteile (Formkörper), erhältlich durch die Verwendung pulverförmiger reaktiver Polyurethanzusammensetzungen.
  • Verschiedene Formgebungsprozesse, wie z. B. das Reaction-Transfer-Moulding(RTM)-Verfahren beinhalten die Einbringung der Verstärkungsfasern in eine Form, das Schließender Form, das Einbringen der vernetzbaren Harzformulierung in die Form und die anschließende Vernetzung des Harzes, typischerweise durch Wärmezufuhr.
  • Eine der Beschränkungen eines solchen Prozesses ist das relativ schwierige Einlegen der Verstärkungsfasern in die Form. Die einzelnen Lagen des Gewebes oder Geleges müssen zugeschnitten und den unterschiedlichen Formgeometrien angepasst werden. Das kann sowohl zeitintensiv wie auch kompliziert sein, insbesondere wenn die Formkörper auch Schaum- oder andere Kerne enthalten sollen. Vorformbare Faserverstärkungen mit einfachem Handling und bestehenden Umformmöglichkeiten wären hier wünschenswert.
  • Faserverstärkte Materialien in Form von Prepregs werden bereits in vielen industriellen Anwendungen wegen ihrer bequemen Handhabung und der erhöhten Effizienz bei der Verarbeitung im Vergleich zu der alternativen wet-lay-up Technologie eingesetzt.
  • Industrielle Anwender solcher Systeme verlangen neben schnelleren Zykluszeiten und höheren Lagerstabilitäten auch bei Raumtemperatur auch eine Möglichkeit die Prepregs zuzuschneiden, ohne dass bei automatisiertem Zuschnitt und Lay-up der einzelnen Prepreg-Lagen die Schneidwerkzeuge mit der häufig klebrigen Matrixmaterial verunreinigt werden.
  • Neben Polyestern, Vinylestern und Epoxy-Systemen gibt es eine Reihe spezialisierter Harze im Bereich der vernetzenden Matrix-Systeme. Dazu zählen auch Polyurethan-Harze, die wegen ihrer Zähigkeit, Schadenstoleranz und die Festigkeit insbesondere zur Herstellung von Composite-Profilen über Pultrusionsverfahren eingesetzt werden. Als Nachteil wird häufig die Toxizität der verwendeten Isocyanate genannt.
  • Polyurethan-Composites weisen auch gegenüber Vinylestern, ungesättigten Polyesterharzen (UPE) oder UPE-Urethan-Hybrid-Harzen eine überlegene Zähigkeit auf.
  • Prepregs und daraus hergestellte Composites auf der Basis von Epoxy-Systemen werden zum Beispiel beschrieben in WO 98/50211 , US 4,992,228 , US 5,080,857 , US 5,427,725 , GB 2007676 , GB 2182074 , EP 309 221 , EP 297 674 , WO 89/04335 , US 5,532,296 und US 4,377,657 , US 4,757,120 .
  • In der WO 2006/043019 wird ein Verfahren zur Herstellung von Prepregs auf der Basis von Epoxidharz-Polyurethanpulvern beschrieben.
  • Des Weiteren sind Prepregs auf der Basis von pulverförmigen Thermoplasten als Matrix bekannt.
  • In der US 2004/0231598 wird eine Methode beschrieben, bei der die Partikel über eine spezielle Beschleunigungskammer mit elektrostatischer Aufladung geführt werden. Diese Apparatur dient zur Beschichtung von Glas-, Aramid- oder Kohlefaser-Substraten für die Herstellung von Prepregs aus thermoplastischen Harzen. Als Harze werden Polyethylen (PE), Polypropylen (PP), Polyetheretherketon (PEEK), Polyethersulfon (PES), Polyphenylsulfon (PPS), Polyimid (PI), Polyamid (PA), Polycarbonat (PC), Polyethylenterephthalat (PET), Polyurethan (PU), Polyester und Fluorpolymere genannt. Die daraus hergestellten thermoplastischen Prepreg-Textilien zeigen inherente Zähigkeit, ein gutes viscoelastische Dämpfungsverhalten, eine unbegrenzte Lagerfähigkeit, gute Chemikalienbeständigkeit und Recyclierbarkeit.
  • In der WO 98/31535 wird eine Methode zur Pulverimprägnierung beschrieben, bei der die zu imprägnierenden Glas- oder Kohlefaserstränge mit einer Partikel/Flüssigkeits- bzw. Partikel/Gas-Mischung in einem definierten Geschwindigkeitsprofil beaufschlagt werden. Dabei bestehen die Pulver aus keramischen bzw. thermoplastischen Materialien, unter anderem thermoplastisches Polyurethan.
  • In der WO 99/64216 werden Prepregs und Composite und eine Methode zu deren Herstellung beschrieben, bei der Emulsionen mit so kleinen Polymerpartikeln verwendet werden, dass eine Einzelfaserumhüllung ermöglicht wird. Die Polymere der Partikel haben eine Viskosität von mindestens 5000 centipoise und sind entweder Thermoplaste oder vernetzende Polyurethan-Polymere.
  • In der EP 0590702 werden Pulverimprägnierungen zur Herstellung von Prepregs beschrieben, bei denen das Pulver aus einem Gemisch aus einem Themoplasten und einem reaktiven Monomer bzw. Prepolymeren besteht.
  • Die WO 2005/091715 beschreibt ebenfalls die Verwendung von Thermoplasten zur Herstellung von Prepregs.
  • Michaeli et al. beschreibt die Entwicklung einer Pulvertechnologie für einen Pultrusionsprozess mit Thermoplastischen Polyurethanen, TPU genannt, in Coatings & Composite Materials, Nr. 19, p37–39, 1997.
  • Weiterhin werden in dem Artikel Processing and properties of thermoplastic polyurethane prepreg. (Ma, C. C. M.; Chiang, C. L. Annual Technical Conference – Society of Plastics Engineers (1991), 49th 2065-9.) Thermoplastische Polyurethan (TPU) Prepregs auf Basis von Lösemitteln und Wasser enthaltenden TPU-Systemen offenbart.
  • Prepregs mit einer Matrix auf der Basis von 2-Komponenten-Polyurethanen (2-K-PUR) sind bekannt.
  • Die Kategorie der 2-K-PUR umfasst im Wesentlichen die klassischen reaktiven Polyurethan-Harz-Systeme. Prinzipiell handelt es sich um ein System aus zwei getrennten Komponenten. Während der maßgebende Bestandteil der einen Komponente immer ein Polyisocyanat ist, sind dies bei der zweiten Polyole bzw. bei neueren Entwicklungen auch Amino- oder Amin-Polyol-Gemische. Beide Teile werden erst kurz vor der Verarbeitung miteinander vermischt. Danach erfolgt die chemische Aushärtung durch Polyadition unter Bildung eines Netzwerkes aus Polyurethan bzw. Polyharnstoff.
  • 2-Komponenten-Systeme haben nach dem Vermischen beider Bestandteile eine begrenzte Verarbeitungszeit (Standzeit, Potlife), da die einsetzende Reaktion zur allmählichen Viskositätserhöhung und schließlich zur Gelierung des Systems führt. Zahlreiche Einflussgrößen bestimmen dabei die effektive Zeit seiner Verarbeitbarkeit: Reaktivität der Reaktionspartner, Katalysierung, Konzentration, Löslichkeit, Feuchtegehalt, NCO/OH-Verhältnis und Umgebungstemperatur sind die wichtigsten [Lackharze, Stoye/Freitag, Hauser-Verlag 1996, Seiten 210/212].
  • Der Nachteil der Prepregs auf der Basis derartiger 2-K-PUR-Systeme ist, dass nur eine kurze Zeit zur Verarbeitung des Prepreg zu einem Composite zur Verfügung steht. Deshalb sind derartige Prepregs nicht über mehrere Stunden geschweige denn Tage lagerstabil.
  • Im Folgenden folgt eine Beschreibung der Polyurethan-Prepregs bzw. -Composite auf der Basis von 2-K-PUR-Systemen.
  • In dem Artikel von K. Recker wird über die Entwicklung eines 2-K-Polyurethansystems für das Harzmattenverfahren unter besonderer Berücksichtigung der Verarbeitungseigenschaften für SMC-Bauteile berichtet. (Baypreg – ein neuer POLYURETHAN-Werkstoff für das Harzmattenverfahren, Recker, Klaus, Kunststoffe-Plastics 8, 1981).
  • Die WO 2005/049301 offenbart ein katalytisch aktiviertes 2-K-PUR-System, wobei die Polyisocyanat-Komponente und das Polyol gemischt werden und mittels Pultrusion zu einem Composite verarbeitet werden.
  • In der WO 2005/1 061 55 werden faserverstärkte Composites für die Bau-Industrie offenbart, die mittels der Long-Fiber-Injection (LFI) Technologie mit 2-K-Polyurethan-Systemen hergestellt werden.
  • In der JP 2004196851 werden Composites beschrieben, die aus Carbonfasern und organischen Fasern, wie z. B. Hanf, unter Verwendung einer Matrix aus 2-K-PUR auf der Basis von polymeren Methylendiphenyldiisocyanat (MDI) und speziellen OH-Gruppen haltigen Verbindungen hergestellt werden.
  • Die EP 1 319 503 beschreibt Polyurethan-Composites, wobei spezielle Polyurethan-Deckschichten für ein mit einem 2K-PUR-Harz getränktes Faser-Laminat, das eine Kernschicht (z. B. eine Papierwabe) umhüllt, verwendet werden. Das 2K-PUR-Harz besteht z. B. aus MDI und einer Mischung aus Polypropylentriolen und Diolen von Ethylenoxid-Propylenoxid-Copolymeren. In der WO 2003/101719 werden Polyurethanbasierte Composites und die Methoden zur Herstellung beschrieben. Es handelt sich um 2-K-Polyurethanharze mit definierten Viskositäten und bestimmten Gelzeiten.
  • 2-K-PUR-Systeme werden ebenfalls abgehandelt in: „Fiber reinforced polyurethane composites: shock tolerant components with particular emphasis an armor plating” (Ratcliffe, Colin P.; Crane, Roger M.; Santiago, Armando L., AMD (1995), 211 (Innovative Processing and Characterization of Composite Materials), 29–37.) und in Fiber-reinforced polyurethane composites. I. Process feasibility and morphology. (Ma, Chef Chi M.; Chen, Chin Hsing. International SAMPE Symposium and Exhibition (1992), 37 (Mater. Work. You 21st Century), 1062–74.)
  • Von der unterschiedlichen Bindemittelbasis abgesehen entsprechen feuchtigkeitshärtende Lacke sowohl in ihrer Zusammensetzung als auch in ihren Eigenschaften weitgehend analogen 2K-Systemen. Es werden im Prinzip die gleichen Lösemittel, Pigmente, Füllstoffe und Hilfsmittel verwendet. Anders als 2K-Lacke tolerieren diese Systeme vor ihrer Applikation aus Stabilitätsgründen keinerlei Feuchtigkeit.
  • Bekannt sind auch physikalisch trocknende Systeme auf der Basis von nichtreaktiven PUR-Elastomeren. Es handelt sich hierbei um höhermolekulare, lineare, thermoplastische Urethane aus Diolen und Diisocyanaten, vorzugsweise MDI, TDI, HDI und IPDI. Solche thermoplastischen Systeme weisen in der Regel sehr hohe Viskositäten und damit auch sehr hohe Verarbeitungstemperaturen auf. Dies erschwert den Einsatz für Prepregs maßgeblich.
  • Bei der Herstellung von Prepregs mit Faserverbunden ist der Einsatz von Pulvern bei reaktiven Systemen eher unüblich und beschränkt sich bislang auf wenige Einsatzgebiete. Das wohl gängigste Verfahren, um ein Pulver auf eine Faseroberfläche zu bringen, ist das Wirbelbettverfahren (fluidized bed impregnation). Durch eine aufwärts gerichtete Strömung werden Pulverpartikel in einen Zustand versetzt, in dem sie fluid-ähnliche Eigenschaften aufweisen. Dieses Verfahren wird in der EP 590 702 angewandt. Dabei werden die Stränge einzelner Faserbündel auseinander geflochten und im Wirbelbett mit dem Pulver beschichtet. Das Pulver besteht dabei aus einer Mischung aus reaktivem und thermoplastischem Pulver, um so die Eigenschaften der Matrix zu optimieren. Einzelne Rovings (Faserbündel) werden schließlich zusammengelegt und mehrere Lagen bei einem Druck von 16 bar für etwa 20 Minuten verpresst. Die Temperaturen variieren zwischen 250 und 350°C. Häufig kommt es allerdings beim Wirbelbettverfahren zu unregelmäßiger Beschichtung, insbesondere wenn die Stränge nicht auseinander gezogen werden.
  • Diesbezüglich wird in der US 20040231598 eine Methode vorgestellt, die ähnlich dem Wirbelbettverfahren funktioniert. Dabei transportiert ein Luftstrom die Partikel zum Substrat und es erfolgt durch einen speziellen Aufbau eine gleichmäßige Abscheidung des Pulvers.
  • Ein weiteres Verfahren beschreibt die, US 20050215148 . Dort werden mit der eben erwähnten Vorrichtung gleichmäßige Verteilungen des Pulvers auf der Faser erreicht. Die Partikelgröße reicht dabei von 1 bis 2000 μm. Beschichtet wird bei mehreren Versuchen von einer oder von zwei Seiten. Durch die gleichmäßige Aufbringung des Pulvers werden nach einem anschließenden Verpressen der Prepregs Laminate ohne Lufteinschlüsse erzeugt.
  • Eine weitere Anmeldung, WO 2006/043019 beschreibt die Anwendung von epoxy- und amino-terminierten Harzen in Pulverform. Dabei werden die Pulver vermischt und auf die Fasern gegeben. Anschließend werden die Partikel angesintert. Die Partikelgröße liegt zwischen 1 und 3000 μm, vorzugsweise aber zwischen 1 und 150 μm.
  • Diese Einschränkung der Partikelgröße auf eher kleine Durchmesser wird auch in einer Studie der Michigan State University empfohlen. Dabei ist die Theorie, dass Partikel mit kleinen Durchmessern eher in Hohlräume zwischen einzelnen Filamenten eindringen können als Partikel mit großen Durchmessern (S. Padaki, L. T. Drzal: a simulation study an the effects of particle size an the consolidation of polymer powder impregnated tapes, Department of Chemical Engineering, Michigan State University, Composites: Part A (1999), pp. 325–337).
  • Neben der Prepregtechnik werden auch in anderen klassischen Verfahren reaktive Pulver-Systeme eingesetzt, so beispielsweise in der Wickeltechnik [M. N. Ghasemi Nejhad, K. M. Ikeda: Design, manufacture and characterization of composites using on-line recycled thermoplastic powder impregnation of fibres and in-situ filament winding, Department of Mechanical Engineering, University of Hawaii at Manoa, Journal of Thermoplastic Composite Materials, Vol 11, pp. 533–572, November 1998] oder beim Pultrusionsverfahren. Für das Pultrusionsverfahren werden beispielsweise Faserseile (Towpregs) mit dem Pulver beschichtet und zunächst als sogenannte Towpregs aufgewickelt und gelagert. Eine Möglichkeit zur Herstellung ist in einem Artikel des SAMPE Journal's beschrieben [R. E. Allred, S. P. Wesson, D. A. Babow: powder impregnation studies for high temperature towpregs, Adherent Technologies, SAMPE Journal, Vol. 40, No. 6, pp. 40–48, November/December 2004]. In einer weiteren Untersuchung wurden solche Towpregs durch das Pultrusionsverfahren zusammen gepresst und ausgehärtet zu Werkstoffbauteilen [N. C. Parasnis, K. Ramani, H. M. Borgaonkar: Ribbonizing of electrostatic powder spray impregnated thermoplastic tows by pultrusion, School of Mechanical Engineering, Purdue University, composites, Part A, Applied science and manufacturing, Vol. 27, pp. 567–574, 1996]. Obwohl die Herstellung von Towpregs und anschließende Verpressung im Pultrusionsverfahren bereits mit duroplastischen Systemen durchgeführt wurde, werden bei diesem Verfahren bislang größtenteils nur thermoplastische Systeme eingesetzt.
  • Die Aufgabe war es, ein problemlos zu handhabendes, das heißt nicht toxisches, polyurethanbasierendes Prepreg-System zu finden, das weder die hohen Viskositäten der thermoplastische Polyurethan-Systeme und damit die schwierige Faser- bzw. Gewebe-Durchtränkung noch die kurzen Verarbeitungszeiten von 2-K-Polyurethan-Systemen aufweist. Weitere Aufgabe dieser Erfindung war es daher, Prepregs mit Polyurethan-Matrixmaterial zu finden, welche mit einem einfachen Verfahren hergestellt werden können, wobei das Hauptaugenmerk auf das Handling und die Lagerungsfähigkeit der Prepregs gelegt werden sollte.
  • Für die erfindungsgemäßen Prepregs ist es vorteilhaft, wenn die Viskosität der unvernetzten Matrixmaterialien gering genug ist, um bei der Herstellung des Composite-Bauteils eine Benetzung des Faser förmigen Trägers zu gewährleisten, wobei auch eine Thixotropie vorteilhaft sein kann, damit ein Abfließen des Harzes in senkrechten Bauteilsegmenten verhindert werden kann.
  • Durch die Wahl geeigneter Ausgangsstoffe zu Herstellung der Matrixmaterialien kann eine genügend lange Verarbeitungszeit (abhängig von der jeweiligen Anwendung bei der Herstellung der Composite) zwischen dem Aufschmelzen der nicht ausreagierten Matrixmaterial und der Vollendung der Reaktion gewährleistet werden.
  • Überraschend wurde nun gefunden, dass sich mit reaktiven pulverförmigen Polyurethanzusammensetzungen lagerstabile, aber noch reaktive und somit bei der Composite-Bauteil-Herstellung vernetzbare Polyurethan basierende Prepregs herstellen lassen, die für die Herstellung leistungsfähiger Composite für verschiedenste Anwendungen im Bereich der Bau-, der Automobil-, der Luft- und Raumfahrt-Industrie, der Energietechnik (Windkraftanlagen) und im Boots- und Schiffbau eingesetzt werden können. Die erfindungsgemäß enthaltenen reaktiven pulverförmigen Polyurethanzusammensetzungen sind umweltfreundlich, kostengünstig, weisen gute mechanische Eigenschaften auf, lassen sich einfach verarbeiten und zeichnen sich nach Härtung durch eine gute Wetterbeständigkeit wie durch ein ausgewogenes Verhältnis zwischen Härte und Flexibilität aus.
  • Gegenstand der Erfindung sind Prepregs, im Wesentlichen aufgebaut aus
    • A) mindestens einem Faser förmigen Träger und
    • B) mindestens einer reaktiven pulverförmigen Polyurethanzusammensetzung als Matrixmaterial.
  • Die erfindungsgemäßen Prepregs weisen eine sehr hohe Lagerstabilität bei Raumtemperatur auf, sobald das Matrixmaterial einen Tg von mindestens 40°C aufweist. Diese beträgt je nach enthaltener reaktiver pulverförmiger Polyurethanzusammensetzung mindestens einige Tage bei Raumtemperatur, aber in der Regel sind die Prepregs mehrere Wochen bei 40°C und darunter lagerstabil.
  • Die Prepregs sind nachdem Applizieren und Fixieren, bevorzugt durch thermische Behandlung, bevorzugt durch Ansintern der reaktiven pulverförmigen Polyurethanzusammensetzung ohne jedoch zu vernetzen, nicht klebrig und daher sehr gut zu handhaben und weiter zu verarbeiten. Die erfindungsgemäß eingesetzten reaktiven pulverförmigen Polyurethanzusammensetzungen weisen demnach eine sehr gute Haftung und Verteilung auf dem Faser förmigen Träger auf.
  • Während der Weiterverarbeitung der Prepregs zu Composites (Verbundwerkstoffen) z. B. durch Verpressen bei erhöhten Temperaturen, erfolgt eine sehr gute Imprägnierung des Faser förmigen Trägers, dadurch bedingt, dass die dabei flüssig niedrig viskosen reaktiven Polyurethanzusammensetzungen vor der Vernetzungsreaktion die Faser des Trägers sehr gut benetzen, bevor durch die Vernetzungsreaktion der reaktiven Polyurethanzusammensetzung bei erhöhten Temperaturen eine Vergelung eintritt beziehungsweise die komplette Polyurethanmatrix durchhärtet.
  • Je nach Zusammensetzung der verwendeten reaktiven pulverförmigen Polyurethanzusammensetzung und gegebenenfalls zugesetzten Katalysatoren können sowohl die Geschwindigkeit der Vernetzungsreaktion bei der Herstellung der Composite-Bauteile als auch die Eigenschaften der Matrix in weiten Bereichen variiert werden.
  • Als Matrixmaterial wird im Rahmen der Erfindung die zur Herstellung der Prepregs eingesetzte reaktive pulverförmige Polyurethanzusammensetzung definiert und bei der Beschreibung der Prepregs die auf der Faser fixierte beziehungsweise haftende, noch reaktive Polyurethanzusammensetzung. Die Matrix ist definiert als die im Composite vernetzten Matrixmaterialien aus den reaktiven pulverförmigen Polyurethanzusammensetzungen.
  • Träger
  • Der Faser förmige Träger in der vorliegenden Erfindung besteht aus Faser förmigem Material (auch häufig Verstärkungsfasern genannt). Im Allgemeinen ist jegliches Material, aus dem die Fasern bestehen, geeignet, bevorzugt wird jedoch Faser förmiges Material aus Glas, Kohlenstoff, Kunststoffen, wie z. B. Polyamid (Aramid) oder Polyester, Naturfasern oder mineralischen Fasermaterialien wie Basaltfasern oder keramische Fasern (Oxidische Fasern auf Basis von Aluminiumoxiden und/oder Siliciumoxiden) verwendet. Auch Mischungen von Fasertypen, wie z. B. Gewebe-Kombinationen aus Aramid- und Glasfasern, oder Kohlenstoff- und Glasfasern, können verwendet werden. Ebenso sind Hybrid-Composite-Bauteile mit Prepregs aus unterschiedlichen Faser förmigen Trägern herstellbar.
  • Glasfasern sind hauptsächlich wegen ihres relativ geringen Preises die am häufigsten verwendeten Fasertypen. Prinzipiell sind hier alle Arten von glasbasierenden Verstärkungsfasern geeignet (E-Glas-, S-Glas-, R-Glas-, M-Glas-, C-Glas-, ECR-Glas-, D-Glas-, AR-Glas-, oder Hohlglasfasern).
  • Kohlenstofffasern kommen im Allgemeinen in Hochleistungsverbundverstoffen zum Einsatz, wo auch die im Verhältnis zur Glasfaser niedrigere Dichte bei gleichzeitig hoher Festigkeit ein wichtiger Faktor ist. Kohlenstofffasern (auch Carbonfasern) sind industriell hergestellte Fasern aus kohlenstoffhaltigen Ausgangsmaterialien, die durch Pyrolyse in graphitartig angeordneten Kohlenstoff umgewandelt werden.
  • Man unterscheidet isotrope und anisotrope Typen: isotrope Fasern besitzen nur geringe Festigkeiten und geringere technische Bedeutung, anisotrope Fasern zeigen hohe Festigkeiten und Steifigkeiten bei gleichzeitig geringer Bruchdehnung.
  • Als Naturfasern werden hier alle Textilfasern und Faserwerkstoffe bezeichnet, die aus pflanzlichem und tierischem Material gewonnen werden (z. B. Holz-, Zellulose-, Baumwoll-, Hanf-, Jute-, Leinen-, Sisal-, Bambusfasern).
  • Aramid-Fasern weisen, ähnlich wie auch Kohlenstofffasern, einen negativen Wärmeausdehnungskoeffizienten auf, werden also bei Erwärmung kürzer. Ihre spezifische Festigkeit und ihr Elastizitätsmodul ist deutlich niedriger als jene von Kohlenstofffasern. In Verbindung mit dem positiven Ausdehnungskoeffizienten des Matrixharzes lassen sich hoch maßhaltige Bauteile fertigen. Gegenüber Kohlenstofffaser verstärkten Kunststoffen ist die Druckfestigkeit von Aramidfaser-Verbundwerkstoffen deutlich geringer. Bekannte Markennamen für Aramidfasern sind Nomex® und Kevlar® von DuPont, oder Teijinconex®, Twaron® und Technora® von Teijin. Besonders geeignet und bevorzugt sind Träger aus Glasfasern, Kohlenstofffasern, Aramidfasern oder keramische Fasern.
  • Bei dem Faser förmigen Material handelt es sich um ein textiles Flächengebilde. Geeignet sind textile Flächengebilde aus Vlies, ebenso sogenannte Maschenware, wie Gewirke und Gestricke, aber auch nicht maschige Gebinde wie Gewebe, Gelege oder Geflechte. Außerdem unterscheidet man Langfaser- und Kurzfasermaterialien als Träger. Ebenfalls erfindungsgemäß geeignet sind Rovings und Garne. Alle genannten Materialien sind im Rahmen der Erfindung als Faser förmiger Träger geeignet.
  • Einen Überblick über Verstärkungsfasern enthält „Composites Technologien, Paolo Ermanni (Version 4), Script zur Vorlesung ETH Zürich, August 2007, Kapitel 7.
  • Matrixmaterial
  • Prinzipiell sind alle pulverförmigen reaktiven Polyurethanzusammensetzungen als Matrixmaterialen geeignet. Geeignete Polyurethanzusammensetzungen bestehen erfindungsgemäß aus Mischungen aus einem funktionellen Gruppen – reaktiv gegenüber NCO-Gruppen – aufweisenden Polymeren b) (Binder), auch als Harz bezeichnet, und temporär deaktivierte, das heißt intern blockierte und/oder mit Blockierungsmitteln blockierte Di- oder Polyisocyanate, auch als Härter a) (Komponente) bezeichnet.
  • Als funktionelle Gruppen der Polymeren b) (Binder) sind Hydroxylgruppen, Aminogruppen und Thiolgruppen geeignet, welche mit den freien Isocyanatgruppen unter Addition reagieren und somit die Polyurethanzusammensetzung vernetzt und aushärtet. Die Binderkomponenten müssen einen Festharzcharakter (Glastemperatur größer als die Raumtemperatur) haben. Als Binder kommen in Frage Polyester, Polyether, Polyacrylate, Polycarbonate und Polyurethane mit einer OH-Zahl von 20 bis 500 mg KOH/Gramm und einer mittleren Molmasse von 250 bis 6000 g/Mol. Besonders bevorzugt werden hydroxylgruppenhaltige Polyester oder Polyacrylate mit einer OH-Zahl von 20 bis 150 mg KOH/Gramm und einem mittleren Molekulargewicht von 500 bis 6000 g/mol. Selbstverständlich können auch Mischungen solcher Polymere eingesetzt werden. Die Menge an den funktionelle Gruppen aufweisenden Polymeren b) wird so gewählt, dass auf jede funktionelle Gruppe der Komponente b) 0,3 bis 0,7 Uretdiongruppe der Komponente a) entfällt.
  • Als Härterkomponente a) kommen mit Blockierungsmitteln blockierte oder intern blockierte (Uretdion) Di- und Polyisocyanate in Frage.
  • Die erfindungsgemäß eingesetzten Di- und Polyisocyanate können aus beliebigen aromatischen, aliphatischen, cycloaliphatischen und/oder (cyclo)aliphatischen Di- und/oder Polyisocyanaten bestehen.
  • Als aromatische Di- oder Polyisocyanate sind prinzipiell alle bekannten aromatischen Verbindungen geeignet. Besonders geeignet sind 1,3- und 1,4-Phenylendiisocyanat, 1,5-Naphthylen-diisocyanat, Tolidindiisocyanat, 2,6-Toluylendiisocyanat, 2,4-Toluylendiisocyanat (2,4-TDI), 2,4'-Diphenylmethandiisocyanat (2,4'-MDI), 4,4'-Diphenylmethandiisocyanat, die Mischungen aus monomeren Diphenylmethandiisocyanaten (MDI) und oligomeren Diphenylmethandiisocyanaten (Polymer-MDI), Xylylendiisocyanat, Tetramethylxylylendiisocyanat und Triisocyanatotoluol.
  • Geeignete aliphatische Di- oder Polyisocyanate besitzen vorteilhafterweise 3 bis 16 Kohlenstoffatome, vorzugsweise 4 bis 12 Kohlenstoffatome, im linearen oder verzweigten Alkylenrest und geeignete cycloaliphatische oder (cyclo)aliphatische Diisocyanate vorteilhafterweise 4 bis 18 Kohlenstoffatome, vorzugsweise 6 bis 15 Kohlenstoffatome, im Cycloalkylenrest. Unter (cyclo)aliphatischen Diisocyanaten versteht der Fachmann hinlänglich gleichzeitig cyclisch und aliphatisch gebundene NCO-Gruppen, wie es z. B. beim Isophorondiisocyanat der Fall ist. Demgegenüber versteht man unter cycloaliphatischen Diisocyanaten solche, die nur direkt am cycloaliphatischen Ring gebundene NCO-Gruppen aufweisen, z. B. H12MDI. Beispiele sind Cyclohexandiisocyanat, Methylcyclohexandiisocyanat, Ethylcyclohexandiisocyanat, Propylcyclohexandiisocyanat, Methyldiethylcyclohexandiisocyanat, Propandiisocyanat, Butandiisocyanat, Pentandiisocyanat, Hexandiisocyanat, Heptandiisocyanat, Octandiisocyanat, Nonandiisocyanat, Nonantriisocyanat, wie 4-Isocyanatomethyl-1,8-octandiisocyanat (TIN), Dekandi- und triisocyanat, Undekandi- und -triisocyanat, Dodecandi- und -triisocyanate.
  • Bevorzugt werden Isophorondiisocyanat (IPDI), Hexamethylendiisocyanat (HDI), Diisocyanatodicyclohexylmethan (H12MDI), 2-Methylpentandiisocyanat (MPDI), 2,2,4-Trimethylhexamethylendiisocyanat/2,4,4-Trimethylhexamethylendiisocyanat (TMDI), Norbornandiisocyanat (NBDI). Ganz besonders bevorzugt werden IPDI, HDI, TMDI und H12MDI eingesetzt, wobei auch die Isocyanurate einsetzbar sind.
  • Ebenfalls geeignet sind 4-Methyl-cyclohexan-1,3-diisocyanat, 2-Butyl-2-ethylpentamethylen-diisocyanat, 3(4)-Isocyanatomethyl-1-methylcyclohexylisocyanat, 2-Isocyanatopropylcyclohexylisocyanat, 2,4'-Methylenbis(cyclohexyl)diisocyanat, 1,4-Diisocyanato-4-methyl-pentan.
  • Selbstverständlich können auch Gemische der Di- und Polyisocyanate eingesetzt werden.
  • Weiterhin werden vorzugsweise Oligo- oder Polyisocyanate verwendet, die sich aus den genannte Di- oder Polyisocyanaten oder deren Mischungen durch Verknüpfung mittels Urethan-, Allophanat-, Harnstoff-, Biuret-, Uretdion-, Amid-, Isocyanurat-, Carbodiimid-, Uretonimin-, Oxadiazintrion- oder Iminooxadiazindion-Strukturen herstellen lassen. Besonders geeignet sind Isocyanurate, insbesondere aus IPDI und HDI.
  • Die erfindungsgemäß verwendeten Polyisocyanate sind blockiert. In Frage kommen dazu externe Blockierungsmittel, wie z. B. Acetessigsäureethylester, Diisopropylamin, Methylethylketoxim, Malonsäurediethylester, ε-Caprolactam, 1,2,4-Triazol, Phenol bzw. substituierte Phenole und 3,5-Dimethylpyrazol. Die bevorzugt verwendeten Härterkomponente sind IPDI-Addukte, die Isocyanurat-Gruppierungen und ε-Caprolactam blockierte Isocyanatstrukturen enthalten.
  • Auch eine interne Blockierung ist möglich und diese wird bevorzugt verwendet. Die interne Blockierung erfolgt über eine Dimerbildung über Uretdion-Strukturen, die bei erhöhter Temperatur wieder in die ursprünglich vorhandenen Isocyanat-Strukturen zurückspalten und damit die Vernetzung mit dem Binder in Gang setzen.
  • Optional können die reaktiven pulverförmigen Polyurethanzusammensetzungen zusätzliche Katalysatoren enthalten. Es handelt sich hierbei um metallorganischen Katalysatoren, wie z. B. Dibutylzinndilaurat, Zinnoctoat, Bismuthneodecanoat, oder aber tertiäre Amine, wie z. B. 1,4-Diazabicylco[2.2.2.]octan, in Mengen von 0,001–1 Gew.-%.
  • Für die Herstellung der reaktiven pulverförmigen Polyurethanzusammensetzungen können die in der Pulvertechnologie üblichen Zusatzstoffe, wie Verlaufsmittel, z. B. Polysilicone oder Acrylate, Lichtschutzmittel z. B. sterisch gehinderte Amine, oder andere Hilfsmittel, wie sie z. B. in EP 669 353 beschrieben wurden, in einer Gesamtmenge von 0,05 bis 5 Gew.-% zugesetzt werden. Füllstoffe und Pigmente wie z. B. Titandioxid können in einer Menge bis zu 30 Gew.-% der Gesamtzusammensetzung zugesetzt werden.
  • Reaktiv bedeutet im Rahmen dieser Erfindung, dass die erfindungsgemäß. eingesetzten Polyurethanzusammensetzungen bei Temperaturen ab 160°C, und zwar je nach Art des Trägers aushärten.
  • Die erfindungsgemäß eingesetzten reaktiven pulverförmigen Polyurethanzusammensetzungen werden bei normalen Bedingungen, z. B. mit DBTL-Katalyse, ab 160°C, üblicherweise ab ca. 180°C ausgehärtet. Die Zeit zur Aushärtung der erfindungsgemäß eingesetzten Polyurethanzusammensetzung liegt in der Regel innerhalb von 5 bis 60 Minuten.
  • Bevorzugter Gegenstand der vorliegenden Erfindung sind Prepregs mit einem Matrixmaterial aus einer reaktiven pulverförmigen Uretdiongruppen haltigen Polyurethanzusammensetzungen, im Wesentlichen enthaltend
    • a) mindestens einen Uretdiongruppen haltigen Härter, basierend auf Polyadditionsverbindungen aus aliphatischen, (cyclo)aliphatischen oder cycloaliphatischen Uretdiongruppen enthaltende Polyisocyanaten und hydroxylgruppenhaltigen Verbindungen, wobei der Härter unterhalb von 40°C in fester Form und oberhalb von 125°C in flüssiger Form vorliegt und einen freien NCO-Gehalt von kleiner 5 Gew.-% und einem Uretdiongehalt von 3–25 Gew.-% aufweist,
    • b) mindestens ein hydroxylgruppenhaltiges Polymer, das unterhalb von 40°C in fester Form und oberhalb von 125°C in flüssiger Form vorliegt und einer OH-Zahl zwischen 20 und 200 mg KOH/Gramm,
    • c) gegebenenfalls mindestens einen Katalysator,
    • d) gegebenenfalls aus der Polyurethanchemie bekannte Hilfs- und Zusatzstoffe,
    so dass die beiden Komponenten a) und b) in dem Verhältnis vorliegen, dass auf jede Hydroxylgruppe der Komponente b) 0,3 bis 0,7 Uretdiongruppe der Komponente a) entfällt, bevorzugt 0,45 bis 0,55. Letzteres entspricht einem NCO/OH-Verhältnis von 0,9 bis 1,1 zu 1.
  • Uretdiongruppen enthaltende Polyisocyanate sind wohlbekannt und werden beispielsweise in US 4,476,054 , US 4,912,210 , US 4,929,724 sowie EP 417 603 beschrieben. Ein umfassender Überblick über industriell relevante Verfahren zur Dimerisierung von Isocyanaten zu Uretdionen liefert das J. Prakt. Chem. 336 (1994) 185–200. Im Allgemeinen erfolgt die Umsetzung von Isocyanaten zu Uretdionen in Gegenwart löslicher Dimerisierungs-katalysatoren wie z. B. Dialkylaminopyridinen, Trialkylphosphinen, Phosphorigsäure-triamiden oder Imdidazolen. Die Reaktion – optional in Lösemitteln, bevorzugt aber in Abwesenheit von Lösemitteln durchgeführt – wird bei Erreichen eines gewünschten Umsatzes durch Zusatz von Katalysatorgiften abgestoppt. Überschüssiges monomeres Isocyanat wird im Anschluss durch Kurzwegverdampfung abgetrennt. Ist der Katalysator flüchtig genug, kann das Reaktionsgemisch im Zuge der Monomerabtrennung vom Katalysator befreit werden. Auf den Zusatz von Katalysatorgiften kann in diesem Fall verzichtet werden. Grundsätzlich ist zur Herstellung von Uretdiongruppen enthaltenden Polyisocyanaten eine breite Palette von Isocyanaten geeignet. Es können die oben genannten Di- und Polyisocyanate verwendet werden. Bevorzugt sind aber Di- und Polyisocyanate aus beliebigen aliphatischen, cycloaliphatischen und/oder (cyclo)aliphatischen Di- und/oder Polyisocyanaten. Erfindungsgemäß werden Isophorondiisocyanat (IPDI), Hexamethylendiisocyanat (HDI), Diisocyanatodicyclohexylmethan (H12MDI), 2-Methylpentandiisocyanat (MPDI), 2,2,4-Trimethylhexamethylendiisocyanat/2,4,4-Trimethylhexamethylendiisocyanat (TMDI), Norbornandiisocyanat (NBDI) verwendet. Ganz besonders bevorzugt werden IPDI, HDI, TMDI und H12MDI eingesetzt, wobei auch die Isocyanurate einsetzbar sind.
  • Ganz besonders bevorzugt wird für das Matrixmaterial IPDI und HDI verwendet.
  • Die Umsetzung dieser Uretdiongruppen enthaltenden Polyisocyanate zu Uretdiongruppen haltigen Härtern a) beinhaltet die Reaktion der freien NCO-Gruppen mit hydroxylgruppenhaltigen Monomeren oder Polymeren, wie z. B. Polyestern, Polythioethern, Polyethern, Polycaprolactamen, Polyepoxiden, Polyesteramiden, Polyurethanen oder nieder-molekularen Di-, Tri- und/oder Tetraalkoholen als Kettenverlängerer und gegebenenfalls Monoaminen und/oder Monoalkoholen als Kettenabbrecher und wurde schon häufig beschrieben ( EP 669 353 , EP 669 354 , DE 30 30 572 , EP 639 598 oder EP 803 524 ). Bevorzugte Uretdiongruppen aufweisende Härter a) haben einen freien NCO-Gehalt von weniger als 5 Gew.-% und einen Gehalt an Uretdiongruppen von 3 bis 25 Gew.-%, bevorzugt 6 bis 18 Gew.-% (berechnet als C2N2O2, Molekulargewicht 84). Bevorzugt werden Polyester und monomere Dialkohole. Außer den Uretdiongruppen können die Härter auch Isocyanurat-, Biuret-, Allophanat-, Urethan- und/oder Harnstoff-Strukturen aufweisen.
  • Bei den hydroxylgruppenhaltigen Polymeren b) werden bevorzugt Polyester, Polyether, Polyacrylate, Polyurethane und/oder Polycarbonate mit einer OH-Zahl von 20–200 in mg KOH/Gramm eingesetzt. Besonders bevorzugt werden Polyester mit einer OH-Zahl von 30–150, einem mittleren Molekulargewicht von 500–6000 g/mol, die unterhalb von 40°C in fester Form und oberhalb von 125°C in flüssiger Form vorliegen, verwendet. Solche Bindemittel sind beispielsweise in EP 669 354 und EP 254 152 beschrieben worden. Selbstverständlich können auch Mischungen solcher Polymere eingesetzt werden. Die Menge an den hydroxylgruppenhaltigen Polymeren b) wird so gewählt, dass auf jede Hydroxylgruppe der Komponente b) 0,3 bis 0,7 Uretdiongruppe der Komponente a), bevorzugt 0,45 bis 0,55, entfällt.
  • Optional können in reaktiven pulverförmigen Polyurethanzusammensetzungen zusätzliche Katalysatoren c) enthalten sein. Es handelt sich hierbei um metallorganischen Katalysatoren, wie z. B. Dibutylzinndilaurat, Zinkoctoat, Bismuthneodecanoat, oder aber tertiäre Amine, wie z. B. 1,4-Diazabicylco[2.2.2.]octan, in Mengen von 0,001–1 Gew.-%.
  • Für die Herstellung der reaktiven pulverförmigen Polyurethanzusammensetzungen können die in der Pulverlacktechnologie üblichen Zusatzstoffe d) wie Verlaufsmittel, z. B. Polysilicone oder Acrylate, Lichtschutzmittel z. B. sterisch gehinderte Amine, oder andere Hilfsmittel, wie sie z. B. in EP 669 353 beschrieben wurden, in einer Gesamtmenge von 0,05 bis 5 Gew.-% zugesetzt werden. Füllstoffe und Pigmente wie z. B. Titandioxid können in einer Menge bis zu 30 Gew.-% der Gesamtzusammensetzung zugesetzt werden.
  • Die erfindungsgemäß eingesetzten reaktiven pulverförmigen Polyurethanzusammensetzungen werden bei normalen Bedingungen, z. B. mit DBTL-Katalyse, ab 160°C, üblicherweise ab ca. 180°C ausgehärtet.
  • Die erfindungsgemäß eingesetzten reaktiven Polyurethanzusammensetzungen bieten einen sehr guten Verlauf und damit eine gute Imprägnierfähigkeit und im ausgehärteten Zustand eine ausgezeichnete Chemikalienbeständigkeit. Bei Verwendung von aliphatischen Vernetzern (z. B. IPDI oder H12MDI) wird zusätzlich noch eine gute Witterungsbeständigkeit erreicht.
  • Die erfindungsgemäß als Matrixmaterial verwendeten reaktiven pulverförmigen Polyurethanzusammensetzungen liegen bei Raumtemperatur in fester pulvriger und nicht klebriger Form vor. Sie bestehen im Wesentlichen aus einer Mischung aus einem reaktiven Harz und einem Härter. Diese Mischung hat einen Tg von mindestens 40°C und reagiert in der Regel erst oberhalb von 160°C zu einem vernetzten Polyurethan und bildet somit die Matrix des Composites. Das bedeutet, dass die erfindungsgemäßen Prepregs nach ihrer Herstellung aus dem Träger und der applizierten reaktiven pulverförmigen Polyurethanzusammensetzung als Matrixmaterial, welche in unvernetzter aber reaktiven Form vorliegt, aufgebaut sind. Die Prepregs sind also lagerstabil, in der Regel mehrere Tage und sogar Wochen und können somit jederzeit zu Composites weiterverarbeitet werden. Dies ist der wesentliche Unterschied zu den bereits oben beschriebenen 2-Komponenten, die reaktiv und nicht lagerstabil sind, da diese nach dem Aufbringen sofort zu Polyurethanen reagieren und vernetzen
  • Die Homogenisierung aller Bestandteile zur Herstellung der Polyurethanzusammensetzung zur Herstellung der Prepregs kann in geeigneten Aggregaten, wie z. B. beheizbaren Rührkesseln, Knetern, oder auch Extrudern, erfolgen, wobei Temperaturobergrenzen von 120 bis 130°C nicht überschritten werden sollten. Die Mischung der einzelnen Komponenten erfolgt bevorzugt in einem Extruder bei Temperaturen, die zwar oberhalb der Schmelzbereiche der einzelnen Komponenten liegen, aber unterhalb der Temperatur, bei der die Vernetzungsreaktion startet. Die entstandenen erstarrten Massen werden vermahlen und können z. B. durch Siebung in verschiedene Fraktionen aufgetrennt werden (z. B. Durchmesser der Partikel < 63 μm, 63–100 μm, > 100 μm).
  • Gegenstand der Erfindung ist auch die Verwendung der erfindungsgemäßen reaktiven pulverförmigen Polyurethanzusammensetzung B) zur Herstellung von Prepregs, insbesondere mit Faserförmigen Trägern (Faserverstärkungen) aus Glas-, Kohle- oder Aramid-Fasern und die daraus hergestellten Composites.
  • Die Herstellung der Prepregs kann im Prinzip nach beliebigen Verfahren bevorzugt durch Pulverimprägnierung erfolgen. Geeigneter Weise wird dabei die reaktive pulverförmige Polyurethanzusammensetzung durch ein Streuverfahren auf den Träger aufgebracht. Möglich sind auch Wirbelsinterverfahren, Pultrusion, oder Sprühverfahren.
  • Bei der Pulverimprägnierung liegt das Matrixmaterial – normalerweise Thermoplast – Polymer in Pulverform vor. Um nur möglichst kurze Fließwege der hochviskosen Schmelze von thermoplastischen Matrixsystemen zur Benetzung und Umhüllung der Fasern zu ermöglichen, ist es gemäß des Standes der Technik üblich, dass im Wirbelbettverfahren das Thermoplastpulver in strömender Luft dispergiert und das Filamentgam im Luftstrom gespreizt wird. Damit können die einzelnen Pulverpartikel bis zu den Einzel-Fasern gebracht werden. Durch elektrostatische Aufladung des Pulvers kann das Anhaften des Pulvers zusätzlich verbessert werden. Nach dem Durchlaufen des Wirbelbettes wird das Filamentgam mit dem leicht anhaftenden Pulver durch eine Heizstrecke geführt, in dem das Matrixpolymerpulver angeschmolzen wird. Im Anschluss muss ein Konsolidierungsschritt bei der Herstellung der Composite-Bauteile die Benetzung der Filamente vervollständigen.
  • Bei der erfindungsgemäßen Verwendung der erfindungsgemäßen reaktiven pulverförmigen Polyurethanzusammensetzung sind derartige Verfahren zur Fließwegverkürzung nicht unbedingt notwendig, da die Schmelze der Präpolymere (unvernetzte Pulverlackschmelze) eine geeignet niedrige Viskosität besitzt, um die Faserbenetzung zu ermöglichen, was einen erheblichen Vorteil der erfindungsgemäßen Prepregs gegenüber dem Stand der Technik darstellt.
  • Das Pulver (gesamt oder eine Fraktion) wird bevorzugt über Streuverfahren auf den Faser förmigen Träger, z. B. auf Bahnen aus Glas-, Kohle-, oder Aramid-Fasergelege/-gewebe, aufgebracht und anschließend fixiert. Zur Vermeidung von Pulververlusten wird bevorzugt direkt nach dem Streuvorgang in einer Heizstrecke (z. B. mit IR-Strahlern) der mit Pulver beaufschlagte Faser förmige Träger erwärmt, sodass ein Ansintern der Partikel erfolgt, wobei Temperaturen von 80 bis 100°C nicht überschritten werden sollten, um ein Anreagieren des reaktiven Matrixmaterials zu verhindern. Diese Prepregs können je nach Bedarf zu unterschiedlichen Formen kombiniert und zugeschnitten werden.
  • Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Prepregs durch Aufbringen, bevorzugt durch Streuverfahren, der Komponente B) auf die Komponente A) gegebenenfalls Fixieren von B) bevorzugt durch Wärmeeinwirkung, besonders bevorzugt durch Ansintern.
  • Zur Konsolidierung der Prepreg-Lagen zu einem einzigen Composite (Bauteil) und zur Vernetzung des erfindungsgemäßen Matrixmaterials zur Matrix werden die Prepregs zugeschnitten, gegebenenfalls vernäht oder anderweitig fixiert und in einer geeigneten Form unter Druck und gegebenenfalls Anlegen von Vakuum verpresst. Im Rahmen dieser Erfindung erfolgt dieser Vorgang der Herstellung der Composites aus dem erfindungsgemäßen Prepregs je nach Aushärtungszeit bei Temperaturen von oberhalb etwa 160°C.
  • Gegenstand der Erfindung ist auch die Verwendung der Prepregs, im Wesentlichen aufgebaut aus
    • A) mindestens einem Faser förmigen Träger und
    • B) mindestens einer reaktiven pulverförmigen Polyurethanzusammensetzung als Matrixmaterial
    zur Herstellung von Composites im Boots- und Schiffbau, in der Luft- und Raumfahrtechnik, im Automobilbau, für Zweiräder, bevorzugt Motorräder und Fahrräder, in den Bereichen Automotive, Construction, Medizintechnik, Sport, Elektro- und Elektronik-Industrie, Energieerzeugungsanlagen, z. B. für Rotorblätter bei Windkraftanlagen.
  • Gegenstand der Erfindung sind auch die aus den erfindungsgemäßen Prepregs hergestellten Composite-Bauteile, aufgebaut aus
    • A) mindestens einem Faser förmigen Träger und
    • B) mindestens einer vernetzten Polyurethanzusammensetzung, bevorzugt Uretdiongruppen haltigen Polyurethanzusammensetzung, als Matrix.
  • Gegenstand der Erfindung ist auch ein Verfahren zu Herstellung von Composite-Bauteilen, wobei ein Prepreg, aufgebaut aus
    • A) mindestens einem Faser förmigen Träger und
    • B) mindestens einer reaktiven pulverförmigen Polyurethanzusammensetzung, bevorzugt Uretdiongruppen haltigen Polyurethanzusammensetzung, als Matrixmaterial;
    bei Temperaturen von oberhalb 160°C, bevorzugt 180°C, gegebenenfalls unter Anwendung von Druck und/oder Vakuum, hergestellt wird.
  • Nachfolgend wird die Erfindung durch Beispiele erläutert.
  • Beispiele
  • Abbildung der verwendeten Laborstreueinrichtung (Villars Minicoater 200) 1
  • Verwendete Glasfasergelege/-gewebe:
  • Folgende Glasfasergelege/-gewebe wurden in den Beispielen verwendet, nachfolgend mit Typ I und Typ II bezeichnet.
  • Bei Typ I handelt es sich um ein Leinwand-E-Glas-Gewebe 281 L Art. Nr. 3103 der Firma „Schlösser & Cramer”. Das Gewebe hat ein Flächengewicht von 280 g/m2. Beim Typ II GBX 600 Art. Nr. 1023 handelt es sich um ein vernähtes biaxiales E-Glas-Gelege (–45/+45) der Firma „Schlösser & Cramer”. Darunter sind zwei Lagen von Faserbündeln zu verstehen, die übereinander liegen und zueinander in einem Winkel von 90 Grad versetzt sind. Dieser Aufbau wird von weiteren Fasern zusammen gehalten, die allerdings nicht aus Glas bestehen. Die Oberfläche der Glasfasern ist mit einer Standardschlichte ausgestattet, die aminosilanmodifiziert ist. Das Gelege hat ein Flächengewicht von 600 g/m2.
  • DSC-Messungen
  • Die DSC-Untersuchungen (Glasübergangstemperatur-Bestimmungen und Reaktionsenthalpie-Messungen) wurden mit einem Mettler Toledo DSC 821e nach DIN 53765 durchgeführt.
  • Reaktive pulverförmige Polyurethanzusammensetzung Es wurde eine reaktive pulverförmige Polyurethanzusammensetzung mit der folgenden Rezeptur zur Herstellung der Prepregs und der Composites verwendet.
    • (Angaben in Gew.-%):
    Beispiele Formulierung HT (erfindungsgemäß)
    VESTAGON BF 9030 (uretdiongruppenhaltige Härterkomponente a)), Evonik Degussa 26,81
    FINEPLUS PE 8078 VKRK20 (OH-funktionelle Polyesterharzkomponenten b)), Firma DIC 72,69
    BYK 361 N 0,5
    NCO:OH-Verhältnis 1:1
  • Die zerkleinerten Einsatzstoffe aus der Tabelle werden in einem Vormischer innig vermischt und anschließend im Extruder bis maximal 130°C homogenisiert. Nach dem Erkalten wird das Extrudat gebrochen und mit einer Stiftsmühle gemahlen. Die verwendeten Siebfraktionen hatten mittlere Partikeldurchmesser zwischen 63 und 100 μm. Physikalische Eigenschaften
    HT-Pulver
    Tg [°C] ca. 53
    Schmelzbereich [°C] um 94
    Aushärtungstemperatur [°C] 170–180
    Bruchdehnung der ausgehärteten Polyurethanmatrix [%] 8
    E-Modul der ausgehärteten Polyurethanmatrix [MPa] ca. 870
    Volumenschrumpf durch Vernetzung < 0,2%
    Viskositäts-Minimum der unvernetzten Schmelze 158°C/30 Pa·s
  • Durch die Auswahl geeigneter Sinterbedingungen während diverser Vorversuche erwiesen sich folgende Einstellungen bei der Herstellung der Prepregs am Minicoater als gut geeignet:
    Es wurden etwa 150 g/Pulver auf einen Quadratmeter Glasfasergelege bei einer Bahngeschwindigkeit von ca. 1,2 m/min aufgetragen. Dies entspricht einer Schichtdicke von etwa 500 μm mit einer Standardabweichung von etwa 45 μm.
  • Bei einer Leistung der IR-Strahler von 560 W konnten so Prepregs bei Temperaturen zwischen 75 und 82°C hergestellt werden, wobei die reaktive pulverförmige Polyurethanzusammensetzung angesintert wurde, wobei unerheblich war, ob die Pulver mit noch erkennbarer Pulverstruktur nur angesintert wurden, oder sich eine komplette Schmelze auf dem Glasfasergelege ergab, solange die Reaktivität der pulverförmigen Polyurethanzusammensetzung erhalten blieb.
  • Lagerstabilität der Prepregs
  • Die Lagerstabilität der Prepregs wurde anhand der Reaktionsenthalpien der Vernetzungsreaktion mittels DSC-Untersuchungen bestimmt. Die Ergebnisse sind in 2 und 3 dargestellt.
  • Die Vernetzungsfähigkeit der PU-Prepregs wird durch die Lagerung bei Raumtemperatur zumindest über einen Zeitraum von 7 Wochen nicht beeinträchtigt.
  • Composite-Bauteil-Herstellung
  • Die Composite-Bauteile wurden über eine dem Fachmann bekannte Presstechnik auf einer Composite-Presse hergestellt. Die an der Streuanlage hergestellten, homogenen Prepregs wurden an einer Tischpresse zu Verbundwerkstoffen verpresst. Bei dieser Tischpresse handelt es sich um die Polystat 200 T der Firma Schwabenthan, mit der die Prepregs bei Temperaturen zwischen 120 und 200°C zu den entsprechenden Composite-Platten verpresst wurden. Der Druck wurde zwischen Normaldruck und 450 bar variiert. Dynamische Verpressungen, d. h. wechselnde Druckbeaufschlagungen können sich je nach Bauteil-Größe, -Dicke und Polyurethanzusammensetzung und damit der Viskositätseinstellung bei der Verarbeitungstemperatur für die Benetzung der Fasern als vorteilhaft erweisen. In einem Beispiel wurde die Temperatur der Presse von 90°C während der Aufschmelzphase auf 110°C erhöht, der Druck wurde nach einer Aufschmelzphase von 3 Minuten auf 440 bar erhöht und anschließend dynamisch (7 mal mit jeweils 1 Minute Dauer) zwischen 150 und 440 bar variiert, wobei die Temperatur kontinuierlich auf 140°C erhöht wurde. Anschließend wurde die Temperatur auf 170°C angehoben und gleichzeitig der Druck bei 350 bar bis zur Entnahme des Composite-Bauteils aus der Presse nach 30 Minuten Höhe gehalten wurde.
  • Die erhaltenen harten, steifen, chemikalienbeständigen und schlagzähen Composite-Bauteile (Plattenware) mit einem Faservolumenanteil von > 50% wurden hinsichtlich des Aushärtungsgrades (Bestimmung über DSC) untersucht. Die Bestimmung der Glastemperatur der ausgehärteten Matrix zeigt den Fortschritt der Vernetzung bei unterschiedlichen Härtungstemperaturen. Bei der verwendeten Polyurethanzusammensetzung ist nach ca. 25 Minuten die Vernetzung vollständig, wobei dann auch keine Reaktionsenthalpie für die Vernetzungsreaktion mehr detektierbar ist. Die Ergebnisse sind in 4 dargestellt.
  • Zwei Verbundwerkstoffe wurden bei exakt gleichen Bedingungen hergestellt und anschließend deren Eigenschaften bestimmt und verglichen. Diese gute Reproduzierbarkeit der Eigenschaften konnte auch bei der Bestimmung der interlaminaren Scherfestigkeit (ILSF) bestätigt werden. Hier wurde eine gemittelte ILSF von ca. 40 N/mm2 erreicht.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - WO 98/50211 [0008]
    • - US 4992228 [0008]
    • - US 5080857 [0008]
    • - US 5427725 [0008]
    • - GB 2007676 [0008]
    • - GB 2182074 [0008]
    • - EP 309221 [0008]
    • - EP 297674 [0008]
    • - WO 89/04335 [0008]
    • - US 5532296 [0008]
    • - US 4377657 [0008]
    • - US 4757120 [0008]
    • - WO 2006/043019 [0009, 0034]
    • - US 2004/0231598 [0011]
    • - WO 98/31535 [0012]
    • - WO 99/64216 [0013]
    • - EP 0590702 [0014]
    • - WO 2005/091715 [0015]
    • - WO 2005/049301 [0024]
    • - WO 2005/106155 [0025]
    • - JP 2004196851 [0026]
    • - EP 1319503 [0027]
    • - WO 2003/101719 [0027]
    • - EP 590702 [0031]
    • - US 20040231598 [0032]
    • - US 20050215148 [0033]
    • - EP 669353 [0068, 0074, 0077]
    • - US 4476054 [0072]
    • - US 4912210 [0072]
    • - US 4929724 [0072]
    • - EP 417603 [0072]
    • - EP 669354 [0074, 0075]
    • - DE 3030572 [0074]
    • - EP 639598 [0074]
    • - EP 803524 [0074]
    • - EP 254152 [0075]
  • Zitierte Nicht-Patentliteratur
    • - Michaeli et al. [0016]
    • - Coatings & Composite Materials, Nr. 19, p37–39, 1997 [0016]
    • - Ma, C. C. M.; Chiang, C. L. Annual Technical Conference – Society of Plastics Engineers (1991), 49th 2065-9. [0017]
    • - Lackharze, Stoye/Freitag, Hauser-Verlag 1996, Seiten 210/212 [0020]
    • - Baypreg – ein neuer POLYURETHAN-Werkstoff für das Harzmattenverfahren, Recker, Klaus, Kunststoffe-Plastics 8, 1981 [0023]
    • - Ratcliffe, Colin P.; Crane, Roger M.; Santiago, Armando L., AMD (1995), 211 (Innovative Processing and Characterization of Composite Materials), 29–37 [0028]
    • - Ma, Chef Chi M.; Chen, Chin Hsing. International SAMPE Symposium and Exhibition (1992), 37 (Mater. Work. You 21st Century), 1062–74 [0028]
    • - S. Padaki, L. T. Drzal: a simulation study an the effects of particle size an the consolidation of polymer powder impregnated tapes, Department of Chemical Engineering, Michigan State University, Composites: Part A (1999), pp. 325–337 [0035]
    • - M. N. Ghasemi Nejhad, K. M. Ikeda: Design, manufacture and characterization of composites using on-line recycled thermoplastic powder impregnation of fibres and in-situ filament winding, Department of Mechanical Engineering, University of Hawaii at Manoa, Journal of Thermoplastic Composite Materials, Vol 11, pp. 533–572, November 1998 [0036]
    • - R. E. Allred, S. P. Wesson, D. A. Babow: powder impregnation studies for high temperature towpregs, Adherent Technologies, SAMPE Journal, Vol. 40, No. 6, pp. 40–48, November/December 2004 [0036]
    • - N. C. Parasnis, K. Ramani, H. M. Borgaonkar: Ribbonizing of electrostatic powder spray impregnated thermoplastic tows by pultrusion, School of Mechanical Engineering, Purdue University, composites, Part A, Applied science and manufacturing, Vol. 27, pp. 567–574, 1996 [0036]
    • - Composites Technologien, Paolo Ermanni (Version 4), Script zur Vorlesung ETH Zürich, August 2007, Kapitel 7 [0054]
    • - J. Prakt. Chem. 336 (1994) 185–200 [0072]
    • - DIN 53765 [0095]

Claims (16)

  1. Prepregs, im Wesentlichen aufgebaut aus A) mindestens einem Faser förmigen Träger und B) mindestens einer reaktiven pulverförmigen Polyurethanzusammensetzung als Matrixmaterial.
  2. Prepregs nach Anspruch 1, wobei das Matrixmaterial einen Tg von mindestens 40°C aufweist.
  3. Prepregs nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass Faser förmiges Material aus Glas, Kohlenstoff, Kunststoffen, wie Polyamind (Aramid) oder Polyester, Naturfasern, oder mineralischen Fasermaterialien wie Basaltfasern oder keramische Fasern enthalten ist.
  4. Prepregs nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als Faser förmiger Träger textile Flächengebilde aus Vlies, Maschenware, Gewirke und Gestricke, nicht maschige Gebinde wie Gewebe, Gelege oder Geflechte, als Langfaser- und Kurzfasermaterialien, enthalten sind.
  5. Prepregs nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die pulverförmigen reaktiven Polyurethanzusammensetzungen im Wesentlichen Mischungen aus einem gegenüber Isocyanaten reaktive funktionelle Gruppen aufweisenden Polymeren b) als Binder und intern blockierten und/oder mit Blockierungsmitteln blockierten Di- oder Polyisocyanat als Härter a) enthalten.
  6. Prepregs nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass Polymere mit Hydroxylgruppen, Aminogruppen und Thiolgruppen insbesondere Polyester, Polyether, Polyacrylate, Polycarbonate und Polyurethane mit einer OH-Zahl von 20 bis 500 mg KOH/Gramm und einer mittleren Molmasse von 250 bis 6000 g/Mol eingesetzt werden.
  7. Prepregs nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass Di- oder Polyisocyanate, ausgewählt aus Isophorondiisocyanat (IPDI), Hexamethylendiisocyanat (HDI), Diisocyanatodicyclohexylmethan (H12MDI), 2-Methylpentandiisocyanat (MPDI), 2,2,4-Trimethylhexamethylendiisocyanat/2,4,4-Trimethylhexamethylendiisocyanat (TMDI) und/oder Norbornandiisocyanat (NBDI), besonders bevorzugt IPDI, HDI, TMDI und H12MDI, wobei auch die Isocyanurate einsetzbar sind, eingesetzt werden.
  8. Prepregs nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass externe Blockierungsmittel, ausgewählt aus Acetessigsäureethylester, Diisopropylamin, Methylethylketoxim, Malonsäurediethylester, ε-Caprolactam, 1,2,4-Triazol, Phenol oder substituierte Phenole und/oder 3,5-Dimethylpyrazol, eingesetzt werden.
  9. Prepregs nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass IPDI-Addukte, die Isocyanurat-Gruppierungen und ε-Caprolactam blockierte Isocyanatstrukturen, eingesetzt werden.
  10. Prepregs nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die reaktiven pulverförmigen Polyurethanzusammensetzungen B) zusätzliche Katalysatoren enthalten, bevorzugt Dibutylzinndilaurat, Zinkoctoat, Bismuthneodecanoat, und/oder tertiäre Amine, bevorzugt 1,4-Diazabicylco[2.2.2.]octan, in Mengen von 0,001–1 Gew.-%.
  11. Prepregs nach mindestens einem der vorherigen Ansprüche, mit einem Matrixmaterial aus einer reaktiven pulverförmigen Uretdiongruppen haltigen Polyurethanzusammensetzungen B), im Wesentlichen enthaltend a) mindestens einen Uretdiongruppen haltigen Härter, basierend auf Polyadditionsverbindungen aus aliphatischen, (cyclo)aliphatischen oder cycloaliphatischen Uretdiongruppen enthaltende Polyisocyanaten und hydroxylgruppenhaltigen Verbindungen, wobei der Härter unterhalb von 40°C in fester Form und oberhalb von 125°C in flüssiger Form vorliegt, einen freien NCO-Gehalt von kleiner 5 Gew.-% und einem Uretdiongehalt von 3–25 Gew.-% aufweist, b) mindestens ein hydroxylgruppenhaltiges Polymer, das unterhalb von 40°C in fester Form und oberhalb von 125°C in flüssiger Form vorliegt und einer OH-Zahl zwischen 20 und 200 mg KOH/Gramm, c) gegebenenfalls mindestens einen Katalysator, d) gegebenenfalls aus der Polyurethanchemie bekannte Hilfs- und Zusatzstoffe, so dass die beiden Komponenten a) und b) in dem Verhältnis vorliegen, dass auf jede Hydroxylgruppe der Komponente b) 0,3 bis 0,7 Uretdiongruppe der Komponente a) entfällt, bevorzugt 0,45 bis 0,55.
  12. Verwendung der reaktiven pulverförmigen Polyurethanzusammensetzung B) nach mindestens einem der Ansprüche 5 bis 11 zur Herstellung von Prepregs, insbesondere mit Faser förmigen Trägern aus Glas-, Kohle- oder Aramid-Fasern.
  13. Verfahren zur Herstellung von Prepregs nach mindestens einem der vorherigen Ansprüche 1 bis 11 durch Aufbringen, bevorzugt durch Streuverfahren, der Komponente B) auf die Komponente A), gegebenenfalls Fixieren von B) bevorzugt durch Wärmeeinwirkung, besonders bevorzugt durch Ansintern.
  14. Verwendung der Prepregs nach mindestens einem der Ansprüche 1 bis 11, im Wesentlichen aufgebaut aus A) mindestens einem Faser förmigen Träger und B) mindestens einer reaktiven pulverförmigen Polyurethanzusammensetzung als Matrixmaterial zur Herstellung von Composites im Boots- und Schiffbau, in der Luft- und Raumfahrtechnik, im Automobilbau, für Zweiräder bevorzugt Motorräder und Fahrräder, in den Bereichen Automotive, Construction, Medizintechnik, Sport, Elektro- und Elektronik-Industrie, Energieerzeugungsanlagen, wie für Rotorblätter bei Windkraftanlagen.
  15. Composite-Bauteile, aufgebaut aus A) mindestens einem Faser förmigen Träger und B) mindestens einer vernetzten Polyurethanzusammensetzung, bevorzugt Uretdiongruppen haltigen Polyurethanzusammensetzung, als Matrix.
  16. Verfahren zu Herstellung von Composite-Bauteilen, wobei ein Prepreg, aufgebaut aus A) mindestens einem Faser förmigen Träger und B) mindestens einer reaktiven pulverförmigen Polyurethanzusammensetzung, bevorzugt Uretdiongruppen haltigen Polyurethanzusammensetzung, als Matrixmaterial bei Temperaturen von oberhalb 160°C, bevorzugt 180°C, gegebenenfalls unter Anwendung von Druck und/oder Vakuum, hergestellt wird.
DE200910001793 2009-03-24 2009-03-24 Prepregs und daraus hergestellte Formkörper Withdrawn DE102009001793A1 (de)

Priority Applications (16)

Application Number Priority Date Filing Date Title
DE200910001793 DE102009001793A1 (de) 2009-03-24 2009-03-24 Prepregs und daraus hergestellte Formkörper
KR1020167022669A KR20160102578A (ko) 2009-03-24 2010-01-13 프리프레그 및 이로부터 제조된 성형체
KR1020117022402A KR101897824B1 (ko) 2009-03-24 2010-01-13 프리프레그 및 이로부터 제조된 성형체
CN201080013378.5A CN102361917B (zh) 2009-03-24 2010-01-13 预浸料和由其生产的成型体
PCT/EP2010/050319 WO2010108701A1 (de) 2009-03-24 2010-01-13 Prepregs und daraus hergestellte formkörper
EP20100701644 EP2411454B1 (de) 2009-03-24 2010-01-13 Prepregs und daraus hergestellte formkörper
AU2010227757A AU2010227757B2 (en) 2009-03-24 2010-01-13 Prepregs and molded bodies produced from same
CA2755936A CA2755936C (en) 2009-03-24 2010-01-13 Prepregs and mouldings produced therefrom
ES10701644T ES2423802T3 (es) 2009-03-24 2010-01-13 Prepregs y cuerpos moldeados producidos a partir de los mismos
JP2012501198A JP5815501B2 (ja) 2009-03-24 2010-01-13 プリプレグ、及び前記プリプレグから製造される成形体
BRPI1013403A BRPI1013403A2 (pt) 2009-03-24 2010-01-13 prepregs, processo para a produção destes, uso dos mesmos, uso da composição de poliuretano, componentes de compósitos e processo para a produção de componentes de compósitos.
PL10701644T PL2411454T3 (pl) 2009-03-24 2010-01-13 Prepregi i wytworzone z nich kształtki
RU2011142633/04A RU2540078C2 (ru) 2009-03-24 2010-01-13 Препреги и получаемые из них формованные изделия
US13/256,394 US20120003891A1 (en) 2009-03-24 2010-01-13 Prepregs and molded bodies produced from same
ZA2011/07682A ZA201107682B (en) 2009-03-24 2011-10-20 Prepregs and molded bodies produced from same
US13/973,425 US20140065911A1 (en) 2009-03-24 2013-08-22 Prepregs and moldings produced therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200910001793 DE102009001793A1 (de) 2009-03-24 2009-03-24 Prepregs und daraus hergestellte Formkörper

Publications (1)

Publication Number Publication Date
DE102009001793A1 true DE102009001793A1 (de) 2010-10-07

Family

ID=41725286

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200910001793 Withdrawn DE102009001793A1 (de) 2009-03-24 2009-03-24 Prepregs und daraus hergestellte Formkörper

Country Status (14)

Country Link
US (2) US20120003891A1 (de)
EP (1) EP2411454B1 (de)
JP (1) JP5815501B2 (de)
KR (2) KR20160102578A (de)
CN (1) CN102361917B (de)
AU (1) AU2010227757B2 (de)
BR (1) BRPI1013403A2 (de)
CA (1) CA2755936C (de)
DE (1) DE102009001793A1 (de)
ES (1) ES2423802T3 (de)
PL (1) PL2411454T3 (de)
RU (1) RU2540078C2 (de)
WO (1) WO2010108701A1 (de)
ZA (1) ZA201107682B (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010029355A1 (de) 2010-05-27 2011-12-01 Evonik Degussa Gmbh Verfahren zur Herstellung von lagerstabilen Polyurethan-Prepregs und daraus hergestellte Formkörper
DE102010041239A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Prepregs auf der Basis lagerstabiler reaktiven oder hochreaktiven Polyurethanzusammensetzung
DE102010041256A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Prepregs auf der Basis lagerstabiler reaktiven oder hochreaktiven Polyurethanzusammensetzung mit fixierter Folie sowie die daraus hergestellten Composite-Bauteil
WO2012038203A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Prepregs auf der basis einer lagerstabilen reaktiven oder hochreaktiven polyurethanzusammensetzung
DE102010041247A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Verfahren zur Herstellung von lagerstabilen Polyurethan-Prepregs und daraus hergestellte Formkörper aus Polyurethanzusammensetzung in Lösung
WO2012093006A1 (de) 2011-01-04 2012-07-12 Evonik Degussa Gmbh Composite-halbzeuge und daraus hergestellte formteile sowie direkt hergestellte formteile auf basis von hydroxyfunktionalisierten (meth) acrylaten, die mittels uretdionen duroplastisch vernetzt werden
DE102011006163A1 (de) 2011-03-25 2012-09-27 Evonik Degussa Gmbh Lagerstabile Polyurethan-Prepregs und daraus hergestellte Formkörper aus Polyurethanzusammensetzung mit flüssigen Harzkomponenten
DE102011076546A1 (de) * 2011-05-26 2012-11-29 Sgl Carbon Se Verfahren zur Herstellung eines Prepregs und eines daraus erhältlichen Organoblechs
WO2013139705A1 (de) 2012-03-20 2013-09-26 Bayer Intellectual Property Gmbh Lagerstabile harzfilme und daraus hergestellte faserverbundbauteile
WO2013139704A1 (de) 2012-03-20 2013-09-26 Bayer Intellectual Property Gmbh Lagerstabile polyurethan-prepregs und daraus hergestellte faserverbundbauteile
DE102013204124A1 (de) 2013-03-11 2014-09-11 Evonik Industries Ag Composite-Halbzeuge und daraus hergestellte Formteile sowie direkt hergestellte Formteile auf Basis von hydroxyfunktionalisierten (Meth)Acrylaten und Uretdionen die mittels Strahlung duroplastisch vernetzt werden
WO2015074887A1 (de) 2013-11-19 2015-05-28 Evonik Industries Ag Formteile auf basis von dien-funktionalisierten (meth)acrylaten und (hetero-)diels-alder-dienophilen, mit reversibler vernetzung
DE102014207785A1 (de) 2014-04-25 2015-10-29 Evonik Degussa Gmbh Verfahren zur Herstellung von lagerstabilen Epoxy-Prepregs und daraus hergestellte Composites auf Basis von radikalisch polymerisierbaren Säuren und Epoxiden
EP2979851A1 (de) 2014-07-28 2016-02-03 Evonik Degussa GmbH Effiziente Herstellung von Composite-Halbzeugen und -Bauteilen im Nasspressverfahren unter Einsatz von hydroxyfunktionalisierten (Meth) Acrylaten, die mittels Isocyanaten oder Uretdionen duroplastisch vernetzt werden
EP2993202A1 (de) 2014-09-08 2016-03-09 Evonik Degussa GmbH Composite-Halbzeuge und daraus hergestellte Formteile sowie direkt hergestellte Formteile auf Basis von hydroxyfunktionalisierten (Meth)Acrylaten und Uretdionen, die duroplastisch vernetzt werden
US9920175B2 (en) 2013-04-19 2018-03-20 Covestro Deutschland Ag Polyurethane prepreg and composite fiber element produced therefrom
EP3330311A1 (de) 2016-12-02 2018-06-06 Evonik Degussa GmbH Lagerstabile 1k-polyurethan-prepregs und daraus hergestellte formkörper aus polyurethanzusammensetzung

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009058101A1 (de) 2009-12-12 2011-06-16 Bayer Materialscience Ag Verwendung von Schichtaufbauten in Windkraftanlagen
US20130049932A1 (en) * 2011-08-25 2013-02-28 Elwha LLC, a limited liability company of the State of Delaware Systems, devices, methods, and admixtures of transponders and food products for indication of food attributes
JP5999721B2 (ja) * 2014-10-17 2016-09-28 株式会社日本製鋼所 繊維強化樹脂中間体及びその製造方法
WO2016066605A1 (de) * 2014-10-30 2016-05-06 Basf Coatings Gmbh Faser-kunstoff-verbunde und zusammensetzung zur herstellung solcher faser-kunststoffverbunde
ES2926464T3 (es) 2014-10-31 2022-10-26 Hardwire Llc Armadura suave de resistencia balística
WO2017006997A1 (ja) * 2015-07-07 2017-01-12 第一工業製薬株式会社 樹脂補強用混合物、繊維強化樹脂混合物、並びに、繊維強化樹脂及びその製造方法
US20170082862A1 (en) * 2015-09-23 2017-03-23 Stmicroelectronics (Research & Development) Limite Diffractive optical element and method for the design of a diffractive optical element
WO2017109106A1 (en) * 2015-12-24 2017-06-29 Hexcel Composites Sas Method of treating uncured thermosetting resin matrices
IT201600089581A1 (it) * 2016-09-30 2018-03-30 Massimo Sottocorna Processo di produzione di un filato di carbonio o altra fibra tecnica, rivestito ed impregnato con polimeri termoplastici finalizzato ad ottenere un tessuto a matrice termoplastica, e filato ottenuto con questo processo denominato atc (advanced thermoplastic composite)
KR101967468B1 (ko) 2016-10-25 2019-04-08 석성균 프리프레그 제조 장치
CN106641481B (zh) * 2017-01-20 2019-01-29 上海高铁电气科技有限公司 纤维编织缠绕拉挤成型管道、加工装置及其生产方法
KR102664168B1 (ko) * 2017-02-17 2024-05-13 바스프 에스이 블록형 이소시아네이트를 베이스로 하는 반응성 열가소성 폴리우레탄
CN108929426A (zh) * 2017-05-27 2018-12-04 科思创德国股份有限公司 一种聚氨酯预浸料及其制备方法与应用
CA3091506A1 (en) 2018-02-22 2019-08-29 Basf Se Polyurethane-based polymer material having excellent resistance to heat distortion and elongation at tear
US20190330432A1 (en) 2018-04-27 2019-10-31 Evonik Degussa Gmbh Two-component hybrid matrix system made of polyurethanes and polymethacrylates for the production of short-fibre-reinforced semifinished products
EP3587477B1 (de) * 2018-06-21 2023-08-23 Tape Weaving Sweden AB Ultradünne prepreg-folien und verbundmaterialien daraus
CN108673996A (zh) * 2018-07-17 2018-10-19 宁波伯骏智能科技有限公司 一种织物增强复合板材生产设备及方法
WO2020040150A1 (ja) 2018-08-22 2020-02-27 東レ株式会社 プリプレグ、プリプレグテープおよび繊維強化複合材料の製造方法ならびに塗工装置
WO2020074293A1 (en) 2018-10-09 2020-04-16 Basf Se A process for preparing a prepreg binder composition, a prepreg and use thereof
WO2023038011A1 (ja) * 2021-09-10 2023-03-16 積水化学工業株式会社 硬化性樹脂材料、樹脂成形体及び樹脂成形体の製造方法

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2007676A (en) 1977-11-08 1979-05-23 Genentech Inc Method and means for microbial polypeptide expression
DE3030572A1 (de) 1980-08-13 1982-03-18 Chemische Werke Hüls AG, 4370 Marl Verfahren zur herstellung von uretdiongruppenhaltigen polyadditionsprodukten sowie die danach hergestellten produkte
US4377657A (en) 1980-03-27 1983-03-22 Hitco Bis-maleimide resin/divinyl arylene composites
US4476054A (en) 1980-08-13 1984-10-09 Chemische Werke Huls Ag Uretidione dimer of isophorone diisocyanate and method of preparation
GB2182074A (en) 1985-10-25 1987-05-07 Ciba Geigy Ag Single tow prepreg
EP0254152A1 (de) 1986-07-22 1988-01-27 Bayer Ag Pulverlack und seine Verwendung zur Beschichtung von Hitzeresistenten Substraten
US4757120A (en) 1986-10-03 1988-07-12 Ici Americas Inc. Polyimide/aromatic sulfone resin blends and prepegs coated therewith
EP0297674A2 (de) 1987-06-30 1989-01-04 Shell Internationale Researchmaatschappij B.V. Härtbare Harzzusammensetzung
EP0309221A2 (de) 1987-09-21 1989-03-29 Eagle-Picher Industries, Inc. Elastomer-modifizierte Epoxydharze
WO1989004335A1 (en) 1987-11-03 1989-05-18 The Dow Chemical Company Epoxy resin compositions for use in low temperature curing applications
US4912210A (en) 1987-11-21 1990-03-27 Huels Aktiengesellschaft Process for the preparation of (cyclo)aliphatic uretediones
US4929724A (en) 1984-10-13 1990-05-29 Bayer Aktiengesellschaft Process for the production of uretdione group-containing compounds, the compounds obtained according to this process and the use thereof in the production of polyurethane plastics material
US4992228A (en) 1989-09-28 1991-02-12 The Dow Chemical Company Method for preparing preforms for molding processes
EP0417603A2 (de) 1989-09-14 1991-03-20 BASF Aktiengesellschaft Verfahren zur Herstellung von Uretdiongruppen aufweisenden Polyisocyanaten
US5080857A (en) 1989-09-19 1992-01-14 General Electric Company Passive lower drywell flooder
EP0590702A1 (de) 1992-07-31 1994-04-06 ENIRICERCHE S.p.A. Verstärktes Verbundmaterial wobei der Matrix gebildet ist aus einem Gemisch von Thermoplasten und Duroplasten
EP0639598A1 (de) 1993-08-17 1995-02-22 Bayer Ag Uretdion Pulverlackvernetzer mit niedriger Schmelzviskosität
US5427725A (en) 1993-05-07 1995-06-27 The Dow Chemical Company Process for resin transfer molding and preform used in the process
EP0669354A1 (de) 1994-02-28 1995-08-30 Hüls Aktiengesellschaft Verfahren zur Herstellung von uretdiongruppenhaltigen Polyadditionsprodukten und deren Verwendung in Polyurethan-Lacksystemen
EP0669353A1 (de) 1994-02-28 1995-08-30 Hüls Aktiengesellschaft Hydroxyl- und uretdiongruppenhaltige Polyadditionsprodukte und Verfahren zu ihrer Herstellung sowie deren Verwendung zur Herstellung abspaltfreier Polyurethan-Pulverlacke hoher Reaktivität und die danach hergestellten Polyurethan-Pulverlacke
US5532296A (en) 1991-07-30 1996-07-02 Cytec Technology Corp. Bismaleimide resin systems toughened by addition of preformed functionalized low Tg elastomer particles
EP0803524A1 (de) 1996-04-25 1997-10-29 Bayer Ag Abspalterfreier Polyurethan-Pulverlack mit niedriger Einbrenntemperatur
WO1998031535A1 (en) 1996-12-16 1998-07-23 Beleggingsmaatschappij 'ab-Ovo' B.V. Method and apparatus for treating strands with pulverulent material
WO1998050211A1 (en) 1997-05-06 1998-11-12 Cytec Technology Corp. Preforms for moulding process and resins therefor
WO1999064216A1 (en) 1998-06-08 1999-12-16 Complastik Corporation Composite articles including prepregs, preforms, laminates and sandwich moldings, and methods of making the same
EP1319503A1 (de) 2001-12-17 2003-06-18 Bayer Ag Verbundteile aus Deckschichten und Polyurethan-Sandwichmaterialien und ihre Herstellung
WO2003101719A2 (en) 2002-05-31 2003-12-11 Alive Surftec Polyurethane spread-laminated composites and methods of manufacture
JP2004196851A (ja) 2002-12-16 2004-07-15 Sumika Bayer Urethane Kk 軽量の複合構造材
US20040231598A1 (en) 2001-09-16 2004-11-25 Eran Werner Electrostatic coater and method for forming prepregs therewith
WO2005049301A2 (en) 2003-11-17 2005-06-02 Huntsman International Llc Pultrusion systems and process
US20050215148A1 (en) 2004-03-25 2005-09-29 Pc Composites Ltd. Pre-impregnated materials
WO2005091715A2 (en) 2004-03-25 2005-10-06 Pc Composites Ltd. Improved pre-impregnated materials and apparatus and methods for manufacture thereof
WO2005106155A1 (en) 2004-04-21 2005-11-10 Jeld-Wen, Inc. Fiber-reinforced composites and building structures comprising fiber-reinforced composites
WO2006043019A1 (en) 2004-10-21 2006-04-27 Hexcel Composites Limited Fibre reinforced assembly

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894994A (en) * 1973-09-20 1975-07-15 Usm Corp Continuous method of making polyurethane powder
US3933759A (en) * 1974-12-20 1976-01-20 E. I. Du Pont De Nemours & Company Heat-activatable, storage-stable polyurethane powders
US4738999A (en) * 1986-03-31 1988-04-19 Lord Corporation Fiber reinforced composites
SU1719408A1 (ru) * 1989-09-05 1992-03-15 Институт механики металлополимерных систем АН БССР Способ получени препрегов
CA2078693A1 (en) * 1990-03-30 1991-10-01 Yousef Mohajer Polymeric release films and their method of use
US5852102A (en) * 1994-05-03 1998-12-22 Teodur N.V. Binder composition for preparing fiber mats
DE4441765A1 (de) * 1994-11-24 1996-05-30 Teodur Nv Bindemittelzusammensetzung zur Herstellung von Faservliesen und Verfahren zur Herstellung von Faservlies-Formteilen
WO1999036239A1 (de) * 1998-01-16 1999-07-22 Neopreg Ag Verfahren zum beschichten von fasern
DE19810312C2 (de) * 1998-03-11 2000-06-29 Inst Polymerforschung Dresden Reaktives Mehrkomponentenspritzgießen
US6077901A (en) * 1999-05-06 2000-06-20 Bayer Corporation Aqueous compositions containing mixtures of silane-functional resins
DE10003749A1 (de) * 2000-01-28 2001-08-02 Cognis Deutschland Gmbh Verfahren zur Herstellung radikalisch nachvernetzter Polymere
ES2570596T3 (es) * 2002-07-04 2016-05-19 Covestro Deutschland Ag Productos de poliadición que contienen grupos uretdiona
DE10320266A1 (de) * 2003-05-03 2004-11-18 Degussa Ag Feste Uretdiongruppenhaltige Polyurethan-Pulverlackzusammensetzungen bei niedriger Temperatur härtbar
DE10320267A1 (de) * 2003-05-03 2004-11-18 Degussa Ag Bei niedriger Temperatur härtbare feste uretdiongruppenhaltige Polyurethan-Pulverlackzusammensetzungen
JP4392587B2 (ja) * 2003-08-25 2010-01-06 日本ポリウレタン工業株式会社 エラストマー形成性組成物、エラストマーシートの製造方法、複合シートの製造方法、建築工事用シートの製造方法
DE10346958A1 (de) * 2003-10-09 2005-05-12 Degussa Uretdiongruppenhaltige Polyurethanzusammensetzungen, welche bei niedriger Temperatur härtbar sind
DE102004020429A1 (de) * 2004-04-27 2005-11-24 Degussa Ag Uretdiongruppenhaltige Polyurethanzusammensetzungen, welche bei niedriger Temperatur härtbar sind und (teil-)kristalline Harze enthalten
DE102004020451A1 (de) * 2004-04-27 2005-12-01 Degussa Ag Uretdiongruppenhaltige Polyurethanzusammensetzungen, welche bei niedriger Temperatur härtbar sind und (teil-)kristalline Harze enthalten
UA6854U (en) * 2004-07-27 2005-05-16 Oleksandr Stepanovyc Kuznetsov Mandrel unit for assemblage of the node of the conveyor band connection
DE102005006296A1 (de) * 2005-02-11 2006-08-24 Degussa Ag Wässrige Zusammensetzungen
CN101248117A (zh) * 2005-07-22 2008-08-20 卡普顿事业有限责任公司 制备低密度高韧性的复合材料的方法
GB0606045D0 (en) * 2006-03-25 2006-05-03 Hexcel Composites Ltd A thermoplastic toughening material
JP5562832B2 (ja) * 2007-04-17 2014-07-30 ヘクセル コーポレイション 熱可塑性粒子のブレンドを含む複合材料
JP5433565B2 (ja) * 2007-04-17 2014-03-05 ヘクセル コーポレイション 改善された性能を有するプレ含浸コンポジット材料
US20080265201A1 (en) * 2007-04-26 2008-10-30 Degussa Gmbh Low-temperature-curable polyurethane compositions with uretdione groups, containing polymers based on polyols that carry secondary oh groups
WO2008138855A1 (de) * 2007-05-11 2008-11-20 Evonik Degussa Gmbh Bei niedriger temperatur härtbare, uretdiongruppen aufweisende polyurethanzusammensetzungen enthaltend polymere auf der basis von sekundären oh-gruppen tragenden polyolen
DE102008002703A1 (de) * 2008-06-27 2009-12-31 Evonik Degussa Gmbh Hochreaktive, Uretdiongruppen haltige Polyurethanzusammensetzungen, die metallfreie Acetylacetonate enthalten
FR2933986B1 (fr) * 2008-07-16 2010-08-27 Arkema France Utilisation d'un promoteur d'adherence encapsule dans un joint de colle aqueux collant deux substrats dont l'un au moins comprend un materiau (tpe-pa)
JP5878017B2 (ja) * 2008-10-24 2016-03-08 アイキュー テック スウィツァランド ゲーエムベーハー 反応性ポリマープリプレグを作成するための装置及び方法

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2007676A (en) 1977-11-08 1979-05-23 Genentech Inc Method and means for microbial polypeptide expression
US4377657A (en) 1980-03-27 1983-03-22 Hitco Bis-maleimide resin/divinyl arylene composites
DE3030572A1 (de) 1980-08-13 1982-03-18 Chemische Werke Hüls AG, 4370 Marl Verfahren zur herstellung von uretdiongruppenhaltigen polyadditionsprodukten sowie die danach hergestellten produkte
US4476054A (en) 1980-08-13 1984-10-09 Chemische Werke Huls Ag Uretidione dimer of isophorone diisocyanate and method of preparation
US4929724A (en) 1984-10-13 1990-05-29 Bayer Aktiengesellschaft Process for the production of uretdione group-containing compounds, the compounds obtained according to this process and the use thereof in the production of polyurethane plastics material
GB2182074A (en) 1985-10-25 1987-05-07 Ciba Geigy Ag Single tow prepreg
EP0254152A1 (de) 1986-07-22 1988-01-27 Bayer Ag Pulverlack und seine Verwendung zur Beschichtung von Hitzeresistenten Substraten
US4757120A (en) 1986-10-03 1988-07-12 Ici Americas Inc. Polyimide/aromatic sulfone resin blends and prepegs coated therewith
EP0297674A2 (de) 1987-06-30 1989-01-04 Shell Internationale Researchmaatschappij B.V. Härtbare Harzzusammensetzung
EP0309221A2 (de) 1987-09-21 1989-03-29 Eagle-Picher Industries, Inc. Elastomer-modifizierte Epoxydharze
WO1989004335A1 (en) 1987-11-03 1989-05-18 The Dow Chemical Company Epoxy resin compositions for use in low temperature curing applications
US4912210A (en) 1987-11-21 1990-03-27 Huels Aktiengesellschaft Process for the preparation of (cyclo)aliphatic uretediones
EP0417603A2 (de) 1989-09-14 1991-03-20 BASF Aktiengesellschaft Verfahren zur Herstellung von Uretdiongruppen aufweisenden Polyisocyanaten
US5080857A (en) 1989-09-19 1992-01-14 General Electric Company Passive lower drywell flooder
US4992228A (en) 1989-09-28 1991-02-12 The Dow Chemical Company Method for preparing preforms for molding processes
US5532296A (en) 1991-07-30 1996-07-02 Cytec Technology Corp. Bismaleimide resin systems toughened by addition of preformed functionalized low Tg elastomer particles
EP0590702A1 (de) 1992-07-31 1994-04-06 ENIRICERCHE S.p.A. Verstärktes Verbundmaterial wobei der Matrix gebildet ist aus einem Gemisch von Thermoplasten und Duroplasten
US5427725A (en) 1993-05-07 1995-06-27 The Dow Chemical Company Process for resin transfer molding and preform used in the process
EP0639598A1 (de) 1993-08-17 1995-02-22 Bayer Ag Uretdion Pulverlackvernetzer mit niedriger Schmelzviskosität
EP0669353A1 (de) 1994-02-28 1995-08-30 Hüls Aktiengesellschaft Hydroxyl- und uretdiongruppenhaltige Polyadditionsprodukte und Verfahren zu ihrer Herstellung sowie deren Verwendung zur Herstellung abspaltfreier Polyurethan-Pulverlacke hoher Reaktivität und die danach hergestellten Polyurethan-Pulverlacke
EP0669354A1 (de) 1994-02-28 1995-08-30 Hüls Aktiengesellschaft Verfahren zur Herstellung von uretdiongruppenhaltigen Polyadditionsprodukten und deren Verwendung in Polyurethan-Lacksystemen
EP0803524A1 (de) 1996-04-25 1997-10-29 Bayer Ag Abspalterfreier Polyurethan-Pulverlack mit niedriger Einbrenntemperatur
WO1998031535A1 (en) 1996-12-16 1998-07-23 Beleggingsmaatschappij 'ab-Ovo' B.V. Method and apparatus for treating strands with pulverulent material
WO1998050211A1 (en) 1997-05-06 1998-11-12 Cytec Technology Corp. Preforms for moulding process and resins therefor
WO1999064216A1 (en) 1998-06-08 1999-12-16 Complastik Corporation Composite articles including prepregs, preforms, laminates and sandwich moldings, and methods of making the same
US20040231598A1 (en) 2001-09-16 2004-11-25 Eran Werner Electrostatic coater and method for forming prepregs therewith
EP1319503A1 (de) 2001-12-17 2003-06-18 Bayer Ag Verbundteile aus Deckschichten und Polyurethan-Sandwichmaterialien und ihre Herstellung
WO2003101719A2 (en) 2002-05-31 2003-12-11 Alive Surftec Polyurethane spread-laminated composites and methods of manufacture
JP2004196851A (ja) 2002-12-16 2004-07-15 Sumika Bayer Urethane Kk 軽量の複合構造材
WO2005049301A2 (en) 2003-11-17 2005-06-02 Huntsman International Llc Pultrusion systems and process
US20050215148A1 (en) 2004-03-25 2005-09-29 Pc Composites Ltd. Pre-impregnated materials
WO2005091715A2 (en) 2004-03-25 2005-10-06 Pc Composites Ltd. Improved pre-impregnated materials and apparatus and methods for manufacture thereof
WO2005106155A1 (en) 2004-04-21 2005-11-10 Jeld-Wen, Inc. Fiber-reinforced composites and building structures comprising fiber-reinforced composites
WO2006043019A1 (en) 2004-10-21 2006-04-27 Hexcel Composites Limited Fibre reinforced assembly

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
Baypreg - ein neuer POLYURETHAN-Werkstoff für das Harzmattenverfahren, Recker, Klaus, Kunststoffe-Plastics 8, 1981
Coatings & Composite Materials, Nr. 19, p37-39, 1997
Composites Technologien, Paolo Ermanni (Version 4), Script zur Vorlesung ETH Zürich, August 2007, Kapitel 7
DIN 53765
J. Prakt. Chem. 336 (1994) 185-200
Lackharze, Stoye/Freitag, Hauser-Verlag 1996, Seiten 210/212
M. N. Ghasemi Nejhad, K. M. Ikeda: Design, manufacture and characterization of composites using on-line recycled thermoplastic powder impregnation of fibres and in-situ filament winding, Department of Mechanical Engineering, University of Hawaii at Manoa, Journal of Thermoplastic Composite Materials, Vol 11, pp. 533-572, November 1998
Ma, C. C. M.; Chiang, C. L. Annual Technical Conference - Society of Plastics Engineers (1991), 49th 2065-9.
Ma, Chef Chi M.; Chen, Chin Hsing. International SAMPE Symposium and Exhibition (1992), 37 (Mater. Work. You 21st Century), 1062-74
Michaeli et al.
N. C. Parasnis, K. Ramani, H. M. Borgaonkar: Ribbonizing of electrostatic powder spray impregnated thermoplastic tows by pultrusion, School of Mechanical Engineering, Purdue University, composites, Part A, Applied science and manufacturing, Vol. 27, pp. 567-574, 1996
R. E. Allred, S. P. Wesson, D. A. Babow: powder impregnation studies for high temperature towpregs, Adherent Technologies, SAMPE Journal, Vol. 40, No. 6, pp. 40-48, November/December 2004
Ratcliffe, Colin P.; Crane, Roger M.; Santiago, Armando L., AMD (1995), 211 (Innovative Processing and Characterization of Composite Materials), 29-37
S. Padaki, L. T. Drzal: a simulation study an the effects of particle size an the consolidation of polymer powder impregnated tapes, Department of Chemical Engineering, Michigan State University, Composites: Part A (1999), pp. 325-337

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010029355A1 (de) 2010-05-27 2011-12-01 Evonik Degussa Gmbh Verfahren zur Herstellung von lagerstabilen Polyurethan-Prepregs und daraus hergestellte Formkörper
WO2011147688A1 (de) 2010-05-27 2011-12-01 Evonik Degussa Gmbh Verfahren zur herstellung von lagerstabilen polyurethan-prepregs und daraus hergestellte formkörper
DE102010041239A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Prepregs auf der Basis lagerstabiler reaktiven oder hochreaktiven Polyurethanzusammensetzung
DE102010041256A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Prepregs auf der Basis lagerstabiler reaktiven oder hochreaktiven Polyurethanzusammensetzung mit fixierter Folie sowie die daraus hergestellten Composite-Bauteil
WO2012038201A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Prepregs auf der basis lagerstabiler reaktiven oder hochreaktiven polyurethanzusammensetzung mit fixierter folie sowie die daraus hergestellten composite-bauteil
WO2012038200A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Prepregs auf der basis lagerstabiler reaktiven oder hochreaktiven polyurethanzusammensetzung
WO2012038203A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Prepregs auf der basis einer lagerstabilen reaktiven oder hochreaktiven polyurethanzusammensetzung
DE102010041243A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Prepregs auf der Basis lagerstabiler reaktiven oder hochreaktiven Polyurethanzusammensetzung
DE102010041247A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Verfahren zur Herstellung von lagerstabilen Polyurethan-Prepregs und daraus hergestellte Formkörper aus Polyurethanzusammensetzung in Lösung
WO2012038105A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Verfahren zur herstellung von lagerstabilen polyurethan-prepregs und daraus hergestellte formkörper aus polyurethanzusammensetzung in lösung
WO2012093006A1 (de) 2011-01-04 2012-07-12 Evonik Degussa Gmbh Composite-halbzeuge und daraus hergestellte formteile sowie direkt hergestellte formteile auf basis von hydroxyfunktionalisierten (meth) acrylaten, die mittels uretdionen duroplastisch vernetzt werden
DE102011006163A1 (de) 2011-03-25 2012-09-27 Evonik Degussa Gmbh Lagerstabile Polyurethan-Prepregs und daraus hergestellte Formkörper aus Polyurethanzusammensetzung mit flüssigen Harzkomponenten
WO2012130672A1 (de) 2011-03-25 2012-10-04 Evonik Degussa Gmbh Lagerstabile polyurethan-prepregs und daraus hergestellte formkörper aus polyurethanzusammensetzung mit flüssigen harzkomponenten
DE102011076546A1 (de) * 2011-05-26 2012-11-29 Sgl Carbon Se Verfahren zur Herstellung eines Prepregs und eines daraus erhältlichen Organoblechs
WO2013139705A1 (de) 2012-03-20 2013-09-26 Bayer Intellectual Property Gmbh Lagerstabile harzfilme und daraus hergestellte faserverbundbauteile
US9399705B2 (en) 2012-03-20 2016-07-26 Bayer Intellectual Property Gmbh Storage-stable polyurethane-prepregs and fibre composite components produced therefrom
WO2013139704A1 (de) 2012-03-20 2013-09-26 Bayer Intellectual Property Gmbh Lagerstabile polyurethan-prepregs und daraus hergestellte faserverbundbauteile
US9512260B2 (en) 2012-03-20 2016-12-06 Covestro Deutschland Ag Storage stable resin films and fibre composite components produced therefrom
DE102013204124A1 (de) 2013-03-11 2014-09-11 Evonik Industries Ag Composite-Halbzeuge und daraus hergestellte Formteile sowie direkt hergestellte Formteile auf Basis von hydroxyfunktionalisierten (Meth)Acrylaten und Uretdionen die mittels Strahlung duroplastisch vernetzt werden
WO2014139796A1 (de) 2013-03-11 2014-09-18 Evonik Industries Ag Composite-halbzeuge und daraus hergestellte formteile sowie direkt hergestellte formteile auf basis von hydroxyfunktionalisierten (meth)acrylaten und uretdionen die mittels strahlung duroplastisch vernetzt werden
US9920175B2 (en) 2013-04-19 2018-03-20 Covestro Deutschland Ag Polyurethane prepreg and composite fiber element produced therefrom
WO2015074887A1 (de) 2013-11-19 2015-05-28 Evonik Industries Ag Formteile auf basis von dien-funktionalisierten (meth)acrylaten und (hetero-)diels-alder-dienophilen, mit reversibler vernetzung
EP2940069A1 (de) 2014-04-25 2015-11-04 Evonik Degussa GmbH Verfahren zur herstellung von lagerstabilen epoxy-prepregs und daraus hergestellte composites auf basis von radikalisch polymerisierbaren säuren und epoxiden
DE102014207785A1 (de) 2014-04-25 2015-10-29 Evonik Degussa Gmbh Verfahren zur Herstellung von lagerstabilen Epoxy-Prepregs und daraus hergestellte Composites auf Basis von radikalisch polymerisierbaren Säuren und Epoxiden
WO2016016069A1 (de) 2014-07-28 2016-02-04 Evonik Degussa Gmbh Effiziente herstellung von composite-halbzeugen und -bauteilen im nasspressverfahren unter einsatz von hydroxyfunktionalisierten (meth) acrylaten, die mittels isocyanaten oder uretdionen duroplastisch vernetzt werden
EP2979851A1 (de) 2014-07-28 2016-02-03 Evonik Degussa GmbH Effiziente Herstellung von Composite-Halbzeugen und -Bauteilen im Nasspressverfahren unter Einsatz von hydroxyfunktionalisierten (Meth) Acrylaten, die mittels Isocyanaten oder Uretdionen duroplastisch vernetzt werden
EP2993202A1 (de) 2014-09-08 2016-03-09 Evonik Degussa GmbH Composite-Halbzeuge und daraus hergestellte Formteile sowie direkt hergestellte Formteile auf Basis von hydroxyfunktionalisierten (Meth)Acrylaten und Uretdionen, die duroplastisch vernetzt werden
EP3330311A1 (de) 2016-12-02 2018-06-06 Evonik Degussa GmbH Lagerstabile 1k-polyurethan-prepregs und daraus hergestellte formkörper aus polyurethanzusammensetzung
US10626236B2 (en) 2016-12-02 2020-04-21 Evonik Operations Gmbh Storage-stable one-component polyurethane prepregs and shaped bodies composed of polyurethane composition that have been produced therefrom

Also Published As

Publication number Publication date
RU2540078C2 (ru) 2015-01-27
EP2411454B1 (de) 2013-05-01
ES2423802T3 (es) 2013-09-24
AU2010227757A1 (en) 2011-10-06
US20140065911A1 (en) 2014-03-06
ZA201107682B (en) 2012-06-27
JP5815501B2 (ja) 2015-11-17
PL2411454T3 (pl) 2013-09-30
BRPI1013403A2 (pt) 2016-03-29
KR20160102578A (ko) 2016-08-30
EP2411454A1 (de) 2012-02-01
AU2010227757B2 (en) 2014-11-27
US20120003891A1 (en) 2012-01-05
CN102361917B (zh) 2015-12-16
JP2012521450A (ja) 2012-09-13
KR101897824B1 (ko) 2018-09-12
WO2010108701A1 (de) 2010-09-30
CA2755936C (en) 2016-10-11
KR20110139702A (ko) 2011-12-29
CN102361917A (zh) 2012-02-22
RU2011142633A (ru) 2013-04-27
CA2755936A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
EP2411454B1 (de) Prepregs und daraus hergestellte formkörper
EP2411439B1 (de) Prepregs und daraus bei niedriger temperatur hergestellte formkörper
EP3330311B1 (de) Lagerstabile 1k-polyurethan-prepregs und daraus hergestellte formkörper aus polyurethanzusammensetzung
DE102010029355A1 (de) Verfahren zur Herstellung von lagerstabilen Polyurethan-Prepregs und daraus hergestellte Formkörper
EP2688934B1 (de) Lagerstabile polyurethan-prepregs und daraus hergestellte formkörper aus polyurethanzusammensetzung mit flüssigen harzkomponenten
EP2619242B1 (de) Verfahren zur herstellung von lagerstabilen polyurethan-prepregs und daraus hergestellte formkörper aus polyurethanzusammensetzung in lösung
WO2012038201A1 (de) Prepregs auf der basis lagerstabiler reaktiven oder hochreaktiven polyurethanzusammensetzung mit fixierter folie sowie die daraus hergestellten composite-bauteil
WO2012038200A1 (de) Prepregs auf der basis lagerstabiler reaktiven oder hochreaktiven polyurethanzusammensetzung
WO2012093006A1 (de) Composite-halbzeuge und daraus hergestellte formteile sowie direkt hergestellte formteile auf basis von hydroxyfunktionalisierten (meth) acrylaten, die mittels uretdionen duroplastisch vernetzt werden
DE102010030233A1 (de) Halbzeug für die Herstellung von Faserverbundbauteilen auf Basis von lagerstabilen Polyurethanzusammensetzungen
WO2013139704A1 (de) Lagerstabile polyurethan-prepregs und daraus hergestellte faserverbundbauteile
EP3186302B1 (de) Lichtechte polyurethan-prepregs und daraus hergestellte faserverbundelemente

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee